WO2014123242A1 - 巨核球及び血小板の製造方法 - Google Patents

巨核球及び血小板の製造方法 Download PDF

Info

Publication number
WO2014123242A1
WO2014123242A1 PCT/JP2014/053087 JP2014053087W WO2014123242A1 WO 2014123242 A1 WO2014123242 A1 WO 2014123242A1 JP 2014053087 W JP2014053087 W JP 2014053087W WO 2014123242 A1 WO2014123242 A1 WO 2014123242A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cells
expression
cell
hematopoietic progenitor
Prior art date
Application number
PCT/JP2014/053087
Other languages
English (en)
French (fr)
Inventor
浩之 江藤
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to EP14749207.8A priority Critical patent/EP2955223B1/en
Priority to JP2014560832A priority patent/JP6495658B2/ja
Priority to US14/763,746 priority patent/US20160002599A1/en
Publication of WO2014123242A1 publication Critical patent/WO2014123242A1/ja
Priority to US17/395,552 priority patent/US20220017866A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0644Platelets; Megakaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/19Platelets; Megacaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/48Regulators of apoptosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • C12N2501/734Proteases (EC 3.4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/11Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from blood or immune system cells

Definitions

  • the present invention relates to a method for producing megakaryocytes and platelets from hematopoietic progenitor cells, a method for selecting hematopoietic progenitor cells suitable for producing megakaryocytes, and the like.
  • platelets which are essential for blood clotting and hemostasis, are one of the most important blood cells. Platelets are in great demand for leukemia, bone marrow transplantation, anticancer treatment, etc., and the need for a stable supply is high. So far, platelets have been secured not only by a method of collecting blood by donating blood from a donor, but also by a method of administering a TPO-like structural mimetic preparation, a method of differentiating megakaryocytes from umbilical cord blood or bone marrow cells. Recently, a technique for preparing blood cells such as platelets by inducing differentiation of pluripotent stem cells such as ES cells or iPS cells in vitro has also been developed.
  • Patent Document 1 Non-Patent Document 1
  • Patent Document 2 Patent Document 2
  • the inventors prepared the megakaryocyte progenitor cell line immortalized based on stem cells for quantitative problems such as platelets prepared from stem cells, and prepared platelets in vitro.
  • an important technique was developed (Patent Document 3).
  • Bcl-xl an apoptosis-inhibiting gene, has been successfully matured by forced expression in the megakaryocyte production process (Patent Document 4).
  • megakaryocytes form pseudopodial formations called proplatelets (platelet precursors), fragment their cytoplasm and release platelets.
  • Megakaryocytes are thought to become multinucleated by endomitosis before releasing platelets.
  • Meganuclear cell nuclear fission is multipolar mitosis due to abnormalities of fission and cytokinesis, without fission formation and spindle elongation, resulting in the formation of cells with several lobulated nuclei Is done. Such intranuclear fission occurs repeatedly, which induces multinucleation of megakaryocytes.
  • Non-patent Document 1 shows that, in the nuclear division of megakaryocytes, the division groove is formed, but the localization of the non-myocyte myosin II to the contractile ring is not observed, and the contraction ring formation and the spindle elongation. It was clarified that there was a defect. And it was shown that these abnormalities of contraction rings and spindle elongation become more prominent by inhibiting the activity of RhoA and Rock (Non-patent Document 2).
  • RhoA accumulates in the division groove and promotes activation of several effector factors including Rho kinase (Rock), citron kinase, LIM kinase and mDia / formins. From these results, it is suggested that the nuclear division of megakaryocytes is promoted by inhibiting the activity of factors involved in the formation of contraction rings such as RhoA and Rock. In addition, there is a report that if the signal of Rho located downstream of integrin alpha2 / beta1 is enhanced, the formation of proplatelet of immature, non-nucleated megakaryocytes is inhibited.
  • Non-Patent Document 5 culturing immature megakaryocytes at 39 ° C, higher than the normal culture temperature, promotes the induction of multinucleated mature megakaryocytes and the formation of proplatelets.
  • the present inventors have stably used more functional platelets (characterized as CD42b +, which are platelets that retain in vivo activity such as hemostasis) than conventional methods. It was found that it was necessary to establish a megakaryocyte strain that produced more, and in order to overcome this problem, it was thought that the megakaryocyte strain obtained by the conventional method needs to be further matured.
  • CD42b + functional platelets
  • the present invention aims to provide a method for stopping and maturing the proliferation of megakaryocytes, and a method for selecting a raw material suitable for producing such megakaryocytes.
  • the present inventors find a difference between hematopoietic progenitor cells prepared from pluripotent stem cells (ES cells, iPS cells, etc.) and cells that are suitable for establishing megakaryocytes. I tried to do that. Furthermore, in order to mature megakaryocytes, an attempt was made to stop the forced expression of genes required for induction from hematopoietic progenitor cells to megakaryocytes.
  • pluripotent stem cells ES cells, iPS cells, etc.
  • KLF1 and FLI1 are markers of hematopoietic progenitor cells that can easily establish megakaryocytes by trial and error.
  • megakaryocytes Furthermore, in the establishment of megakaryocytes, it was confirmed that the function of megakaryocytes can be maintained by stopping the forced expression of essential genes. Furthermore, the present inventors have found that megakaryocytes whose proliferation has been stopped by stopping gene expression in this way produce functional platelets more efficiently, thereby completing the present invention.
  • the present invention [1] A method for producing megakaryocytes from hematopoietic progenitor cells, comprising the following steps (i) to (ii): (i) a step of forcibly expressing an apoptosis inhibitor gene and an oncogene in hematopoietic progenitor cells and culturing; and (ii) A step of culturing the cells obtained in step (i) after stopping the forced expression of apoptosis-suppressing genes and oncogenes.
  • step (i) one gene selected from the group consisting of a gene that suppresses expression of p16 gene or p19 gene, a gene that suppresses expression of Ink4a / Arf gene, and a polycomb gene is further added to a hematopoietic progenitor cell Forcibly expressing one gene selected from the group consisting of a gene that suppresses the expression of the p16 gene or the p19 gene, a gene that suppresses the expression of the Ink4a / Arf gene, and a polycomb gene in the step (ii).
  • the method according to [1] wherein expression is stopped and culture is performed.
  • step (i) a gene selected from the group consisting of an oncogene, a gene that suppresses the expression of the p16 gene or the p19 gene, a gene that suppresses the expression of the Ink4a / Arf gene, and a polycomb gene.
  • step (i) a gene selected from the group consisting of an oncogene, a gene that suppresses the expression of the p16 gene or the p19 gene, a gene that suppresses the expression of the Ink4a / Arf gene, and a polycomb gene;
  • [5] The method according to any one of [1] to [4], wherein the apoptosis-suppressing gene is a BCL-XL gene.
  • [6] The method according to any one of [1] to [5], wherein the oncogene is a c-MYC gene.
  • One gene selected from the group consisting of a gene that suppresses the expression of the p16 gene or the p19 gene, a gene that suppresses the expression of the Ink4a / Arf gene, and a polycomb gene is BMI1, [1] to [ [6] The method according to any one of [6].
  • [8] The method according to any one of [1] to [7], wherein in the steps (i) and (ii), the cells are cultured on C3H10T1 / 2 cells in a culture solution containing TPO. .
  • a method for producing megakaryocyte progenitor cells from hematopoietic progenitor cells comprising the following steps (I) to (II): (I) one gene selected from the group consisting of an oncogene and a gene that suppresses the expression of p16 gene or p19 gene, a gene that suppresses the expression of Ink4a / Arf gene, and a polycomb gene is forcibly expressed in hematopoietic progenitor cells Culturing, and (II) A step of forcibly expressing an apoptosis-suppressing gene in the cells obtained in step (I) or culturing in a medium to which a caspase inhibitor is added.
  • apoptosis-suppressing gene is a BCL-XL gene.
  • the oncogene is a c-MYC gene.
  • the caspase inhibitor is Z-DEVD-FMK.
  • One gene selected from the group consisting of the gene that suppresses the expression of the p16 gene or the p19 gene, the gene that suppresses the expression of the Ink4a / Arf gene, and the polycomb gene is BMI1, [20] to [ [23] The method according to any one of [23].
  • a gene selected from the group consisting of a gene that suppresses the expression of an exogenous p16 gene or p19 gene that is responsive to a drug, a gene that suppresses the expression of an Ink4a / Arf gene, and a polycomb gene is further chromosome
  • One gene selected from the group consisting of the gene that suppresses the expression of the p16 gene or the p19 gene, the gene that suppresses the expression of the Ink4a / Arf gene, and a polycomb gene is BMI1, [27] to [ 30] The cell according to any one of 30.
  • a method for selecting hematopoietic progenitor cells suitable for producing megakaryocytes comprising measuring KLF1 expression or FLI1 expression.
  • the method according to [32] comprising a step of selecting hematopoietic progenitor cells having low KLF1 expression.
  • the method according to [33] comprising a step of selecting hematopoietic progenitor cells having high FLI1 expression.
  • hematopoietic progenitor cells are cells induced to differentiate from pluripotent stem cells.
  • a method for selecting pluripotent stem cells suitable for megakaryocyte production including the following steps; (I) producing hematopoietic stem cells from pluripotent stem cells; and (Ii) A step of measuring the expression of KLF1 and the expression of FLI1 in the hematopoietic progenitor cells produced in step (i). About.
  • megakaryocytes suitable for platelet production can be produced. Moreover, according to the present invention, it is possible to select hematopoietic progenitor cells suitable for producing megakaryocytes.
  • an appropriate hematopoietic progenitor cell is selected according to the method of the present invention.
  • the resulting megakaryocytes are matured to produce platelets, thereby making it possible to more reliably produce functional platelets from stem cells.
  • the obtained platelets are CD42b positive and greatly contribute to clinical application.
  • FIG. 1A shows the growth curves of each megakaryocyte strain (TKDN SeV2 Clone-1 to Clone-6) from the 12th day after infection with c-MYC and BCL-XL drug response expressing lentiviruses.
  • FIG. 1B shows the results of an expression analysis of KLF1 (left figure) or FLI1 (right figure) in hematopoietic progenitor cells derived from khES3 and TKDN ⁇ SeV2.
  • Figure 2 shows that gene expression was stopped in megakaryocyte strains (Clone-5 (Cl5) and Clone-6 (Cl6)) 18 days after infection with c-MYC and BCL-XL drug-responsive expression lentiviruses.
  • FIG. 3 shows the results of flow cytometry of megakaryocytes (Gene-ON) immediately after the forced gene expression cessation and megakaryocytes (Gene-OFF) surface antigens (CD41a and CD42b) 5 days after the cessation.
  • the right figure shows the mean fluorescence intensity (MFI) of CD42a (dark ash) and CD42b (light ash), which are surface markers in each megakaryocyte strain. In the figure, it is indicated by an arrow that each marker increases by stopping the forced expression of the gene.
  • MFI mean fluorescence intensity
  • FIG. 4 shows the results of flow cytometry of surface antigens (CD41a and CD42b) of platelets (Gene-ON) immediately after cessation of forced gene expression and platelets (Gene-OFF) 5 days after cessation.
  • the right figure shows the mean fluorescence intensity (MFI) of CD42a (dark ash) and CD42b (light ash), which are surface markers in each platelet. In the figure, it is indicated by an arrow that each marker increases by stopping the forced expression of the gene.
  • FIG. 5A shows the internalization of each iPS cell-derived megakaryocyte strain (Clone-1 (Cl1) to Clone-6 (Cl6)) immediately after the forced expression of the gene is stopped (ON) and after 3 days (OFF).
  • FIG. 5B shows the endogenous levels of each of the iPS cell-derived megakaryocyte strains (Clone-1 (Cl1) to Clone-6 (Cl6)) immediately after gene expression cessation (ON) and after 3 days after gene expression cessation (OFF).
  • the expression levels of exogenous GATA1, p45, b1-tubulin and MPL are shown.
  • FIG. 6 shows a megakaryocyte strain established by the method of the present invention (cultured on the 40th day) (upper figure) and a megakaryocyte established by the method described in Takayama et al., Blood, 111: 5298-5306 2008 which is a control cell ( On day 21) (below), the degree of APC-fibrinogen binding (X axis) before (left) and after (right) stimulation with Phorbol 12-Myristate 13-acetate (PMA) is shown.
  • PMA Phorbol 12-Myristate 13-acetate
  • FIG. 7A shows the result of counting CD41a positive cells obtained from megakaryocyte progenitor cells produced by introducing each gene with respect to the number of culture days.
  • FIG. 7B shows a May-Giemsa stained image of megakaryocyte progenitor cells obtained by introducing c-MYC and BMI1.
  • FIG. 7C shows a schematic diagram of c-MYC-2A-BMI1 and BMI1-2A- c-MYC expression retroviral vectors.
  • FIG. 7D shows the results of counting CD41a positive cells obtained from megakaryocyte progenitor cells produced by introducing each gene with respect to the number of days of culture.
  • FIG. 7B shows a May-Giemsa stained image of megakaryocyte progenitor cells obtained by introducing c-MYC and BMI1.
  • FIG. 7C shows a schematic diagram of c-MYC-2A-BMI1 and BMI1-2A- c-MYC expression retroviral vectors
  • FIG. 7E shows the results of measuring the amount of c-Myc protein when c-MYC and BMI1 were introduced, when c-MYC-2A-BMI1 was introduced, and when BMI1-2A-c-MYC was introduced, respectively.
  • FIG. 8A shows the results of counting CD41a positive cells obtained by introducing c-MYC-DD-2A-BMI1 (w DD) or c-MYC -2A-BMI1 (w / o DD) into hematopoietic progenitor cells. Show.
  • FIG. 8A shows the results of counting CD41a positive cells obtained by introducing c-MYC-DD-2A-BMI1 (w DD) or c-MYC -2A-BMI1 (w / o DD) into hematopoietic progenitor cells. Show.
  • FIG. 8B shows the results of counting CD41a-positive cells on day 7 cultured in a medium to which c-MYC-DD-2A-BMI1 was introduced and each concentration of Shield-1 was added.
  • FIG. 8C shows the results of measuring the activity of caspase 3/7 on day 2 cultured in a medium containing c-MYC-DD-2A-BMI1 and each concentration of Shield-1.
  • FIG. 9A shows a protocol for producing megakaryocyte progenitor cells by introducing c-MYC, BMI1 and BCL-XL, or c-MYC and BMI1.
  • FIG. 9B shows the result of expansion culture of a megakaryocyte progenitor cell line (Cl-1) produced according to the protocol of FIG. 9A.
  • FIG. 9C shows the result of expansion culture of a megakaryocyte progenitor cell line (Cl-2) produced according to the protocol of FIG. 9A.
  • FIG. 9D shows the results of measuring the amount of c-Myc protein after c-MYC-DD-2A- BMI1 was introduced and cultured in a medium supplemented with each concentration of Shield-1.
  • FIG. 9E shows the results of counting CD41a positive cells on day 7 cultured in a medium into which c-MYC-DD-2A-ABMI1 was introduced and each concentration of Shield-1 was added.
  • FIG. 10A shows megakaryocytes when c-MYC-2A-BMI1 and BCL-XL are introduced, or when c-MYC-2A-BMI1 is introduced and cultured in a medium supplemented with DMSO or Z-VAD-FMK. The increase rate of progenitor cells is shown.
  • FIG. 10B shows the result of expansion culture of a megakaryocyte progenitor cell line (Cl-3) produced by simultaneously introducing c-MYC, BMI1 and BCL-XL.
  • FIG. 10C shows the result of expansion culture of a megakaryocyte progenitor cell line (Cl-4) produced by simultaneously introducing c-MYC, BMI1 and BCL-XL.
  • FIG. 10D shows the result of expansion culture of a megakaryocyte progenitor cell line (Cl-6) produced by simultaneously introducing c-MYC, BMI1 and BCL-XL.
  • FIG. 10E shows the result of expansion culture of a megakaryocyte progenitor cell line (Cl-7) produced by simultaneously introducing c-MYC, BMI1 and BCL-XL.
  • FIG. 10F shows the survival of mice administered megakaryocyte progenitor cell line (Cl-1), megakaryocyte progenitor cell line (Cl-7), HL-60 (megakaryocyte cell line) or Meg01 (megakaryocyte cell line). A Kaplan-Meier curve showing the rate is shown.
  • FIG. 10E shows the result of expansion culture of a megakaryocyte progenitor cell line (Cl-6) produced by simultaneously introducing c-MYC, BMI1 and BCL-XL.
  • FIG. 10F shows the survival of mice administered megakaryocyte progenit
  • FIG. 11A shows the number of CD41a positive cells on day 0 or day 21 after freezing and thawing megakaryocyte progenitor cell line (Cl-1) or megakaryocyte progenitor cell line (Cl-2).
  • FIG. 11B shows the results of flow cytometry for measuring CD41a, CD42a, CD42b and CD9 after freezing and thawing of a megakaryocyte progenitor cell line (Cl-1).
  • FIG. 12A shows a protocol in which expression of a foreign gene is stopped from a megakaryocyte progenitor cell produced by introducing c-MYC, BMI1, and BCL-XL to mature into a megakaryocyte (produce platelets).
  • FIG. 12B shows the Giemsa-stained image (upper figure) and the DNA content of the cell (ON) before the cell (OFF) gene expression stop obtained according to the protocol of FIG. 12A.
  • FIG. 12C shows a megakaryocyte progenitor cell line (Cl-2 or Cl-7) (OFF) obtained after the protocol of 12A before the gene expression is stopped (Cl-2 or Cl-7) (ON). Shows the results of flow cytometry for CD41a and CD42b.
  • FIG. 13A shows CD41a positive / CD42b after expression (OFF) or maintenance (ON) of foreign c-MYC, BMI1 and BCL-XL in megakaryocyte progenitor cell lines (Cl-2 or Cl-7). The increase rate of positive cells is shown.
  • FIG. 13B shows the number of CD41a positive / CD42b positive cells when c-MYC, BMI1 and BCL-XL are maintained, only BCL-XL is maintained, and all the expression is stopped.
  • FIG. 13C shows the increase rate of CD41a positive / CD42b positive cells when the expression of c-MYC, BMI1 and BCL-XL is maintained and when the existing megakaryocyte strains (CMK, Meg-01 and K562) are stimulated with PMA.
  • FIG. 13D shows the expression per ml of culture medium after stopping (OFF) or maintaining (ON) exogenous c-MYC, BMI1 and BCL-XL of megakaryocyte progenitor cell lines (Cl-2 or Cl-7).
  • FIG. 14A shows a transmission electron microscope image of platelets produced from megakaryocyte progenitor cell line (Cl-7) or collected blood.
  • FIG. 14B shows the results of flow cytometry for CD42a and bound PAC-1 in the case of no stimulation (No stimulation) or thrombin stimulation (Thrombin) of the megakaryocyte progenitor cell line.
  • FIG. 14C shows that platelets collected (Fresh platelets), platelets stored at 37 ° C. for 5 days (pooled platelets) and platelets derived from megakaryocyte progenitor cell lines (imMKCL platelets) were not stimulated, or with ADP or thrombin. The binding strength of PAC-1 when stimulated is shown.
  • FIG. 14A shows a transmission electron microscope image of platelets produced from megakaryocyte progenitor cell line (Cl-7) or collected blood.
  • FIG. 14B shows the results of flow cytometry for CD42a and bound PAC-1 in the case of no stimulation (No stimulation) or thro
  • FIG. 14D shows the results of measurement of aggregated platelets (CD9-APC positive / CD9-Pacific Blue positive) when stimulation was not performed with Fresh platelets or imMKCL platelets, or when stimulation was performed with ADP and TRAP.
  • FIG. 14D shows the aggregated platelet content (left panel) and even aggregated platelet content (right panel) upon Collaegen stimulation as measured in FIG. 14D.
  • FIG. 14F shows a microscope image obtained by observing platelet aggregates derived from Cl-7 or Cl-2 under a flow rate of 1600S ⁇ 1 (direction is shown at the top).
  • FIG. 14G shows the number of agglomerates observed in FIG. 14F.
  • FIG. 15A and B show 30 minutes, 2 hours or 30 minutes after administration of platelets from megakaryocyte progenitor cell lines (6 ⁇ 10 8 or 1 ⁇ 10 8 ) or blood collected platelets (1 ⁇ 10 8 ) to mice.
  • the content rate in blood in 24 hours (Human CD41a positive / Mouse CD41 negative) is shown.
  • FIG. 15C shows a confocal microscope image obtained by imaging the time-dependent movement of blood vessels (red) of platelets (green) derived from megakaryocyte precursor cell lines in vivo.
  • FIG. 15D shows the number of platelets derived from megakaryocyte progenitor cell lines adhered per 100 ⁇ m blood vessel.
  • FIG. 15E shows a microscopic image of platelets (green) derived from megakaryocyte progenitor cell lines in thrombus (20 sec) generated at the site of laser irradiation damage.
  • FIG. 15E shows the following after administration of blood collected platelets (Fresh), stored platelets (pooled), and platelets derived from megakaryocyte progenitor cell lines (Cl-1, Cl-2, Cl-3 and Cl-7) The number of platelets contained in the thrombus is shown.
  • the present invention provides a method for producing megakaryocytes from hematopoietic progenitor cells.
  • One aspect of the method for producing megakaryocytes according to the present invention includes a step of forcibly expressing apoptosis-suppressing genes and oncogenes in hematopoietic progenitor cells and culturing the cells, and suspending the forced expression of apoptosis-inhibiting genes and oncogenes The process of carrying out is included.
  • a cell obtained by forcibly expressing an apoptosis-inhibiting gene and an oncogene and culturing the cell may be a megakaryocyte progenitor cell.
  • the “megakaryocyte” in the present invention may be a multinucleated cell, and includes, for example, a cell characterized as CD41a positive / CD42a positive / CD42b positive.
  • the cells may be characterized as cells expressing GATA1, FOG1, NF-E2, and ⁇ 1-tubulin.
  • a multinucleated megakaryocyte refers to a cell or a group of cells in which the number of nuclei is relatively increased as compared to hematopoietic progenitor cells. For example, when the nuclei of hematopoietic progenitor cells to which the method of the present invention is applied is 2N, 4N or more cells become multinucleated megakaryocytes.
  • the megakaryocyte may be immortalized as a megakaryocyte strain or may be a group of cloned cells.
  • the “megakaryocyte progenitor cell” in the present invention is a cell that becomes a megakaryocyte upon maturation and is not multinucleated, for example, a cell characterized as CD41a positive / CD42a positive / CD42b weak positive. Including.
  • the megakaryocyte progenitor cells of the present invention are preferably cells that can be expanded by expansion culture, for example, cells that can be expanded under appropriate conditions for at least 60 days or longer.
  • the megakaryocyte progenitor cell may or may not be cloned, and is not particularly limited, but the cloned cell may be referred to as a megakaryocyte progenitor cell line.
  • hematopoietic progenitor cells are cells that can differentiate into blood cells such as lymphocytes, eosinophils, neutrophils, basophils, erythrocytes, megakaryocytes, etc. Hematopoietic stem cells are not distinguished and indicate the same cells unless otherwise specified. Hematopoietic stem / progenitor cells can be recognized by, for example, positive surface antigens CD34 and / or CD43. In the present invention, hematopoietic stem cells can also be applied to pluripotent stem cells, hematopoietic progenitor cells derived from cord blood, bone marrow blood, peripheral blood-derived hematopoietic stem cells and progenitor cells.
  • pluripotent stem cells are cultured on C3H10T1 / 2 in the presence of VEGF according to the method described in Takayama N., et al. J Exp Med. 2817-2830 (2010) Can be prepared from a net-like structure (also referred to as ES-sac or iPS-sac).
  • the “net-like structure” is a three-dimensional sac-like structure (with space inside) derived from pluripotent stem cells, which is formed by an endothelial cell population and the like, and contains hematopoietic progenitor cells inside. It is a structure.
  • hematopoietic progenitor cells from pluripotent stem cells
  • embryoid bodies are formed and cytokines are added (Chadwick et al. Blood 2003, 102: ⁇ 906-15, Vijayaravavan et al. Cell Stem Cell 2009, 4: 248-62, Saeki et al. Stem Cells 2009, 27: 59-67) or co-culture with heterologous stromal cells (Niwa A et al. J Cell Physiol. 2009 Nov; 221 (2 ): 367-77.) And the like.
  • a preferred hematopoietic progenitor cell in the present invention is a hematopoietic progenitor cell with low expression of KLF1 gene or high expression of FLI1 gene. Therefore, when producing megakaryocytes, a step of selecting hematopoietic progenitor cells with low KLF1 expression or high FLI1 expression may be included.
  • the low expression of KLF1 means that the expression of KLF1 is low compared to the control, and the control is not particularly limited, and can be appropriately selected by those skilled in the art based on literature or experience.
  • hematopoietic progenitor cells produced from khES3 according to the method described in Takayama N., et al. J Exp Med. 2817-2830 (2010) are exemplified.
  • KLF1 is a gene described in NCBI accession number NM_006563.
  • a low expression of FLI1 means that the expression of FLI1 is low compared to the control, and the control is not particularly limited and may be appropriately selected by those skilled in the art based on literature or experience.
  • the control is not particularly limited and may be appropriately selected by those skilled in the art based on literature or experience.
  • hematopoietic progenitor cells produced from khES3 according to the method described in Takayama N., et al. J Exp Med. 2817-2830 (2010) are exemplified.
  • FLI1 is a gene described in NCBI accession numbers NM_001167681, NM_001271010, NM_001271012, or NM_002017.
  • a method for measuring gene expression it can be performed according to a conventional method of those skilled in the art, and examples thereof include a DNA chip method, a Southern blot method, a Northern blot method, an RT-PCR (Polymerase Chain Reaction) method, and the like.
  • in vivo hematopoietic progenitor cells may be used as a control.
  • any two or more types of hematopoietic progenitor cells (group) may be compared to select those having lower KLF1 expression or higher FLI1 expression.
  • the present invention selects the hematopoietic progenitor cells produced at the same time with lower KLF1 expression or higher FLI1 expression. You may use for.
  • the expression of low or high expression is not limited to the case where the expression is significantly low or high compared to the control, and includes cases where the expression is low or high enough to be recognized by those skilled in the art as having a tendency to be low or high.
  • a pluripotent stem cell is a stem cell that has pluripotency that can be differentiated into all cells present in a living body and also has a proliferative ability, and includes, for example, an embryonic stem (ES) cells, embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transfer, sperm stem cells (“GS cells”), embryonic germ cells (“EG cells”), induced pluripotent stem (iPS) cells.
  • GS cells embryonic stem cells
  • EG cells embryonic germ cells
  • iPS induced pluripotent stem
  • cultured fibroblasts cultured fibroblasts, bone marrow stem cell-derived pluripotent cells (Muse cells), stimulation-induced pluripotent acquisition cells (STAP cells), and the like are included.
  • ES cells are stem cells established from the inner cell mass of early embryos (for example, blastocysts) of mammals such as humans and mice, and having pluripotency and proliferation ability by self-replication.
  • ES cells are embryonic stem cells derived from the inner cell mass of the blastocyst, the embryo after the morula, in the 8-cell stage of a fertilized egg, and have the ability to differentiate into any cell that constitutes an adult, so-called differentiation. And ability to proliferate by self-replication.
  • ES cells were discovered in mice in 1981 (MJ Evans and MH Kaufman (1981), Nature 292: 154-156), and then ES cell lines were also established in primates such as humans and monkeys (JA Thomson et al.
  • ES cells can be established by taking an inner cell mass from a blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder. In addition, maintenance of cells by subculture is performed using a culture solution to which substances such as leukemia inhibitory factor (LIF) and basic fibroblast growth factor (basic fibroblast growth factor (bFGF)) are added. It can be carried out.
  • LIF leukemia inhibitory factor
  • bFGF basic fibroblast growth factor
  • DMEM / F-12 culture medium supplemented with 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid, 2 mM L-glutamic acid, 20% KSR and 4 ng / ml bFGF is used as the culture medium for ES cell production.
  • Human ES cells can be maintained in a humid atmosphere at 37 ° C., 5% CO 2 (H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345: 926-932).
  • ES cells also need to be passaged every 3-4 days, where passage is eg 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing 1 mM CaCl 2 and 20% KSR. Can be used.
  • ES cells can be generally selected by Real-Time PCR using the expression of gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog as an index.
  • gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog
  • OCT-3 / 4, NANOG, and ECAD can be used as an index (E. Kroon et al. (2008), Nat. Biotechnol., 26: 443). -452).
  • Human ES cell lines for example, WA01 (H1) and WA09 (H9) are obtained from the WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are obtained from the Institute of Regenerative Medicine, Kyoto University (Kyoto, Japan) Is possible.
  • sperm stem cells are testis-derived pluripotent stem cells that are the origin of spermatogenesis. Like ES cells, these cells can be induced to differentiate into various types of cells, and have characteristics such as the ability to create chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. ( 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012).
  • GDNF glial cell line-derived neurotrophic factor
  • Embryonic germ cells are cells that are established from embryonic primordial germ cells and have the same pluripotency as ES cells, such as LIF, bFGF, stem cell factor, etc. It can be established by culturing primordial germ cells in the presence of these substances (Y. Matsui et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550 -551).
  • iPS Artificial pluripotent stem cells
  • somatic cells in the form of DNA or protein, which is almost equivalent to ES cells
  • It is an artificial stem cell derived from a somatic cell having the characteristics of, for example, differentiation pluripotency and proliferation ability by self-replication (K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al (2007), Cell, 131: 861-872; J. Yu et al. (2007), Science, 318: 1917-1920; Nakagawa, M. et al., Nat. Biotechnol.
  • the reprogramming factor is a gene specifically expressed in ES cells, its gene product or non-cording RNA, a gene that plays an important role in maintaining undifferentiation of ES cells, its gene product or non-coding RNA, or It may be constituted by a low molecular compound.
  • genes included in the reprogramming factor include Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 etc. are exemplified, and these reprogramming factors may be used alone or in combination.
  • the reprogramming factors include histone deacetylase (HDAC) inhibitors [for example, small molecule inhibitors such as valproate (VPA), trichostatin A, sodium butyrate, MC 1293, M344, siRNA and shRNA against HDAC (eg Nucleic acid expression inhibitors such as HDAC1DACsiRNA Smartpool ⁇ (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene) etc.], MEK inhibitors (eg PD184352, PD98059, U0126, SL327 and PD0325901), Glycogen synthasekinskin -3 inhibitors (eg, Bio and CHIR99021), DNA methyltransferase inhibitors (eg, 5-azacytidine), histone methyltransferase inhibitors (eg, small molecule inhibitors such as BIX-01294, Suv39hl, Suv39h2, SetDBl and G9a Nucleic acid expression inhibitors such as si
  • the reprogramming factor may be introduced into a somatic cell by a technique such as lipofection, fusion with a cell membrane-permeable peptide (for example, HIV-derived TAT and polyarginine), or microinjection.
  • a cell membrane-permeable peptide for example, HIV-derived TAT and polyarginine
  • Virus vectors include retrovirus vectors, lentivirus vectors (cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007 ), Adenovirus vectors (Science, 322, 945-949, 2008), adeno-associated virus vectors, Sendai virus vectors (WO 2010/008054), and the like.
  • artificial chromosome vectors examples include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC).
  • HAC human artificial chromosomes
  • YAC yeast artificial chromosomes
  • BAC bacterial artificial chromosomes
  • a plasmid a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as a promoter, enhancer, ribosome binding sequence, terminator, polyadenylation site, etc. so that a nuclear reprogramming substance can be expressed.
  • Selective marker sequences such as kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, thymidine kinase gene, diphtheria toxin gene, reporter gene sequences such as green fluorescent protein (GFP), ⁇ -glucuronidase (GUS), FLAG, etc.
  • GFP green fluorescent protein
  • GUS ⁇ -glucuronidase
  • FLAG FLAG
  • the above vector has a LoxP sequence before and after the introduction of the gene into a somatic cell in order to excise the gene or promoter encoding the reprogramming factor and the gene encoding the reprogramming factor that binds to it. May be.
  • RNA it may be introduced into somatic cells by techniques such as lipofection and microinjection, and in order to suppress degradation, RNA incorporating 5-methylcytidine and pseudouridine® (TriLink® Biotechnologies) is used. Yes (Warren L, (2010) Cell Stem Cell. 7: 618-630).
  • Examples of the culture medium for inducing iPS cells include DMEM, DMEM / F12 or DME culture medium containing 10 to 15% FBS (these culture media include LIF, penicillin / streptomycin, puromycin, L-glutamine). , Non-essential amino acids, ⁇ -mercaptoethanol, etc.) or commercially available culture media (eg, culture media for mouse ES cell culture (TX-WES culture solution, Thrombo X), primate ES cells) Culture medium for culture (primate ES / iPS cell culture medium, Reprocell), serum-free medium (mTeSR, Stemcell Technology).
  • DMEM DMEM / F12 or DME culture medium containing 10 to 15% FBS
  • these culture media include LIF, penicillin / streptomycin, puromycin, L-glutamine). , Non-essential amino acids, ⁇ -mercaptoethanol, etc.
  • commercially available culture media eg, culture media for mouse ES cell culture (TX
  • a somatic cell is brought into contact with a reprogramming factor on a DMEM or DMEM / F12 medium containing 10% FBS at 37 ° C. in the presence of 5% CO 2 for about 4 to 7 days. Then, re-spread the cells on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and use bFGF-containing primate ES cell culture medium about 10 days after contact between the somatic cells and the reprogramming factor. Culturing and generating iPS-like colonies about 30 to about 45 days or more after the contact.
  • feeder cells for example, mitomycin C-treated STO cells, SNL cells, etc.
  • 10% FBS-containing DMEM medium including LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • 5% CO 2 at 37 ° C. can be suitably included with puromycin, L-glutamine, non-essential amino acids, ⁇ -mercaptoethanol, etc.
  • ES-like colonies after about 25 to about 30 days or more .
  • somatic cells to be reprogrammed themselves are used (Takahashi K, et al. (2009), PLoS One. 4: e8067 or WO2010 / 137746), or extracellular matrix (eg, Laminin- 5 (WO2009 / 123349) and Matrigel (BD)) are exemplified.
  • iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less) (Yoshida Y, et al. (2009), Cell Stem Cell. 5: 237 -241 or WO2010 / 013845).
  • the culture medium is exchanged with a fresh culture medium once a day from the second day onward.
  • the number of somatic cells used for nuclear reprogramming is not limited, but ranges from about 5 ⁇ 10 3 to about 5 ⁇ 10 6 cells per 100 cm 2 of culture dish.
  • IPS cells can be selected according to the shape of the formed colonies.
  • a drug resistance gene that is expressed in conjunction with a gene that is expressed when somatic cells are initialized for example, Oct3 / 4, Nanog
  • a culture solution containing the corresponding drug selection The established iPS cells can be selected by culturing with the culture medium.
  • the marker gene is a fluorescent protein gene
  • iPS cells are selected by observing with a fluorescence microscope, in the case of a luminescent enzyme gene, by adding a luminescent substrate, and in the case of a chromogenic enzyme gene, by adding a chromogenic substrate can do.
  • the term “somatic cell” refers to any animal cell (preferably, a mammalian cell including a human) except a germ line cell such as an egg, oocyte, ES cell, or totipotent cell.
  • Somatic cells include, but are not limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells. , Passage cells, and established cell lines.
  • somatic cells include, for example, (1) neural stem cells, hematopoietic stem cells, mesenchymal stem cells, tissue stem cells such as dental pulp stem cells (somatic stem cells), (2) tissue progenitor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, enterocytes, spleen cells, pancreatic cells (exocrine pancreas cells, etc.), brain cells, lung cells, kidney cells Examples thereof include differentiated cells such as fat cells.
  • the HLA genotype of the transplant recipient is the same or substantially the same from the viewpoint that rejection is less likely to occur. It is desirable to use somatic cells for the production of iPS cells.
  • “substantially the same” means that the HLA genotype matches the transplanted cells to such an extent that an immune response can be suppressed by an immunosuppressive agent.
  • HLA-A, HLA-B It may also be a somatic cell having an HLA type in which 3 loci of HLA-DR or 4 loci plus HLA-C are matched.
  • E Cloned embryo-derived ES cells obtained by nuclear transfer nt ES cells are cloned embryo-derived ES cells produced by nuclear transfer technology and have almost the same characteristics as ES cells derived from fertilized eggs (T. Wakayama et al. (2001), Science, 292: 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72: 932-936; J. Byrne et al. (2007) , Nature, 450: 497-502).
  • an ES cell established from an inner cell mass of a clonal embryo-derived blastocyst obtained by replacing the nucleus of an unfertilized egg with the nucleus of a somatic cell is an nt ES (nuclear transfer ES) cell.
  • nt ES nuclear transfer ES
  • nuclear transfer technology JB Cibelli et al. (1998), Nature Biotechnol., 16: 642-646)
  • ES cell production technology is used (Kiyaka Wakayama et al. ( 2008), Experimental Medicine, Vol.26, No.5 (extra number), 47-52).
  • Nuclear transfer can be initialized by injecting a somatic cell nucleus into a mammal's enucleated unfertilized egg and culturing for several hours.
  • Muse cells are pluripotent stem cells produced by the method described in WO2011 / 007900. Specifically, fibroblasts or bone marrow stromal cells are treated with trypsin for a long time, preferably 8 or 16 hours. It is a pluripotent cell obtained by suspension culture after treatment, and is positive for SSEA-3 and CD105.
  • STAP cells Stimulus-induced pluripotent acquisition cells
  • STAP cells are pluripotent stem cells produced by the method described in WO2013 / 163296.
  • SSEA-4 is obtained by culturing somatic cells in an acidic solution at pH 5.4 to 5.8 for 30 minutes.
  • E-cadherin positive cells are obtained by culturing somatic cells in an acidic solution at pH 5.4 to 5.8 for 30 minutes.
  • preferred pluripotent stem cells are cells capable of producing hematopoietic progenitor cells capable of inducing differentiation into megakaryocytes. Selection of such pluripotent stem cells can be performed depending on whether hematopoietic progenitor cells with lower KLF1 expression or higher FLI1 expression can be produced.
  • the method for producing hematopoietic progenitor cells from pluripotent stem cells and the method for measuring the expression of KLF1 and the expression of FLI1 can be performed using the methods described above.
  • the expression of KLF1 and FLI1 is expressed in (1) the step of producing hematopoietic stem cells from pluripotent stem cells, and (2) the hematopoietic progenitor cells produced in step (1).
  • the term “oncogene” refers to a gene that causes canceration of normal cells due to its expression, structure or function being different from that of normal cells.
  • MYC family genes MYC family genes, Src family genes , Ras family genes, Raf family genes, protein kinase family genes such as c-Kit, PDGFR, and Abl.
  • MYC family genes include c-MYC, N-MYC, and L-MYC. More preferably, it is a c-MYC gene.
  • the c-MYC gene is, for example, a gene consisting of a nucleic acid sequence represented by NCBI accession number NM_002467.
  • the c-MYC gene may also include homologues thereof.
  • the c-MYC gene homologue is a sequence whose cDNA sequence is substantially the same as the nucleic acid sequence represented by NCBI accession number NM_002467, for example. It is a gene consisting of A cDNA consisting of a sequence substantially identical to the nucleic acid sequence shown by NCBI accession number NM_002467 is about 60% or more, preferably about 70%, of the DNA consisting of the sequence shown by NCBI accession number NM_002467.
  • stringent conditions are hybridization conditions that are easily determined by those skilled in the art, and are generally empirical experimental conditions that depend on the probe length, washing temperature, and salt concentration. In general, the longer the probe, the higher the temperature for proper annealing, and the shorter the probe, the lower the temperature. Hybridization generally relies on the ability to reanneal in an environment where the complementary strand is slightly below its melting point.
  • low stringency conditions include washing in a 0.1 ⁇ SSC, 0.1% SDS solution at a temperature of 37 ° C. to 42 ° C. in the filter washing step after hybridization.
  • highly stringent conditions include washing in 65 ° C., 5 ⁇ SSC and 0.1% SDS in the washing step.
  • c-MYC encoding a protein fused with a destabilizing domain may be used.
  • the destabilizing domain can be purchased from ProteoTuner or Clontech.
  • the “apoptosis-suppressing gene” is not particularly limited as long as it is a gene that suppresses apoptosis, and examples thereof include BCL2 gene, BCL-XL gene, Survivin, and MCL1.
  • BCL2 gene BCL-XL gene
  • BCL-XL gene is a gene consisting of a nucleic acid sequence represented by NCBI accession number NM_001191 or NM_138578, for example.
  • the BCL-XL gene may also include a homologue thereof.
  • the homologue of the BCL-XL gene is substantially the same as the nucleic acid sequence represented by the NCBI accession number NM_001191 or NM_138578, for example.
  • the cDNA comprising substantially the same sequence as the nucleic acid sequence represented by NCBI accession number NM_001191 or NM_138578 is approximately 60% or more, preferably the DNA comprising the sequence represented by NCBI accession number NM_001191 or NM_138578.
  • one obtained by forcibly expressing any of the following genes (i) to (iii) in hematopoietic progenitor cells and culturing and proliferating the cells can be used.
  • a gene that suppresses expression of the p16 gene or the p19 gene a gene that suppresses the expression of the Ink4a / Arf gene; and
  • a gene that suppresses the expression of the Ink4a / Arf gene a gene that suppresses the expression of the Ink4a / Arf gene.
  • Polycomb gene Polycomb gene.
  • Examples of the genes of (i) to (iii) include BMI1, Mel18, Ring1a / b, Phc1 / 2/3, Cbx2 / 4/6/7/8, Ezh2, Eed, Suz12, HADC, Dnmt1 / 3a / 3b can be mentioned, but the BMI1 gene is particularly preferred.
  • the BMI1 gene is, for example, a gene consisting of a nucleic acid sequence represented by NCBI accession number NM_005180.
  • the BMI1 gene may also include a homologue thereof.
  • the homologue of the BMI1 gene is a gene whose cDNA sequence is substantially the same as the nucleic acid sequence represented by NCBI accession number NM_005180, for example. That is.
  • the cDNA consisting of a sequence substantially identical to the nucleic acid sequence shown by NCBI accession number NM_005180 is about 60% or more, preferably about 70%, of the DNA consisting of the sequence shown by NCBI accession number NM_005180.
  • DNA complementary to the nucleic acid sequence represented by NCBI accession number NM_005180 DNA that is capable of hybridizing under stringent conditions, and the protein encoded by the DNA suppresses oncogene-induced cell aging that occurs in cells in which oncogenes such as MYC family genes are expressed, It promotes the amplification of the cells.
  • a gene that suppresses the expression of the p16 gene or the p19 gene (i) a gene that suppresses the expression of the Ink4a / Arf gene, and (iii) one gene selected from the group consisting of a polycomb gene,
  • a method for producing megakaryocytes that further includes a step of stopping and culturing the forcedly expressed gene is preferable.
  • this step preferably selected from the group consisting of an oncogene, and (i) a gene that suppresses expression of p16 gene or p19 gene, (ii) a gene that suppresses expression of Ink4a / Arf gene, and (iii) a polycomb gene
  • This is a step of forcibly expressing one gene to be expressed in hematopoietic progenitor cells and then forcibly expressing an apoptosis-suppressing gene in the cells.
  • the above gene can be forcibly expressed in hematopoietic progenitor cells according to the ordinary method of those skilled in the art.
  • vectors expressing these genes, or proteins or RNAs encoding these genes In the form of hematopoietic progenitor cells.
  • it can be performed by bringing a low molecular weight compound or the like that induces expression of these genes into contact with hematopoietic progenitor cells.
  • an expression vector, protein, RNA or a low molecular weight compound that induces expression should be introduced multiple times in accordance with the necessary period. Can be done.
  • vectors expressing these genes include retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes virus, Sendai virus and other viral vectors, animal cell expression plasmids (eg, pA1-11, pXT1, pRc / CMV, pRc / RSV, pcDNAI / Neo) and the like can be used.
  • a retroviral vector or a lentiviral vector is preferable in that it can be carried out by single introduction.
  • promoters used in expression vectors include EF- ⁇ promoter, CAG promoter, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia) Virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, etc. are used.
  • the expression vector may optionally contain an enhancer, a poly A addition signal, a selection marker gene, an SV40 replication origin, and the like.
  • Useful selection marker genes include, for example, dihydrofolate reductase gene, neomycin resistance gene, puromycin resistance gene and the like.
  • the gene expression since the gene expression is controlled by tetracycline or doxycycline, it may be a drug-responsive vector having a tetracycline-responsive element in the promoter region.
  • an expression vector in which a loxP sequence is placed so as to sandwich the gene and / or promoter region with the loxP sequence may be used.
  • the genes may be vertically linked to obtain a polycistronic vector.
  • it is ligated between 2A self-cleaving peptides of foot-and-mouth disease virus (see Science, 322, 949-953, 2008, etc.) and genes that forcefully express IRES sequences, etc. obtain.
  • a plasmid containing the nucleic acid is used as an appropriate packaging cell (eg, Plat-E cell) or a complementary cell line (eg, 293 cell). And the virus produced in the culture supernatant is collected and contacted with hematopoietic progenitor cells for infection.
  • an appropriate packaging cell eg, Plat-E cell
  • a complementary cell line eg, 293 cell
  • a plasmid vector in the case of a non-viral vector, can be introduced into a cell using a lipofection method, a liposome method, an electroporation method, a calcium phosphate coprecipitation method, a DEAE dextran method, a microinjection method, a gene gun method, or the like.
  • a caspase inhibitor may be brought into contact with cells instead of forcing the apoptosis-suppressing gene to be expressed in hematopoietic progenitor cells.
  • the caspase inhibitor may be a peptidic compound, a non-peptidic compound, or a biological protein. Examples of the peptide compound include the following peptide compounds (1) to (10) which are artificially chemically synthesized.
  • anilinoquinazolines (AQZs) -AstraZeneca-Pharmaceuticals (Scott et al., J. Pharmacol. Exp. Ther. 304, 433-440 (2003)), (2) M826-Merck Frosst (Han et al., J. Biol. Chem. 277, 30128-30136 (2002)), (3) M867-Merck Frosst (Methot et al., J.Exp. Med. 199, 199-207 (2004)), (4) Nicotinyl aspartyl ketones- Merck Frosst (Isabel et al., Bioorg. Med. Chem. Lett. 13, 2137-2140 (2003)), etc. Can be illustrated.
  • IDN-6556-Idun Pharmaceuticals (Hoglen et al., J.Pharmacol. Exp. Ther. 309, 634-640 (2004)), (2) MF-286 and MF-867-Merck Frosst (Los et al., Drug Discov. Today 8, 67-77 (2003)), (3) IDN-5370-Idun Pharmaceuticals (Deckwerth et al., Drug Dev. Res. 52, 579-586 (2001)), (4) IDN-1965-Idun Pharmaceuticals (Hoglen et al., J. Pharmacol. Exp. Ther.
  • VX-799- Vertex Pharmaceuticals Lis et al., Drug Drugs, Today 8 and 67-77 (2003).
  • M-920 and M-791-Merck Frosst can also be mentioned as caspase inhibitors.
  • a preferred caspase inhibitor is Z-VAD FMK, and when Z-VAD FMK is used, it is performed by adding hematopoietic progenitor cells to the culture medium, and the concentration of Z-VAD FMK in the preferred medium Examples include 10 ⁇ M or more, 20 ⁇ M or more, 30 ⁇ M or more, 40 ⁇ M or more, and 50 ⁇ M or more, and preferably 30 ⁇ M or more.
  • the present invention as described above, as a method for culturing cells in which an exogenous gene such as an apoptosis-suppressing gene is forcibly expressed, a method of culturing on feeder cells using an arbitrary medium is exemplified.
  • the feeder cells are not particularly limited as long as they can induce megakaryocytes or megakaryocyte progenitor cells.
  • C3H10T1 / 2 Keratagiri T, et al., Biochem Biophys Res Commun. 172, 295-299 (1990)).
  • the medium used in the present invention is not particularly limited, but a medium used for culturing animal cells can be prepared as a basal medium.
  • basal media include IMDM medium, MediumMedi199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer Life's medium, Neurosal's medium And a mixed medium thereof.
  • the medium may contain serum or may be serum-free.
  • the medium can be, for example, albumin, insulin, transferrin, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, lipids, amino acids, L-glutamine, non-essential amino acids, vitamins, growth factors, small molecules
  • One or more substances such as compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines and the like may also be included.
  • Cytokines are proteins that promote blood cell differentiation, and examples include VEGF, TPO, SCF, and the like.
  • a preferable medium in the present invention is an IMDM medium containing serum, insulin, transferrin, serine, thiolglycerol, ascorbic acid, and TPO. More preferably, it further contains SCF.
  • a drug-responsive promoter it is desirable to include a corresponding drug such as tetracycline or doxycycline in the medium in the forced expression step.
  • conditions for culturing are not particularly limited, but it has been confirmed that culturing at a temperature of 37 ° C. or higher promotes differentiation of megakaryocytes or megakaryocyte progenitor cells.
  • the temperature of 37 ° C. or higher is appropriate as a temperature that does not damage cells, and is preferably about 37 ° C. to about 42 ° C., preferably about 37 to about 39 ° C., for example.
  • the culture period at a temperature of 37 ° C. or higher can be appropriately determined while monitoring the number of megakaryocytes or megakaryocyte progenitor cells.
  • the number of days is not particularly limited as long as the desired megakaryocyte progenitor cell is obtained.For example, at least 6 days, 12 days, 18 days, 24 days, 30 days, 42 days, 48 days, 54 days, 54 More than 60 days and more preferably 60 days or more.
  • the long culture period is not a problem in the production of megakaryocytes.
  • one embodiment of the method for producing megakaryocytes further includes (a) a substance that inhibits the expression or function of the p53 gene product, (b) an actomyosin complex function inhibitor, (c) a ROCK inhibitor, and ( d)
  • the medium may further contain an HDAC inhibitor.
  • the method for producing megakaryocytes of the present invention further includes a step of suspending forced expression and culturing the megakaryocytes or megakaryocyte precursor cells obtained in the step of forcibly expressing foreign genes as described above.
  • a method of stopping forced expression for example, when forced expression is performed using a drug-responsive vector, it may be achieved by not contacting the corresponding drug with the cell.
  • the above-mentioned vector containing LoxP it may be achieved by introducing Cre recombinase into the cell.
  • a transient expression vector and RNA or protein introduction are used, the contact with the vector or the like may be stopped.
  • the medium used in this step can be performed using the same medium as described above.
  • the conditions for culturing with the forced expression stopped are not particularly limited, but for example, about 37 ° C. to about 42 ° C., preferably about 37 to about 39 ° C. are preferable.
  • the culture period at a temperature of 37 ° C. or higher can be determined as appropriate while monitoring the number of megakaryocytes. For example, it is 2 days to 10 days, preferably about 3 days to 7 days. is there. Desirably at least 3 days. In addition, it is desirable to perform subculture as appropriate during the culture period.
  • the megakaryocytes obtained by the above method are sufficiently mature and efficiently produce CD42b-positive functional platelets.
  • This CD42b positive platelet has a high thrombus formation ability in vivo and invitro.
  • the megakaryocyte obtained in the present invention is a megakaryocyte in which at least an exogenous apoptosis-inhibiting gene and an oncogene are incorporated in the chromosome, but the expression of the gene is stopped.
  • maturation of megakaryocytes means that megakaryocytes are sufficiently polynucleated and can produce functional platelets. Megakaryocyte maturation can also be confirmed by, for example, increased expression of megakaryocyte maturation-related genes such as GATA1, p45 NF-E2, and beta1-tubulin.
  • megakaryocytes and / or megakaryocyte progenitor cells can produce functional platelets even after thawing after cryopreservation, and therefore megakaryocytes and / or megakaryocytes produced using the method of the present invention Progenitor cells can be distributed in a cryopreserved state.
  • the present invention also provides a blood cell composition obtained by inducing differentiation of hematopoietic progenitor cells and having a high content of megakaryocytes.
  • the “blood cell composition” includes “megakaryocytes” produced by the method of the present invention, megakaryocytes prepared by other methods, or other blood cells. It may be done.
  • hematopoietic progenitor cells are treated by the method of the present invention, differentiation into megakaryocytes can be promoted. Therefore, for example, by applying the method of the present invention to hematopoietic progenitor cells differentiated from pluripotent stem cells or the like, a cell composition having a high megakaryocyte content can be obtained.
  • the content of megakaryocytes in the blood cell composition is high can be determined by those skilled in the art based on experience and literature.
  • the content of megakaryocytes is at least 20% or more, 30% or more, preferably 40% or more, 50%, compared with the case of treating by other methods. % Or more, more preferably 80% or more. Therefore, according to the method of the present invention, it is possible to prepare a megakaryocyte population or a blood cell population having a high ratio of megakaryocytes.
  • Megakaryocytes and the like obtained by the method of the present invention are also effective for transplanting in vivo and producing functional platelets in vivo by an appropriate method. Therefore, the therapeutic agent containing the megakaryocyte obtained by the method of this invention is provided.
  • the transplantation of megakaryocytes and the like obtained by the method of the present invention can solve the problem of insufficient donor number and donor burden in bone marrow transplantation and the problem of platelet production ability in vivo in cord blood transplantation. Compared to the transplantation method, it can be said to be a very excellent method.
  • the method for producing platelets according to the present invention is to produce platelets in vitro from megakaryocytes obtained by the method of the present invention.
  • the method for producing platelets according to the present invention includes a step of culturing megakaryocytes obtained by the above-described method and collecting platelets from the culture.
  • the culture conditions are not limited. For example, in the presence of TPO (10 to 200 ng / mL, preferably about 50 to 100 ng / mL), or TPO (10 to 200 ng / mL, preferably 50 to 100 ng / mL). Degree), SCF (10 to 200 ng / mL, preferably about 50 ng / mL) and Heparin (10 to 100 U / mL, preferably about 25 U / ml) may be cultured. The culture can be continued as long as the platelet function is maintained. For example, the culture period is about 7 to 15 days.
  • the culture temperature is not particularly limited as long as the effect of the present invention can be obtained, and can be performed at 35 ° C. to 40 ° C., but 37 ° C. to 39 ° C. is preferable.
  • the step of culturing megakaryocytes may be performed under serum-free and / or feeder cell-free conditions.
  • the method is carried out by culturing megakaryocytes produced according to the method of the present invention in a medium containing TPO.
  • a medium containing TPO In the platelet production process, if it can be performed free of serum and feeder cells, the problem of immunogenicity hardly occurs when the obtained platelet is used clinically.
  • platelets can be produced without using feeder cells, it is not necessary to adhere feeder cells, so suspension culture can be performed in a flask or the like, which can suppress manufacturing costs and is suitable for mass production.
  • conditioned medium may be used.
  • the conditioned medium is not particularly limited and can be produced by a person skilled in the art according to a known method.
  • the conditioned medium can be obtained by appropriately culturing feeder cells and removing the feeder cells from the culture with a filter.
  • a ROCK inhibitor and / or an actomyosin complex function inhibitor is added to the medium.
  • a ROCK inhibitor and an actomyosin complex function inhibitor the same thing as what was used by the manufacturing method of the multinucleated megakaryocyte mentioned above can be used.
  • ROCK inhibitors include Y27632.
  • the actomyosin complex function inhibitor include blebbistatin, which is a myosin heavy chain II ATPase inhibitor.
  • a ROCK inhibitor may be added alone, a ROCK inhibitor and an actomyosin complex function inhibitor may be added alone, or a combination thereof may be added.
  • the ROCK inhibitor and / or the actomyosin complex function inhibitor is preferably added at 0.1 ⁇ M to 30 ⁇ M, for example, 0.5 ⁇ M to 25 ⁇ M, 5 ⁇ M to 20 ⁇ M, and the like.
  • the culture period after adding the ROCK inhibitor and / or the actomyosin complex function inhibitor may be 1 to 15 days, and may be 3 days, 5 days, 7 days, or the like.
  • the platelets obtained in the present invention can be administered to patients as a preparation.
  • platelets obtained by the method of the present invention are, for example, human plasma, infusion solution, citrate-containing physiological saline, a solution containing glucose-added acetate Ringer solution, PAS (platelet additive solution) (Gulliksson, H. et al., Transfusion, 32: 435-440, (1992)), etc.
  • the storage period is about 3 to 7 days, preferably 4 days. As storage conditions, it is desirable to store with shaking and stirring at room temperature (20-24 degrees).
  • kits for producing megakaryocytes and / or platelets include kits for producing megakaryocytes and / or platelets.
  • the kit includes an apoptosis-suppressing gene, an oncogene, the expression vectors and reagents necessary for expressing the genes (i) to (iii) in cells, a medium for cell culture, serum , Supplements such as growth factors (eg, TPO, EPO, SCF, Heparin, IL-6, IL-11, etc.), antibiotics and the like.
  • growth factors eg, TPO, EPO, SCF, Heparin, IL-6, IL-11, etc.
  • kits for measuring the expression of KLF1 and / or FLI1 may be included. Reagents, antibodies, and the like contained in the kit are supplied into any type of container in which the constituents are kept active for a long period of time, are not adsorbed by the material of the container, and do not undergo alteration.
  • the origin of the “cell” described in the present specification is a human or non-human animal (eg, mouse, rat, cow, horse, pig, sheep, monkey, dog, cat, bird, etc.) and is not particularly limited. But. Particularly preferred are human-derived cells.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
  • TKDN SeV2 human fetal skin fibroblast-derived iPS cells established using Sendai virus
  • 585A1 585B1, 606A1, 648B1 and 692D2 human peripheral blood mononuclear cell-derived iPS cells established using episomal vectors described in Okita K, et al, Stem Cells 31, 458-66, 2012), Takayama N ., et al. J Exp Med. 2817-2830 (2010), differentiation culture into blood cells was performed.
  • human ES / iPS cell colonies were co-cultured with C3H10T1 / 2 feeder cells in the presence of 20 ng / mL VEGF (R & D SYSTEMS) for 14 days to prepare hematopoietic progenitor cells (HPC).
  • the culture conditions were 20% O 2 and 5% CO 2 (the same conditions unless otherwise specified).
  • Virus infection of hematopoietic progenitor cells On the 6-well plate previously seeded with C3H10T1 / 2 feeder cells, seed HPC obtained by the above method at 5x10 4 cells / well and c-Myc by lentivirus method. And BCL-xL were forcibly expressed. At this time, 6 wells were used for each type of cell line. That is, virus particles were added to the culture medium so as to have an MOI of 20, respectively, and infection was performed by spin infection (32 ° C, 900 rpm, centrifugation for 60 minutes). This operation was performed twice every 12 hours.
  • the basic medium (15% Fetal Bovine Serum (GIBCO), 1% Penicillin-Streptomycin-Glutamine (GIBCO), 1% Insulin, Transferrin, Selenium Solution (ITS-G) (GIBCO), 0.45 mM 1-Thioglycerol (Sigma) -Aldrich), IMDM (Iscove's Modified Dulbecco's Medium) (Sigma-Aldrich)) containing 50 ⁇ g / mL L-Ascorbic Acid (Sigma-Aldrich)) 50 ng / mL Human thrombopoietin (TPO) (R & D SYSTEMS), 50 ng / ml Human A medium (hereinafter referred to as differentiation medium) containing Stem Cell Factor (SCF) (R & D SYSTEMS) and 2 ⁇ g / mL Doxycyclin (Dox) was used.
  • GEBCO Fetal Bovine Serum
  • ITS-G Insulin
  • the lentiviral vector is an inducible vector controlled by Tetracycline, and the mOKS cassette of LV-TRE-mOKS-Ubc-tTA-I2G (Kobayashi, T., et al. Cell 142, 787-799 (2010)) Produced by recombination with Bcl-xL and c-Myc (LV-TRE-BCL-xL-Ubc-tTA-I2G and LV-TRE-c-Myc-Ubc-tTA-I2G, respectively).
  • the virus particles used for infection were prepared by expressing the above lentiviral vector in 293T cells.
  • Infection day 12 Passage. The same operation as on the 6th day of infection was performed. After counting the number of cells, the cells were seeded in 3 ⁇ 10 5 cells / 10 mL / 100 mm dish. ⁇ Infection day 18: passage. The same operation as on the 6th day of infection was performed. After counting the number of cells, the cells were seeded in 3 ⁇ 10 5 cells / 10 mL / 100 mm dish. -Day 24 of infection: passage, cryopreservation, FACS analysis. A part of the cells was passaged (1 ⁇ 10 5 cells / well) in the same manner as described above, and the rest was stored frozen (about 5 ⁇ 10 5 cells / tube). Thereafter, subculture was performed every 4-7 days, and maintenance culture was performed. The medium was not changed during that time.
  • the determination of the megakaryocyte strain was determined by the following method. Blood cells were collected on the 24th day of infection, and 2 ⁇ L each of anti-human CD41a-APC antibody (BioLegend), anti-human CD42b-PE antibody (eBioscience), and anti-human CD235ab-pacific blue antibody per 1.0 ⁇ 10 5 cells, The immunostaining was performed using 1 ⁇ L and 1 ⁇ L each and then analyzed using a FACSAria TM II cell sorter (BD) to confirm the establishment of a megakaryocyte strain. Furthermore, normal iPS cell-derived megakaryocytes have a decreased number of cells after 10 days in this differentiation system (Takayama N., et al. J Exp Med. 2817-2830 (2010)). The establishment of a megakaryocyte strain was confirmed by the continued proliferation of CD41a + cells on the day.
  • BD FACSAria TM II cell sorter
  • megakaryocyte strains were similarly established using hematopoietic progenitor cells derived from iPS cells (TKDN SeV2), and wells continuously growing in infected cells were selected and the number of cells was counted (FIG. 1A). It was confirmed that the cell growth rate was slightly low in the strain with many adherent cells. In addition, it was confirmed that it can be passaged for at least 40 days.
  • TKDN SeV2 hematopoietic progenitor cells derived from iPS cells
  • the gene expression analysis was performed using a universal probe or a taqman probe after RNA extraction and cDNA conversion according to a conventional method.
  • the analyzed genes are GAPDH, c-Myc, Bcl-xL, GATA1, p45 NF-E2, beta1-tubulin, and c-MPL.
  • Retroviral vectors are pMXs retro vectors (see Takahashi K, et al, Cell .; 131: 861-872, 2007 or Ohmine K, et al, Oncogene 20, 8249-8257, 2001), pGCDNsam retro vector (Chiba) And received from Professor Iwama University).
  • the obtained megakaryocyte progenitor cells showed a basophilic monoblast-like morphology (FIG. 7B), and produced CD41a-positive abnormal platelet-like particles with slightly low CD42b expression. This seems to be because the forced expression of c-Myc was maintained.
  • a vector expressing c-MYC having an unstable domain (DD (Destabilization Domain)) at the C-terminus was used.
  • DD Destabilization Domain
  • a vector expressing c-MYC-DD-2A-BMI1 was constructed using pPTunerC vector and Shied-1 (Clontech / Takara Bio).
  • CD41a-positive megakaryocyte progenitor cells could be expanded for at least 50 days (FIG. 8A).
  • expansion culture could not be maintained with c-MYC-2A-BMI1.
  • megakaryocyte progenitor cells were induced using four iPS cell clones using the following two protocols (Cl-3: derived from KhES3 strain, Cl-4: 692D2). Strain-derived, Cl-6: 585A1 strain and Cl-7: TKDN SeV2 strain); (1) Method of introducing BCL-XL, c-MYC and BMI1 simultaneously, and (2) BCL-XL and c-MYC After 14 days, the method will be introduced 14 to 21 days later.
  • megakaryocyte progenitor cells could be expanded for up to 40 to 50 days in any iPS cell clone, but BCL-XL was expressed later.
  • expansion culture could be continued for 60 days or longer when any ES cell or iPS cell clone was used (FIGS. 10B, C, D and E).
  • FIG. 12A shows a mature example that can be confirmed by strong expression of CD42b in megakaryocyte progenitor cells (Cl-2 and Cl-7) derived from two clones on the fourth day after expression cessation. It was confirmed that the expression of GATA1, FOG1, NF-E2, and ⁇ 1-tubulin was enhanced by maturation of megakaryocyte progenitor cells into megakaryocytes.
  • Platelets were obtained, and Cl-7 yielded 10 platelets. Similarly, the expression of foreign genes was stopped from megakaryocyte progenitor cells using 10 cm dishes (10 ml of medium) to produce platelets, and 4 ⁇ 10 6 (Cl-7) or 2 ⁇ 10 6 per 1 ml of medium was produced. Six (Cl-2) platelets were confirmed (FIG. 13D). This suggests that in order to obtain 10 11 platelets necessary for a single platelet transfusion, it can be produced by culturing megakaryocyte progenitor cells in a 25-50 L medium.
  • imMKCL platelets Platelets obtained by the above method (after stopping expression of foreign genes and cultured in serum-free medium for 5 days) (hereinafter referred to as imMKCL platelets) were observed with a scanning electron microscope. Compared with human platelets (hereinafter referred to as “Fresh platelet”), there were slightly fewer granules (FIG. 14A).
  • imMKCL platelets or Fresh platelets were mixed with the same number of Fresh platelets, 100 ⁇ M ADP and 100 ⁇ M TRAP6, or 10 ⁇ g / mL collagen (Nycomed) was added, and the mixture was stimulated at 37 ° C. for 10 minutes under shaking.
  • platelet aggregation was also confirmed in imMKCL platelets (FIGS. 14D and E).
  • a clot test (coagulation test) stimulated with 2 U / ml thrombin was added to IMDM containing 20% platelet-free plasma and coagulated in response to thrombin stimulation. was confirmed.
  • imMKCL platelets suggested initial adhesion to the blood vessel wall depending on P-selectin.
  • imMKCL platelets prepared from four iPS cell clones were tested in the same manner, it was confirmed that they could be more involved in thrombus formation than pooled platelets (FIGS. 15E and F).

Abstract

 本発明は、造血前駆細胞から効率よく成熟した巨核球株を製造する方法を提供することを課題とする。本発明は、(i)アポトーシス抑制遺伝子および癌遺伝子を造血前駆細胞において強制発現させて培養する工程、およびアポトーシス抑制遺伝子および癌遺伝子の強制発現を止めて培養する工程を含む、造血前駆細胞から巨核球を製造する方法を提供する。

Description

巨核球及び血小板の製造方法
 本発明は、造血前駆細胞から巨核球および血小板を製造する方法、ならびに巨核球の製造に適した造血前駆細胞を選別する方法等に関する。
 血液関連疾患の治療や、外科的な治療には、多くの血液細胞が必要とされる。血液細胞の中でも、血液凝固及び止血のために必須の細胞である血小板は特に重要な血液細胞の1つである。血小板は、白血病、骨髄移植、抗癌治療などにおいて需要が多く、安定供給の必要性は高い。これまでに、血小板は、ドナーからの献血により採取する方法の他、TPO様類似構造 (ミメティクス)製剤を投与する方法、臍帯血又は骨髄細胞から巨核球を分化させる方法などにより確保されてきた。最近では、ES細胞又はiPS細胞などの多能性幹細胞をインビトロにおいて分化誘導し、血小板などの血液細胞を調製する技術も開発されている。
 発明者らは、ヒトES細胞またはiPS細胞から巨核球及び血小板を分化誘導する技術を確立し、血小板のソースとしての多能性幹細胞の有効性を示している(特許文献1、非特許文献1及び特許文献2)。
 さらに、発明者らは、幹細胞から調製される血小板等の量的な問題に対し、幹細胞をもとに不死化した巨核球前駆細胞株の樹立方法を見いだすことでその調製を行い、インビトロにおいて血小板等を大量に調製するために重要な技術を開発した(特許文献3)。この時、アポトーシス抑制遺伝子であるBcl-xlを巨核球の製造工程において強制発現させることで成熟化することに成功している(特許文献4)。
 生体において、巨核球は、proplatelets(血小板前駆体)と呼ばれる偽足形状(pseudopodial formation)を形成し、その細胞質を断片化して血小板を放出する。巨核球は、血小板を放出するまでに、核内分裂(endomitosis)によって多核化すると考えられている。巨核球の核内分裂は、分裂溝形成及び紡錘体伸長を伴わない、核分裂及び細胞質分裂の異常による多極性有糸分裂であり、その結果、幾つかに分葉化した核を含む細胞が形成される。このような核内分裂が繰り返し生じることで、巨核球の多核化が誘導される。
 巨核球の多核化に関し、これまでに多くの研究結果が報告されている。Lodierらは(非特許文献1)、巨核球の核内分裂において、分裂溝は形成されるものの、非筋細胞ミオシンIIの収縮環への局在が認められず、収縮環形成及び紡錘体伸長に欠陥が生じていることを明らかにした。そして、これら収縮環や紡錘体伸長の異常は、RhoA及びRockの活性を阻害することにより、より顕著になることが示された(非特許文献2)。RhoAは分裂溝に蓄積し、Rhoキナーゼ(Rock)、citron kinase、LIM kinase及びmDia/forminsなどを含む幾つかのエフェクター因子の活性化を促進する。これらの結果から、RhoA及びRockなど収縮環形成などに関与する因子の活性を阻害することで、巨核球の核内分裂が促進されることが示唆されている。また、integrin alpha2/beta1下流に位置するRhoのシグナルが増強されると、未熟な多核化していない巨核球のproplatelet形成が阻害されるとの報告もある。
 転写因子であるオールトランスレチノイン酸(ATRA;all trans retinoic acid)、ヒストン脱アセチル化酵素の阻害剤として知られるバルプロ酸が巨核球の分化に関与していることが報告されている。Schweinfurthらは、オールトランスレチノイン酸又はバルプロ酸で未成熟な巨核球を処理すると多核化が促進されることを見出している(非特許文献3)。さらに、癌抑制遺伝子産物であるp53をノックダウンすると巨核球の多核化を促進すること(非特許文献4)も報告されている。
 その他、巨核球の分化過程に対する影響として、未成熟な巨核球を、通常の培養温度より高温の39℃で培養すると多核化した成熟巨核球の誘導及びproplateletsの形成を促進することなども示されている(非特許文献5)。
WO2008/041370 WO2009/122747 WO2011/034073 WO2012/157586
Takayamaら,Blood,111:5298-5306 2008 Lordierら,Blood,112:3164-3174 2009 Schweinfurthら,Platelets,21:648-657 2010 Fuhrkenら,J.Biol.Chem.,283:15589-15600 2008 Proulxら,Biotechnol.Bioeng.,88:675-680 2004
 本発明者らは、血小板製剤を製造するためには、従来の方法よりも機能的な血小板(止血作用など生体内における活性を保持している血小板で、CD42b+として特徴付けられる)を安定的に、より多く産生する巨核球株の樹立が必要であることを見出し、この問題点を克服するためには、従来の方法で得られた巨核球株をさらに成熟させる必要があると考えた。
 そこで、本発明は、巨核球数をいたずらに増殖させるのではなく、増殖を止め成熟させる方法、及びこのような巨核球を製造するために適した原料を選択する方法等を提供することを課題とする。
 上記課題に鑑み、本発明者らは、多能性幹細胞(ES細胞、iPS細胞など)から調製した造血前駆細胞において、巨核球を樹立するのに適した細胞と適さない細胞との違いを見出すことを試みた。さらに、巨核球を成熟させるために、造血前駆細胞から巨核球へ誘導するために必要であった遺伝子の強制発現を停止させることを試みた。
 発明者らは、上記の試行錯誤により、巨核球を樹立しやすい造血前駆細胞のマーカーとして、KLF1およびFLI1を見出した。
 さらに、巨核球の樹立において、必須の遺伝子の強制発現を停止させることでも巨核球の機能を維持できることを確認した。さらに、このように遺伝子の発現を停止させることで増殖を止めた巨核球はより効率よく機能的な血小板を産生することを見出し、本発明を完成するに至った。
 すなわち、本発明は、
[1] 以下の(i)~(ii)の工程を含む、造血前駆細胞から巨核球を製造する方法;
(i)アポトーシス抑制遺伝子および癌遺伝子を造血前駆細胞において強制発現させて培養する工程、および
(ii)工程(i)で得られた細胞について、アポトーシス抑制遺伝子および癌遺伝子の強制発現を止めて培養する工程。
[2] 前記工程(i)において、p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子をさらに造血前駆細胞において強制発現させ、前記工程(ii)において、当該p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子の強制発現を止めて培養する、[1]に記載の方法。
[3] 前記工程(i)が、癌遺伝子、ならびにp16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子を造血前駆細胞において強制発現させた後、アポトーシス抑制遺伝子をさらに当該細胞へ強制発現させる工程である、[2]に記載の方法。
[4] 前記工程(i)において、癌遺伝子、ならびにp16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子を造血前駆細胞において少なくとも28日強制発現させて培養した後、アポトーシス抑制遺伝子をさらに当該細胞へ強制発現させる工程である、[3]に記載の方法。
[5] 前記アポトーシス抑制遺伝子が、BCL-XL遺伝子である、[1]から[4]のいずれか1項に記載の方法。
[6] 前記癌遺伝子が、c-MYC遺伝子である、[1]から[5]のいずれか1項に記載の方法。
[7] 前記p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子が、BMI1である、[1]から[6]のいずれか1項に記載の方法。
[8] 前記工程(i)および(ii)において、TPOを含有する培養液中でC3H10T1/2細胞上で該細胞を培養する、[1]から[7]のいずれか1項に記載の方法。
[9] 前記工程(i)および(ii)での培養において、SCFをさらに含有する培養液中で培養する、[8]に記載の方法。
[10] 前記遺伝子の強制発現が、薬剤応答性ベクターを用いて行われる、[1]から[9]のいずれか1項に記載の方法。
[11] 前記造血前駆細胞が、多能性幹細胞から分化誘導された細胞である、[1]から[10]のいずれか1項に記載の方法。
[12] 前記造血前駆細胞が、多能性幹細胞から分化誘導された細胞である、[11]に記載の方法であって、該分化誘導において、多能性幹細胞をVEGFを含有する培養液中でC3H10T1/2細胞上で培養する工程を含む、方法。
[13] 前記造血前駆細胞において、KLF1の発現が低い、またはFLI1の発現が高い、[1]から[12]のいずれか1項に記載の方法。
[14] 前記造血前駆細胞におけるKLF1またはFLI1の発現が、それぞれKhES3由来の造血前駆細胞での発現と比較してより低いまたはより高い、[13]に記載の方法。
[15] 工程(i)に先立って、前記造血前駆細胞におけるKLF1および/またはFLI1の発現を測定する工程を含む、[1]から[14]のいずれか1項に記載の方法。
[16] 前記工程(ii)を、5日間行う、[1]から[15]のいずれか1項に記載の方法。
[17] 血小板の製造方法であって、[1]から[16]のいずれか1項に記載の方法で得られた巨核球の培養物から血小板を回収する工程を含む方法。
[18] [17]に記載の方法で製造された血小板。
[19] [18]に記載の血小板を含む血液製剤。
[20] 以下の(I)~(II)の工程を含む、造血前駆細胞から巨核球前駆細胞を製造する方法;
(I)癌遺伝子およびp16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子を造血前駆細胞において強制発現させて培養する工程、および
(II)工程(I)で得られた細胞へさらにアポトーシス抑制遺伝子を強制発現させる、またはカスパーゼ阻害剤を添加した培地で培養する工程。
[21] 前記アポトーシス抑制遺伝子が、BCL-XL遺伝子である、[20]に記載の方法。
[22] 前記癌遺伝子が、c-MYC遺伝子である、[20]から[21]のいずれか1項に記載の方法。
[23] 前記カスパーゼ阻害剤が、Z-DEVD-FMKである、[20]から[22]のいずれか1項に記載の方法。
[24] 前記p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子が、BMI1である、[20]から[23]のいずれか1項に記載の方法。
[25] 前記工程(I)を、少なくとも28日間行う、[20]から[24]のいずれか1項に記載の方法。
[26] 前記巨核球前駆細胞が拡大培養可能な細胞である、[20]から[25]のいずれか1項に記載の方法。
[27] 薬剤応答性で発現する外来性のアポトーシス抑制遺伝子および癌遺伝子が染色体に組み込まれている巨核球であって、当該外来性の遺伝子が発現していない細胞。
[28] 薬剤応答性で発現する外来性のp16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子がさらに染色体に組み込まれており、当該外来性遺伝子が発現していない、[27]に記載の細胞。
[29] 前記アポトーシス抑制遺伝子が、BCL-XL遺伝子である、[27]または[28]に記載の細胞。
[30] 前記癌遺伝子が、c-MYC遺伝子である、[27]から[29]のいずれか1項に記載の細胞。
[31] 前記p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子が、BMI1である、[27]から[30]のいずれか1項に記載の細胞。
[32] 巨核球の製造に適した造血前駆細胞を選択する方法であって、KLF1の発現またはFLI1の発現を測定する工程を含む方法。
[33] 前記KLF1の発現が低い造血前駆細胞を選択する工程を含む、[32]に記載の方法。
[34] 前記FLI1の発現が高い造血前駆細胞を選択する工程を含む、[33]に記載の方法。
[35] 前記造血前駆細胞が、多能性幹細胞から分化誘導された細胞である、[32]から[33]のいずれか1項に記載の方法。
[36] 以下の工程を含む巨核球製造に適した多能性幹細胞を選択する方法;
(i)多能性幹細胞から造血幹細胞を製造する工程、および、
(ii)工程(i)で製造された造血前駆細胞において、KLF1の発現およびFLI1の発現の測定する工程。
に関する。
 本発明によれば、血小板産生に適した巨核球を製造することが可能となる。
 また、本発明によれば、巨核球を製造するために適した造血前駆細胞を選択することが可能となる。
 幹細胞から造血前駆細胞を誘導し、例えば特許文献3や特許文献4に記載された方法でこの造血前駆細胞から巨核球を製造するにあたり、本発明の方法にしたがって、適切な造血前駆細胞を選択し、得られた巨核球を成熟させて血小板を産生させることにより、幹細胞からより確実に機能的な血小板を製造することを可能にする。さらに、得られた血小板は、CD42b陽性であり、臨床応用にも大きく貢献する。
図1Aは、c-MYCおよびBCL-XLの薬剤応答発現レンチウィルスの感染後12日目からの各巨核球株(TKDN SeV2 Clone-1からClone-6)の増殖曲線を示す。図1Bは、khES3由来およびTKDN SeV2由来の造血前駆細胞におけるKLF1(左図)またはFLI1(右図)の発現解析の結果を示す。 図2は、c-MYCおよびBCL-XLの薬剤応答発現レンチウィルスの感染後18日目の巨核球株(Clone-5(Cl5)およびClone-6(Cl6))において遺伝子の強制発現を止めた場合(Gene-OFF)および強制発現を続けた場合(Gene-ON)における細胞の増殖曲線を示す。図中、Day0は遺伝子の強制発現を止めた日を意味する。 図3は、遺伝子の強制発現停止直後の巨核球(Gene-ON)と停止後5日目の巨核球(Gene-OFF)の表面抗原(CD41aおよびCD42b)のフローサイトメトリーの結果を示す。右図には、各巨核球株における表面マーカーであるCD42a(濃灰)およびCD42b(薄灰)の平均蛍光強度(MFI)を示す。図中、遺伝子の強制発現の停止により、各マーカーが増加することが矢印示されている。 図4は、遺伝子の強制発現停止直後の血小板(Gene-ON)と停止後5日目の血小板(Gene-OFF)の表面抗原(CD41aおよびCD42b)のフローサイトメトリーの結果を示す。右図には、各血小板における表面マーカーであるCD42a(濃灰)およびCD42b(薄灰)の平均蛍光強度(MFI)を示す。図中、遺伝子の強制発現の停止により、各マーカーが増加することが矢印示されている。 図5Aは、各iPS細胞由来の巨核球株(Clone-1(Cl1)からClone-6(Cl6))、における遺伝子の強制発現停止直後(ON)および遺伝子発現停止3日経過後(OFF)の内在性および外来性のいずれものc-Myc(薄灰)およびBcl-xl(濃灰)の発現量を示す。数値は、ES細胞由来の巨核球(ES21MK)に対する相対値を示す。図5Bは、各iPS細胞由来の巨核球株(Clone-1(Cl1)からClone-6(Cl6))、における遺伝子発現停止直後(ON)および遺伝子発現停止3日経過後(OFF)の内在性および外来性のいずれものGATA1、p45、b1-tubulinおよびMPL(各条件において左から順に示す)の発現量を示す。縦軸の数値は、ES細胞由来の巨核球(ES21MK)に対する相対値を示す。 図6は、本発明の方法で樹立した巨核球株(培養40日目)(上図)およびコントロール細胞であるTakayamaら,Blood,111:5298-5306 2008に記載の方法で樹立した巨核球(21日目)(下図)においてPhorbol 12-Myristate 13-acetate (PMA)刺激前(左)刺激後(右)のAPC-fibrinogenの結合度(X軸)を示す。 図7Aは、培養日数に対する各遺伝子を導入して製造された巨核球前駆細胞から得られたCD41a陽性細胞を計数した結果を示す。図7Bは、c-MYCおよびBMI1を導入して得られた巨核球前駆細胞のMay-Giemsa染色像を示す。図7Cは、c-MYC-2A-BMI1およびBMI1-2A- c-MYCの発現レトロウィルスベクターの模式図を示す。図7Dは、培養日数に対する各遺伝子を導入して製造された巨核球前駆細胞から得られたCD41a陽性細胞を計数した結果を示す。図7Eは、c-MYCおよびBMI1をそれぞれ導入した場合、c-MYC-2A-BMI1を導入した場合、ならびにBMI1-2A-c-MYCを導入した場合におけるc-Mycのタンパク質量を測定した結果を示す。 図8Aは、c-MYC-DD-2A-BMI1(w DD)またはc-MYC -2A-BMI1(w/o DD)を造血前駆細胞へ導入して得られたCD41a陽性細胞を計数した結果を示す。図8Bは、c-MYC-DD-2A-BMI1を導入し、各濃度のShield-1を添加した培地で培養した7日目のCD41a陽性細胞を計数した結果を示す。図8Cは、c-MYC-DD-2A-BMI1を導入し、各濃度のShield-1を添加した培地で培養した2日目のCaspase3/7の活性を測定した結果を示す。 図9Aは、c-MYC、BMI1およびBCL-XL、またはc-MYCおよびBMI1を導入して巨核球前駆細胞を製造するプロトコールを示す。図9Bは、図9Aのプロトコールに従って製造した巨核球前駆細胞株(Cl-1)の拡大培養した結果を示す。図9Cは、図9Aのプロトコールに従って製造した巨核球前駆細胞株(Cl-2)の拡大培養した結果を示す。図9Dは、c-MYC-DD-2A- BMI1を導入し、各濃度のShield-1を添加した培地で培養した後におけるc-Mycのタンパク質量を測定した結果を示す。図9Eは、c-MYC-DD-2A- BMI1を導入し、各濃度のShield-1を添加した培地で培養した7日目のCD41a陽性細胞を計数した結果を示す。 図10Aは、c-MYC-2A-BMI1とBCL-XLを導入した場合、若しくはc-MYC-2A-BMI1を導入し、DMSOまたはZ-VAD-FMKを添加した培地で培養した場合における巨核球前駆細胞の増加倍率を示す。図10Bは、c-MYC、BMI1およびBCL-XLを同時に導入して製造した巨核球前駆細胞株(Cl-3)の拡大培養した結果を示す。図10Cは、c-MYC、BMI1およびBCL-XLを同時に導入して製造した巨核球前駆細胞株(Cl-4)の拡大培養した結果を示す。図10Dは、c-MYC、BMI1およびBCL-XLを同時に導入して製造した巨核球前駆細胞株(Cl-6)の拡大培養した結果を示す。図10Eは、c-MYC、BMI1およびBCL-XLを同時に導入して製造した巨核球前駆細胞株(Cl-7)の拡大培養した結果を示す。図10Fは、巨核球前駆細胞株(Cl-1)、巨核球前駆細胞株(Cl-7)、HL-60(巨核球細胞株)またはMeg01(巨核球細胞株)を投与されたマウスの生存率を示すKaplan-Meier曲線を示す。 図11Aは、巨核球前駆細胞株(Cl-1)または巨核球前駆細胞株(Cl-2)を凍結融解後0日目または21日目のCD41a陽性細胞数を示す。図11Bは、巨核球前駆細胞株(Cl-1)の凍結融解後のCD41a、CD42a、CD42bおよびCD9を測定したフローサイトメトリーの結果を示す。 図12Aは、c-MYC、BMI1およびBCL-XLを導入して製造した巨核球前駆細胞から外来性遺伝子の発現を停止させて巨核球へと成熟化(血小板を産生)させるプロトコールを示す。図12Bは、図12Aのプロトコールに従って得られた細胞(OFF)遺伝子発現停止前の細胞(ON)のGiemsa染色像(上図)およびDNA含有量を測定した結果を示す。図12Cは、12Aのプロトコールに従って得られた巨核球前駆細胞株(Cl-2またはCl-7)(OFF)遺伝子発現停止前の巨核球前駆細胞株(Cl-2またはCl-7)(ON)のCD41aおよびCD42bに対するフローサイトメトリーの結果を示す。 図13Aは、巨核球前駆細胞株(Cl-2またはCl-7)の外来のc-MYC、BMI1およびBCL-XLを発現停止(OFF)または発現維持(ON)させた後のCD41a陽性/CD42b陽性細胞の増加倍率を示す。図13Bは、c-MYC、BMI1およびBCL-XLの発現維持、BCL-XLのみ維持、全て発現停止した場合におけるCD41a陽性/CD42b陽性細胞数を示す。図13Cは、c-MYC、BMI1およびBCL-XLの発現維持した場合と既存の巨核球株(CMK、Meg-01およびK562)をPMA刺激した場合におけるCD41a陽性/CD42b陽性細胞の増加倍率を示す。図13Dは、巨核球前駆細胞株(Cl-2またはCl-7)の外来のc-MYC、BMI1およびBCL-XLを発現停止(OFF)または発現維持(ON)させた後の培地1mlあたりのCD42b陽性の血小板数を示す。 図14Aは、巨核球前駆細胞株(Cl-7)から産生された血小板または採血された血小板の透過型電子顕微鏡像を示す。図14Bは、巨核球前駆細胞株に対して刺激をしなかった場合(No stimulation)またはトロンビン刺激した場合(Thrombin)におけるCD42aおよび結合PAC-1に対するフローサイトメトリーの結果を示す。図14Cは、採血した血小板(Fresh platelet)、37℃で5日間保管した血小板(pooled platelet)および巨核球前駆細胞株由来の血小板(imMKCL platelet)に刺激をしなかった場合、若しくはADPまたはトロンビンで刺激した場合におけるPAC-1の結合強度を示す。図14Dは、Fresh plateletまたはimMKCL plateletにおける刺激をしなかった場合、またはADPおよびTRAPで刺激した場合における凝集した血小板(CD9-APC陽性/CD9-Pacific Blue陽性)を測定した結果を示す。図14Dは、図14Dで測定さえた凝集した血小板の含有率(左図)およびCollaegen刺激した場合の凝集した血小板の含有率(右図)を示す。図14Fは、1600S-1の流速下(方向は上部に示す)におけるCl-7またはCl-2由来の血小板の凝集塊を観察した顕微鏡像を示す。図14Gは、図14Fで観察された凝集塊の数を示す。 図15AおよびBは、巨核球前駆細胞株由来の血小板(6×108個または1×108個)または採血した血小板(1×108個)をマウスに投与した後30分、2時間または24時間における血中における含有率(Human CD41a陽性/Mouse CD41陰性)を示す。図15Cは、in vivoでの巨核球前駆細胞株由来の血小板(緑色)の血管(赤色)における経時的な動きを撮影した共焦点顕微鏡像を示す。図15Dは、血管100μmあたりに接着した巨核球前駆細胞株由来の血小板数を示す。図15Eは、レーザー照射損傷部位に発生した血栓(20 sec)中の巨核球前駆細胞株由来の血小板(緑色)の顕微鏡像を示す。図15Eは、採血した血小板(Fresh)、保管した血小板(pooled)、および巨核球前駆細胞株由来の血小板(Cl-1、Cl-2、Cl-3およびCl-7)をマウスに投与した後の、血栓に含まれる血小板数を示す。
(巨核球の製造方法)
 本発明は、造血前駆細胞から巨核球を製造する方法を提供する。
 本発明に係る巨核球の製造方法の一態様は、造血前駆細胞において、アポトーシス抑制遺伝子および癌遺伝子を強制発現させて該細胞を培養する工程およびアポトーシス抑制遺伝子および癌遺伝子の強制発現を止めて培養する工程を含む。本発明において、造血前駆細胞において、アポトーシス抑制遺伝子および癌遺伝子を強制発現させて該細胞を培養する工程によって得られる細胞を巨核球前駆細胞としても良い。
 本発明における「巨核球」は、多核化した細胞であってもよく、例えば、CD41a陽性/CD42a陽性/CD42b陽性として特徴付けられる細胞を含む。この他にも、GATA1、FOG1、NF-E2およびβ1-tubulinが発現している細胞として特徴づけてもよい。多核化した巨核球とは、造血前駆細胞と比較して核の数が相対的に増大した細胞又は細胞群のことをいう。例えば、本発明の方法を適用する造血前駆細胞の核が2Nの場合には、4N以上の細胞が多核化した巨核球となる。また、本発明において、巨核球は、巨核球株として不死化されていてもよく、クローン化された細胞群であってもよい。
 本発明における「巨核球前駆細胞」とは、成熟することで巨核球となる細胞であって、多核化していない細胞であり、例えば、CD41a陽性/CD42a陽性/CD42b弱陽性として特徴付けられる細胞を含む。本発明の巨核球前駆細胞は、好ましくは、拡大培養により増殖させることが可能である細胞であり、例えば、少なくとも60日以上は、適切な条件で拡大培養可能な細胞である。本発明において、巨核球前駆細胞は、クローン化されていてもされていなくても良く、特に限定されないが、クローン化されたものを巨核球前駆細胞株と呼ぶこともある。
 本発明において、造血前駆細胞とは、リンパ球、好酸球、好中球、好塩基球、赤血球、巨核球等の血球系細胞に分化可能な細胞である、本発明において、造血前駆細胞と造血幹細胞は、区別されるものではなく、特に断りがなければ同一の細胞を示す。造血幹細胞/前駆細胞は、例えば、表面抗原であるCD34および/またはCD43が陽性であることによって認識できる。本発明において、造血幹細胞は、多能性幹細胞、臍帯血・骨髄血・末梢血由来の造血幹細胞及び前駆細胞などから分化誘導された造血前駆細胞に対しても適用することができる。例えば、多能性幹細胞からは、Takayama N., et al. J Exp Med. 2817-2830 (2010)に記載の方法にしたがって、多能性幹細胞をVEGFの存在下でC3H10T1/2上で培養することで得られるネット様構造物(ES-sac又はiPS-sacとも称する)から調製することができる。ここで、「ネット様構造物」とは、多能性幹細胞由来の立体的な嚢状(内部に空間を伴うもの)構造体で、内皮細胞集団などで形成され、内部に造血前駆細胞を含む構造体である。この他にも、多能性幹細胞からの造血前駆細胞の製造方法として、胚様体の形成とサイトカインの添加による方法(Chadwick et al. Blood 2003, 102: 906-15、Vijayaragavan et al. Cell Stem Cell 2009, 4: 248-62、Saeki et al. Stem Cells 2009, 27: 59-67)または異種由来のストローマ細胞との共培養法(Niwa A et al. J Cell Physiol. 2009 Nov;221(2):367-77.)等が例示される。
 本発明において好ましい造血前駆細胞は、KLF1遺伝子の発現が低い、またはFLI1遺伝子の発現が高い造血前駆細胞である。従って、巨核球の製造に際して、KLF1の発現が低い、またはFLI1の発現が高い造血前駆細胞を選択する工程を含んでも良い。ここで、KLF1の発現が低いとは、KLF1の発現が対照と比較して低いことを意味し、対照とは、特に限定されず、当業者が文献又は経験等に基づいて適宜選択することができるが、例えば、khES3からTakayama N., et al. J Exp Med. 2817-2830 (2010)に記載の方法にしたがって製造された造血前駆細胞が例示される。KLF1とは、NCBIのアクセッション番号NM_006563に記載された遺伝子である。
 同様に、FLI1の発現が低いとは、FLI1の発現が対照と比較して低いことを意味し、対照とは、特に限定されず、当業者が文献又は経験等に基づいて適宜選択することができるが、例えば、khES3からTakayama N., et al. J Exp Med. 2817-2830 (2010)に記載の方法にしたがって製造された造血前駆細胞が例示される。FLI1とは、NCBIのアクセッション番号NM_001167681、NM_001271010、NM_001271012またはNM_002017に記載された遺伝子である。
 遺伝子の発現を測定する方法として、当業者の常法にしたかって行うことができ、例えば、DNAチップ法、サザンブロット法、ノーザンブロット法またはRT-PCR(Polymerase Chain Reaction)法等が挙げられる。
 KLF1の発現が低い、またはFLI1の発現が高い造血前駆細胞を選択する工程では、上記khES3細胞から製造された造血前駆細胞のほか、生体内の造血前駆細胞を対照としてもよい。また、任意の2種以上の造血前駆細胞(群)を比較して、KLF1の発現がより低い、又はFLI1の発現がより高いものを選択してもよい。このほかにも、多能性幹細胞から製造された造血前駆細胞を用いる場合、同時に製造された造血前駆細胞のうちKLF1の発現がより低い、又はFLI1の発現がより高いものを選択して本発明に用いてもよい。
 本明細書において、発現が低い又は高いという場合、対照と比較して有意に低い又は高い場合に限られず、低い又は高い傾向があると当業者が認識できる程度に低い又は高い場合も含まれる。
 本発明において、多能性幹細胞とは、生体に存在する全ての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、それには、例えば胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹細胞(「GS細胞」)、胚性生殖細胞(「EG細胞」)、人工多能性幹(iPS)細胞、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)、刺激惹起性多能性獲得細胞(STAP細胞)などが含まれる。
(A) 胚性幹細胞
 ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。
 ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され (M.J. Evans and M.H. Kaufman (1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された (J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)。
 ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor (LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor (bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al. (1998), Science. 282:1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222:273-279;H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al. (2006), Nature. 444:481-485などに記載されている。
 ES細胞作製のための培養液として、例えば0.1mM 2-メルカプトエタノール、0.1mM 非必須アミノ酸、2mM L-グルタミン酸、20% KSRおよび4ng/ml bFGFを補充したDMEM/F-12培養液を使用し、37℃、5% CO2、湿潤雰囲気下でヒトES細胞を維持することができる(H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932)。また、ES細胞は、3~4日おきに継代する必要があり、このとき、継代は、例えば1mM CaCl2および20% KSRを含有するPBS中の0.25% トリプシンおよび0.1mg/mlコラゲナーゼIVを用いて行うことができる。
 ES細胞の選択は、一般に、アルカリホスファターゼ、Oct-3/4、Nanogなどの遺伝子マーカーの発現を指標にしてReal-Time PCR法で行うことができる。特に、ヒトES細胞の選択では、OCT-3/4、NANOG、ECADなどの遺伝子マーカーの発現を指標とすることができる(E. Kroon et al. (2008), Nat. Biotechnol., 26:443-452)。
 ヒトES細胞株は、例えばWA01(H1)およびWA09(H9)は、WiCell Reserch Instituteから、KhES-1、KhES-2およびKhES-3は、京都大学再生医科学研究所(京都、日本)から入手可能である。
(B) 精子幹細胞
 精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor (GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、精子幹細胞を得ることができる(竹林正則ら(2008),実験医学,26巻,5号(増刊),41~46頁,羊土社(東京、日本))。
(C) 胚性生殖細胞
 胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)。
(D) 人工多能性幹細胞
 人工多能性幹(iPS)細胞は、特定の初期化因子を、DNA又はタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);国際公開WO 2007/069666)。初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-cording RNAまたはES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-coding RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO 2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO 2010/111409、WO 2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、Huangfu D, et al. (2008), Nat. Biotechnol., 26: 795-797、Shi Y, et al. (2008), Cell Stem Cell, 2: 525-528、Eminli S, et al. (2008), Stem Cells. 26:2467-2474、Huangfu D, et al. (2008), Nat Biotechnol. 26:1269-1275、Shi Y, et al. (2008), Cell Stem Cell, 3, 568-574、Zhao Y, et al. (2008), Cell Stem Cell, 3:475-479、Marson A, (2008), Cell Stem Cell, 3, 132-135、Feng B, et al. (2009), Nat Cell Biol. 11:197-203、R.L. Judson et al., (2009), Nat. Biotech., 27:459-461、Lyssiotis CA, et al. (2009), Proc Natl Acad Sci U S A. 106:8912-8917、Kim JB, et al. (2009), Nature. 461:649-643、Ichida JK, et al. (2009), Cell Stem Cell. 5:491-503、Heng JC, et al. (2010), Cell Stem Cell. 6:167-74、Han J, et al. (2010), Nature. 463:1096-100、Mali P, et al. (2010), Stem Cells. 28:713-720、Maekawa M, et al. (2011), Nature. 474:225-9.に記載の組み合わせが例示される。
 上記初期化因子には、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸 (VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool・ (Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327およびPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、BioおよびCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294 等の低分子阻害剤、Suv39hl、Suv39h2、SetDBlおよびG9aに対するsiRNAおよびshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist (例えばBayk8644)、酪酸、TGFβ阻害剤またはALK5阻害剤(例えば、LY364947、SB431542、616453およびA-83-01)、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNAおよびshRNA)、miR-291-3p、miR-294、miR-295およびmir-302などのmiRNA、Wnt Signaling(例えばsoluble Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2およびプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれており、本明細書においては、これらの樹立効率の改善目的にて用いられた因子についても初期化因子と別段の区別をしないものとする。
 初期化因子は、タンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTATおよびポリアルギニン)との融合、マイクロインジェクションなどの手法によって体細胞内に導入してもよい。
 一方、DNAの形態の場合、例えば、ウィルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウィルスベクターとしては、レトロウィルスベクター、レンチウィルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウィルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウィルスベクター、センダイウィルスベクター(WO 2010/008054)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、初期化因子をコードする遺伝子もしくはプロモーターとそれに結合する初期化因子をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。
 また、RNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入しても良く、分解を抑制するため、5-メチルシチジンおよびpseudouridine (TriLink Biotechnologies)を取り込ませたRNAを用いても良い(Warren L, (2010) Cell Stem Cell. 7:618-630)。
 iPS細胞誘導のための培養液としては、例えば、10~15%FBSを含有するDMEM、DMEM/F12又はDME培養液(これらの培養液にはさらに、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)または市販の培養液[例えば、マウスES細胞培養用培養液(TX-WES培養液、トロンボX社)、霊長類ES細胞培養用培養液(霊長類ES/iPS細胞用培養液、リプロセル社)、無血清培地(mTeSR、Stemcell Technology社)]などが含まれる。
 培養法の例としては、たとえば、37℃、5%CO2存在下にて、10%FBS含有DMEM又はDMEM/F12培養液上で体細胞と初期化因子とを接触させ約4~7日間培養し、その後、細胞をフィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上にまきなおし、体細胞と初期化因子の接触から約10日後からbFGF含有霊長類ES細胞培養用培養液で培養し、該接触から約30~約45日又はそれ以上ののちにiPS様コロニーを生じさせることができる。
 あるいは、37℃、5% CO2存在下にて、フィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上で10%FBS含有DMEM培養液(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日又はそれ以上ののちにES様コロニーを生じさせることができる。望ましくは、フィーダー細胞の代わりに、初期化される体細胞そのものを用いる(Takahashi K, et al. (2009), PLoS One. 4:e8067またはWO2010/137746)、もしくは細胞外基質(例えば、Laminin-5(WO2009/123349)およびマトリゲル(BD社))を用いる方法が例示される。
 この他にも、血清を含有しない培地を用いて培養する方法も例示される(Sun N, et al. (2009), Proc Natl Acad Sci U S A. 106:15720-15725)。さらに、樹立効率を上げるため、低酸素条件(0.1%以上、15%以下の酸素濃度)によりiPS細胞を樹立しても良い(Yoshida Y, et al. (2009), Cell Stem Cell. 5:237-241またはWO2010/013845)。
 上記培養の間には、培養開始2日目以降から毎日1回新鮮な培養液と培養液交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cm2あたり約5×103~約5×106細胞の範囲である。
 iPS細胞は、形成したコロニーの形状により選択することが可能である。一方、体細胞が初期化された場合に発現する遺伝子(例えば、Oct3/4、Nanog)と連動して発現する薬剤耐性遺伝子をマーカー遺伝子として導入した場合は、対応する薬剤を含む培養液(選択培養液)で培養を行うことにより樹立したiPS細胞を選択することができる。また、マーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、iPS細胞を選択することができる。
 本明細書中で使用する「体細胞」なる用語は、卵子、卵母細胞、ES細胞などの生殖系列細胞または分化全能性細胞を除くあらゆる動物細胞(好ましくは、ヒトを含む哺乳動物細胞)をいう。体細胞には、非限定的に、胎児(仔)の体細胞、新生児(仔)の体細胞、および成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、および株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞および脂肪細胞等の分化した細胞などが例示される。
 また、本発明では、iPS細胞由来の血小板を移植材料として用いることを考慮すると、拒絶反応が起きにくいことが望ましいという観点から、移植先の個体のHLA遺伝子型が同一もしくは実質的に同一である体細胞をiPS細胞の製造に用いることが望ましい。ここで、「実質的に同一」とは、移植した細胞に対して免疫抑制剤により免疫反応が抑制できる程度にHLA遺伝子型が一致していることであり、例えば、HLA-A、HLA-BおよびHLA-DRの3遺伝子座あるいはHLA-Cを加えた4遺伝子座が一致するHLA型を有する体細胞であってもよい。
(E) 核移植により得られたクローン胚由来のES細胞
 nt ES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がnt ES(nuclear transfer ES)細胞である。nt ES細胞の作製のためには、核移植技術(J.B. Cibelli et al. (1998), Nature Biotechnol., 16:642-646)とES細胞作製技術との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
(F) Multilineage-differentiating Stress Enduring cells(Muse細胞)
 Muse細胞は、WO2011/007900に記載された方法にて製造された多能性幹細胞であり、詳細には、線維芽細胞または骨髄間質細胞を長時間トリプシン処理、好ましくは8時間または16時間トリプシン処理した後、浮遊培養することで得られる多能性を有した細胞であり、SSEA-3およびCD105が陽性である。
(G) 刺激惹起性多能性獲得細胞(STAP細胞)
 STAP細胞は、WO2013/163296に記載された方法にて製造された多能性幹細胞であり、例えば、体細胞をpH5.4から5.8の酸性溶液中で30分間培養して得られる、SSEA-4およびE-cadherinが陽性の細胞である。
 本発明において、好ましい多能性幹細胞は、巨核球に分化誘導できる造血前駆細胞を製造できる細胞である。このような多能性幹細胞を選択において、KLF1の発現がより低い、又はFLI1の発現がより高い造血前駆細胞が製造できるか否かによって行われ得る。ここで、多能性幹細胞から造血前駆細胞の製造方法およびKLF1の発現およびFLI1の発現の測定方法は上記の方法を用いて行うことができる。
 従って、本発明の他の態様として、(1)多能性幹細胞から造血幹細胞を製造する工程、および(2)工程(1)で製造された造血前駆細胞において、KLF1の発現およびFLI1の発現の測定する工程、を含む巨核球製造に適した多能性幹細胞を選択する方法を提供する。
 本発明において、「癌遺伝子」とは、その発現、構造または機能等が正常細胞と異なることに起因して、正常細胞のがん化を引き起こす遺伝子であり、例えば、MYCファミリー遺伝子、Srcファミリー遺伝子、Rasファミリー遺伝子、Rafファミリー遺伝子、c-KitやPDGFR、Ablなどのプロテインキナーゼファミリー遺伝子などを挙げることができる。MYCファミリー遺伝子として、c-MYC、N-MYCおよびL-MYCが例示される。より好ましくは、c-MYC遺伝子である。c-MYC遺伝子とは、例えば、NCBIのアクセッション番号NM_002467で示される核酸配列からなる遺伝子である。また、c-MYC遺伝子には、そのホモログも含まれてよく、c-MYC遺伝子ホモログとは、そのcDNA配列が、例えば、NCBIのアクセッション番号NM_002467で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。NCBIのアクセッション番号NM_002467で示される核酸配列と実質的に同一の配列からなるcDNAとは、NCBIのアクセッション番号NM_002467で表される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%の同一性を有する配列からなるDNA、もしくは、NCBIのアクセッション番号NM_002467で表わされる核酸配列に相補的な配列からなるDNAとストリンジェントな条件下でハイブリダイズできるDNAであって、これらのDNAによってコードされるタンパク質が、造血前駆細胞など、分化段階の細胞の増幅に寄与するもののことである。
 ここで、ストリンジェントな条件とは、当業者によって容易に決定されるハイブリダイゼーションの条件のことで、一般的にプローブ長、洗浄温度、及び塩濃度に依存する経験的な実験条件である。一般に、プローブが長くなると適切なアニーリングのための温度が高くなり、プローブが短くなると温度は低くなる。ハイブリッド形成は、一般的に、相補的鎖がその融点よりやや低い環境における再アニール能力に依存する。
 例えば、低ストリンジェントな条件として、ハイブリダイゼーション後のフィルターの洗浄段階において、37℃~42℃の温度条件下、0.1×SSC、0.1%SDS溶液中で洗浄することなどが上げられる。また、高ストリンジェントな条件として、例えば、洗浄段階において、65℃、5×SSCおよび0.1%SDS中で洗浄することなどが挙げられる。ストリンジェントな条件をより高くすることにより、相同性の高いポリヌクレオチドを得ることができる。
 本発明において、c-MYCの発現量を抑制することが好ましいため、不安定化ドメインと融合させたタンパク質をコードするc-MYCであってもよい。不安定化ドメインは、ProteoTuner社またはClontech社から購入して用いることができる。
 本発明において、「アポトーシス抑制遺伝子」とは、アポトーシスを抑制する遺伝子であれば特に限定されず、例えば、BCL2遺伝子、BCL-XL遺伝子、Survivin、MCL1などが挙げられる。好ましくは、BCL-XL遺伝子である。BCL-XL遺伝子とは、例えば、NCBIのアクセッション番号NM_001191またはNM_138578で示される核酸配列からなる遺伝子である。また、BCL-XL遺伝子には、そのホモログも含まれてよく、BCL-XL遺伝子のホモログとは、そのcDNA配列が、例えば、NCBIのアクセッション番号NM_001191またはNM_138578で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。NCBIのアクセッション番号NM_001191またはNM_138578で示される核酸配列と実質的に同一の配列からなるcDNAとは、NCBIのアクセッション番号NM_001191またはNM_138578で表される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%の同一性を有する配列からなるDNA、もしくは、NCBIのアクセッション番号NM_001191またはNM_138578で表わされる核酸配列に相補的な配列からなるDNAとストリンジェントな条件下でハイブリダイズできるDNAであって、そのDNAによってコードされるタンパク質が、アポトーシスを抑制する効果を有するもののことである。
 本発明の態様として、造血前駆細胞へさらに以下の(i)~(iii)のいずれかの遺伝子を強制発現させ、該細胞を培養して増殖させる工程によって得られたものを用いることができる。
(i)p16遺伝子又はp19遺伝子の発現を抑制する遺伝子;
(ii)Ink4a/Arf遺伝子の発現を抑制する遺伝子;及び
(iii)ポリコーム遺伝子。
 この (i)~(iii)の遺伝子としては、例えば、BMI1、Mel18、Ring1a/b、Phc1/2/3、Cbx2/4/6/7/8、Ezh2、Eed、Suz12、HADC、Dnmt1/3a/3bなどを挙げることができるが、BMI1遺伝子が特に好ましい。BMI1遺伝子とは、例えば、NCBIのアクセッション番号NM_005180で示される核酸配列からなる遺伝子である。また、BMI1遺伝子には、そのホモログも含まれてよく、BMI1遺伝子のホモログとは、そのcDNA配列が、例えばNCBIのアクセッション番号NM_005180で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。NCBIのアクセッション番号NM_005180で示される核酸配列と実質的に同一の配列からなるcDNAとは、NCBIのアクセッション番号NM_005180で表される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%の同一性を有する配列からなるDNA、もしくは、NCBIのアクセッション番号NM_005180で表わされる核酸配列に相補的な配列からなるDNAとストリンジェントな条件下でハイブリダイズできるDNAであって、そのDNAによってコードされるタンパク質が、MYCファミリー遺伝子などの癌遺伝子が発現している細胞内で生じる癌遺伝子誘導性細胞老化を抑制し、該細胞の増幅を促進するもののことである。
 本発明において、(i)p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、(ii)Ink4a/Arf遺伝子の発現を抑制する遺伝子及び(iii)ポリコーム遺伝子から成る群より選択される1つの遺伝子をさらに強制発現する場合、当該強制発現した遺伝子を止めて培養する工程をさらに含む巨核球の製造方法が好ましい。本工程において、好ましくは、癌遺伝子、ならびに(i)p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、(ii)Ink4a/Arf遺伝子の発現を抑制する遺伝子及び(iii)ポリコーム遺伝子から成る群より選択される1つの遺伝子を造血前駆細胞において強制発現させた後、アポトーシス抑制遺伝子をさらに当該細胞へ強制発現させる工程である。
 本発明において、上記の遺伝子を造血前駆細胞において強制発現させる方法として、当業者の常法にしたがって行うことができ、例えば、これらの遺伝子を発現するベクター、またはこれらの遺伝子をコードするタンパク質またはRNAの形態で造血前駆細胞へ導入することによって成し得る。さらには、これらの遺伝子の発現を誘導する低分子化合物等を造血前駆細胞と接触させることによって行うことができる。ここで、本発明では、一定期間、上記遺伝子を発現し続ける必要があることから、発現ベクター、タンパク質、RNAまたは発現を誘導する低分子化合物等は、必要な期間に合わせて複数回導入することによって行い得る。
 これらの遺伝子を発現するベクターとは、例えば、レトロウイルス、レンチウィルス、アデノウイルス、アデノ随伴ウィルス、ヘルペスウイルス及びセンダイウィルスなどのウィルスベクター、動物細胞発現プラスミド(例、pA1-11,pXT1,pRc/CMV,pRc/RSV,pcDNAI/Neo)などが用いられ得る。単回導入により実施し得るという点において、好ましくは、レトロウィルスベクターまたはレンチウィルスベクターである。
 発現ベクターにおいて使用されるプロモーターの例としては、EF-αプロモーター、CAGプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウィルス)プロモーター、MoMuLV(モロニーマウス白血病ウィルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。発現ベクターは、プロモーターの他に、所望によりエンハンサー、ポリA付加シグナル、選択マーカー遺伝子、SV40複製起点などを含有していてもよい。有用な選択マーカー遺伝子としては、例えば、ジヒドロ葉酸還元酵素遺伝子、ネオマイシン耐性遺伝子、ピューロマイシン耐性遺伝子等が挙げられる。
 本発明の発現ベクターにおいて、テトラサイクリンまたはドキシサイクリンによりその遺伝子の発現を制御するため、プロモーター領域にはテトラサイクリン反応性エレメントを有している薬剤応答性ベクターであってもよい。この他にも、Cre-loxPシステムを使用して、遺伝子をベクターから切り出すため、loxP配列にて遺伝子またはプロモーター領域もしくはその両方をはさむようにloxP配列を設置された発現ベクターを用いてもよい。
 本発明では、同時に複数の遺伝子を導入するため、遺伝子が縦に連結されてポリシストロニックなベクターを得てもよい。ポリシストロニックな発現を可能にするために、口蹄疫ウィルスの2A自己開裂ペプチド(Science, 322, 949-953, 2008などを参照)およびIRES配列などを強制発現させる遺伝子の間にライゲーションされて用いられ得る。
 本発明において、発現ベクターを造血前駆細胞への導入する方法として、ウィルスベクターの場合、該核酸を含むプラスミドを適当なパッケージング細胞(例、Plat-E細胞)や補完細胞株(例、293細胞)に導入して、培養上清中に産生されたウィルスを回収し造血前駆細胞と接触させ感染させることによって成し得る。非ウィルスベクターの場合、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、遺伝子銃法などを用いてプラスミドベクターを細胞に導入することができる。
 本発明では、アポトーシス抑制遺伝子を造血前駆細胞において強制発現させることに代わって、カスパーゼ阻害剤を細胞と接触させても良い。本発明において、カスパーゼ阻害剤は、ペプチド性化合物、非ペプチド性化合物、あるいは、生物由来のタンパク質のいずれであってもよい。ペプチド性化合物としては、例えば人工的に化学合成された下記(1)~(10)のペプチド性化合物を挙げることができる。
(1)Z-Asp-CH2-DCB(分子量454.26)
(2)Boc-Asp(OMe)-FMK(分子量263.3)
(3)Boc-Asp(OBzl)-CMK(分子量355.8)
(4)Ac-AAVALLPAVLLALLAP-YVAD-CHO(分子量1990.5)(配列番号:1)
(5)Ac-AAVALLPAVLLALLAP-DEVD-CHO(分子量2000.4)(配列番号:2)
(6)Ac-AAVALLPAVLLALLAP-LEVD-CHO(分子量1998.5)(配列番号:3)
(7)Ac-AAVALLPAVLLALLAP-IETD-CHO(分子量2000.5)(配列番号:4)
(8)Ac-AAVALLPAVLLALLAP-LEHD-CHO(分子量2036.5)(配列番号:5)
(9)Z-DEVD-FMK (Z-Asp-Glu-Val-Asp-fluoromethylketone)(配列番号:6)
(10)Z-VAD FMK
 例えば、ペプチド性化合物のカスパーゼ阻害剤として、(1)VX-740 - Vertex Pharmaceuticals (Leung-Toung et al., Curr. Med. Chem. 9, 979-1002 (2002))、(2)HMR-3480 - Aventis Pharma AG (Randle et al., Expert Opin. Investig. Drugs 10, 1207-1209 (2001))、を挙げることができる。
 非ペプチド性化合物のカスパーゼ阻害剤としては、(1)アニリノキナゾリン(anilinoquinazolines (AQZs))-AstraZeneca Pharmaceuticals (Scott et al., J. Pharmacol. Exp. Ther. 304, 433-440 (2003))、(2)M826 - Merck Frosst (Han et al., J. Biol. Chem. 277, 30128-30136 (2002))、(3)M867 - Merck Frosst (Methot et al., J.Exp. Med. 199, 199-207 (2004))、(4)ニコチニルアスパチルケトンズ(Nicotinyl aspartyl ketones)- Merck Frosst (Isabel et al., Bioorg. Med. Chem. Lett. 13, 2137-2140 (2003))、などを例示することができる。
 また、その他の非ペプチド性化合物のカスパーゼ阻害剤として、(1)IDN-6556 - Idun Pharmaceuticals (Hoglen et al., J.Pharmacol. Exp. Ther. 309, 634-640 (2004))、(2)MF-286 and MF-867 - Merck Frosst (Los et al., Drug Discov. Today 8, 67-77 (2003))、(3)IDN-5370 - Idun Pharmaceuticals (Deckwerth et al., Drug Dev. Res. 52, 579-586 (2001))、(4)IDN-1965 - Idun Pharmaceuticals (Hoglen et al., J. Pharmacol. Exp. Ther. 297, 811-818 (2001))、(5)VX-799 - Vertex Pharmaceuticals (Los et al., Drug Discov. Today 8, 67-77 (2003))、などを挙げることができる。このほかに、M-920 and M-791 - Merck Frosst (Hotchkiss et al., Nat. Immunol. 1, 496-501 (2000))などもカスパーゼ阻害剤として挙げることができる。
 本発明において、好ましいカスパーゼ阻害剤は、Z-VAD FMKであり、Z-VAD FMKを用いる場合、造血前駆細胞を培養する培地へ添加することで行われ、Z-VAD FMKの好ましい培地中の濃度は、例えば、10μM以上、20μM以上、30μM以上、40μM以上、および50μM以上が挙げられ、好ましくは、30μM以上である。
 本発明において、上記の通り、アポトーシス抑制遺伝子等の外来性遺伝子を強制発現させた細胞の培養方法としては、任意の培地を用いて、フィーダー細胞上で培養する方法が例示される。フィーダー細胞としては、巨核球または巨核球前駆細胞を誘導することができる細胞であれば特に限定されないが、例えば、C3H10T1/2(Katagiri T, et al., Biochem Biophys Res Commun. 172, 295-299 (1990))が挙げられる。
 本発明において用いる培地は、特に限定されないが、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばIMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)およびこれらの混合培地などが包含される。培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、2-メルカプトエタノール、チオールグリセロール、脂質、アミノ酸、L-グルタミン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、サイトカインなどの1つ以上の物質も含有し得る。サイトカインとは、血球系分化を促進するタンパク質であり、例えば、VEGF、TPO、SCFなどが例示される。本発明において好ましい培地は、血清、インスリン、トランスフェリン、セリン、チオールグリセロール、アスコルビン酸、TPOを含むIMDM培地である。より好ましくは、さらにSCFを含む。また、薬剤応答性のプロモーターを含む発現ベクターを用いた場合、強制発現する工程においては、対応する薬剤、例えば、テトラサイクリンまたはドキシサイクリンを培地に含有させることが望ましい。
 本発明において、培養する際の条件は、特に限定されないが、37℃以上の温度で培養することにより、巨核球または巨核球前駆細胞の分化を促進することが確認されている。ここで、37℃以上の温度とは、細胞にダメージを与えない程度の温度が適当であることから、例えば、約37℃~約42℃程度、約37~約39℃程度が好ましい。また、37℃以上の温度における培養期間については、巨核球または巨核球前駆細胞の数などをモニターしながら、適宜決定することが可能である。所望の巨核球前駆細胞が得られる限り、日数は特に限定されないが、例えば、少なくとも6日間以上、12日以上、18日以上、24日以上、30日以上、42日以上、48日以上、54日以上、60日以上であり、好ましくは60日以上である。培養期間が長いことについては、巨核球の製造においては問題とされない。また、培養期間中は、適宜、継代を行うことが望ましい。
 本発明において、巨核球の製造方法の一態様は、さらに、(a)p53遺伝子産物の発現又は機能を阻害する物質、(b)アクトミオシン複合体機能阻害剤、(c)ROCK阻害剤および(d)HDAC阻害剤をさらに培地に含んでもよい。これらの方法は、例えば、WO2012/157586に記載された方法にしたがって実施し得る。
 本発明の巨核球の製造方法では、上記の通り外来性遺伝子を強制発現する工程で得られた巨核球または巨核球前駆細胞に対して、強制発現を停止して培養する工程をさらに含む。強制発現を停止する方法として、例えば、薬剤応答性ベクターを用いて強制発現をしている場合には、対応する薬剤と当該細胞と接触させないことによって達成させてもよい。この他にも、上記のLoxPを含むベクターを用いた場合は、Creリコンビナーゼを当該細胞に導入することによって達成させてもよい。さらに、一過性発現ベクター、およびRNAまたはタンパク質導入を用いた場合は、当該ベクター等との接触を止めることによって達成させてもよい。本工程において用いられる培地は、上記と同一の培地を用いて行うことができる。
 強制発現を停止して培養する際の条件は、特に限定されないが、例えば、約37℃~約42℃程度、約37~約39℃程度が好ましい。また、37℃以上の温度における培養期間については、巨核球の数などをモニターしながら、適宜決定することが可能であるが、例えば、2日間~10日間、好ましくは3日間~7日間程度である。少なくとも3日以上であることが望ましい。また、培養期間中は、適宜、継代を行うことが望ましい。
 上述の方法で得られた巨核球は、十分に成熟し、CD42b陽性の機能的な血小板を効率よく産生する。このCD42b陽性の血小板は、in vivo及びin vitroにおいて、高い血栓形成能を有している。本発明で得られた巨核球は、少なくとも外来性のアポトーシス抑制遺伝子および癌遺伝子が染色体に組み込まれている巨核球であるが、当該遺伝子の発現は停止されている巨核球である。本明細書において、巨核球の成熟とは、巨核球が十分に多核化し、機能的な血小板を産生できることをいう。巨核球の成熟は、例えば、GATA1、p45 NF-E2、beta1-tubulinなどの巨核球成熟関連遺伝子群の発現の上昇によっても確認することができる。
 また、巨核球および/または巨核球前駆細胞は、凍結保存後、融解しても機能的な血小板を産生することができるため、本発明の方法を用いて製造された巨核球および/または巨核球前駆細胞は、凍結保存した状態で流通させることができる。
(血液細胞組成物)
 本発明はまた、造血前駆細胞を分化誘導して得られる血液細胞組成物であって、巨核球の含有率が高い血液細胞組成物を提供する。ここで、「血液細胞組成物」には、本発明の方法で製造された「巨核球」を含む他、その他の方法によって調製された巨核球、又は、その他の血液細胞が含まれて又は加えられていてもよい。
 本発明の方法によって造血前駆細胞を処理すると、巨核球への分化を促進することができる。そのため、例えば、多能性幹細胞などから分化させた造血前駆細胞に対し、本発明の方法を適用することで、巨核球の含有率の高い細胞組成物を取得することができる。血液細胞組成物において巨核球の含有率が高いか否かは、当業者が経験や文献に基づいて判断することができる。本発明の方法で造血前駆細胞を処理した場合、他の方法で処理した場合と比較して、巨核球の含有率を、少なくとも、20%以上、30%以上、好ましくは、40%以上、50%以上、より好ましくは80%以上にまで増大させることが可能である。従って、本発明の方法により、巨核球の存在比率の高い巨核球集団、あるいは、血液細胞集団を調製することが可能となる。
 本発明の方法で得られた巨核球等は、適切な方法によって、生体内に移植し、生体内における機能性血小板を産生させるためにも有効である。従って、本発明の方法で得られた巨核球を含む治療剤を提供する。
 本発明の方法によって得られる巨核球等の移植は、骨髄移植におけるドナー数の不足及びドナーの負担の問題、臍帯血移植における生体内での血小板産生能力の問題を解決することが可能で、従来の移植法と比較して、非常に優れた方法ということができる。
(血小板の製造方法)
 本発明に係る血小板の製造方法は、本発明の方法で得られた巨核球から、in vitroで血小板を産生させるものである。
 本発明に係る血小板の製造方法は、上述の方法で得られた巨核球を培養し、培養物から血小板を回収する工程を含む。
 培養条件は、限定はしないが、例えば、TPO(10~200ng/mL、好ましくは50~100ng/mL程度)の存在下で、あるいは、TPO(10~200ng/mL、好ましくは50~100ng/mL程度)、SCF(10~200ng/mL、好ましくは50ng/mL程度)及びHeparin(10~100U/mL、好ましくは25U/ml程度)の存在下で、培養してもよい。血小板の機能が維持される限り、培養を継続することができ、例えば、培養期間として、7日から15日程度が挙げられる。
 培養温度は、本発明の効果が得られる限り特に限定されず、35℃~40℃で行うことができるが、37℃~39℃が好適である。
 本発明に係る製造方法では、巨核球の培養工程を、血清フリー及び/又はフィーダー細胞フリーの条件で行ってもよい。好ましくは、TPOを含有する培地で本発明の方法にしたがって製造された巨核球を培養することで行う方法である。血小板産生工程においては、血清フリー且つフィーダー細胞フリーで行うことができれば、得られた血小板を臨床的に用いる場合に免疫原性の問題が生じにくい。また、フィーダー細胞を用いないで血小板を産生させることができれば、フィーダー細胞を接着させる必要がないので、フラスコなどで浮遊培養することができるので、製造コストを抑制できるとともに、大量生産に適している。なお、フィーダー細胞を用いない場合は、conditioned mediumを使用してもよい。conditioned mediumは、特に限定されず、当業者が公知の方法等に従って作製することができるが、例えば、フィーダー細胞を適宜培養し、培養物からフィーダー細胞をフィルターで除去することによって得ることができる。
 本発明に係る血小板の製造方法の一態様では、培地にROCK阻害剤及び/又はアクトミオシン複合体機能阻害剤を加える。ROCK阻害剤及びアクトミオシン複合体機能阻害剤としては、上述した多核化巨核球の製造方法で使用したものと同じものを使用することができる。ROCK阻害剤としては、例えばY27632が挙げられる。アクトミオシン複合体機能阻害剤としては、ミオシン重鎖II ATPase阻害剤である、ブレビスタチンが挙げられる。ROCK阻害剤を単独で加えてもよく、ROCK阻害剤とアクトミオシン複合体機能阻害剤を単独で加えてもよいし、これらを組み合わせて加えてもよい。
 ROCK阻害剤及び/又はアクトミオシン複合体機能阻害剤は、0.1μM~30μMで加えることが好ましく、例えば0.5μM~25μM、5μM~20μM等としてもよい。
 ROCK阻害剤及び/又はアクトミオシン複合体機能阻害剤を加えてからの培養期間は1日~15日とすることができ、3日、5日、7日等としてもよい。ROCK阻害剤及び/又はアクトミオシン複合体機能阻害剤を加えることにより、CD42b陽性血小板の割合をさらに増加させることが可能である。
 本発明で得られた血小板は、製剤として患者に投与することができる。投与に当たっては、本発明の方法で得られる血小板は、例えば、ヒト血漿、輸液剤、クエン酸含有生理食塩液、ブドウ糖加アセテートリンゲル液を主剤とした液、PAS(platelet additive solution)(Gulliksson, H. et al., Transfusion, 32:435-440, (1992))等にて保存、製剤化してもよい。保存期間は、3日から7日程度で、好ましくは4日間である。保存条件として、室温(20-24度)で振盪撹拌して保存することが望ましい。
(巨核球及び/または血小板の製造キット)
 本発明の実施形態には、巨核球及び/または血小板を製造するためのキットが含まれる。当該キットには、アポトーシス抑制遺伝子、癌遺伝子、上記(i)~(iii)の遺伝子等を細胞内で発現するのに必要な発現ベクター等及び試薬などの他、細胞培養のための培地、血清、増殖因子などのサプリメント(例えば、TPO、EPO、SCF、Heparin、IL-6、IL-11など)、抗生物質などが含まれる。その他、例えば、多能性細胞由来の細胞を使用する場合、これらの細胞から調製したネット様構造物を同定するためのマーカー確認用の抗体(例えば、Flk1、CD31、CD34、UEA-Iレクチンなどに対する抗体)なども含まれる。さらに、巨核球の製造に適した造血前駆細胞を選択するため、KLF1及び/またはFLI1の発現を測定するキットを含んでも良い。キット中に含まれる試薬、抗体等は、構成成分が活性を長期間有効に持続し、容器の材質によって吸着されず、変質を受けないような何れかの種類の容器中に供給される。
 本明細書中に記載される「細胞」の由来は、ヒト及び非ヒト動物(例えば、マウス、ラット、ウシ、ウマ、ブタ、ヒツジ、サル、イヌ、ネコ、トリなど)であり特に限定はされないが。特に好ましくは、ヒト由来の細胞である。
 以下に実施例を示してさらに詳細に説明するが、本発明は実施例により何ら限定されるものではない。
1) ES/iPS細胞からの造血前駆細胞の調製
 ヒトES細胞(khES3:京都大学より入手)およびiPS細胞(TKDN SeV2:センダイウィルスを用いて樹立されたヒト胎児皮膚繊維芽細胞由来iPS細胞、585A1、585B1、606A1、648B1および692D2:Okita K, et al, Stem Cells 31, 458-66, 2012に記載のエピソーマルベクターを用いて樹立されたヒト末梢血単核球由来iPS細胞)から、Takayama N., et al. J Exp Med. 2817-2830 (2010)に記載の方法に従って、血球細胞への分化培養を実施した。即ち、ヒトES/iPS細胞コロニーを20ng/mL VEGF (R&D SYSTEMS)存在下でC3H10T1/2フィーダー細胞と14日間共培養して造血前駆細胞(Hematopoietic Progenitor Cells(HPC)) を作製した。培養条件は20% O2、5% CO2で実施した(特に記載がない限り、以下同条件)。
2) 造血前駆細胞へのウィルス感染
 予めC3H10T1/2フィーダー細胞を播種した6 well plate上に、上記の方法で得られたHPCを5x104cells/wellずつ播種し、レンチウィルス法にてc-MycおよびBCL-xLを強制発現させた。このとき、細胞株1種類につき6 wellずつ使用した。即ち、それぞれMOI 20になるように培地中にウィルス粒子を添加し、スピンインフェクション(32℃ 900rpm, 60分間遠心)で感染させた。本操作は、12時間おきに2回実施した。このとき、基本培地(15% Fetal Bovine Serum (GIBCO)、1% Penicillin-Streptomycin-Glutamine (GIBCO)、1% Insulin, Transferrin, Selenium Solution (ITS -G) (GIBCO)、0.45mM 1-Thioglycerol (Sigma-Aldrich)、50μg/mL L-Ascorbic Acid (Sigma-Aldrich)を含有するIMDM (Iscove’s Modified Dulbecco’s Medium) (Sigma-Aldrich))へ50ng/mL Human thrombopoietin (TPO) (R&D SYSTEMS)、50ng/ml Human Stem Cell Factor (SCF) (R&D SYSTEMS)および2μg/mL Doxycyclin (Dox)を加えた培地(以下、分化培地)を用いた。なお、レンチウィルスベクターは、Tetracycline制御性のinducible vectorであり、LV-TRE-mOKS-Ubc-tTA-I2G(Kobayashi, T., et al. Cell 142, 787-799 (2010))のmOKSカセットをBcl-xLおよびc-Mycに組み替えることで作製された(それぞれ、LV-TRE-BCL-xL-Ubc-tTA-I2GおよびLV-TRE- c-Myc-Ubc-tTA-I2G)。感染に用いたウィルス粒子は、293T細胞へ上記レンチウィルスベクターを発現させて作製された。
3) 巨核球株の樹立および維持培養
 上記の方法でウィルス感染を実施した日を感染0日目として、以下の通り、巨核球株を培養し、樹立した。
・感染2日目:継代。
 ピペッティングにて上記の方法で得られたウィルス感染した細胞を回収し、1200rpm, 5分間遠心操作を行って上清を除去した後、新しい分化培地で懸濁して新しいC3H10T1/2フィーダー細胞上に播種した(6well plate)。
・感染6日目:継代。
 感染2日目と同様の操作を実施。ただし、樹立は複数回行い、このうち1回目(Exp.1)ではSCFを添加しない分化培地でおこなった。SCFを添加した方が増殖がよい印象を得られた。
・感染12日目:継代。
 感染6日目と同様の操作を実施。細胞数を計測後3×105cells/ 10mL / 100 mm dishで播種した。
・感染18日目:継代。
 感染6日目と同様の操作を実施。細胞数を計測後3×105cells/ 10mL / 100 mm dishで播種した。
・感染24日目:継代、凍結保存、FACS解析。
 細胞の一部を上記と同様に継代(1×105cells/well)し、残りを凍結保存した(5×10cells/tube程度)。以後、4-7日毎に継代を行い、維持培養を行った。その間の培地替えは行わなかった。
4) 巨核球株の解析
 ES細胞(khES3)およびiPS細胞(TKDN SeV2)由来の造血前駆細胞から上述の方法で巨核球株の樹立を試みたところ、TKDN SeV2由来の造血前駆細胞からは6例中3例にて巨核球株の樹立が確認されたが、KhES3由来では巨核球株が6例中では樹立できなかった(図1A)。
 なお、巨核球株の樹立の判断は、次の方法にて行った。感染24日目に血球細胞を回収し、細胞1.0×105個あたり、抗ヒトCD41a-APC抗体(BioLegend)、抗ヒトCD42b-PE抗体(eBioscience)、抗ヒトCD235ab-pacific blue抗体をそれぞれ2μL, 1μL, 1μLずつを用いて免疫染色した後にFACSAriaTM IIセルソーター(BD)を用いて解析することで巨核球株の樹立を確認した。さらに、通常のiPS細胞由来の巨核球は本分化系においては10日目以降には細胞数が減少するため(Takayama N., et al. J Exp Med. 2817-2830 (2010))、感染24日目においても継続してCD41a+細胞が増殖していることにより巨核球株の樹立を確認した。
 続いて、iPS細胞(TKDN SeV2)由来の造血前駆細胞を用いて同様に巨核球株の樹立を行い、感染細胞において継続して増殖しているwellを選別し、細胞数を計測した(図1A)。接着細胞が多い株では、やや細胞増殖率が低いことが確認された。また、少なくとも40日間は継代できることが確認された。
 ES細胞由来の造血前駆細胞から巨核球株が樹立できなかったことから、ES細胞およびiPS細胞由来の造血前駆細胞にてStepOnePlusTM リアルタイムPCRシステム(Applied Biosystems)を用いてKLF1およびFLI1の遺伝子解析を行ったところ、これらの遺伝子の発現の違いが確認された(図1B)。このことから、KLF1の発現が低い造血前駆細胞またはFLI1の発現が高い造血前駆細胞では巨核球が樹立しやすいことが示唆された。
5) 導入遺伝子発現停止による巨核球成熟化
 感染24日目に巨核球株を5.0×105cells/wellずつ、C3H10T1/2フィーダー細胞上でDox含有あるいは不含の分化培地(SCFについては添加および非添加の2条件にて行った)を用いて3あるいは5日間培養した。それぞれ導入遺伝子発現条件(Gene-ON)、導入遺伝子停止条件(Gene-OFF)とする。ピペッティングで培養液を回収し、細胞の増殖速度(図2)、血球分画および血小板分画のFACS解析(図3および4)および遺伝子発現解析(図5)に供した。FACS解析は上述した方法と同様に実施した。遺伝子発現解析は定法に従い、RNA抽出し、cDNA化を行った後、universal probeあるいはtaqman probeを用いて実施した。解析した遺伝子はGAPDH、c-Myc、Bcl-xL、GATA1、p45 NF-E2、beta1-tubulin、c-MPLである。
 その結果、Gene-OFFによって導入遺伝子c-MycおよびBcl-xLは顕著に低下し、細胞増殖が停止することが確認された。それに伴い巨核球成熟関連遺伝子群(GATA1、p45 NF-E2、beta1-tubulin)の顕著な発現上昇が認められた。また、これらの遺伝子発現変化と関連して、巨核球株および血小板上のCD42b発現は上昇した。以上のように、造血前駆細胞から樹立された巨核球株は導入遺伝子の発現停止により巨核球成熟が亢進することが示唆された。
6) 巨核球の機能試験
 上記の方法でiPS細胞(TKDN SeV2)から作製した巨核球株(培養40日目)およびTakayamaら,Blood,111:5298-5306 2008に記載の方法でES細胞(khES3)から作製した巨核球(分化誘導開始から21日目)に対して、Phorbol 12-Myristate 13-acetate (PMA)刺激した直後のFibrinogenへの結合能を測定した(図6)。その結果、本発明の方法を用いて作製した巨核球株では、PMA刺激に反応してFibrinogenへの結合能を有することが確認できたが、従来の方法で得られた巨核球ではPMA刺激後においても顕著なFibrinogen結合能は有さなかった。以上より、本発明の方法で作製された巨核球では、より成熟した巨核球が作製できることが示唆された。
1)  c-MYCおよびBMI1を用いた拡大培養可能な巨核球前駆細胞の誘導
 実施例1に記載の方法で得られたKhES3由来のHPCへ(1)c-Mycのみ、(2)Bmi1のみ、(3)c-MYCおよびsh-p53、(4)c-MYCおよびBCL-XL、(5)c-MYCおよびsh-ARF、(6)c-MYCおよびBMI1、または(7)c-MYC、sh-INK4Aおよびsh-ARFを各遺伝子に1つのレトロウィルスベクターを用いて導入し、基本培地へ50ng/mL TPOおよび50ng/ml SCFを加えた培地で培養したところ、少なくともc-MYCを導入した場合は、CD41a、CD42a、CD42bおよびCD9が陽性である巨核球前駆細胞が得られた。さらに培養を継続したところ、(6)c-MYCおよびBMI1、ならびに(7)c-MYC、sh-INK4Aおよびsh-ARFについては、2ヶ月間につづき拡大培養することが可能であった(図7A)。レトロウィルスベクターはpMXsレトロベクター(Takahashi K, et al, Cell.;131:861-872, 2007またはOhmine K, et al, Oncogene 20, 8249-8257, 2001を参照のこと)、pGCDNsamレトロベクター(千葉大学岩間教授より受領)を用いて導入した。sh-p53は、Brummelkamp TR, et al, Science 296, 550-553, 2002を参照し、sh-INK4Aおよびsh-ARFは、Voorhoeve PM and Agami R, Cell 4, 311-319, 2003を参照して作製した。
 得られた巨核球前駆細胞は、好塩基球性の単芽球様の形態を示し(図7B)、CD42bの発現がやや低いCD41a陽性の異常な血小板様粒子を産生した。このことは、c-Mycの強制発現を維持したためと思われる。
2) c-MYC発現レベルの重要性の確認
 c-MYCおよびBMI1の発現様式を図7Cに示したコンストラクトを用いてc-MYC-2A-BMI1またはBMI1-2A-c-MYCをレトロウィルスベクターを用いて強制発現させ、上記と同様の培養条件にて巨核球前駆細胞を誘導したところ、c-MYC-2A-BMI1を用いた場合のみ40日以上の拡大培養が可能であった(図7D)。それぞれの導入方法によるc-Mycの発現量を確認したところ、c-MYC-2A-BMI1を用いた場合、BMI1-2A-c-MYCを用いた場合よりもc-MYCの発現が低いことが確認された(図7E)。そこで、c-Mycの発現を抑制する目的で、不安定ドメイン(DD (Destabilization Domain))をC末端に有するc-MYCを発現するベクターを用いた。DDを有する発現ベクターは、pPTunerC vector and Shied-1 (Clontech/Takara Bio社)を用いて、c-MYC-DD-2A-BMI1を発現するベクターを構築した。このc-MYC-DD-2A-BMI1を上記と同様にHPCへ導入し培養を継続したところ、少なくとも50日間、CD41a陽性の巨核球前駆細胞の拡大培養が可能であった(図8A)。一方、c-MYC -2A-BMI1では、拡大培養を維持することができなかった。このことは、Shield-1を添加し、c-MYCの発現を安定させたところ、容量依存的に巨核球前駆細胞数が減少し、Shield-1そのものの毒性によるものではないことを確認したことから、c-MYCの発現量が拡大培養に影響することが確認された(図8B)。このc-MYCの発現による拡大培養への影響は、Caspase依存型アポトーシスによるものと予想し、Shield-1を添加によるCaspase-3/7の活性を測定したところ、c-MYCの安定化に伴いCaspaseが活性化されることが確認された(図8C)。以上のことから、c-MYCの過剰発現によるアポトーシスのため、巨核球前駆細胞の拡大培養が阻害されていると示唆された。
3) BCL-XL発現によるCaspaseの活性抑制による巨核球前駆細胞の誘導
 c-MYCおよびBMI1の強制発現では、巨核球前駆細胞の誘導は可能であるが、c-MYCの発現量に依存したアポトーシスにより拡大培養に限度が生じる。そこで、アポトーシスを抑制するためBCL-XLをc-MYCおよびBMI1の導入後14日から21日後の間に導入したところ(図9A)、iPS細胞由来(Cl-1:692D2株由来)およびES細胞由来(Cl-2:khES3由来)のHPCから誘導した巨核球前駆細胞は、5か月間以上もの拡大培養が可能であることが確認された(図9BおよびC)。さらに、c-MYC-DD、BMI1およびBCL-XLを同時にHPCにて共発現させ、Shield-1の添加量を変えてc-MYCの発現量を調節し、7日目の巨核球細胞数を検討したところ、c-MYCの発現量が高くとも、BCL-XLを発現させることで巨核球前駆細胞が誘導できることが確認された(図9DおよびE)。
 カスパーゼの制御をBCL-XLの発現する以外の方法について検討するため、c-MycおよびBMI1の導入後、カスパーゼ阻害剤であるZ-VAD FMK(Merck)を10μMまたは30μMを添加した条件で培養を66日間継続したところ、BCL-XLを発現した場合では、64倍に増殖したのに対し、30μMのZ-VAD FMKでは21倍であった(図10A)。一方、DMSO(陰性対照)を用いた場合は、増殖しなかった。また、DMSOの添加した場合においてAnnexin Vの陽性細胞数を検討したところ、Annexin V陽性細胞が多かったことから(66.5%)、アポトーシスが抑制されていないことが確認された。
 続いて、BCL-XLの導入時期について検討を行うため、4つのiPS細胞クローンを次の2つのプロトコールを用いて巨核球前駆細胞を誘導した(Cl-3:KhES3株由来、Cl-4:692D2株由来、Cl-6:585A1株由来およびCl-7:TKDN SeV2株由来);(1)BCL-XL、c-MYCおよびBMI1を同時に導入する方法、および(2)BCL-XLおよびc-MYCを導入後、14日から21日後に導入する方法。(1)同時に導入するプロトコールを用いた場合、いずれのiPS細胞クローンを用いた場合においても巨核球前駆細胞は最大40日~50日まで拡大培養が可能であったが、BCL-XLを後日発現させる(2)の方法では、いずれのES細胞またはiPS細胞クローンを用いた場合でも60日以上の間拡大培養を継続することが可能であった(図10B、C、DおよびE)。
 長期培養における核型の変異を検討するため、3つのiPS細胞クローン由来の巨核球前駆細胞(Cl-1、Cl-2およびCl-7)を5か月間継続培養した後の核型解析を行ったところ、一つの巨核球前駆細胞(Cl-7)のみ核型が正常であった。この3つの巨核球前駆細胞を放射線を照射していない免疫不全マウス(n=5)に静脈注射により2×106個を投与し、16週または20週において観察したところ、核型異常のあった2つの巨核球前駆細胞のうち1つの細胞(Cl-2)では、白血病誘発により早期に致死した(図10F)。しかし、本方法を用いることで、Cl-7のように正常な核型を示し、in vivoにおいても投与により白血病を誘発しない巨核球前駆細胞を誘導できることが確認された。
4) 誘導巨核球前駆細胞の凍結融解
 上記の通りc-MYCおよびBMI1の導入後、BCL-xLを導入した方法で作製した巨核球前駆細胞株を凍結融解後、同条件で培養したところ、21日間の拡大培養が可能であった(図11A)。このときの細胞マーカーを調べたところ、CD41a、CD42a、CD42bおよびCD9の発現は、凍結前と変化がなかった(図11B)。従って、本方法で製造される巨核球前駆細胞は、凍結保存が可能であることが示された。
5) 誘導巨核球前駆細胞の成熟化工程
 上記の方法で得られた巨核球前駆細胞において外来遺伝子であるc-MYC、BMI1およびBCL-XLの発現を、Doxを含有しない培地へ交換することで止めて、5日間培養を続けたところ(図12A)、20.2%の細胞において多核化を示した(図12B)。このときCD42b陽性である血小板前駆体の形成が確認された。さらに、発現停止後4日目における2つのクローン由来の巨核球前駆細胞(Cl-2およびCl-7)のCD42bの強発現化で確認できる成熟例を図12Cに示す。このような巨核球前駆細胞から巨核球への成熟により、GATA1、FOG1、NF-E2およびβ1-tubulinの発現が増強することが確認された。
6) CD41a陽性、CD42b陽性の血小板の誘導
 上記のとおり、外来性のc-MYC、BMI1およびBCL-XLの発現を停止することでCD42bの発現が増強し、CD41a陽性およびCD42b陽性である血小板が得られた(図13A)。いずれの外来遺伝子の発現を停止させることが最も効率よく血小板を産生するのかを検討するため、BCL-XLの発現のみ維持した場合と3つの遺伝子全てを停止した場合を比較したところ、3つの遺伝子全てを停止した場合において最も効率よく血小板が産生されることが確認された(図13B)。さらに既存の巨核球株(Meg01(ATCC)、CMKおよびK562(大阪大学Dr. H. Kashiwagiより受領))を10% FBSおよびPSGを添加したRPMIで培養し、100 nM PMAを添加して生じるCD41a陽性およびCD42b陽性粒子の産生量とiPS細胞由来の巨核球前駆細胞からの同粒子の産生量を比較したところ、iPS細胞由来の巨核球前駆細胞から産生する血小板量が有意に多いことが確認された(図13C)。このとき、既存の巨核球株からは、CD41a陽性およびCD42b陰性の血小板様粒子の数が多く見られた。続いて、外来遺伝子の強制発現を停止して5日間無血清培地において、1つの誘導巨核球前駆細胞から産生されるCD42b陽性の血小板の量を確認したところ、Cl-2では1つの細胞から3個の血小板が得られ、Cl-7では10個の血小板が得られた。同様に、10cmディッシュ(10mlの培地)を用いて巨核球前駆細胞から外来遺伝子の発現を停止させて血小板を産生させたところ、培地1mlあたり4×106個(Cl-7)または2×106個(Cl-2)の血小板が確認された(図13D)。このことから、一度の血小板輸血に必要量である1011個の血小板を得るためには、25~50Lの培地で巨核球前駆細胞を培養することによって製造することができることが示唆された。
 上記の方法(外来遺伝子発現停止後、無血清培地で5日間培養)によって得られた血小板(以下、imMKCL血小板)を走査型電子顕微鏡で観察したところ微小管は通常であったが採血により得られたヒト血小板(以下、Fresh platelet)と比較してやや顆粒が少なかった(図14A)。さらにimMKCL血小板の機能確認するため、De Cuyper, IM, et al, Blood 121,e70-80, 2013に記載と同様の方法で抽出した血小板を1 U/mlのトロンビン、200μMのADPで刺激した場合のPAC-1との結合能をフローサイトメーターを用いて測定したところ、imMKCL血小板は刺激に応答してPAC-1と結合することが確認された(図14BおよびC)。この結合能は、採血により得たヒト血小板よりは劣るが、37°Cで5日間保管した保管血小板(以下、pooled platelet)よりも高かった。さらに、imMKCL血小板またはFresh plateletを同数のFresh plateletと混合し、100μMのADPおよび100μMのTRAP6、または10 μg/mL collagen(Nycomed)を添加し振とう下で37℃10分間刺激した後、血小板の凝集を確認したところimMKCL血小板においても血小板の凝集が確認された(図14DおよびE)。このほかにも20%の血小板不含有血漿を含むIMDMへimMKCL血小板を添加し、2 U/mlのトロンビンで刺激したClot試験(凝固試験)を行ったところ、トロンビン刺激に応答して凝固することが確認された。また、thrombin、100 nMのPMAおよび10μg/mlのcollagenでimMKCL血小板を刺激した後、EnzyLightTM ADP Assay Kit (BioAssay System)を用いてADP放出能をVon Willebrand factor Human ELISA Kit (Abcam)を用いてvon Willebrand factor (vWF)の放出能を確認したところ、Fresh plateletには劣るが、これらの放出能が確認された。以上より、imMKCL血小板は、Fresh plateletよりも反応が劣るが、pooled plateletよりは機能が高いことが確認された。
 Ex vivoでのimMKCL血小板の機能を検討するため、10μg/mlのvWFをコートしたチャンバーへ1600s-1の流速でマイクロ流路(Ibidi)を流したところ、Fresh plateletの62.3%(Cl-2由来の場合)および75.8%(Cl-7由来の場合)が流路へ結合した。この機能は、anti-CD42b (HIP1)(Abcam)を添加することで抑制されることから、CD42b依存的な機能であることが示された(図14FおよびG)。
7) 誘導血小板の血小板減少症モデルマウスにおける血栓形成活性
 2.4Gyの放射線照射後9日目のNOGマウス(血小板減少症モデルマウス)へFresh platelet(1×108)、またはimMKCL血小板(6×108または1×108)を尾静脈より投与して、30分後、2時間後、および24時間後に採血(50から100μL)し、ヒトCD41a陽性の血小板数を測定した(図15A)。その結果、マウス体内におけるヒトCD41a陽性血小板の減少速度は、imMKCL血小板およびFresh plateletにおいて有意差は見られなかった。
 さらに、血小板減少症モデルマウスにおけるレーザー照射による血管損傷モデルにおける血栓形成を高空間時間分解能共焦点顕微鏡を用いて内皮を破壊せず血流を維持したまま観察したところ、Fresh plateletおよびimMKCL血小板のいずれを投与した場合でもレーザー照射部位において血栓が形成されることが確認された。このとき、単一のヒト由来の血小板がマウスの血小板と凝集することなく血管に接着することが確認された(図15C)。さらに、AK4抗体(anti-P-selectin抗体)を投与するとこのような血管への接着が抑制された(図15D)。つまり、imMKCL血小板はP-selectinに依存して、血管壁への初期接着を行うことが示唆された。4つのiPS細胞クローンから作製されたimMKCL血小板についても同様に試験を行ったところ、pooled plateletよりも血栓形成に関与が可能であることが確認された(図15EおよびF)。
 以上のように、巨核球前駆細胞にて拡大培養および凍結保存を可能とすることで、多能性幹細胞から巨核球前駆細胞を必要数増殖させ保存することで、必要な血小板を準備するためにはわずか5日間で行うことが可能となる。さらに巨核球前駆細胞を拡大培養することで、中間体であるHPCの製造に必要な培養液が抑制され、血小板を作製するために必要なコストを抑制することが可能となる。

Claims (36)

  1.  以下の(i)~(ii)の工程を含む、造血前駆細胞から巨核球を製造する方法;
    (i)アポトーシス抑制遺伝子および癌遺伝子を造血前駆細胞において強制発現させて培養する工程、および
    (ii)工程(i)で得られた細胞について、アポトーシス抑制遺伝子および癌遺伝子の強制発現を止めて培養する工程。
  2.  前記工程(i)において、p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子をさらに造血前駆細胞において強制発現させ、前記工程(ii)において、当該p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子の強制発現を止めて培養する、請求項1に記載の方法。
  3.  前記工程(i)が、癌遺伝子、ならびにp16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子を造血前駆細胞において強制発現させた後、アポトーシス抑制遺伝子をさらに当該細胞へ強制発現させる工程である、請求項2に記載の方法。
  4.  前記工程(i)において、癌遺伝子、ならびにp16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子を造血前駆細胞において少なくとも28日強制発現させて培養した後、アポトーシス抑制遺伝子をさらに当該細胞へ強制発現させる工程である、請求項3に記載の方法。
  5.  前記アポトーシス抑制遺伝子が、BCL-XL遺伝子である、請求項1から4のいずれか1項に記載の方法。
  6.  前記癌遺伝子が、c-MYC遺伝子である、請求項1から5のいずれか1項に記載の方法。
  7.  前記p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子が、BMI1である、請求項1から6のいずれか1項に記載の方法。
  8.  前記工程(i)および(ii)において、TPOを含有する培養液中でC3H10T1/2細胞上で該細胞を培養する、請求項1から7のいずれか1項に記載の方法。
  9.  前記工程(i)および(ii)での培養において、SCFをさらに含有する培養液中で培養する、請求項8に記載の方法。
  10.  前記遺伝子の強制発現が、薬剤応答性ベクターを用いて行われる、請求項1から9のいずれか1項に記載の方法。
  11.  前記造血前駆細胞が、多能性幹細胞から分化誘導された細胞である、請求項1から10のいずれか1項に記載の方法。
  12.  前記造血前駆細胞が、多能性幹細胞から分化誘導された細胞である、請求項11に記載の方法であって、該分化誘導において、多能性幹細胞をVEGFを含有する培養液中でC3H10T1/2細胞上で培養する工程を含む、方法。
  13.  前記造血前駆細胞において、KLF1の発現が低い、またはFLI1の発現が高い、請求項1から12のいずれか1項に記載の方法。
  14.  前記造血前駆細胞におけるKLF1またはFLI1の発現が、それぞれKhES3由来の造血前駆細胞での発現と比較してより低いまたはより高い、請求項13に記載の方法。
  15.  工程(i)に先立って、前記造血前駆細胞におけるKLF1および/またはFLI1の発現を測定する工程を含む、請求項1から14のいずれか1項に記載の方法。
  16.  前記工程(ii)を、5日間行う、請求項1から15のいずれか1項に記載の方法。
  17.  血小板の製造方法であって、請求項1から16のいずれか1項に記載の方法で得られた巨核球の培養物から血小板を回収する工程を含む方法。
  18.  請求項17に記載の方法で製造された血小板。
  19.  請求項18に記載の血小板を含む血液製剤。
  20.  以下の(I)~(II)の工程を含む、造血前駆細胞から巨核球前駆細胞を製造する方法;
    (I)癌遺伝子およびp16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子を造血前駆細胞において強制発現させて培養する工程、および
    (II)工程(I)で得られた細胞へさらにアポトーシス抑制遺伝子を強制発現させる、またはカスパーゼ阻害剤を添加した培地で培養する工程。
  21.  前記アポトーシス抑制遺伝子が、BCL-XL遺伝子である、請求項20に記載の方法。
  22.  前記癌遺伝子が、c-MYC遺伝子である、請求項20から21のいずれか1項に記載の方法。
  23.  前記カスパーゼ阻害剤が、Z-DEVD-FMKである、請求項20から22のいずれか1項に記載の方法。
  24.  前記p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子が、BMI1である、請求項20から23のいずれか1項に記載の方法。
  25.  前記工程(I)を、少なくとも28日間行う、請求項20から24のいずれか1項に記載の方法。
  26.  前記巨核球前駆細胞が拡大培養可能な細胞である、請求項20から25のいずれか1項に記載の方法。
  27.  薬剤応答性で発現する外来性のアポトーシス抑制遺伝子および癌遺伝子が染色体に組み込まれている巨核球であって、当該外来性の遺伝子が発現していない細胞。
  28.  薬剤応答性で発現する外来性のp16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子がさらに染色体に組み込まれており、当該外来性遺伝子が発現していない、請求項27に記載の細胞。
  29.  前記アポトーシス抑制遺伝子が、BCL-XL遺伝子である、請求項27または28に記載の細胞。
  30.  前記癌遺伝子が、c-MYC遺伝子である、請求項27から29のいずれか1項に記載の細胞。
  31.  前記p16遺伝子又はp19遺伝子の発現を抑制する遺伝子、Ink4a/Arf遺伝子の発現を抑制する遺伝子及びポリコーム遺伝子から成る群より選択される1つの遺伝子が、BMI1である、請求項27から30のいずれか1項に記載の細胞。
  32.  巨核球の製造に適した造血前駆細胞を選択する方法であって、KLF1の発現またはFLI1の発現を測定する工程を含む方法。
  33.  前記KLF1の発現が低い造血前駆細胞を選択する工程を含む、請求項32に記載の方法。
  34.  前記FLI1の発現が高い造血前駆細胞を選択する工程を含む、請求項33に記載の方法。
  35.  前記造血前駆細胞が、多能性幹細胞から分化誘導された細胞である、請求項32から33のいずれか1項に記載の方法。
  36.  以下の工程を含む巨核球製造に適した多能性幹細胞を選択する方法;
    (i)多能性幹細胞から造血幹細胞を製造する工程、および、
    (ii)工程(i)で製造された造血前駆細胞において、KLF1の発現およびFLI1の発現の測定する工程。
PCT/JP2014/053087 2013-02-08 2014-02-10 巨核球及び血小板の製造方法 WO2014123242A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14749207.8A EP2955223B1 (en) 2013-02-08 2014-02-10 Production methods for megakaryocytes and platelets
JP2014560832A JP6495658B2 (ja) 2013-02-08 2014-02-10 巨核球及び血小板の製造方法
US14/763,746 US20160002599A1 (en) 2013-02-08 2014-02-10 Production methods for megakaryocytes and platelets
US17/395,552 US20220017866A1 (en) 2013-02-08 2021-08-06 Production methods for megakaryocytes and platelets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013023013 2013-02-08
JP2013-023013 2013-02-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/763,746 A-371-Of-International US20160002599A1 (en) 2013-02-08 2014-02-10 Production methods for megakaryocytes and platelets
US17/395,552 Continuation US20220017866A1 (en) 2013-02-08 2021-08-06 Production methods for megakaryocytes and platelets

Publications (1)

Publication Number Publication Date
WO2014123242A1 true WO2014123242A1 (ja) 2014-08-14

Family

ID=51299832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053087 WO2014123242A1 (ja) 2013-02-08 2014-02-10 巨核球及び血小板の製造方法

Country Status (4)

Country Link
US (2) US20160002599A1 (ja)
EP (1) EP2955223B1 (ja)
JP (1) JP6495658B2 (ja)
WO (1) WO2014123242A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129593A1 (ja) * 2015-02-10 2016-08-18 国立大学法人京都大学 血小板の機能を維持および/または増強するための組成物
WO2016143836A1 (ja) * 2015-03-09 2016-09-15 株式会社メガカリオン 巨核球を含む培養物の製造方法及びこれを用いた血小板の製造方法
WO2017047492A1 (ja) * 2015-09-15 2017-03-23 株式会社メガカリオン 回転式撹拌培養法による血小板の製造方法
WO2017077964A1 (ja) * 2015-11-02 2017-05-11 株式会社メガカリオン 往復動撹拌装置を用いた血小板の製造方法
WO2017131228A1 (ja) 2016-01-29 2017-08-03 国立大学法人京都大学 血小板産生促進剤のスクリーニング方法
WO2017131230A1 (ja) 2016-01-29 2017-08-03 国立大学法人京都大学 血小板産生促進剤及びそれを用いた血小板の製造方法
WO2018052126A1 (ja) * 2016-09-16 2018-03-22 国立大学法人京都大学 巨核球細胞群における細胞の不均質性を識別する方法及び血小板の製造方法
WO2018164040A1 (ja) 2017-03-06 2018-09-13 国立大学法人京都大学 血小板の製造方法
EP3296390A4 (en) * 2015-04-14 2019-01-09 Kyoto University METHOD FOR THE PRODUCTION OF STEM CELL CLONES FOR INDUCING DIFFERENTIATION IN BODILY CELLS
WO2019009364A1 (ja) 2017-07-07 2019-01-10 国立大学法人京都大学 血小板の製造方法および製造装置、ならびに血小板の製造装置における運転条件の決定方法
WO2019059234A1 (ja) 2017-09-19 2019-03-28 株式会社メガカリオン 血小板の製造方法、血小板製剤の製造方法、および血液製剤の製造方法
WO2019059235A1 (ja) 2017-09-19 2019-03-28 株式会社メガカリオン 精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法
WO2019124348A1 (ja) * 2017-12-19 2019-06-27 国立大学法人京都大学 新規骨分化誘導方法
WO2020184685A1 (ja) * 2019-03-13 2020-09-17 株式会社メガカリオン 血球減少症のモデル動物の製造方法、血球減少症モデル動物、血球機能の評価方法、血球の製造方法、血球減少症の治療薬候補物質のスクリーニング方法、および血球減少症の治療薬の候補物質の製造方法
WO2021117900A1 (ja) 2019-12-13 2021-06-17 株式会社メガカリオン 組成物およびその用途
WO2021117886A1 (ja) 2019-12-12 2021-06-17 国立大学法人千葉大学 巨核球および血小板を含む凍結乾燥製剤
WO2022092169A1 (ja) 2020-10-27 2022-05-05 国立大学法人 長崎大学 骨形成組成物およびその用途
WO2022265117A1 (ja) 2021-06-18 2022-12-22 株式会社メガカリオン 血小板産生能が増強された多核化巨核球細胞の製造方法、血小板の製造方法、血小板製剤の製造方法、および血液製剤の製造方法
WO2023277153A1 (ja) 2021-06-30 2023-01-05 国立大学法人千葉大学 骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法
US11952587B2 (en) 2017-03-06 2024-04-09 Kyoto University Method for producing platelets

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201210857D0 (en) 2012-06-19 2012-08-01 Cambridge Entpr Ltd Transcription factor mediated programming towards megakaryocytes
ES2896354T3 (es) 2012-12-21 2022-02-24 Astellas Inst For Regenerative Medicine Métodos para la producción de plaquetas a partir de células madre pluripotentes
CN107208058B (zh) * 2015-01-26 2021-06-25 宇部兴产株式会社 利用骨髓类似结构的细胞培养方法、和用于骨损伤部位的治疗的聚酰亚胺多孔膜
WO2020185856A1 (en) * 2019-03-11 2020-09-17 The Children's Medical Center Corporation Methods for increasing platelet production
CN110592017B (zh) * 2019-07-12 2021-02-19 中国医学科学院血液病医院(中国医学科学院血液学研究所) 组蛋白甲基转移酶抑制剂在制备促进巨核细胞增殖或血小板产生的产品中的用途
EP4112720A4 (en) * 2020-02-28 2024-02-28 Otsuka Pharma Co Ltd GENETICALLY MODIFIED MEGAKARYOCYTE, MODIFIED PLATELETS AND METHOD FOR PRODUCING THE GENETICALLY MODIFIED MEGAKARYOCYTES AND THE MODIFIED PLATELETS

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
JP2002526093A (ja) * 1998-10-07 2002-08-20 アイシス・ファーマシューティカルス・インコーポレーテッド bcl−x発現のアンチセンスモジュレーション
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2008041370A1 (fr) 2006-10-04 2008-04-10 The University Of Tokyo Structure renfermant des cellules progénitrices hématopoïétiques issues de cellules es et procédé de préparation de cellules sanguines faisant appel à ladite structure
WO2008118820A2 (en) 2007-03-23 2008-10-02 Wisconsin Alumni Research Foundation Somatic cell reprogramming
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009032194A1 (en) 2007-08-31 2009-03-12 Whitehead Institute For Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009057831A1 (ja) 2007-10-31 2009-05-07 Kyoto University 核初期化方法
WO2009058413A1 (en) 2007-10-29 2009-05-07 Shi-Lung Lin Generation of human embryonic stem-like cells using intronic rna
WO2009075119A1 (ja) 2007-12-10 2009-06-18 Kyoto University 効率的な核初期化方法
WO2009079007A1 (en) 2007-12-17 2009-06-25 Gliamed, Inc. Stem-like cells and method for reprogramming adult mammalian somatic cells
WO2009091659A2 (en) 2008-01-16 2009-07-23 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents
WO2009101084A1 (en) 2008-02-13 2009-08-20 Fondazione Telethon Method for reprogramming differentiated cells
WO2009102983A2 (en) 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2009101407A2 (en) 2008-02-11 2009-08-20 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
WO2009114949A1 (en) 2008-03-20 2009-09-24 UNIVERSITé LAVAL Methods for deprogramming somatic cells and uses thereof
WO2009117439A2 (en) 2008-03-17 2009-09-24 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009123349A1 (ja) 2008-03-31 2009-10-08 オリエンタル酵母工業株式会社 多能性幹細胞を増殖させる方法
WO2009122747A1 (ja) 2008-04-01 2009-10-08 国立大学法人東京大学 iPS細胞からの血小板の調製方法
WO2009126251A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2009157593A1 (en) 2008-06-27 2009-12-30 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010009015A2 (en) 2008-07-14 2010-01-21 Oklahoma Medical Research Foundation Production of pluripotent cells through inhibition of bright/arid3a function
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010013845A1 (en) 2008-07-30 2010-02-04 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010033906A2 (en) 2008-09-19 2010-03-25 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2010033920A2 (en) 2008-09-19 2010-03-25 Whitehead Institute For Biomedical Research Compositions and methods for enhancing cell reprogramming
WO2010042800A1 (en) 2008-10-10 2010-04-15 Nevada Cancer Institute Methods of reprogramming somatic cells and methods of use for such cells
WO2010050626A1 (en) 2008-10-30 2010-05-06 Kyoto University Method for producing induced pluripotent stem cells
WO2010056831A2 (en) 2008-11-12 2010-05-20 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2010068955A2 (en) 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING
WO2010098419A1 (en) 2009-02-27 2010-09-02 Kyoto University Novel nuclear reprogramming substance
WO2010102267A2 (en) 2009-03-06 2010-09-10 Ipierian, Inc. Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells
WO2010111409A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Pluripotent stem cells
WO2010111422A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Induced pluripotent stem cell generation using two factors and p53 inactivation
WO2010115050A2 (en) 2009-04-01 2010-10-07 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
WO2010124290A2 (en) 2009-04-24 2010-10-28 Whitehead Institute For Biomedical Research Compositions and methods for deriving or culturing pluripotent cells
WO2010137746A1 (en) 2009-05-29 2010-12-02 Kyoto University Method for producing induced pluripotent stem cells and method for culturing the same
WO2010147612A1 (en) 2009-06-18 2010-12-23 Lixte Biotechnology, Inc. Methods of modulating cell regulation by inhibiting p53
WO2010147395A2 (en) 2009-06-16 2010-12-23 Korea Research Institute Of Bioscience And Biotechnology Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
WO2011034073A1 (ja) 2009-09-15 2011-03-24 国立大学法人東京大学 分化細胞の新規製造法
WO2012157586A1 (ja) 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
WO2013163296A1 (en) 2012-04-24 2013-10-31 The Brigham And Women's Hospital, Inc. Generating pluripotent cells de novo

Patent Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
JP2002526093A (ja) * 1998-10-07 2002-08-20 アイシス・ファーマシューティカルス・インコーポレーテッド bcl−x発現のアンチセンスモジュレーション
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2008041370A1 (fr) 2006-10-04 2008-04-10 The University Of Tokyo Structure renfermant des cellules progénitrices hématopoïétiques issues de cellules es et procédé de préparation de cellules sanguines faisant appel à ladite structure
WO2008118820A2 (en) 2007-03-23 2008-10-02 Wisconsin Alumni Research Foundation Somatic cell reprogramming
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009032194A1 (en) 2007-08-31 2009-03-12 Whitehead Institute For Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009058413A1 (en) 2007-10-29 2009-05-07 Shi-Lung Lin Generation of human embryonic stem-like cells using intronic rna
WO2009057831A1 (ja) 2007-10-31 2009-05-07 Kyoto University 核初期化方法
WO2009075119A1 (ja) 2007-12-10 2009-06-18 Kyoto University 効率的な核初期化方法
WO2009079007A1 (en) 2007-12-17 2009-06-25 Gliamed, Inc. Stem-like cells and method for reprogramming adult mammalian somatic cells
WO2009091659A2 (en) 2008-01-16 2009-07-23 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents
WO2009101407A2 (en) 2008-02-11 2009-08-20 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
WO2009101084A1 (en) 2008-02-13 2009-08-20 Fondazione Telethon Method for reprogramming differentiated cells
WO2009102983A2 (en) 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2009117439A2 (en) 2008-03-17 2009-09-24 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009114949A1 (en) 2008-03-20 2009-09-24 UNIVERSITé LAVAL Methods for deprogramming somatic cells and uses thereof
WO2009123349A1 (ja) 2008-03-31 2009-10-08 オリエンタル酵母工業株式会社 多能性幹細胞を増殖させる方法
WO2009122747A1 (ja) 2008-04-01 2009-10-08 国立大学法人東京大学 iPS細胞からの血小板の調製方法
WO2009126251A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2009126655A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of a small molecule modulator
WO2009126250A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through rna interference
WO2009157593A1 (en) 2008-06-27 2009-12-30 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010009015A2 (en) 2008-07-14 2010-01-21 Oklahoma Medical Research Foundation Production of pluripotent cells through inhibition of bright/arid3a function
WO2010008054A1 (ja) 2008-07-16 2010-01-21 ディナベック株式会社 染色体非組み込み型ウイルスベクターを用いてリプログラムされた細胞を製造する方法
WO2010013845A1 (en) 2008-07-30 2010-02-04 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010033906A2 (en) 2008-09-19 2010-03-25 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2010033920A2 (en) 2008-09-19 2010-03-25 Whitehead Institute For Biomedical Research Compositions and methods for enhancing cell reprogramming
WO2010042800A1 (en) 2008-10-10 2010-04-15 Nevada Cancer Institute Methods of reprogramming somatic cells and methods of use for such cells
WO2010050626A1 (en) 2008-10-30 2010-05-06 Kyoto University Method for producing induced pluripotent stem cells
WO2010056831A2 (en) 2008-11-12 2010-05-20 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2010068955A2 (en) 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING
WO2010098419A1 (en) 2009-02-27 2010-09-02 Kyoto University Novel nuclear reprogramming substance
WO2010102267A2 (en) 2009-03-06 2010-09-10 Ipierian, Inc. Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells
WO2010111409A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Pluripotent stem cells
WO2010111422A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Induced pluripotent stem cell generation using two factors and p53 inactivation
WO2010115050A2 (en) 2009-04-01 2010-10-07 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
WO2010124290A2 (en) 2009-04-24 2010-10-28 Whitehead Institute For Biomedical Research Compositions and methods for deriving or culturing pluripotent cells
WO2010137746A1 (en) 2009-05-29 2010-12-02 Kyoto University Method for producing induced pluripotent stem cells and method for culturing the same
WO2010147395A2 (en) 2009-06-16 2010-12-23 Korea Research Institute Of Bioscience And Biotechnology Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2010147612A1 (en) 2009-06-18 2010-12-23 Lixte Biotechnology, Inc. Methods of modulating cell regulation by inhibiting p53
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
WO2011034073A1 (ja) 2009-09-15 2011-03-24 国立大学法人東京大学 分化細胞の新規製造法
WO2012157586A1 (ja) 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
WO2013163296A1 (en) 2012-04-24 2013-10-31 The Brigham And Women's Hospital, Inc. Generating pluripotent cells de novo

Non-Patent Citations (85)

* Cited by examiner, † Cited by third party
Title
BRUMMELKAMP TR ET AL., SCIENCE, vol. 296, 2002, pages 550 - 553
CELL, vol. 126, 2006, pages 663 - 676
CELL, vol. 131, 2007, pages 861 - 872
CHADWICK ET AL., BLOOD, vol. 102, 2003, pages 906 - 15
DE CUYPER, IM ET AL., BLOOD, vol. 121, 2013, pages E70 - 80
DECKWERTH ET AL., DRUG DEV. RES., vol. 52, 2001, pages 579 - 586
DORE LOUIS C. ET AL.: "Transcription factor networks in erythroid cell and megakaryocyte development", BLOOD, vol. 118, no. 2, 14 July 2011 (2011-07-14), pages 231 - 239, XP055272494, DOI: 10.1182/BLOOD-2011-04-285981 *
E. KROON ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 443 - 452
EMINLI S ET AL., STEM CELLS, vol. 26, 2008, pages 2467 - 2474
FENG B ET AL., NAT CELL BIOL., vol. 11, 2009, pages 197 - 203
FUHRKEN ET AL., J. BIOL. CHEM., vol. 283, 2008, pages 15589 - 15600
GULLIKSSON, H. ET AL., TRANSFUSION, vol. 32, 1992, pages 435 - 440
H. KAWASAKI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 1580 - 1585
H. SUEMORI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 345, 2006, pages 926 - 932
H. SUEMORI ET AL., DEV. DYN., vol. 222, 2001, pages 273 - 279
HAN ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 30128 - 30136
HAN J ET AL., NATURE, vol. 463, 2010, pages 1096 - 100
HENG JC ET AL., CELL STEM CELL, vol. 6, 2010, pages 167 - 74
HOGLEN ET AL., J. PHARMACOL. EXP. THER, vol. 297, 2001, pages 811 - 818
HOGLEN ET AL., J. PHARMACOL. EXP. THER, vol. 309, 2004, pages 634 - 640
HOTCHKISS ET AL., NAT. IMMUNOL, vol. 1, 2000, pages 496 - 501
HUANGFU D ET AL., NAT BIOTECHNOL., vol. 26, 2008, pages 1269 - 1275
HUANGFU D ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 795 - 797
ICHIDA JK ET AL., CELL STEM CELL., vol. 5, 2009, pages 491 - 503
ISABEL ET AL., BIOORG. MED. CHEM. LETT, vol. 13, 2003, pages 2137 - 2140
J. A. THOMSON ET AL., BIOL. REPROD., vol. 55, 1996, pages 254 - 259
J. A. THOMSON ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 1147
J. B. CIBELLI ET AL., NATURE BIOTECHNOL., vol. 16, 1998, pages 642 - 646
J. BYRNE ET AL., NATURE, vol. 450, 2007, pages 497 - 502
J. YU ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
J.A. THOMSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 7844 - 7848
J.A. THOMSON; V. S. MARSHALL, CURR. TOP. DEV. BIOL., vol. 38, 1998, pages 133 - 165
J.L. RESNICK ET AL., NATURE, vol. 359, 1992, pages 550 - 551
K. SHINOHARA ET AL., CELL, vol. 119, 2004, pages 1001 - 1012
K. TAKAHASHI ET AL., CELL, vol. 131, 2007, pages 861 - 872
K. TAKAHASHI; S. YAMANAKA, CELL, vol. 126, 2006, pages 663 - 676
KATAGIRI T ET AL., BIOCHEM BIOPHYS RES COMMUN, vol. 172, 1990, pages 295 - 299
KIM JB ET AL., NATURE, vol. 461, 2009, pages 649 - 643
KIYOKA WAKAYAMA ET AL., EXPERIMENTAL MEDICINE, vol. 26, no. 5, 2008, pages 47 - 52
KLIMANSKAYA I ET AL., NATURE, vol. 444, 2006, pages 481 - 485
KLUTER H. ET AL.: "Impact of buffy coat storage on the generation of inflammatory cytokines and platelet activation", TRANSFUSION, vol. 37, 1 April 1997 (1997-04-01), pages 362 - 367, XP055272486, DOI: 10.1046/J.1537-2995.1997.37497265335.X *
KOBAYASHI, T. ET AL., CELL, vol. 142, 2010, pages 787 - 799
LEUNG-TOUNG ET AL., CURR. MED. CHEM., vol. 9, 2002, pages 979 - 1002
LORDIER ET AL., BLOOD, vol. 112, 2008, pages 3164 - 3174
LOS ET AL., DRUG DISCOV. TODAY, vol. 8, 2003, pages 67 - 77
LYSSIOTIS CA ET AL., PROC NATL ACAD SCI U S A., vol. 106, 2009, pages 8912 - 8917
M. J. EVANS; M. H. KAUFMAN, NATURE, vol. 292, 1981, pages 154 - 156
M. KANATSU-SHINOHARA ET AL., BIOL. REPROD., vol. 69, 2003, pages 612 - 616
M. UENO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 9554 - 9559
MAEKAWA M ET AL., NATURE, vol. 474, 2011, pages 225 - 9
MALI P ET AL., STEM CELLS, vol. 28, 2010, pages 713 - 720
MARSON A, CELL STEM CELL, vol. 3, 2008, pages 132 - 135
MASANORI TAKEBAYASHI ET AL.: "Experimental Medicine", vol. 26, 2008, YODOSHA, pages: 41 - 46
METHOT ET AL., J. EXP. MED., vol. 199, 2004, pages 199 - 207
NAKAGAWA, M. ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 101 - 106
NIWA A ET AL., J CELL PHYSIOL., vol. 221, no. 2, November 2009 (2009-11-01), pages 367 - 77
OHMINE K ET AL., ONCOGENE, vol. 20, 2001, pages 8249 - 8257
OKITA K ET AL., STEM CELLS, vol. 31, 2012, pages 458 - 66
PROULX ET AL., BIOTECHNOL. BIOENG., vol. 88, 2004, pages 675 - 680
R.L. JUDSON ET AL., NAT. BIOTECH., vol. 27, 2009, pages 459 - 461
RANDLE ET AL., EXPERT OPIN. INVESTIG. DRUGS, vol. 10, 2001, pages 1207 - 1209
S. WAKAYAMA ET AL., BIOL. REPROD., vol. 72, 2005, pages 932 - 936
SAEKI ET AL., STEM CELLS, vol. 27, 2009, pages 59 - 67
SCHWEINFURTH ET AL., PLATELETS, vol. 21, 2010, pages 648 - 657
SCIENCE, vol. 318, 2007, pages 1917 - 1920
SCIENCE, vol. 322, 2008, pages 945 - 949
SCIENCE, vol. 322, 2008, pages 949 - 953
SCOTT ET AL., J. PHARMACOL. EXP. THER, vol. 304, 2003, pages 433 - 440
SHI Y ET AL., CELL STEM CELL, vol. 2, 2008, pages 525 - 528
SHI Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 568 - 574
SUN N ET AL., PROC NATL ACAD SCI U S A., vol. 106, 2009, pages 15720 - 15725
T. WAKAYAMA ET AL., SCIENCE, vol. 292, 2001, pages 740 - 743
TAKAHASHI K ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKAHASHI K ET AL., PLOS ONE., vol. 4, 2009, pages E8067
TAKAYAMA ET AL., BLOOD, vol. 111, 2008, pages 5298 - 5306
TAKAYAMA N. ET AL., J EXP MED., 2010, pages 2817 - 2830
TAKAYAMA NAOYA: "Platelet Production System Using an Immortalized Megakaryocyte Cell Line Derived From Human Pluripotent Stem Cells", AMERICAN SOCIETY OF HEMATOLOGY, 10 December 2011 (2011-12-10), XP008180270, Retrieved from the Internet <URL:http://www.reuters.com/article/2011/12/10/idUS70817+10-Dec-2011+PRN20111210> [retrieved on 20140424] *
THOMSON JA ET AL., PROC NATL. ACAD. SCI. U S A., vol. 92, 1995, pages 7844 - 7848
THOMSON JA ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 1147
VIJAYARAGAVAN ET AL., CELL STEM CELL, vol. 4, 2009, pages 248 - 62
VOORHOEVE PM; AGAMI R, CELL, vol. 4, 2003, pages 311 - 319
WARREN L, CELL STEM CELL, vol. 7, 2010, pages 618 - 630
Y. MATSUI ET AL., CELL, vol. 70, 1992, pages 841 - 847
YOSHIDA Y ET AL., CELL STEM CELL, vol. 5, 2009, pages 237 - 241
ZHAO Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 475 - 479

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129593A1 (ja) * 2015-02-10 2016-08-18 国立大学法人京都大学 血小板の機能を維持および/または増強するための組成物
JPWO2016143836A1 (ja) * 2015-03-09 2017-12-21 株式会社メガカリオン 巨核球を含む培養物の製造方法及びこれを用いた血小板の製造方法
WO2016143836A1 (ja) * 2015-03-09 2016-09-15 株式会社メガカリオン 巨核球を含む培養物の製造方法及びこれを用いた血小板の製造方法
EP3296390A4 (en) * 2015-04-14 2019-01-09 Kyoto University METHOD FOR THE PRODUCTION OF STEM CELL CLONES FOR INDUCING DIFFERENTIATION IN BODILY CELLS
RU2730034C2 (ru) * 2015-04-14 2020-08-14 Киото Юниверсити Способ получения клона стволовых клеток, пригодного для индуцирования дифференцировки в соматические клетки
CN108026511A (zh) * 2015-09-15 2018-05-11 株式会社美加细胞 利用旋转式搅拌培养法的血小板的制造方法
US10570372B2 (en) 2015-09-15 2020-02-25 Megakaryon Corporation Method for manufacturing platelets by rotary stirring culture method
KR102641631B1 (ko) * 2015-09-15 2024-02-29 가부시키가이샤 메가카리온 회전식 교반 배양법에 의한 혈소판의 제조 방법
KR20180044427A (ko) * 2015-09-15 2018-05-02 가부시키가이샤 메가카리온 회전식 교반 배양법에 의한 혈소판의 제조 방법
JPWO2017047492A1 (ja) * 2015-09-15 2018-07-05 株式会社メガカリオン 回転式撹拌培養法による血小板の製造方法
WO2017047492A1 (ja) * 2015-09-15 2017-03-23 株式会社メガカリオン 回転式撹拌培養法による血小板の製造方法
WO2017077964A1 (ja) * 2015-11-02 2017-05-11 株式会社メガカリオン 往復動撹拌装置を用いた血小板の製造方法
CN108473954A (zh) * 2015-11-02 2018-08-31 株式会社美加细胞 使用往复运动搅拌装置的血小板的制造方法
JPWO2017077964A1 (ja) * 2015-11-02 2018-10-11 株式会社メガカリオン 往復動撹拌装置を用いた血小板の製造方法
WO2017131230A1 (ja) 2016-01-29 2017-08-03 国立大学法人京都大学 血小板産生促進剤及びそれを用いた血小板の製造方法
WO2017131228A1 (ja) 2016-01-29 2017-08-03 国立大学法人京都大学 血小板産生促進剤のスクリーニング方法
WO2018052126A1 (ja) * 2016-09-16 2018-03-22 国立大学法人京都大学 巨核球細胞群における細胞の不均質性を識別する方法及び血小板の製造方法
WO2018164040A1 (ja) 2017-03-06 2018-09-13 国立大学法人京都大学 血小板の製造方法
US11952587B2 (en) 2017-03-06 2024-04-09 Kyoto University Method for producing platelets
JPWO2018164040A1 (ja) * 2017-03-06 2019-12-26 国立大学法人京都大学 血小板の製造方法
JP7297203B2 (ja) 2017-03-06 2023-06-26 国立大学法人京都大学 血小板の製造方法
WO2019009364A1 (ja) 2017-07-07 2019-01-10 国立大学法人京都大学 血小板の製造方法および製造装置、ならびに血小板の製造装置における運転条件の決定方法
WO2019059234A1 (ja) 2017-09-19 2019-03-28 株式会社メガカリオン 血小板の製造方法、血小板製剤の製造方法、および血液製剤の製造方法
US11773374B2 (en) 2017-09-19 2023-10-03 Megakaryon Corporation Method for producing purified platelets, method for producing platelet product, method for producing blood product, platelet preserving solution, platelet preserving agent, and method for preserving platelets
WO2019059235A1 (ja) 2017-09-19 2019-03-28 株式会社メガカリオン 精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法
JPWO2019124348A1 (ja) * 2017-12-19 2020-12-03 国立大学法人京都大学 新規骨分化誘導方法
US11859209B2 (en) 2017-12-19 2024-01-02 Kyoto University Method for inducing osteogenic differentiation
WO2019124348A1 (ja) * 2017-12-19 2019-06-27 国立大学法人京都大学 新規骨分化誘導方法
WO2020184685A1 (ja) * 2019-03-13 2020-09-17 株式会社メガカリオン 血球減少症のモデル動物の製造方法、血球減少症モデル動物、血球機能の評価方法、血球の製造方法、血球減少症の治療薬候補物質のスクリーニング方法、および血球減少症の治療薬の候補物質の製造方法
WO2021117886A1 (ja) 2019-12-12 2021-06-17 国立大学法人千葉大学 巨核球および血小板を含む凍結乾燥製剤
WO2021117900A1 (ja) 2019-12-13 2021-06-17 株式会社メガカリオン 組成物およびその用途
WO2022092169A1 (ja) 2020-10-27 2022-05-05 国立大学法人 長崎大学 骨形成組成物およびその用途
WO2022265117A1 (ja) 2021-06-18 2022-12-22 株式会社メガカリオン 血小板産生能が増強された多核化巨核球細胞の製造方法、血小板の製造方法、血小板製剤の製造方法、および血液製剤の製造方法
WO2023277153A1 (ja) 2021-06-30 2023-01-05 国立大学法人千葉大学 骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法

Also Published As

Publication number Publication date
EP2955223A4 (en) 2016-07-27
JP6495658B2 (ja) 2019-04-03
JPWO2014123242A1 (ja) 2017-02-02
US20160002599A1 (en) 2016-01-07
US20220017866A1 (en) 2022-01-20
EP2955223A1 (en) 2015-12-16
EP2955223B1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6495658B2 (ja) 巨核球及び血小板の製造方法
EP2794860B1 (en) Method for inducing differentiation of human pluripotent stem cells into intermediate mesoderm cells
US8652845B2 (en) Method for producing mesodermal cells by culturing under adherent conditions and without co-culture with cells from a different species in a serum-free medium
JP6738572B2 (ja) 肺胞上皮細胞の分化誘導法
US9822342B2 (en) Method of efficiently inducing cardiomyocytes
JPWO2014168264A1 (ja) 肺胞上皮前駆細胞の誘導方法
US20170130202A1 (en) Methods respectively for producing mesodermal cells and hematopoietic cells
JP2012532585A (ja) 多能性幹細胞から骨格筋前駆細胞への分化誘導方法
JP7357369B2 (ja) 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法
JP5995247B2 (ja) 多能性幹細胞から樹状細胞を製造する方法
JP7274683B2 (ja) 多能性幹細胞から樹状分岐した集合管を伴う腎臓構造を作製する方法
WO2021085462A1 (ja) 多能性幹細胞から造血性内皮細胞および/または造血前駆細胞を製造する方法
WO2016148307A1 (ja) 気道上皮細胞の分化誘導法
JP6385340B2 (ja) 巨核球の成熟化促進物質
JP7078934B2 (ja) 特定のラミニン上での多能性幹細胞の培養方法
JP6873898B2 (ja) 体細胞への分化誘導に適した幹細胞クローンを製造する方法
WO2022014604A1 (ja) 骨格筋前駆細胞及びその精製方法、筋原性疾患を治療するための組成物、並びに骨格筋前駆細胞を含む細胞群の製造方法
WO2017073794A1 (ja) 多能性幹細胞から3次元の心筋組織を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014749207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14763746

Country of ref document: US