直流と交流、単相と三相、ついでに単相3線式

他のトピックス一覧へ

本研究室で扱う電源の種類は、大きく分けると、

直流と交流
交流 : 単相(電灯線)と三相(動力線)

のように区分されます。

安全面から始めれば、電池などで使用している直流よりは、主に大電流を扱う交流の方が危険度が高く、交流の中でも、単相よりは三相の方が電流容量も大きく怖いと思います。

実際にはわかりませんが、単相だと、電流が流れる、つまり短絡(ショート、あるいは回路が閉じる)したときには、プラスとマイナスが反転するので弾き合い、パシンッ、と大きな火花が散ってはじき飛ばされる?三相の場合、三つの端子に接触してしまうと、常にどこかがどこかより低いので吸い付く?
直流の場合、ただただ電流が流れるので怖いと思いますが、本研究室の普段では電線が細く、電圧電流容量が小さいこともあり、そのような小さな直流回路では大電流が流れにくいのでちょっと安全という現実があります。

漏電は感電につながるトラブルの一つです。A10実験棟では、建物の配電盤の漏電警報器が本研究室区域にありますので、大きな電子音でピ、ピーというような警報が鳴ったときは、漏電事故がどこかで発生しています(本研究室エリアとは限りません)。現在は、風洞周りでビリッときますが、どうもこれは別の問題のようです。接地で解決していますので、ビリッときたら接地をチェックしてください。

日本ではあんまりないですが、海外のドラマや映画で、大抵悪役ですが、変電設備に突き落とされて、電線に貼り付いたり吹っ飛んだりするシーンがあります。火花とともにビリビリビリ、と黒焦げになっているのが、多分三相電源の表現なのでしょう。吹っ飛んでいたら、それは単相電源の表現だともおもわれます。

# 実際には、感電事故映像もネット上では視聴できますが、たいへん恐ろしい映像です。吹っ飛ぶのは、単相か交流かではなく、単純にエネルギーが大きいからかもしれません。事故映像に限っては吹っ飛ぶ人はあまりいないようです。吹っ飛ぶのは映像製作者の単純に映像効果、なのかもしれません。

しかしながら、電灯線単相実際の100Vの線が接触すると各線同士は弾けます。金属線が溶けてくっつくこともあります。本格的な事故には遭ったことはありませんので、その映像表現や上述の解釈が正しいかどうかはわかりません。そもそも単相なら電流は一方通行ですし、痙攣するとしても交流60Hz前後では視覚化する工学的根拠が乏しいです。危険度も、法令規定値では電流規定値が直流の方が大きくなっているだとか、交流は周波数による電位の変化がダメージを大きくするだとか、研究報告では筋肉の少ない女性の方が許容電流容量が小さいだとか。

# そもそも性差ではなく体組成差である物理的事象を、性で統計的に議論しているならば、実験計画的にちょっと問題を感じ科学的信頼性にも気にはなります。華奢でひ弱でひからびた老人の方が女性よりはるかに許容電流容量が小さい気がします。。。。^^;

とにかく感電事故は恐ろしいらしいので気をつけてください。ブレーカーや保護回路はありますが、瞬時の電力でも侮れないことを覚えておいてください。特にモーターやポンプをとりわけ水回りで使用している場合は、スイッチポン!で簡単に制御できるようになっていますが、気をつけてください。ケーブルにゴム皮膜があるからといって安心はできません。水を扱う流体系だからこそ、絶対に電源配線は頭上配線にして絶対に水に接しないようにしてください。ほんの少し皮膜がひび割れしていたら終わりです。ものを運ぶときには頭上の電灯線等を傷つけないよう気をつけてください。

本研究室では、管理を簡易に確実にするために、すべての配線は基本的に頭上配線を推奨します。不注意の塊のような学生さんというわけではなく、本研究室外の来訪者には全く無頓着で、電源、信号線にかかわらず平気でものの上を歩く人が少なからずいます。事故やトラブルが生じてからそういう人の責任をとやかく言う前に、できる範囲で事前予防するべきです。作業に必要な工具は装備してありますが、大切な工具は使用後は原状復帰がルールです。もっとも、それでも無断で意識的に機器を持ち出す部外者を見つけたら阻止するとともに報告してください。特に工具や計測機器、ケーブルなどは様々な対応のために保有してあるので、いざというときに使えなければ無意味です。不適切な結果を招く自己判断はせず、些細な工具でも、本研究室教員に無断で貸し出すことのないようにしてください。もっとも、こんなことを書かなければいけない原因の持ち出す側であり黙認している監督者は資質と法令規則知識がなさ過ぎますが、現状、トラブルが発生中なので注意してください。[工具の紹介の話はこちら]

ちなみに感電の自覚症状は、皮膚表面では、1mA程度ではピリピリ、10mA程度では耐えられない痛み、100mAで心臓等が大きな影響を受けるそうです。汗ばんだ皮膚にiPad用ライトニングコネクターが当たったら確かにピリピリします。体内を流れる場合、抵抗の小さい血液の流路である血管を集中的に通ることも多く、0.1mA以下でも脳などの神経系、心臓、に大きなダメージを与え死に至ることがあるようです。10mAを超えると、筋肉が緊張したまま動けなくなるので、感電状態から自力で逃げれなくなり大変危険です。最低でもブレーカー、漏電ブレーカーやヒューズは必須です。え?10mAのヒューズなんてない?心配いりません。残念ながらほとんどの感電事故のときはもっと電流は多く流れています。加えて、

対処
感電事故が生じた場合
は、本人なら もしも可能なら電源から直接手を放す、周辺の人なら 早急に電源を配電盤で落とすことが最優先です。周囲に複数人がいる場合でも、二次災害防止のため、決して素手で救出してはいけません。軍手やゴム手袋程度は効果がないと思っておいてください。被害者の体を絶縁性の高い乾燥した木材・塩ビ管などでのみ間接的に動かし回路を開く必要があります。本研究室の電流容量は十分危険があるほどに大きいですが、運良くブレーカーが落ちた場合、安全確認後に要救護者の状況を観察し、心停止、呼吸停止時は対処しながら、意識があっても救急車を呼んで、電圧、感電時間、接触部位、などの情報を伝えてください。

さてお話を元に戻して、そもそもなぜ、直流と交流があるのでしょうか。

直流か交流か(エジソンかテスラーか)

これは多分、送電のように大電流を送る時の効率の問題が関係します。
実は交流は、常に電圧が変動しているわけですが、電圧が動いているのと、電流が流れるのとは別です(ん?!意図不明)。まぁ、直流でも似たようなものですが。それくらいわかってるわいっ、と言われそうです。。。ね

直流では、円管の内の流れと同じで、静水力学では水圧がパスカルの原理で伝わって、均一の水圧がいたるところに伝わるように、電圧も伝わります。一旦水が流れれば、普通(生活でよく見る状況では)、流速の二乗に比例して、エネルギー損失が発生します。通り道が長ければ長さに比例して、流速が早ければ、どんどんとエネルギーが失われます。これが、管摩擦で説明される、ダルシーだかファンングだか なんかの損失に係る式ですね。
では、水や電気は、遠くに運べば最後はなくなって消えてしまうのでしょうか。
実際は、失われたエネルギーは、水圧や電圧が減少する、という形で現れます。したがって、どんどん水圧や電圧が下がっていきます。圧力が下がると、結局、水も電気も流れる量が減ってしまいますので、流れる量が減ると、損失も減少して失われる圧力も減少します。で、結局は、どこか程よい流量と圧力のバランスが取れる状態で落ち着きます。流体力学が非線形問題であるといういい例です。今は流体力学等では習っていないかもしれませんが、機械工学分野では流体機械の運転の基本です。
これが、流体工学では圧力損失(圧損)、電気では電圧降下と呼ばれます。
少し大きめの出力を持った電子デバイスを扱うときに、信号回路のような細い電線を使っていると、たまに痛い目にあいます。LEDの電流が小さいと舐めていると、これまた痛い目にあいます。LDやLEDは電圧に敏感に電流値が変わりますので、電流でコントロールするようにします。

さて、交流の場合、電気はどう流れているのでしょうか。

単相交流電源

本研究室では、単相電源だと、一秒間に120回(要は60Hzです)、電圧の正負が入れ替わっているので、その都度電流が行ったり来たりしているようです。直流と同じ現象が繰り返されていると考えられます。では、電気を使ったときに電流を使っているのでしょうか。電気の流れる速度は大変早いので、電流を消費すれば、それは瞬時に変電所に伝わり、当然、直流と同様に電気(電力)が消費されますし、電圧降下も起きそうです。

# ちなみにモーター付の家電製品の消費電力は 50Hzよりも60Hzの方が大きいものがあります。なぜでしょう?
# そもそも消費電力に違いがあったりなかったりするのは、なぜでしょう?
# ACアダプターのときは消費電力が、、、なぜでしょう?<トランス式のときは50Hz域人は60Hz領域は発熱要注意です。

実際、その通りですが、実は直流より交流が広い範囲で利用されているのは、簡単に変圧できることが大きな理由のようです。ベルヌーイの式を思い返すと、そこには三つのエネルギー項があります。流体にエネルギーを蓄えて、損失の原因になる速度を抑えようとすると、エネルギーをできるだけ圧力で保持させればいいことがわかると思います。電気も同様です。送電時の電流を減らすために、電圧を上げることができます。消費される電力は、電流と電圧の積で表せられるので、損失の原因となる電流を抑えても、電圧で補えます。使用する現場で、必要な電圧に落としてやれば、電流がその場のみ増加します。したがって、エネルギー輸送効率(電気では力率や送電効率)改善を変電によって実現できる交流が歓迎されます。他にも、電力供給会社が変電所で送電を遮断するときに、電圧ゼロ、電流ゼロのタイミングで遮断機(超大型ブレーカー)を落とすことで、末端の電気製品へのダメージを最小限に食い止められる、などの理由もあるようです。

# どんなダメージがなぜ起きるのでしょうか?

実験室にやって来た交流には、単相ともう一つ、三相があります。

三相交流電源

実は三相はよく、動力、と呼ばれます。発電機でエジソンは直流発電機を発明し、直流給電網を作ろうとしました。ところが、交流発電機(単相そして三相)が実用化し、フレミングによって電磁誘導の式が示された途端、上述の送電の問題、変圧の問題、そして何よりも、三相モーターの利便性が、給電方式を決定してしまったようです。当時は、電気は、白熱電灯以外には、電動機を用いた機械が多かったからでしょう。当時の風力発電にも交流発電機が採用されています。

このモーターには、直流モーターと交流モーターがあります。

簡単に言えば、直流モーターは、小型でパワフル、簡単、軽量。回転数制御が簡単(だけど、負荷により変動しやすい)。したがって、現代でも電気自動車などに利用されます。

同様に、交流モーターは、周波数にあった変動に強い回転数保持性、特に三相は、三つの相が順次進むので、回転方向も固定できる、大出力モーターが作れる、回転子がなく摩耗とかがない。したがって、空圧、油圧、発電機、など、回しっぱなしのものに重宝されます。

しかし現代では、インバーターによって交流機も回転数を大きく変更でき、PWMにより出力も変更できるので、出力の大きさで交流機優位ではありますが、直流機も制御装置とともに小型という特徴から活躍しているようです。

本研究室でも、ACコントロールモーターや、三相動力駆動のブロアとポンプはインバーター制御して利用しています。低速風洞はよく調べていませんが、古いサイリスタ制御なのかもしれません。これらに関しても、時間を探して調べてください。三相には、Δ結線、Y(またはスター)結線などの接続方法がありますが、3線なので、本研究室ではΔ結線が主流です。電極には、電源からくる端子には位相の順にR、S、T、変圧器の入力端子はU、V、W、変圧器の出力やインバーターの出力にはu、v、wの記載があります。インバーターからモーターへの出力端子に電源を接続すると、機器が大きな破裂音とともに瞬殺されます(損害額時給換算ン千万円です ^^;)。

直流電源

次に直流電源です。本研究室では、もっぱら、電気、電子工作で、ACアダプターや電池を用いて利用されます。また、計測信号として計測器やコンピューターなどの入出力信号、光源のLEDや半導体レーザーにも利用されます。一般に、電圧が低く、本研究室ではせいぜいの5V以下ですが、でACアダプターの中には電流容量が、Aオーダーのものもあるので、濡れた体で扱うことはリスクがあります。乾燥した皮膚からは濡れ手に比較して大きな人的危険はありませんが、一方、計測器やデバイスの耐電圧は低く、静電気のような小電力超高電圧の電気の影響で、研究室に金銭的と付随する人間関係的大損害を与える可能性があります。

その他、計測器が直流電源なのに、無理やりACケーブルを突き刺したりしないでください。電解コンデンサーが破裂するポンっ、という音がして、運が良ければ薄い煙と焼けた匂いがするだけで、機器が死亡します。運が悪ければ、何が起こるかわかりません。古い自作計測機では、今頃のような豊富な種類の電気部品がなかったため、普通にACプラグやACソケットが使われていることがあります。仕組みを探索してから、確信を持って使用してください。とりあえず刺してみる、はナシです。あと、電気工作の回路等では特に、波形を扱うことがあります。信号の波形は、参考書等では 0Vを中心にきれいな波形が記載されていますが、現実はバイアス電圧(0Vではない電圧)が重ね合わさっているのが通常のようです。オシロスコープなどで波形を調べたり、基準電圧を現実に調べると勉強になるはずです。

ただ、電気が流れる、とまぁるく達観的に理解することも大切ですが、その中身を知ることで、単純な法則で同一視し、包括的に理解できる、ということを知るのも大切と思います。後者の力を身につければ、習ってないない あるいは 初めての事象に出くわしても、自分で適正な答えを導けるはずです。上述で紹介したいろんなあやしいお話も、検討してみてください。
# たとえば単相交流でショートするとはじかれる理由はプラスマイナスが入れ替わるから、なんて本当でしょうか? 🙂

単相3線式

最後に、同じ三線を持っているけど、三相でない電源にも触れておきます。本研究室では、配電盤を改変することはないですが、結線の際に目に入って、知識なく混同しないため、知識として知っておいてください。実験室の天井を見上げれば、電灯線が配置されています。大変古く改修の予算がないため、古来の配線ゆえ、大変わかりやすくなっています。中性線をアースとして他の一本を用いれば100V。中性線以外の2本を使うと200V。中性線以外の線には位相が180度ずれた電圧がかかっています。だから三相の120度とは全く別物とわかります。
複数ある天井の蛍光灯や水銀灯からは二本の線が出て来て、三本のうちの二つと接続されています。そのパターンにも注目してください。機器は100ボルトの機器ですので、電灯線は、単相3線式で配線されていると思われます。同じ電源から来ている位相の違う電源を同じ交流100Vと考えると、、、怖いですよね。計測器を使うときも混用は気になります。電源ノイズが気になったときのチェック項目のひとつかもしれません。
家庭用コンセントのメス差し口の形状が異なっているのは、共通アースを意識しているからでしょう。通常は接地線をきちんと指定側に接続しているはずですが、電設業者やその作業者の中にはいろんな人が混ざっているかもしれません(まずないはずですが)ので、機会があったときにはチェックしてみるのも勉強になるかもしれません。
あと、三線式では、中立線以外に流れる電流(電力)が同じとき、中立線に流れる電流がキャンセルされてなくなります。したがって、バランスよく電気を使ったときが効率(電気では力率)最大で、このとき電線を流れる電流は半分、中立線の往復電流分のロス(電流の二乗)が節約できるので2線式に比べて回路内の損失が1/4に減少(節電)します。でも、実際にはそんなうまく電気製品を配置できないので、高価ですがバランスを取る機器もあります。
また、中立線が断線すると接続機器の抵抗値比に反比例して大きな電圧(最大200V)がかかります。したがって、壊れたり火を噴く機器も出てきます。特に配線作業時に発生することが多いので、作業時にブレーカーを切ることは当然ですが、ブレーカー投入時には中立線の接続を必ず確認してから投入しましょう。

図 単相三線式の給電の仕組み。変圧時に、トランス中間に中立線をとり、それを基準に、それぞれ逆位相の単相100Vを2系統生成する。トランスが絶縁型なら左右の回路は接地的には独立なので変圧後のアースは理屈では基本的に好きにとれる(商用線では事故防止のため統一し法律で決まっている)。ちなみに実効値が100Vの単相の最大電圧は√2×100=141.4Vくらい、平均値は(実効値)x π/2 = 90Vくらいになります。

さて、疑問です。単相3線式で200Vを取った場合、アースはどうするのでしょうか?A-B間で(最大?)200VなのでAかBのどちらかをアースにすればよいのでしょうか?でも、原則的に位相は違えどAC100Vですよね。それって接地していいでしょうか。そう考えると、200V利用する機器の回路内で、一方を接地、と考えて設計すると怖いことが起こりそうですよね。同様に、100V用の回路を設計するときにも、そもそも極性は区別できるけど極性を区別せずに差し込めるプラグを使用していると言うことはどんな危険があるかを知っておく必要がありそうです。接地を取っておけばばいい、というものではなさそうです。
計測器の仕様書をしっかり見ていると気づくと思いますが、光カプラー仕様だとか、絶縁入力、というのは、そういうことへの配慮かもしれませんね。AC100Vを利用する機器に資格がいるのは、そういうことを踏まえているということでしょう。電気工学実験を履修した人には釈迦に説法でしたね。

まとめ

電気、特に電源を扱うときは、必ず念のために、テスター等で確認をして、電源の種類を再確認して、その特徴に対応して扱うこと。位相に関わる可能性がある場合にはオシロスコープを利用してください。その際にも、使用最小限の使用機器専用のヒューズや漏電対応ブレーカーなどを電源上流側に入れておく、などの配慮を心がけてください。

そしてちょっと(古代語で言うところの)”興味”がわいた人は、第二種、第一種の電気工事士の資格を まだ知識が頭に残っている在学中のうちに取っておくといいかもしれませんね。
# 第一種は5年の実務経験(または大学で所定単位を取っていれば3年に短縮)が
# 要ります。企業では手当がもらえたりしますが、
# 大学教員では制度はあって資格を持っていても適用外でもらえないことがほとんどです。しかも、適当に利用されたりします。

電気と似た特徴を持った流体ですが、フレミングではなく、「レイノルズの右手、左手の法則」、なんていうのがあれば、流体もいろんな応用が広がったかもしれませんね。
# ひょっとして超高速で流れると磁場ではなくって反重力装置ができるのかも。。。。^o^ そんなお話が気になる人はSci-Fiについてのお話も参照してみてください。

 

関連記事

配線について

 

他のトピックス一覧へ