US20050254535A1 - Apparatus, system, and method for generating phase-locked harmonic RF source from an optical pulse train - Google Patents

Apparatus, system, and method for generating phase-locked harmonic RF source from an optical pulse train Download PDF

Info

Publication number
US20050254535A1
US20050254535A1 US11/102,597 US10259705A US2005254535A1 US 20050254535 A1 US20050254535 A1 US 20050254535A1 US 10259705 A US10259705 A US 10259705A US 2005254535 A1 US2005254535 A1 US 2005254535A1
Authority
US
United States
Prior art keywords
frequency
optical
mode
cavity
locked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/102,597
Inventor
Roderick Loewen
Ronald Ruth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LYNCEAN TECHNOLOGIES Inc
Original Assignee
LYNCEAN TECHNOLOGIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LYNCEAN TECHNOLOGIES Inc filed Critical LYNCEAN TECHNOLOGIES Inc
Priority to US11/102,597 priority Critical patent/US20050254535A1/en
Assigned to LYNCEAN TECHNOLOGIES, INC. reassignment LYNCEAN TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOEWEN, RODERICK J., RUTH, RONALD D.
Publication of US20050254535A1 publication Critical patent/US20050254535A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: LYNCEAN TECHNOLOGIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/06Two-beam arrangements; Multi-beam arrangements storage rings; Electron rings

Definitions

  • the present invention is generally directed towards generating pulses with a controlled frequency. More particularly, the present invention is directed towards generating a train of optical pulses having timing characteristics of interest for a variety of applications, such as driving a photocathode injector system of a Compton backscattering system.
  • Synchrotron x-ray radiation sources are of interest for many different fields of science and technology.
  • a synchrotron x-ray radiation source has a wavelength that is tunable.
  • Intense x-ray beams with wavelengths matched to the atomic scale have opened new windows to the physical and biological world. Powerful techniques such as x-ray diffraction and scattering are further enhanced by the tunability of synchrotron radiation that can exploit the subtleties of x-ray spectroscopy.
  • High flux synchrotrons are typically implemented as centralized facilities that use large magnetic rings to store high-energy electron beams.
  • a conventional third generation synchrotron may have a diameter of over 100 meters and utilize a 2-7 GeV beam, which combined with insertion devices such as undulator magnets generate 1 Angstrom wavelength x-ray radiation.
  • Compton scattering is a phenomenon of elastic scattering of photons and electrons. Since both the total energy and the momentum are conserved during the process, scattered photons with much higher energy (light with much shorter wavelength) can be obtained in this way.
  • FIG. 1 shows the system disclosed in U.S. Pat. No. 6,035,015.
  • the x-ray source includes a compact electron storage ring 10 into which an electron bunch, injected by an electron injector 11 , is introduced by a septum or kicker 13 .
  • the compact storage ring 10 includes c-shaped metal tubes 12 , 15 facing each other to form gaps 14 , 16 .
  • An essentially periodic sequence of identical FODO cells 18 surround the tubes 12 , 15 .
  • a FODO cell comprises a focusing quadrupole 21 , followed by a dipole 22 , followed by a defocusing quadrupole 23 , then followed by another dipole 24 .
  • the magnets can be either permanent magnets (very compact, but fixed magnetic field) or electromagnetic in nature (field strength varies with external current).
  • the FODO cells keep the electron bunch focused and bend the path so that the bunch travels around the compact storage ring and repetitively travels across the gap 16 .
  • an electron bunch circulates in the ring and travels across a gap 16 , it travels through an interaction region 26 where it interacts with a photon or laser pulse which travels along path 27 to generate x-rays 28 by Compton backscattering.
  • the metal tubes may be evacuated or placed in a vacuum chamber.
  • a pulsed laser 36 is injected into a Fabry-Perot optical resonator 32 .
  • the resonator may comprise highly reflecting mirrors 33 and 34 spaced to yield a resonator period with a pulsed laser 36 injecting photon pulses into the resonator.
  • the power level of the accumulated laser or photon pulse in the resonator can be maintained because any internal loss is compensated by the sequence of synchronized input laser pulses from laser 36 .
  • the laser pulse repetition rate is chosen to match the time it takes for the electron beam to circulate once around the ring and the time for the photon pulse to make one round trip in the optical resonator.
  • the electron bunch and laser or photon pulses are synchronized so that the light beam pulses repeatedly collide with the electron beam at the interaction region 26 .
  • Special bending and focusing magnets 41 , 42 , and 43 , 44 are provided to steer the electron bunch for interaction with the photon pulse, and to transversely focus the electron beam inside the vacuum chamber in order to overlap the electron bunch with the focused waist of the laser beam pulse.
  • the optical resonator is slightly tilted in order not to block the x-rays 28 in the forward direction, FIG. 3 .
  • the FODO cells 18 and the focusing and bending magnets 41 , 42 and 43 , 44 are slotted to permit bending and passage of the laser pulses and x-ray beam into and out of the interaction region 26 .
  • the electron beam energy and circulation frequency is maintained by a radio frequency (RF) accelerating cavity 46 as in a normal storage ring.
  • the RF field serves as a focusing force in the longitudinal direction to confine the electron beam with a bunch length comparable to the laser pulse length.
  • phase space the space that includes information on both the position and the momentum of the electrons
  • This laser cooling is more pronounced when the laser pulse inside the optical resonator is made more intense, and is used to counterbalance the natural quantum excitation and the strong intra-beam scattering effect when an intense electron beam is stored. Therefore, the electron beam can be stabilized by the repetitive laser-electron interactions, and the resulting x-ray flux is significantly enhanced.
  • the electron injector 11 of a Compton backscattering x-ray system may be a photocathode injector system.
  • the timing accuracy of a photocathode injector system depends primarily on the degree of the timing control of the source of timing pulses.
  • One technique that is used is to take an absolute reference frequency source, such as a microwave signal source, and then use frequency division or multiplication to generate control signals for a mode-locked laser to generate timing pulses at a desired frequency.
  • a drawback is the accumulation of phase noise or timing jitter caused by electronic frequency multiplication or division.
  • a mode-locked laser is used to generate a phase-locked harmonic radio frequency (RF) source.
  • RF radio frequency
  • a first feedback loop is used to lock a frequency of the mode-locked laser to a cavity frequency of an optical resonator, such as a Fabry-Perot cavity.
  • a second feedback loop may be used to adjust the cavity frequency of the optical resonator to lock to a reference frequency source.
  • the comb of frequencies of the mode-locked laser is stabilized and may be used as one or more RF sources.
  • One embodiment of an apparatus comprises: an optical resonator having an adjustable resonant frequency; a mode-locked laser generating optical pulses coupled as an optical input to the optical resonator, the mode-locked laser having an adjustable cavity length whereby each frequency of a comb of frequencies may be adjusted in frequency; a first feedback system locking a frequency of the mode-locked laser to the resonant frequency of the optical resonator; and a second feedback system monitoring an optical output of the optical resonator and locking the resonant frequency to a reference frequency source.
  • One embodiment of a system for generating phase-locked harmonic signals includes: a Fabry-Perot cavity having a first adjustable cavity length; a mode-locked laser generating optical pulses coupled as an optical input to the Fabry-Perot cavity, the mode-locked laser having a second adjustable cavity length; a first feedback system for adjusting the second cavity length of the mode-locked laser, whereby a frequency of the mode-locked laser is locked to a cavity mode of the Fabry-Perot cavity; and a second feedback system monitoring an optical output of said Fabry-Perot cavity and adjusting the first cavity length whereby the frequency is locked to a reference frequency source.
  • One embodiment of a method of generating optical pulses includes: generating mode locked laser pulses; coupling the mode-locked laser pulses to an optical resonator; tracking a frequency of the mode locked laser pulses to a resonant frequency of the optical resonator; monitoring an optical output of the optical resonator; and locking the resonant frequency of the optical resonator to a reference frequency source.
  • FIG. 1 is a block diagram of a prior art Compton x-ray source
  • FIG. 2 illustrates a mode-locked laser
  • FIG. 3 illustrates properties of a mode-locked laser
  • FIG. 4 is a block diagram of an apparatus for generating optical pulses with controlled frequency in accordance with one embodiment of the present invention.
  • the present invention is generally directed towards utilizing a mode-locked laser to generate a comb of phase-locked radio frequency (RF) sources, particularly phase locked sources at microwave frequencies.
  • RF radio frequency
  • the phase-locked RF sources may be in the form of optical domain signals or as electrical domain signals, depending upon whether the optical signals are converted into the electrical domain through an optical detector. Additionally, it will be understood throughout the following discussion that the phase-locked sources may be further frequency filtered (e.g., with an optical filter when in the optical domain or an electrical filter in the electrical domain) if desired for a particular application.
  • FIG. 2 illustrates a mode-locked laser 200 with some conventional components used to generate mode-locked laser pulses (e.g., saturable absorbers and a gain media to generate light) omitted for clarity.
  • Mode-locked laser 200 typically includes a Fabry-Perot cavity comprising a first mirror 205 and a second mirror 210 .
  • one of the mirrors, such as mirror 205 may be translatable (i.e., movable) using an actuator 215 to permit the cavity length, L, to be adjusted.
  • Each mirror typically includes a high reflectivity coating 220 .
  • FIG. 3 illustrates the output of a CW mode-locked laser 200 in the time domain and in the frequency domain.
  • a mode locked laser produces a frequency comb of equally spaced optical frequencies with the separation between frequencies inversely related to T.
  • the comb of frequencies has an envelope where the size of the envelope is inversely proportional to the pulse width, t, of the laser pulses.
  • the absolute frequencies contained within the frequency comb can be completely described by two experimental parameters: the mode spacing, determined by the roundtrip time of the laser cavity of the mode-locked laser, and the roundtrip carrier envelope phase slip, which produces a single offset frequency to the entire comb.
  • the pulse-to-pulse phase slips arise from differences is phase and group velocities inside the laser cavity.
  • the repetition rate of a mode-locked laser equals the mode spacing to within a measurement uncertainty of 10 ⁇ 16 , and the uniformity of the comb mode spacing has been verified to a level below 10 ⁇ 17 .
  • Equation ⁇ ⁇ 4 The reflection phases of the mirrors increase the apparent physical length of the cavity, 2n 0 L, by a value on the order of the optical wavelength, ⁇ 0 .
  • the mirrors do not contribute any group velocity dispersion (GVD) over their central bandwidth, which is usually several percent, a value much larger than the bandwidth needed to support picosecond optical pulses (BW ⁇ 10 ⁇ 4 ).
  • a mode-locked laser tends to generate a comb of frequencies.
  • the comb of frequencies has a center frequency of its envelope and a well-defined frequency separation that is determined by attributes of the mode-locked laser.
  • frequency stabilization is required to achieve absolute frequency control of the comb frequencies and reduce residual noise.
  • FIG. 4 illustrates an apparatus and system for stabilizing the output of a CW mode-locked laser 410 using an external cavity 440 that forms an optical resonator having resonant axial mode frequencies.
  • External cavity 440 is preferably a two-mirror Fabry-Perot interferometer with a resonant frequency determined by the cavity length.
  • the external cavity 440 has a resonant frequency selected to be near a harmonic of the laser repetition rate.
  • Some or all of the laser output of mode-locked laser 410 is coupled to external cavity 440 .
  • the CW mode-locked laser 410 is equipped with a high-bandwidth actuator to electronically adjust the laser cavity optical path length, for instance, a piezo-driven mirror (PZT).
  • the laser cavity may contain another stage or other larger dynamic range adjustment such that the desired base frequency f rep is controllable.
  • An optical feedback loop 430 locks one of the comb frequencies (e.g., a center frequency) of the mode-locked laser to that of the stable external FP cavity 440 .
  • Optical feedback loop 430 is preferably a high bandwidth optical feedback loop that is used to track the phase or frequency deviations of the mode-locked laser 410 to that of the external cavity 440 .
  • the optical feedback loop 430 may control a piezo-electric transducer (PZT) to adjust a cavity length of mode-locked laser 410 .
  • PZT piezo-electric transducer
  • An external cavity 440 that is an FP cavity is a passive device and has an inherent frequency stability.
  • the inherent frequency stability of the external cavity 430 is leveraged by using optical feedback loop 430 to optically phase-lock mode-locked laser 410 to the cavity axial modes of cavity 440 near a resonant frequency of cavity 440 .
  • the cavity length, L FP , of external cavity 440 determines the cavity axial modes and resonant frequencies of external cavity 440 .
  • the mode-locked laser tracks the cavity frequency of the external cavity 440 with a repetition rate f rep determined by the cavity length of the external cavity.
  • optical feedback loop 430 utilizes a frequency modulation (FM) sideband modulation technique.
  • An electro-optic modulator 412 is modulated by an oscillator 414 to add an FM sideband to the optical output of mode-locked laser 410 .
  • the FM sidebands are preferably outside the bandwidth of the external cavity 440 , for example between 1 to 20 MHz.
  • RF oscillator (OSC) 414 drives electro-optic modulator (EOM) 412 to produce these FM sidebands.
  • the reflected signal from the cavity input is redirected, for instance with a polarizing beam splitter (PBS) 416 and quarterwave plate ( ⁇ /4) 418, and monitored on a fast photodiode (PD) 420 .
  • PBS polarizing beam splitter
  • ⁇ /4 quarterwave plate
  • PD 420 receives reflected light at the sideband frequency and may also receive a small amount of transmitted light from external cavity 440 .
  • the photodiode signal contains phase information of the mode-locked laser 410 and external optical cavity 440 which is uncovered by demodulating the signal at the sideband value, for instance in an analog mixer (DBM) 422 .
  • the recovered electronic signal is a suitable error signal that can be further conditioned using filters and gain stages (Servo 424 ) and reapplied to the mode-locked laser PZT.
  • the mode-locked laser 410 will then track the frequency of the cavity 440 with a performance determined largely by the actuator bandwidth. Maintaining the optical laser cavity length to within 1 part in 1012 compared to the reference cavity length is possible with commercially available PZTs and mirrors.
  • a second feedback loop 450 is used to control the resonant frequency (i.e., the axial mode frequencies) of external cavity 440 .
  • This second feedback loop may be a lower bandwidth feedback system to reduce residual noise and lock an individual frequency component of the mode-locked laser frequency comb to a reference frequency source.
  • the microwave feedback sets the cavity round-trip frequency of external cavity 440 , for instance to an RF source standard, to maintain an absolute RF reference. This results in a nearly exact comb of harmonic RF frequencies with a common-mode jitter given by the residual phase noise of the microwave feedback.
  • feedback loop 450 samples the optical output and compares it to a microwave reference source 454 .
  • a portion of the output of external cavity 440 is sampled using a photodiode 452 which generates electrical domain output 475 .
  • One of the sampled RF signal outputs (nfrep) can be compared to a microwave reference source 454 using DBM 456 to generate an error signal that is conditioned by a servo 458 and sent to a cavity piezo-mirror assembly (PZT) 460 for adjusting the cavity length of external cavity 440 .
  • PZT cavity piezo-mirror assembly
  • the first feedback loop 430 locks the mode-locked laser to within the optical bandwidth of the external cavity 440 , which reduces the free-running noise of the mode-locked laser.
  • the laser's optical pulse train can resonantly buildup power in the external cavity. It is this circulating power which can be sampled, for instance, through an output mirror on the cavity.
  • the entire comb of modes up to the photo-detector bandwidth will be present simultaneously in electrical output 475 .
  • Appropriate narrowband filters may be used to select frequencies for a particular application.
  • an optical output can be extracted from the output of external cavity 440 using, for example, an optical coupler 470 .
  • Appropriate narrow-band filters 480 can be used to select which optical frequencies to isolate for a particular end use 490 .
  • phase locked signals are used in a Compton backscattering system such as to provide a source of timing signals to a photocathode injector system.
  • a typical photocathode injector system requires two phase-locked frequencies separated by a harmonic of 30 , for instance 100 MHz and 3000 MHz.
  • An external cavity 440 is then built to match the repetition rate of a mode-locked laser at the base 100 MHz frequency.
  • the present invention may be applied to a variety of applications.
  • the present invention may be used to provide a source of harmonically related RF frequencies in which the relative phase noise between any pair of this comb of frequencies is below 1 part in 10 16 and the comb of frequencies is locked to an absolute value by comparing one of these frequencies to a reference source using active feedback.
  • applications exist in which the absolute frequency is less sensitive than the relative frequency stability of harmonically related RF signals. Such applications are found in pump-probe experiments (e.g. time-resolved spectroscopy) as well as conventional laser to RF synchronization (e.g. RF photoinjectors).
  • a passive optical cavity can supply phase-locked RF sources over a comb of harmonically related frequencies.
  • the absolute frequency can be maintained with a separate feedback loop on the passive cavity at any one frequency of this frequency comb. Since the mode-locking requires phase locking of the comb frequencies, there is no phase noise accumulation from traditional multiplication or division between any set of these frequencies.
  • the pulse round-trip time in the cavity of the mode-locked laser determines the base frequency of mode-locked laser 410 , which can be in the range of 10 MHz to 10 GHz.
  • Phase-locked harmonics of this frequency are available up to the bandwidth of an optical detector, for instance >50 GHz for photodiodes.
  • the relative phase stability of each output frequency is determined by the optical mode-locking, which has been experimentally verified to be uniform to better than 10 ⁇ 16 .
  • the absolute frequencies are adjusted by actively controlling the length of the cavity through a feedback loop using a reference frequency source matched to any one of the harmonic cavity frequencies.
  • the frequency stability of the reference source is effectively transferred identically to all output frequencies of the device. Applications requiring sub-femptosecond synchronization between different harmonic frequencies thereby avoid the phase noise or timing jitter accumulation caused by electronic frequency multiplication or division.
  • the cavity length would be 1.5 m long.
  • the mirrors could be commercially available multilayer dielectrics which have a reflectivity ⁇ 0.997, corresponding to a cavity finesse of 1000 or a cavity bandwidth of 100 kHz.
  • the frequency stabilization feedback loops would then be capable of reducing the rms frequency noise of the mode-locked laser to some fraction of the external cavity bandwidth of 100 kHz, for example 20 kHz.
  • This low residual frequency noise assures a steady-state resonant build-up of power in the external cavity, in this case with a circulating pulse energy gain of 300 .
  • This optical frequency stability also translates into a cavity length stability of 0.2 nm, or a frequency stability of 7 mHz at the base 100 MHz cavity mode.
  • the residual phase noise is, however, a common mode noise on all harmonics of the frequency spectrum and sets the precision with which the cavity can be adjusted to an absolute frequency reference.
  • the phase noise between the frequency harmonics track within an experimental measurement error of 10 ⁇ 16 .

Abstract

A mode-locked laser is frequency stabilized to generate phase-locked harmonic RF signals. In one embodiment a first feedback system stabilizes a laser frequency to an optical cavity frequency of the external cavity. A second feedback system may be used to stabilize the optical cavity to a reference frequency source.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of the following provisional applications: application Ser. No. 60/560,848 filed on Apr. 9, 2004, application Ser. No. 60/560,864, filed on Apr. 9, 2004; application Ser. No. 60/561,014, filed on Apr. 9, 2004; application Ser. No. 60/560,845, filed on Apr. 9, 2004; and application Ser. No. 60/560,849, filed on Apr. 9, 2004, the contents of each of which are hereby incorporated by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • This invention was supported in part by a grant from the National Institutes of General Medical Sciences, National Institutes of Health, Department of Health and Human Services, grant number 4 R44 GM066511-02. The U.S. Government may have rights in this invention.
  • FIELD OF THE INVENTION
  • The present invention is generally directed towards generating pulses with a controlled frequency. More particularly, the present invention is directed towards generating a train of optical pulses having timing characteristics of interest for a variety of applications, such as driving a photocathode injector system of a Compton backscattering system.
  • BACKGROUND OF THE INVENTION
  • Synchrotron x-ray radiation sources are of interest for many different fields of science and technology. A synchrotron x-ray radiation source has a wavelength that is tunable. Intense x-ray beams with wavelengths matched to the atomic scale have opened new windows to the physical and biological world. Powerful techniques such as x-ray diffraction and scattering are further enhanced by the tunability of synchrotron radiation that can exploit the subtleties of x-ray spectroscopy.
  • High flux synchrotrons are typically implemented as centralized facilities that use large magnetic rings to store high-energy electron beams. As an illustrative example, a conventional third generation synchrotron may have a diameter of over 100 meters and utilize a 2-7 GeV beam, which combined with insertion devices such as undulator magnets generate 1 Angstrom wavelength x-ray radiation.
  • The large physical size, high cost, and complexity of conventional synchrotrons have limited their applications. For example, in many universities, hospitals, and research centers there are limitations on floor space, cost, power, and radiation levels that make a conventional synchrotron impractical as a local source of x-ray radiation. As a result, there are many medical and industrial applications that have been developed using synchrotron radiation that are not widely used because of the unavailability of a practical local source of synchrotron radiation having the necessary x-ray intensity and spectral properties.
  • Research in compact synchrotron x-ray sources has led to several design proposals for local x-ray sources that use the effect of Compton scattering. Compton scattering is a phenomenon of elastic scattering of photons and electrons. Since both the total energy and the momentum are conserved during the process, scattered photons with much higher energy (light with much shorter wavelength) can be obtained in this way.
  • One example of a Compton x-ray source is that described in U.S. Pat. No. 6,035,015, “Compton backscattered collimated x-ray source” by Ruth, et al., the contents of which are hereby incorporated by reference. FIG. 1 shows the system disclosed in U.S. Pat. No. 6,035,015. The x-ray source includes a compact electron storage ring 10 into which an electron bunch, injected by an electron injector 11, is introduced by a septum or kicker 13. The compact storage ring 10 includes c- shaped metal tubes 12, 15 facing each other to form gaps 14, 16. An essentially periodic sequence of identical FODO cells 18 surround the tubes 12, 15. As is well known, a FODO cell comprises a focusing quadrupole 21, followed by a dipole 22, followed by a defocusing quadrupole 23, then followed by another dipole 24. The magnets can be either permanent magnets (very compact, but fixed magnetic field) or electromagnetic in nature (field strength varies with external current). The FODO cells keep the electron bunch focused and bend the path so that the bunch travels around the compact storage ring and repetitively travels across the gap 16. As an electron bunch circulates in the ring and travels across a gap 16, it travels through an interaction region 26 where it interacts with a photon or laser pulse which travels along path 27 to generate x-rays 28 by Compton backscattering. The metal tubes may be evacuated or placed in a vacuum chamber.
  • In the prior art Compton x-ray source of U.S. Pat. No. 6,035,015 a pulsed laser 36 is injected into a Fabry-Perot optical resonator 32. The resonator may comprise highly reflecting mirrors 33 and 34 spaced to yield a resonator period with a pulsed laser 36 injecting photon pulses into the resonator. At steady state, the power level of the accumulated laser or photon pulse in the resonator can be maintained because any internal loss is compensated by the sequence of synchronized input laser pulses from laser 36. The laser pulse repetition rate is chosen to match the time it takes for the electron beam to circulate once around the ring and the time for the photon pulse to make one round trip in the optical resonator. The electron bunch and laser or photon pulses are synchronized so that the light beam pulses repeatedly collide with the electron beam at the interaction region 26.
  • Special bending and focusing magnets 41, 42, and 43, 44, are provided to steer the electron bunch for interaction with the photon pulse, and to transversely focus the electron beam inside the vacuum chamber in order to overlap the electron bunch with the focused waist of the laser beam pulse. The optical resonator is slightly tilted in order not to block the x-rays 28 in the forward direction, FIG. 3. The FODO cells 18 and the focusing and bending magnets 41, 42 and 43, 44 are slotted to permit bending and passage of the laser pulses and x-ray beam into and out of the interaction region 26. The electron beam energy and circulation frequency is maintained by a radio frequency (RF) accelerating cavity 46 as in a normal storage ring. In addition, the RF field serves as a focusing force in the longitudinal direction to confine the electron beam with a bunch length comparable to the laser pulse length.
  • In the prior art Compton x-ray source of U.S. Pat. No. 6,035,015 the electron energy is comparatively low, e.g., 8 MeV compared with 3 GeV electron energies in conventional large scale synchrotrons. In a storage ring with moderate energy, it is well-known that the Coulomb repulsion between the electrons constantly pushes the electrons apart in all degrees of freedom and also gives rise to the so-called intra-beam scattering effect in which electrons scatter off of each other. In prior art Compton x-ray sources the laser-electron interaction is used to cool and stabilize the electrons against intra-beam scattering. By inserting a tightly focused laser-electron interaction region 26 in the storage ring, each time the electrons lose energy to the scattered photons and are subsequently re-accelerated in the RF cavity they move closer in phase space (the space that includes information on both the position and the momentum of the electrons), i.e., the electron beam becomes “cooler” since the random thermal motion of the electrons within the beam is less. This laser cooling is more pronounced when the laser pulse inside the optical resonator is made more intense, and is used to counterbalance the natural quantum excitation and the strong intra-beam scattering effect when an intense electron beam is stored. Therefore, the electron beam can be stabilized by the repetitive laser-electron interactions, and the resulting x-ray flux is significantly enhanced.
  • The electron injector 11 of a Compton backscattering x-ray system may be a photocathode injector system. The timing accuracy of a photocathode injector system depends primarily on the degree of the timing control of the source of timing pulses. One technique that is used is to take an absolute reference frequency source, such as a microwave signal source, and then use frequency division or multiplication to generate control signals for a mode-locked laser to generate timing pulses at a desired frequency. However, a drawback is the accumulation of phase noise or timing jitter caused by electronic frequency multiplication or division.
  • Therefore, what is desired is a source of timing pulses with improved frequency control.
  • SUMMARY OF THE INVENTION
  • A mode-locked laser is used to generate a phase-locked harmonic radio frequency (RF) source. A first feedback loop is used to lock a frequency of the mode-locked laser to a cavity frequency of an optical resonator, such as a Fabry-Perot cavity. A second feedback loop may be used to adjust the cavity frequency of the optical resonator to lock to a reference frequency source. As a result, the comb of frequencies of the mode-locked laser is stabilized and may be used as one or more RF sources.
  • One embodiment of an apparatus comprises: an optical resonator having an adjustable resonant frequency; a mode-locked laser generating optical pulses coupled as an optical input to the optical resonator, the mode-locked laser having an adjustable cavity length whereby each frequency of a comb of frequencies may be adjusted in frequency; a first feedback system locking a frequency of the mode-locked laser to the resonant frequency of the optical resonator; and a second feedback system monitoring an optical output of the optical resonator and locking the resonant frequency to a reference frequency source.
  • One embodiment of a system for generating phase-locked harmonic signals includes: a Fabry-Perot cavity having a first adjustable cavity length; a mode-locked laser generating optical pulses coupled as an optical input to the Fabry-Perot cavity, the mode-locked laser having a second adjustable cavity length; a first feedback system for adjusting the second cavity length of the mode-locked laser, whereby a frequency of the mode-locked laser is locked to a cavity mode of the Fabry-Perot cavity; and a second feedback system monitoring an optical output of said Fabry-Perot cavity and adjusting the first cavity length whereby the frequency is locked to a reference frequency source.
  • One embodiment of a method of generating optical pulses, includes: generating mode locked laser pulses; coupling the mode-locked laser pulses to an optical resonator; tracking a frequency of the mode locked laser pulses to a resonant frequency of the optical resonator; monitoring an optical output of the optical resonator; and locking the resonant frequency of the optical resonator to a reference frequency source.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The invention is more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a block diagram of a prior art Compton x-ray source;
  • FIG. 2 illustrates a mode-locked laser;
  • FIG. 3 illustrates properties of a mode-locked laser; and
  • FIG. 4 is a block diagram of an apparatus for generating optical pulses with controlled frequency in accordance with one embodiment of the present invention.
  • Like reference numerals refer to corresponding parts throughout the several views of the drawings.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is generally directed towards utilizing a mode-locked laser to generate a comb of phase-locked radio frequency (RF) sources, particularly phase locked sources at microwave frequencies. It will be understood throughout the following discussion that the phase-locked RF sources may be in the form of optical domain signals or as electrical domain signals, depending upon whether the optical signals are converted into the electrical domain through an optical detector. Additionally, it will be understood throughout the following discussion that the phase-locked sources may be further frequency filtered (e.g., with an optical filter when in the optical domain or an electrical filter in the electrical domain) if desired for a particular application.
  • FIG. 2 illustrates a mode-locked laser 200 with some conventional components used to generate mode-locked laser pulses (e.g., saturable absorbers and a gain media to generate light) omitted for clarity. Mode-locked laser 200 typically includes a Fabry-Perot cavity comprising a first mirror 205 and a second mirror 210. Conventionally, one of the mirrors, such as mirror 205, may be translatable (i.e., movable) using an actuator 215 to permit the cavity length, L, to be adjusted. Each mirror typically includes a high reflectivity coating 220.
  • FIG. 3 illustrates the output of a CW mode-locked laser 200 in the time domain and in the frequency domain. In the time domain a train of optical pulses is generated having a repetition period T=L/c, where L is the cavity length of the mode-locked laser and c is the speed of light within the cavity of the mode-locked laser. In the frequency domain a mode locked laser produces a frequency comb of equally spaced optical frequencies with the separation between frequencies inversely related to T. The comb of frequencies has an envelope where the size of the envelope is inversely proportional to the pulse width, t, of the laser pulses.
  • The absolute frequencies contained within the frequency comb can be completely described by two experimental parameters: the mode spacing, determined by the roundtrip time of the laser cavity of the mode-locked laser, and the roundtrip carrier envelope phase slip, which produces a single offset frequency to the entire comb. The optical frequencies in the laser comb can then be written as:.
    v m =mf rep +f o,  Equation 1
    where m is a large integer on the order of 106, frep is the pulse repetition rate of the laser, and f0 is the offset frequency due to the pulse-to-pulse carrier phase shift. The pulse-to-pulse phase slips arise from differences is phase and group velocities inside the laser cavity. The repetition rate of a mode-locked laser equals the mode spacing to within a measurement uncertainty of 10−16, and the uniformity of the comb mode spacing has been verified to a level below 10−17.
  • A two-mirror resonator, or Fabry-Perot cavity, can support axial frequency modes, wm given by the condition:
    2w m n 0 L/c−ψ1−ψ2=2=πm,  Equation 2
    where n0 is the index of refraction of the media, L is the distance between mirrors, ψ1 and ψ2 and are the reflection phases of the mirrors, which in general depend on frequency ψ. For the case of multilayer dielectric mirrors, the reflection phase at normal incidence equals: ψ = π n 0 n H - n L w - w 0 w 0 , Equation 3
    for w−w0<<w, and w0=2πc/λ0 and where the mirrors have coatings that are typically quarter-wave stacks, with layer thickness λ0/4, containing alternating layers of high and low refractive indexes nH and nL respectively. Substituting Equation 3 into Equation 2, the frequency spacing between modes is Δ w = w m - w m - 1 = 2 π c 2 n 0 L + λ 0 n 0 / ( n H n L ) . Equation 4
    The reflection phases of the mirrors increase the apparent physical length of the cavity, 2n0L, by a value on the order of the optical wavelength, λ0. The mirrors do not contribute any group velocity dispersion (GVD) over their central bandwidth, which is usually several percent, a value much larger than the bandwidth needed to support picosecond optical pulses (BW ˜10−4).
  • In light of the above discussion, it can be understood that a mode-locked laser tends to generate a comb of frequencies. The comb of frequencies has a center frequency of its envelope and a well-defined frequency separation that is determined by attributes of the mode-locked laser. However, frequency stabilization is required to achieve absolute frequency control of the comb frequencies and reduce residual noise.
  • FIG. 4 illustrates an apparatus and system for stabilizing the output of a CW mode-locked laser 410 using an external cavity 440 that forms an optical resonator having resonant axial mode frequencies. External cavity 440 is preferably a two-mirror Fabry-Perot interferometer with a resonant frequency determined by the cavity length. The external cavity 440 has a resonant frequency selected to be near a harmonic of the laser repetition rate. Some or all of the laser output of mode-locked laser 410 is coupled to external cavity 440. The CW mode-locked laser 410 is equipped with a high-bandwidth actuator to electronically adjust the laser cavity optical path length, for instance, a piezo-driven mirror (PZT). The laser cavity may contain another stage or other larger dynamic range adjustment such that the desired base frequency frep is controllable.
  • An optical feedback loop 430 locks one of the comb frequencies (e.g., a center frequency) of the mode-locked laser to that of the stable external FP cavity 440. Optical feedback loop 430 is preferably a high bandwidth optical feedback loop that is used to track the phase or frequency deviations of the mode-locked laser 410 to that of the external cavity 440. For example, the optical feedback loop 430 may control a piezo-electric transducer (PZT) to adjust a cavity length of mode-locked laser 410.
  • An external cavity 440 that is an FP cavity is a passive device and has an inherent frequency stability. The inherent frequency stability of the external cavity 430 is leveraged by using optical feedback loop 430 to optically phase-lock mode-locked laser 410 to the cavity axial modes of cavity 440 near a resonant frequency of cavity 440. The cavity length, LFP, of external cavity 440 determines the cavity axial modes and resonant frequencies of external cavity 440. The mode-locked laser tracks the cavity frequency of the external cavity 440 with a repetition rate frep determined by the cavity length of the external cavity. Mode-locked laser 410 resonantly couples power to the cavity such that the transmitted power contains very stable harmonics, nfrep (where n=1, 2, 3 . . . ) with a common phase noise dictated by the passive cavity optical length stability.
  • In one embodiment, optical feedback loop 430 utilizes a frequency modulation (FM) sideband modulation technique. An electro-optic modulator 412 is modulated by an oscillator 414 to add an FM sideband to the optical output of mode-locked laser 410. The FM sidebands are preferably outside the bandwidth of the external cavity 440, for example between 1 to 20 MHz. RF oscillator (OSC) 414 drives electro-optic modulator (EOM) 412 to produce these FM sidebands. The reflected signal from the cavity input is redirected, for instance with a polarizing beam splitter (PBS) 416 and quarterwave plate (λ/4) 418, and monitored on a fast photodiode (PD) 420. Note that PD 420 receives reflected light at the sideband frequency and may also receive a small amount of transmitted light from external cavity 440. The photodiode signal contains phase information of the mode-locked laser 410 and external optical cavity 440 which is uncovered by demodulating the signal at the sideband value, for instance in an analog mixer (DBM) 422. The recovered electronic signal is a suitable error signal that can be further conditioned using filters and gain stages (Servo 424) and reapplied to the mode-locked laser PZT. The mode-locked laser 410 will then track the frequency of the cavity 440 with a performance determined largely by the actuator bandwidth. Maintaining the optical laser cavity length to within 1 part in 1012 compared to the reference cavity length is possible with commercially available PZTs and mirrors.
  • In one embodiment a second feedback loop 450 is used to control the resonant frequency (i.e., the axial mode frequencies) of external cavity 440. This second feedback loop may be a lower bandwidth feedback system to reduce residual noise and lock an individual frequency component of the mode-locked laser frequency comb to a reference frequency source. The microwave feedback sets the cavity round-trip frequency of external cavity 440, for instance to an RF source standard, to maintain an absolute RF reference. This results in a nearly exact comb of harmonic RF frequencies with a common-mode jitter given by the residual phase noise of the microwave feedback.
  • In one embodiment feedback loop 450 samples the optical output and compares it to a microwave reference source 454. A portion of the output of external cavity 440 is sampled using a photodiode 452 which generates electrical domain output 475. One of the sampled RF signal outputs (nfrep) can be compared to a microwave reference source 454 using DBM 456 to generate an error signal that is conditioned by a servo 458 and sent to a cavity piezo-mirror assembly (PZT) 460 for adjusting the cavity length of external cavity 440. Depending on the application requirement to track an absolute frequency, one can optimize the bandwidth, and related actuator stability, of the microwave feedback system.
  • In the present invention, the first feedback loop 430 locks the mode-locked laser to within the optical bandwidth of the external cavity 440, which reduces the free-running noise of the mode-locked laser. By reducing the free-running noise of the drive laser to within the optical bandwidth of the cavity, the laser's optical pulse train can resonantly buildup power in the external cavity. It is this circulating power which can be sampled, for instance, through an output mirror on the cavity. The entire comb of modes up to the photo-detector bandwidth will be present simultaneously in electrical output 475. Appropriate narrowband filters may be used to select frequencies for a particular application.
  • As previously described, the present invention may also be used to generate an optical output. In an embodiment in which all of the output of mode-locked laser 410 is coupled to external cavity 440, an optical output can be extracted from the output of external cavity 440 using, for example, an optical coupler 470. Appropriate narrow-band filters 480 can be used to select which optical frequencies to isolate for a particular end use 490.
  • In one embodiment the phase locked signals are used in a Compton backscattering system such as to provide a source of timing signals to a photocathode injector system. A typical photocathode injector system requires two phase-locked frequencies separated by a harmonic of 30, for instance 100 MHz and 3000 MHz. An external cavity 440 is then built to match the repetition rate of a mode-locked laser at the base 100 MHz frequency.
  • More generally, however, the present invention may be applied to a variety of applications. In particular, the present invention may be used to provide a source of harmonically related RF frequencies in which the relative phase noise between any pair of this comb of frequencies is below 1 part in 1016 and the comb of frequencies is locked to an absolute value by comparing one of these frequencies to a reference source using active feedback. For example, applications exist in which the absolute frequency is less sensitive than the relative frequency stability of harmonically related RF signals. Such applications are found in pump-probe experiments (e.g. time-resolved spectroscopy) as well as conventional laser to RF synchronization (e.g. RF photoinjectors). In this case, a passive optical cavity can supply phase-locked RF sources over a comb of harmonically related frequencies. The absolute frequency can be maintained with a separate feedback loop on the passive cavity at any one frequency of this frequency comb. Since the mode-locking requires phase locking of the comb frequencies, there is no phase noise accumulation from traditional multiplication or division between any set of these frequencies.
  • Note that the pulse round-trip time in the cavity of the mode-locked laser determines the base frequency of mode-locked laser 410, which can be in the range of 10 MHz to 10 GHz. Phase-locked harmonics of this frequency are available up to the bandwidth of an optical detector, for instance >50 GHz for photodiodes. The relative phase stability of each output frequency is determined by the optical mode-locking, which has been experimentally verified to be uniform to better than 10−16. The absolute frequencies are adjusted by actively controlling the length of the cavity through a feedback loop using a reference frequency source matched to any one of the harmonic cavity frequencies. The frequency stability of the reference source is effectively transferred identically to all output frequencies of the device. Applications requiring sub-femptosecond synchronization between different harmonic frequencies thereby avoid the phase noise or timing jitter accumulation caused by electronic frequency multiplication or division.
  • An illustrative example will now be discussed. The available spectrum of frequencies is dependent on the optical pulse length and the bandwidth of the photo-detector sampling the pulse train out of the cavity. A typical 1 μm wavelength solid-state mode-locked lasers produces transform-limited ˜10 picosecond FWHM pulses. This pulse length corresponds to an optical spectral width of 50 GHz. Fast photodiodes have commensurate bandwidths such that any frequency multiple of 100 MHz up to 50 GHz would be available as an output. Since the power spectrum is nearly flat over this range, the power in each mode is roughly −30 db in power from the total laser input power given a matched cavity with low internal losses. For the simplest two-mirror geometry of external cavity 440, the cavity length would be 1.5 m long. The mirrors could be commercially available multilayer dielectrics which have a reflectivity ˜0.997, corresponding to a cavity finesse of 1000 or a cavity bandwidth of 100 kHz.
  • In this example the frequency stabilization feedback loops would then be capable of reducing the rms frequency noise of the mode-locked laser to some fraction of the external cavity bandwidth of 100 kHz, for example 20 kHz. This low residual frequency noise assures a steady-state resonant build-up of power in the external cavity, in this case with a circulating pulse energy gain of 300. This optical frequency stability also translates into a cavity length stability of 0.2 nm, or a frequency stability of 7 mHz at the base 100 MHz cavity mode. The residual phase noise is, however, a common mode noise on all harmonics of the frequency spectrum and sets the precision with which the cavity can be adjusted to an absolute frequency reference. The phase noise between the frequency harmonics, however, track within an experimental measurement error of 10−16.
  • The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously, many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, they thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following claims and their equivalents define the scope of the invention.

Claims (18)

1. An apparatus for generating phase-locked harmonic signals from an optical pulse train, comprising:
an optical resonator having an adjustable resonant frequency;
a mode-locked laser generating optical pulses coupled as an optical input to said optical resonator, said mode-locked laser having an adjustable cavity length whereby each frequency of a comb of frequencies may be adjusted in frequency;
a first feedback system locking a frequency of said mode-locked laser to said resonant frequency of said optical resonator; and
a second feedback system monitoring an optical output of said optical resonator and locking said resonant frequency to a reference frequency source.
2. The apparatus of claim 1, wherein said first feedback system locks a relative frequency and said second feedback system locks an absolute frequency.
3. The apparatus of claim 1, wherein said optical resonator is a Fabry-Perot cavity and a length of said Fabry-Perot cavity is adjusted so that a resonant frequency of said Fabry-Perot cavity is locked to a harmonic of the laser repetition frequency.
4. The apparatus of claim 1, wherein a comb of frequencies of said mode-locked laser is locked to an absolute value by comparing one of the generated RF frequencies to a reference source using active feedback on the length of the external cavity.
5. The apparatus of claim 1, wherein said first feedback system comprises:
an optical sideband modulator coupled to said mode-locked laser for generating FM sideband modulated optical pulses;
an optical detector; and
a controller determining a correction to said adjustable frequency of said mode-locked laser
6. The apparatus of claim 1, wherein said second feedback system comprises:
an optical detector to detect an output of said optical resonator to generate electrical pulses;
a reference frequency source;
a comparator to compare said reference frequency source to said electrical pulses; and
a servo for adjusting a cavity length of said optical resonator in response to an error signal of said comparator.
7. The apparatus of claim 1, further comprising an optical detector for converting optical pulses from said optical resonator into electrical signals.
8. The apparatus of claim 1, wherein said apparatus is used to generate control signals for a Compton backscattering system.
9. The apparatus of claim 1, further including a narrowband filter to filter a selected frequency of the frequency comb of said mode-locked laser.
10. The apparatus of claim 9, wherein said filter filters frequencies in the optical domain.
11. The apparatus of claim 9, wherein said filter filters frequencies in the electrical domain of the output of an optical detector receiving said frequency comb of said mode-locked laser.
12. A system for generating phase-locked harmonic signals from an optical pulse train, comprising:
a Fabry-Perot cavity having a first adjustable cavity length;
a mode-locked laser generating optical pulses coupled as an optical input to said Fabry-Perot cavity, said mode-locked laser having a second adjustable cavity length;
a first feedback system for adjusting said second cavity length of said mode-locked laser, whereby a frequency of said mode-locked laser is locked to a cavity mode of said Fabry-Perot cavity; and
a second feedback system monitoring an optical output of said Fabry-Perot cavity and adjusting said first cavity length whereby said frequency is locked to a reference frequency source.
13. The system of claim 12, wherein said first feedback system comprises a FM sideband modulator for FM sideband modulating the output of said mode-locked laser, an optical detector, a demultiplexer, and a servo.
14. A method of generating phase-locked harmonic signals from an optical pulse train, comprising:
generating mode locked laser pulses;
coupling said mode-locked laser pulses to an optical resonator;
tracking a frequency of said mode locked laser pulses to a resonant frequency of said optical resonator;
monitoring an optical output of said optical resonator;
locking said resonant frequency of said optical resonator to a reference frequency source.
15. The method of claim 14, wherein said tracking comprises:
FM sideband modulating mode-locked laser pulses;
monitoring reflected and transmitted light received from an entrance mirror of said optical resonator;
generating an error signal indicative of a difference between said frequency and said resonant frequency; and
adjusting a cavity length of said mode-locked laser responsive to said error signal.
16. The method of claim 14, wherein said locking comprises:
comparing said optical output to said reference source and generating an error signal indicative of a difference between a desired absolute frequency and said frequency; and
adjusting a cavity length of said resonator responsive to said error signal.
17. The method of claim 14, further comprising:
filtering an output of said optical resonator.
18. The method of claim 14, further comprising:
utilizing an output of said optical resonator as control signal.
US11/102,597 2004-04-09 2005-04-08 Apparatus, system, and method for generating phase-locked harmonic RF source from an optical pulse train Abandoned US20050254535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/102,597 US20050254535A1 (en) 2004-04-09 2005-04-08 Apparatus, system, and method for generating phase-locked harmonic RF source from an optical pulse train

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US56086404P 2004-04-09 2004-04-09
US56084904P 2004-04-09 2004-04-09
US56084804P 2004-04-09 2004-04-09
US56084504P 2004-04-09 2004-04-09
US56101404P 2004-04-09 2004-04-09
US11/077,524 US7277526B2 (en) 2004-04-09 2005-03-09 Apparatus, system, and method for high flux, compact compton x-ray source
US11/102,597 US20050254535A1 (en) 2004-04-09 2005-04-08 Apparatus, system, and method for generating phase-locked harmonic RF source from an optical pulse train

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/077,524 Continuation-In-Part US7277526B2 (en) 2004-04-09 2005-03-09 Apparatus, system, and method for high flux, compact compton x-ray source

Publications (1)

Publication Number Publication Date
US20050254535A1 true US20050254535A1 (en) 2005-11-17

Family

ID=35060543

Family Applications (7)

Application Number Title Priority Date Filing Date
US11/077,524 Active US7277526B2 (en) 2004-04-09 2005-03-09 Apparatus, system, and method for high flux, compact compton x-ray source
US11/102,479 Active 2025-04-06 US7295653B2 (en) 2004-04-09 2005-04-08 Apparatus, system, and method for optical pulse gain enhancement for high-finesse external cavity
US11/102,597 Abandoned US20050254535A1 (en) 2004-04-09 2005-04-08 Apparatus, system, and method for generating phase-locked harmonic RF source from an optical pulse train
US11/101,790 Active 2025-04-12 US7242748B2 (en) 2004-04-09 2005-04-08 X-ray transmissive optical mirror apparatus
US11/102,473 Active 2025-07-09 US7301972B2 (en) 2004-04-09 2005-04-08 Apparatus, system, and method for frequency stabilized mode-locked laser
US11/751,545 Expired - Fee Related US7443956B2 (en) 2004-04-09 2007-05-21 X-ray transmissive optical mirror apparatus
US11/856,282 Active US7596208B2 (en) 2004-04-09 2007-09-17 Apparatus system, and method for high flux, compact compton x-ray source

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/077,524 Active US7277526B2 (en) 2004-04-09 2005-03-09 Apparatus, system, and method for high flux, compact compton x-ray source
US11/102,479 Active 2025-04-06 US7295653B2 (en) 2004-04-09 2005-04-08 Apparatus, system, and method for optical pulse gain enhancement for high-finesse external cavity

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/101,790 Active 2025-04-12 US7242748B2 (en) 2004-04-09 2005-04-08 X-ray transmissive optical mirror apparatus
US11/102,473 Active 2025-07-09 US7301972B2 (en) 2004-04-09 2005-04-08 Apparatus, system, and method for frequency stabilized mode-locked laser
US11/751,545 Expired - Fee Related US7443956B2 (en) 2004-04-09 2007-05-21 X-ray transmissive optical mirror apparatus
US11/856,282 Active US7596208B2 (en) 2004-04-09 2007-09-17 Apparatus system, and method for high flux, compact compton x-ray source

Country Status (6)

Country Link
US (7) US7277526B2 (en)
EP (1) EP1745682B1 (en)
JP (1) JP5030772B2 (en)
DK (1) DK1745682T3 (en)
HK (1) HK1100117A1 (en)
WO (3) WO2005101925A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090092167A1 (en) * 2007-10-04 2009-04-09 Andreas Stingl Mode-locked short pulse laser resonator and short pulse laser arrangement
WO2012099914A1 (en) * 2011-01-18 2012-07-26 University Of Delaware High spectral-purity carrier wave generation by nonlinear optical mixing
DE102011112893A1 (en) * 2011-09-06 2013-03-07 Philipp Kubina Method for time-resolved measurement of measurement signals generated in examination unit after stimulation by pulses and after scanning with temporally successive pulses, involves forming and digitalizing narrowband signals from pulses
US20150086151A1 (en) * 2012-04-11 2015-03-26 University Of Central Florida Research Foundation, Inc. Stabilization of an injection locked harmonically mode-locked laser via polarization spectroscopy for frequency comb generation
CN105552706A (en) * 2015-12-17 2016-05-04 北京无线电计量测试研究所 Generation device of short-term frequency stability criterion
WO2018039417A1 (en) * 2016-08-24 2018-03-01 The Research Foundation For The State University Of New York Apparatus and method for cavity-enhanced ultrafast two-dimensional spectroscopy
CN110401098A (en) * 2019-07-10 2019-11-01 中国电子科技集团公司第四十四研究所 A kind of frequency comb flatness control device based on optically filtering
CN110401099A (en) * 2019-07-10 2019-11-01 中国电子科技集团公司第四十四研究所 A kind of frequency comb flatness controlling method based on optically filtering
US11018470B2 (en) 2017-03-13 2021-05-25 Picomole Inc. System for optimizing laser beam
US11035789B2 (en) * 2019-04-03 2021-06-15 Picomole Inc. Cavity ring-down spectroscopy system and method of modulating a light beam therein
US11387070B2 (en) * 2018-07-30 2022-07-12 The Royal Institution For The Advancement Of Learning/Mcgill University Robust and precise synchronization of microwave oscillators to a laser oscillator in pulsed electron beam devices

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239442B2 (en) * 2001-07-26 2007-07-03 Japan Science And Technology Agency Optical frequency comb generator
US8797260B2 (en) 2002-07-27 2014-08-05 Sony Computer Entertainment Inc. Inertially trackable hand-held controller
US7623115B2 (en) 2002-07-27 2009-11-24 Sony Computer Entertainment Inc. Method and apparatus for light input device
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US9474968B2 (en) 2002-07-27 2016-10-25 Sony Interactive Entertainment America Llc Method and system for applying gearing effects to visual tracking
US9177387B2 (en) 2003-02-11 2015-11-03 Sony Computer Entertainment Inc. Method and apparatus for real time motion capture
US8323106B2 (en) 2008-05-30 2012-12-04 Sony Computer Entertainment America Llc Determination of controller three-dimensional location using image analysis and ultrasonic communication
US7874917B2 (en) 2003-09-15 2011-01-25 Sony Computer Entertainment Inc. Methods and systems for enabling depth and direction detection when interfacing with a computer program
US10279254B2 (en) 2005-10-26 2019-05-07 Sony Interactive Entertainment Inc. Controller having visually trackable object for interfacing with a gaming system
US7551342B2 (en) * 2003-11-14 2009-06-23 Optical Comb Institute, Inc. Optical frequency comb generator and optical modulator
US7277526B2 (en) * 2004-04-09 2007-10-02 Lyncean Technologies, Inc. Apparatus, system, and method for high flux, compact compton x-ray source
JP4781648B2 (en) * 2004-04-14 2011-09-28 株式会社 光コム Optical resonator
DE102004045883A1 (en) * 2004-09-22 2006-04-06 Diehl Bgt Defence Gmbh & Co. Kg Method of producing a mirror from a titanium-based material, and mirrors of such a material
JP2006196638A (en) * 2005-01-13 2006-07-27 Institute Of Physical & Chemical Research Laser oscillation control method of pulse laser, and pulse laser system
WO2006104956A2 (en) * 2005-03-25 2006-10-05 Massachusetts Institute Of Technology Compact, high-flux, short-pulse x-ray source
US7310408B2 (en) * 2005-03-31 2007-12-18 General Electric Company System and method for X-ray generation by inverse compton scattering
JP2006323907A (en) * 2005-05-18 2006-11-30 Hitachi Media Electoronics Co Ltd Optical pickup
US9205463B2 (en) 2005-09-26 2015-12-08 Lawrence Livermore National Security, Llc Isotope specific arbitrary material sorter
US8934608B2 (en) * 2005-09-26 2015-01-13 Lawrence Livermore National Security, Llc High flux, narrow bandwidth compton light sources via extended laser-electron interactions
US7809104B2 (en) * 2005-11-11 2010-10-05 L-3 Communications Security and Detection Systems Inc. Imaging system with long-standoff capability
US8163632B2 (en) * 2006-12-04 2012-04-24 Carl Zeiss Smt Gmbh Irradiation with high energy ions for surface structuring and treatment of surface proximal sections of optical elements
US7643609B2 (en) * 2007-01-03 2010-01-05 Andrea Clay Secondary X-ray imaging technique for diagnosing a health condition
JP2010523228A (en) * 2007-04-04 2010-07-15 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Laser-driven micro accelerator platform
JP4793936B2 (en) * 2007-07-03 2011-10-12 株式会社Ihi Apparatus and method for adjusting collision timing of electron beam and laser beam
JP4998786B2 (en) * 2007-07-03 2012-08-15 株式会社Ihi Laser introduction and X-ray extraction mechanism for X-ray generator
JP2009016119A (en) * 2007-07-03 2009-01-22 Ihi Corp Wavelength changing device and method of x-ray generating device
JP4879102B2 (en) * 2007-07-04 2012-02-22 株式会社Ihi X-ray measuring apparatus and X-ray measuring method
JP5454837B2 (en) * 2008-02-05 2014-03-26 株式会社Ihi Hard X-ray beam scanning apparatus and method
DE102008038427A1 (en) 2008-08-19 2010-02-25 Ludwig Maximilians Universität X-ray source
FR2935845B1 (en) * 2008-09-05 2010-09-10 Centre Nat Rech Scient FABRY-PEROT AMPLIFIER OPTICAL CAVITY
JP5361054B2 (en) * 2009-01-14 2013-12-04 独立行政法人日本原子力研究開発機構 Strong photoelectric magnetic field generator in an optical oscillator using chirped pulse amplification
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
GB2488079B (en) 2009-12-03 2015-05-27 Rapiscan Systems Inc Time of flight backscatter imaging system
WO2012031607A1 (en) 2010-09-06 2012-03-15 Max-Planck-Gesellschaft Zur Förderung Der... Method of generating enhanced intra-resonator laser light, enhancement resonator and laser device
PL2673660T3 (en) 2011-02-08 2018-01-31 Rapiscan Systems Inc Covert surveillance using multi-modality sensing
RU2469450C2 (en) * 2011-03-14 2012-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (НИУ ИТМО) Method of generating ultra-short light pulses
DE102011082821A1 (en) 2011-09-16 2012-10-04 Carl Zeiss Smt Gmbh Extreme-UV radiation source for use in e.g. reflectometer of projection exposure system for extreme UV-lithography to manufacture memory chip, has overlapping device arranged in optical path to overlap electronic radiation with light rays
AU2013267091B2 (en) 2012-06-01 2017-05-25 Rapiscan Systems, Inc. Methods and systems for Time-of-Flight neutron interrogation for material descrimination
US9227086B2 (en) 2012-06-08 2016-01-05 Varian Medical Systems, Inc. High energy microbeam radiosurgery
DE102012212830A1 (en) 2012-07-23 2014-01-23 Carl Zeiss Smt Gmbh EUV-light source
US9248315B2 (en) 2012-09-04 2016-02-02 Varian Medical Systems, Inc. Targeting method for microbeam radiosurgery
US9520260B2 (en) * 2012-09-14 2016-12-13 The Board Of Trustees Of The Leland Stanford Junior University Photo emitter X-ray source array (PeXSA)
KR101933145B1 (en) * 2012-10-31 2018-12-27 아이디 퀀티크 에스.에이. Opto-electronic Oscillator Stabilized on Optical Resonator Using Local Osillation Frequency
DE102012023344A1 (en) 2012-11-29 2014-06-05 Bernhard Müller Device and method useful for X-ray fluorescence analysis of contrast agent dispersion, comprises an X-ray source, a beam collimator, a radial arrangement of collimator blades and an X-ray detector
TWI469462B (en) * 2012-11-30 2015-01-11 Ind Tech Res Inst The apparatus of ultra short pulse laser generation through spectrally sideband gain manipulation
EP2946447B1 (en) * 2013-01-16 2018-06-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Enhancement resonator including non-spherical mirrors
KR102167245B1 (en) 2013-01-31 2020-10-19 라피스캔 시스템스, 인코포레이티드 Portable security inspection system
US9769913B2 (en) 2013-02-01 2017-09-19 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Burst-laser generator using an optical resonator
JP6233857B2 (en) * 2013-02-01 2017-11-22 大学共同利用機関法人 高エネルギー加速器研究機構 Two-dimensional four-mirror resonator
US9706631B2 (en) 2013-05-10 2017-07-11 Lawrence Livermore National Security, Llc Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
EP2997799A4 (en) 2013-05-17 2016-11-02 Martin A Stuart Dielectric wall accelerator utilizing diamond or diamond like carbon
US9184022B2 (en) * 2013-11-29 2015-11-10 Jefferson Science Associates, Llc Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression
WO2015082295A1 (en) * 2013-12-05 2015-06-11 Asml Netherlands B.V. Electron injector and free electron laser
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
WO2016003513A2 (en) * 2014-04-01 2016-01-07 Massachusetts Institute Of Technology Coherent electron and radiation production using transverse spatial modulation and axial transfer
US10508998B2 (en) 2014-05-08 2019-12-17 Lawrence Livermore National Security, Llc Methods for 2-color radiography with laser-compton X-ray sources
ES2808908T3 (en) 2014-05-08 2021-03-02 L Livermore Nat Security Llc Ultra-low dose feedback imaging with Compton X-ray and gamma-ray laser sources
CN104979033A (en) * 2015-05-13 2015-10-14 南华大学 All-optical Compton gamma-ray and ultrashort pulse positron beam generation method
KR101633466B1 (en) * 2015-07-15 2016-06-24 한국과학기술원 apparatus and method for frequency stabilization of the optical comb of fiber femtosecond lasers using optical modes extracted directly from the optical comb
JP6781867B2 (en) * 2016-02-04 2020-11-11 国立大学法人大阪大学 Resonator and laser device
CN207291315U (en) * 2016-06-10 2018-05-01 精工爱普生株式会社 Ink replenishing container and ink replenishing system
CN106123886B (en) * 2016-08-23 2019-03-19 中国航空工业集团公司西安飞行自动控制研究所 A kind of laser gyro ring resonator beam path alignment device and method
US10527492B2 (en) * 2017-05-16 2020-01-07 Li-Cor, Inc. Mode matching method for absorption spectroscopy systems
WO2019054540A1 (en) * 2017-09-18 2019-03-21 한국수력원자력 주식회사 Apparatus for extracting multiple laser compton scattering photon beams
FR3073988B1 (en) * 2017-11-20 2020-01-03 Amplitude Systemes SYSTEM AND METHOD FOR GENERATING A SPATIALLY LOCALIZED HIGH INTENSITY LASER BEAM
US10515733B1 (en) * 2019-04-24 2019-12-24 Euclid Techlabs, Llc Broad band tunable energy electron beam pulser
US10804001B1 (en) 2019-04-24 2020-10-13 Euclid Technlabs, LLC Broad band tunable energy electron beam pulser
US11333620B2 (en) 2019-08-02 2022-05-17 Cornell University High-pass x-ray filter device and methods of making thereof
WO2021055217A1 (en) * 2019-09-16 2021-03-25 The Regents Of The University Of California Use of optical polarization states to control a ponderomotive phase plate
CN112769023B (en) * 2019-10-21 2022-04-12 中国计量科学研究院 Microwave signal generating device and method
EP4298433A1 (en) 2021-02-23 2024-01-03 Rapiscan Systems, Inc. Systems and methods for eliminating cross-talk in scanning systems having multiple x-ray sources

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347525A (en) * 1993-02-19 1994-09-13 Sri International Generation of multiple stabilized frequency references using a mode-coupled laser
US5485164A (en) * 1992-07-16 1996-01-16 Cornell Research Foundation, Inc. Self-scanning pulsed source using mode-locked oscillator arrays
US5796506A (en) * 1995-11-21 1998-08-18 Tsai; Charles Su-Chang Submillimeter indirect heterodyne receiver and mixer element
US5835199A (en) * 1996-05-17 1998-11-10 Coherent Technologies Fiber-based ladar transceiver for range/doppler imaging with frequency comb generator
US5835522A (en) * 1996-11-19 1998-11-10 Hewlett-Packard Co. Robust passively-locked optical cavity system
US6035015A (en) * 1997-08-13 2000-03-07 The Board Of Trustees Of The Leland Stanford Junior University Compton backscattered collmated X-ray source
US6178036B1 (en) * 1997-01-14 2001-01-23 California Institute Of Technology Opto-electronic devices and systems based on brillouin selective sideband amplification
US20030174743A1 (en) * 2002-03-18 2003-09-18 Dicos Technologies Inc. Absolutely calibrated periodic filters and sources
US20040017833A1 (en) * 2000-03-30 2004-01-29 Cundiff Steven T. Mode-locked pulsed laser system and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598415A (en) * 1982-09-07 1986-07-01 Imaging Sciences Associates Limited Partnership Method and apparatus for producing X-rays
US5247562A (en) * 1992-07-16 1993-09-21 The Massachusetts Institute Of Technology Tunable source of monochromatic, highly-directional x-rays and a method for producing such radiation
US5353291A (en) * 1993-02-19 1994-10-04 The United States Of America As Represented By The Secretary Of The Navy Laser synchrotron source (LSS)
JP2528622B2 (en) * 1993-08-19 1996-08-28 財団法人レーザー技術総合研究所 Method and apparatus for generating high-intensity X-rays or γ-rays
JP3539030B2 (en) * 1996-01-17 2004-06-14 ソニー株式会社 Laser light generator
DE19750320C1 (en) 1997-11-13 1999-04-01 Max Planck Gesellschaft Light pulse amplification method
JPH11211899A (en) * 1997-11-21 1999-08-06 Sony Corp Short wavelength light generating device
EP1059708B1 (en) * 1998-11-10 2006-01-25 Kabushiki Kaisha IDX Technologies Apparatus for photoreaction
US6687333B2 (en) * 1999-01-25 2004-02-03 Vanderbilt University System and method for producing pulsed monochromatic X-rays
US6459766B1 (en) * 2000-04-17 2002-10-01 Brookhaven Science Associates, Llc Photon generator
JP2001345503A (en) * 2000-05-31 2001-12-14 Toshiba Corp Laser reverse compton light-generating apparatus
JP3629515B2 (en) * 2000-09-11 2005-03-16 独立行政法人情報通信研究機構 Mode-locked laser device
US6763042B2 (en) * 2001-12-14 2004-07-13 Evans & Sutherland Computer Corporation Apparatus and method for frequency conversion and mixing of laser light
JP2003232892A (en) * 2002-02-07 2003-08-22 Ishikawajima Harima Heavy Ind Co Ltd Laser inverse-compton generator
US6724782B2 (en) * 2002-04-30 2004-04-20 The Regents Of The University Of California Femtosecond laser-electron x-ray source
US20050129178A1 (en) 2003-12-16 2005-06-16 Pettit John W. Detector using carbon nanotube material as cold cathode for synthetic radiation source
US7016470B2 (en) * 2004-03-29 2006-03-21 General Electric Company System and method for X-ray generation
US7277526B2 (en) * 2004-04-09 2007-10-02 Lyncean Technologies, Inc. Apparatus, system, and method for high flux, compact compton x-ray source

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485164A (en) * 1992-07-16 1996-01-16 Cornell Research Foundation, Inc. Self-scanning pulsed source using mode-locked oscillator arrays
US5347525A (en) * 1993-02-19 1994-09-13 Sri International Generation of multiple stabilized frequency references using a mode-coupled laser
US5796506A (en) * 1995-11-21 1998-08-18 Tsai; Charles Su-Chang Submillimeter indirect heterodyne receiver and mixer element
US5835199A (en) * 1996-05-17 1998-11-10 Coherent Technologies Fiber-based ladar transceiver for range/doppler imaging with frequency comb generator
US5835522A (en) * 1996-11-19 1998-11-10 Hewlett-Packard Co. Robust passively-locked optical cavity system
US6178036B1 (en) * 1997-01-14 2001-01-23 California Institute Of Technology Opto-electronic devices and systems based on brillouin selective sideband amplification
US6035015A (en) * 1997-08-13 2000-03-07 The Board Of Trustees Of The Leland Stanford Junior University Compton backscattered collmated X-ray source
US20040017833A1 (en) * 2000-03-30 2004-01-29 Cundiff Steven T. Mode-locked pulsed laser system and method
US20030174743A1 (en) * 2002-03-18 2003-09-18 Dicos Technologies Inc. Absolutely calibrated periodic filters and sources

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018979B2 (en) * 2007-10-04 2011-09-13 Femtolasers Produktions Gmbh Mode-locked short pulse laser resonator and short pulse laser arrangement
US20090092167A1 (en) * 2007-10-04 2009-04-09 Andreas Stingl Mode-locked short pulse laser resonator and short pulse laser arrangement
WO2012099914A1 (en) * 2011-01-18 2012-07-26 University Of Delaware High spectral-purity carrier wave generation by nonlinear optical mixing
DE102011112893A1 (en) * 2011-09-06 2013-03-07 Philipp Kubina Method for time-resolved measurement of measurement signals generated in examination unit after stimulation by pulses and after scanning with temporally successive pulses, involves forming and digitalizing narrowband signals from pulses
US20150086151A1 (en) * 2012-04-11 2015-03-26 University Of Central Florida Research Foundation, Inc. Stabilization of an injection locked harmonically mode-locked laser via polarization spectroscopy for frequency comb generation
US9502856B2 (en) * 2012-04-11 2016-11-22 University Of Central Florida Research Foundation, Inc. Stabilization of an injection locked harmonically mode-locked laser via polarization spectroscopy for frequency comb generation
CN105552706A (en) * 2015-12-17 2016-05-04 北京无线电计量测试研究所 Generation device of short-term frequency stability criterion
WO2018039417A1 (en) * 2016-08-24 2018-03-01 The Research Foundation For The State University Of New York Apparatus and method for cavity-enhanced ultrafast two-dimensional spectroscopy
US10620048B2 (en) 2016-08-24 2020-04-14 The Research Foundation For The State University Of New York Apparatus and method for cavity-enhanced ultrafast two-dimensional spectroscopy
US11018470B2 (en) 2017-03-13 2021-05-25 Picomole Inc. System for optimizing laser beam
US11387070B2 (en) * 2018-07-30 2022-07-12 The Royal Institution For The Advancement Of Learning/Mcgill University Robust and precise synchronization of microwave oscillators to a laser oscillator in pulsed electron beam devices
US11035789B2 (en) * 2019-04-03 2021-06-15 Picomole Inc. Cavity ring-down spectroscopy system and method of modulating a light beam therein
US11105739B2 (en) 2019-04-03 2021-08-31 Picomole Inc. Method and system for analyzing a sample using cavity ring-down spectroscopy, and a method for generating a predictive model
US11499916B2 (en) 2019-04-03 2022-11-15 Picomole Inc. Spectroscopy system and method of performing spectroscopy
CN110401099A (en) * 2019-07-10 2019-11-01 中国电子科技集团公司第四十四研究所 A kind of frequency comb flatness controlling method based on optically filtering
CN110401098A (en) * 2019-07-10 2019-11-01 中国电子科技集团公司第四十四研究所 A kind of frequency comb flatness control device based on optically filtering

Also Published As

Publication number Publication date
US7443956B2 (en) 2008-10-28
WO2005101925A2 (en) 2005-10-27
US20050243966A1 (en) 2005-11-03
US20050226383A1 (en) 2005-10-13
EP1745682A4 (en) 2010-08-18
WO2005101925A3 (en) 2007-04-05
WO2005112525A3 (en) 2007-03-29
WO2005112525A2 (en) 2005-11-24
JP5030772B2 (en) 2012-09-19
US7295653B2 (en) 2007-11-13
US7301972B2 (en) 2007-11-27
WO2005101926A2 (en) 2005-10-27
HK1100117A1 (en) 2007-09-07
WO2005101926A3 (en) 2006-11-02
US7277526B2 (en) 2007-10-02
US20050254534A1 (en) 2005-11-17
JP2007533081A (en) 2007-11-15
US7242748B2 (en) 2007-07-10
US20050271185A1 (en) 2005-12-08
US20080031420A1 (en) 2008-02-07
EP1745682B1 (en) 2012-10-17
DK1745682T3 (en) 2013-01-21
EP1745682A2 (en) 2007-01-24
US7596208B2 (en) 2009-09-29
US20080002813A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
US20050254535A1 (en) Apparatus, system, and method for generating phase-locked harmonic RF source from an optical pulse train
Diddams et al. Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals
Sonnenschein et al. Characterization of a pulsed injection-locked Ti: sapphire laser and its application to high resolution resonance ionization spectroscopy of copper
Schünemann et al. Magneto-optic trapping of lithium using semiconductor lasers
Sakaue et al. Development of a laser pulse storage technique in an optical super-cavity for a compact X-ray source based on laser-Compton scattering
Schwindt et al. Miniature trapped-ion frequency standard with 171 Yb+
Favier et al. Optimization of a Fabry-Perot cavity operated in burst mode for Compton scattering experiments
Kristensen et al. Subnatural Linewidth Superradiant Lasing with Cold Sr 88 Atoms
Löhl Optical synchronization of a free-electron laser with femtosecond precision
KR20200083504A (en) Systems and methods for generating spatially localized high intensity laser beams
EP2951896B1 (en) Burst-laser generator using an optical resonator
Kerman Raman sideband cooling and cold atomic collisions in optical lattices
JP5339364B2 (en) Laser synchronization method, laser system and pump / probe measurement system
Barker et al. Sympathetic cooling by collisions with ultracold rare gas atoms, and recent progress in optical Stark deceleration
Cappellini Two-orbital quantum physics in Yb Fermi gases exploiting the 1S0-> 3P0 clock transition
Titberidze Pilot study of synchronization on a femtosecond scale between the electron gun REGAE and a laser-plasma accelerator
Mainz Sub-Cycle Light Field Synthesizer for Attosecond Science
Kobayashi et al. Laser pulse timing synchronization to an electron bunch for Compton scattering
Hartemann et al. Coherent photoelectron bunch generation and quantum efficiency enhancement in a photocathode optical resonator
Huang Linewidth reduction of a diode laser by optical feedback for strontium BEC applications
Kobayashi et al. Relative carrier-envelope-offset phase control between independent femtosecond light sources
Kwon et al. All-Fiber Photonic, Ultralow-Noise, Robust Optical and Microwave Signal Generators for FELs and UED
Hara et al. VUV SEEDED FEL EXPERIMENT AT THE SCSS TEST ACCELERATOR
Androsov et al. Coherent stacking of laser pulses in a high-Q optical cavity for accelerator applications
Loehl Linac Timing, Synchronization & Active Stabilization

Legal Events

Date Code Title Description
AS Assignment

Owner name: LYNCEAN TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOEWEN, RODERICK J.;RUTH, RONALD D.;REEL/FRAME:016830/0377

Effective date: 20050705

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:LYNCEAN TECHNOLOGIES, INC.;REEL/FRAME:041967/0119

Effective date: 20170308