コンピュータグラフィックス特論 (ビジュアルコンピューティング論) (エンターティンメントテクノロジー研究)

No,3

Parametric曲線

- 内挿曲線
 - Hermite内挿曲線
 - 3次内挿spline曲線
- 近似曲線
 - Bezier曲線
 - B-spline曲線
 - NURBS

3次内挿Spline曲線

- Hermite内挿曲線を接続する
- 接続点で,位置と傾きが連続するように設定する
- ・ 曲率が連続するような接続も可能

Bezier曲線

- 2次Bezier曲線 $B(t) = (1-t)^2 B_0 + 2t(1-t)B_1 + t^2 B_2$
- 3次Bezier曲線 $B(t) = (1-t)^{3}B_{0} + 3t(1-t)^{2}B_{1}$ $+ 3t^{2}(1-t)B_{2} + t^{3}B_{3}$

3次Bezier曲線の誘導

3次Bezier曲線の性質

$$\begin{split} B(0) &= P_0, \qquad B(1) = P_3, \\ B'(0) &= 3(P_1 - P_0), \quad B'(1) = 3(P_3 - P_2) \end{split}$$

- affine不变性(移動, scaling, 回転)
- 凸包性
- 直線再現性

Bezier曲線の分割 (de Castljauの分割)				
3次Bezeir曲線をt=t _s でら	分割			
Bezier多角形の3辺を t_s : I - t_s に分割した点 : P_0^I , P_1^I , P_2^I P_0^I , P_1^I , P_2^I の2つの辺を t_s : I - t_s に分割した点 : P_0^2 , P_1^2 最後に P_0^2 , P_1^2 を t_s : I - t_s に分割した点 : P_0^3				
$P_0^1 = P_0 + t_s (P_1 - P_0)$	$P_0^2 = P_0^1 + t_s (P_1^1 - P_0^1)$			
$P_1^1 = P_1 + t_s (P_2 - P_1)$	$P_1^2 = P_1^1 + t_s (P_2^1 - P_1^1)$			
$P_2^1 = P_2 + t_s (P_3 - P_2)$	$P_0^3 = P_0^2 + t_s(P_1^2 - P_0^2)$			

Bézier vs. Hermite

• Now substitute this in for previous Hermite

$\left[a_{x}\right]$	a_y		2	-2	1	1	[1	0	0	0	<i>x</i> ₁	y_1
b_x	b_y	_	-3	3	-2	-1	0	0	0	1	x_2	<i>Y</i> ₂
C _x	c _y	-	0	0	1	0	-3	3	0	0	<i>x</i> ₃	<i>y</i> ₃
d_x	d_y		1	0	0	0	0	0	-3	3	<i>x</i> ₄	<i>y</i> ₄
				M _{He}	rmite					_	G	kzier
MBezier												

有理Bézier曲線

参考文献:

- Farin, G. *Curves and Surfaces for CAGD*. Academic Press, 3rd. Edition, 1993 (Chapters 14 and 15).
- Hoschek, J. and Lasser, D. *Fundamentals of CAGD*. A. K. Peters, 1993 (Chapter 4).
- Anand, V. *Computer Graphics and Geometric Modeling for Engineers*. John Wiley & Sons, 1993 (Chapter 10).

NURBS(非一樣有理B-Spline)

参考文献:

Piegl, L. and Tiller, *W. The NURBS Book*, 2nd. Edition, Springer Verlag Berlin, 1997.

NURBS

- Nonuniform Rational B-splines
- B-spline曲線の重み関数を拡張
 多項式関数 有理式関数
- B-spline曲線の区間幅を拡張
 一定幅 可変幅
- 円錐曲線も厳密に表現できる

Splinesの描画

- · Horner's Method
- Incremental (Forward Difference) Method
- Subdivision Methods

Horner's Method

$$\begin{aligned} \mathbf{x}(t) &= a_x t^3 + b_x t^2 + c_x t + d_x \\ \mathbf{x}(t) &= [(a_x t + b_x)t + c_x]t + d_x \end{aligned}$$

- Three multiplications
- Three additions

Forward Difference

 $\begin{aligned} & x_{k+1} = x_k + \Delta x_k \\ & x_k = a_x t^3 + b_x t^2 + c_x t + d \\ & x_{k+1} = a_x (t_k + \delta)^3 + b_x (t_k + \delta)^2 + c_x (t_k + \delta) + d_x \\ & x_{k+1} - x_k = \Delta x_k = 3a_x \partial t_k^2 + (3a_x \delta^2 + 2b_x \delta) t_k + (a_x \delta^3 + b_x \delta^2 + c_x \delta) \end{aligned}$

- But this still is expensive to compute
 - Solve for change at k (Δ_k) and change at $k{+}1$ $(\Delta_{k{+}1})$
 - Boot strap with initial values for $x_0,$ $\Delta_0,$ and Δ_1
 - Compute x_3 by adding $x_0+\Delta_0+\Delta_1$

曲面の表現

- 多面体(近似)
- 陽関数曲面 *z* = *f*(*x*, *y*)
- 陰関数曲面 f(x, y, z) = 0

• parametric曲面 x = f(u, v), y = g(u, v), z = h(u, v),0 u 1, 0 v 1

Bézier曲面			
制御点集合:			
$P = \{\{P_{00}, P_{01}, \dots, P_{0n}\}, \{P_{10}, P_{11}, \dots, P_{1n}\}, \dots, \{P_{m0}, P_{m1}, \dots, P_{mn}\}\}$			
$P_{ii} \in \mathbf{R}^3$, $i = 0, 1,, m$, $j = 0, 1,, n$			
制御点集合Pによって定義されるBézier曲面:			
$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} P_{ij} B_i^m(u) B_j^n(v)$			
は、時代的活動(m)次、 n 次のBernstein関数			
	x y x y z		

