■タイミングベルトの設計および使用方法

●タイミングベルトの適正な張り方

ベルトの張り方はベルトがたるまない程度が適正で、張り過ぎは、 ベルトの寿命を低下させます。

また、張りがゆるい場合、衝撃的な負荷または起動トルクが大き いとベルトがプーリ溝からジャンプして乗り上げることがありま す。 ベルトの張りを数値的に管理する場合、次の手順によりおこ ないます。

1. スパンの計算

$$L_S = \sqrt{C^2 - \frac{(D_p - d_p)^2}{4}}$$

Ls: スパン長さ [mm]

C : 軸間距離 [mm]

 D_p : 大プーリピッチ円直径 [mm]

 d_p : 小プーリピッチ円直径 [mm]

2. たわみと張り荷重の計算

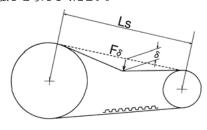
①たわみの計算

 $\delta = 0.016Ls$

 δ :たわみ量 [mm] *Ls*: スパン長さ [mm]

②張り荷重の計算

$$F_{\delta} = \frac{T_O + (L_S / L_p) \cdot Y}{16}$$


F_δ:たわみ荷重[N] *Ls*:スパン長さ[mm]

 L_p :ベルトピッチ周長さ [mm]

To:初張力[N] Y : 定数[N]

3. 張り調整

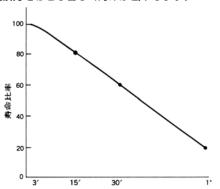
スパンの中央にたわみ荷重 F_8 を与え、このときのたわみ量が δ と なるように張りを与えてください。

______ ●衝撃的な負荷または起動トルクが大きいため、ベルトがプーリ溝からジャンプ して乗り上げる場合は、最大 F_δ で張ってください。

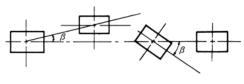
T。·Y定数表

係数		値
То	max min	14.0 7.8
Υ		12.7
То	max min	45 25
Υ		7.7
То	max min	127 89
Υ		77
	To Y To Y	To max min Y To max min Y To max min Y To max

ポリウレタン製


1112 2 2 2 2 2 2 2			
ベルトタイプ	係数		値
MXL	To	max	3.5
呼び幅 025		min	2.3
ベルト幅6.4mm	Υ		0.6
XL	То	max	45
呼び幅 037		min	25
ベルト幅9.5mm	Υ		7.7
L	To	max	127
呼び幅 075		min	89
ベルト幅19.1mm	Υ		77

●プーリアライメント(軸の平行度)


タイミングベルトはプーリのアライメントが正しく調整されてい る場合でもプーリの両端のどちらか一方に片寄ります。

その強さは非常に小さなものですがプーリアライメントが正しく 調整されていないと片寄り強さが極端に大きくなり、プーリフラ ンジに強く押し付けられるためにベルト側面の磨耗破損が起こり

また磨耗だけでなく、ベルト心体に均一な張力がかからないため 異常な強度疲労をおこし著しく寿命が低下します。

以上からプーリアライメントは、tangが0.006以下になるように 調整してご使用ください。

●アイドラの使用

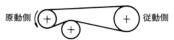
アイドラの使用は、ベルトの曲げによる疲労を増加させますので、 下記のようなやむを得ない場合を除きできるだけ使用は避けてく ださい。

- 軸間距離が調整できない場合の張りの調整
- ◆ベルト振動が問題になるほどの長スパンの分割
- 障害物を避けるための案内
- ●小プーリの噛み合い歯数 (接触角度)を増す場合

①アイドラの使用方法

タイミングベルト伝動装置にアイドラを使用される場合には、ア イドラは固定装置で必ずゆるみ側でご使用ください。

張り側で使用する場合は歯飛びが起こりやすくなるため、規定以 上の強いベルト張りで使用する必要があり、ベルト寿命にも影響


またできるだけ浅い角度でご使用ください。

内側で使用する場合

- •歯付プーリをご使用ください。
- ●アイドラの取付位置は大プーリに近づけてください。 小プーリ の接触角度の減少が少なくなります。

外側で使用する場合

•アイドラの取付位置は小プーリに近づけてください。

②アイドラ径

内側アイドラ径は使用回転数の最小プーリ径以上または外側使用 の平プーリは最小プーリ径の1.2倍以上でご使用ください。

www.orientalmotor.co.jp

選定計算

モータ・

ファン モーター

電動 アクチュ エータ

寿命

ステッピング モーター

ギヤヘッド

リニアヘッド