UNCLASSIFIED

AD 408934

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION
CAMERON STATION. ALEXANDRIA, VIRGINIA

$\mathbb{U} \mathbb{N} C L A S S I F I E D$

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any riehts or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

AFCRL-63-134

THE COMPUTATION LABORATORY

Harvard University
Cambridge, Massachusetts

AFI9(604)-8509
Project Nos. 5632, 5633

SCIENTIFIC REPORT NO. ISR-3
INFORMATION STORAGE AND RETRIEVAL
prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF APROSPACE RESEABCH
ONITED STATES AIR FORCE BEDPORD, MASSACHUSETTS

(c)

Copyright, 1963

By the President and Fellows of Harvard College

Use, reproduction, or publication, in whole or in part, is permitted for any purpose of the United States Government.

Requests for additional copies by agencies of the Department of Defense, their contractors, and other government agencies should be directed to:

DEFENSE DOCUMENTATION CENTER (DDC)
ARLINGTON HALJ STATION
ARL INGTON 12, VIRGINIA

Department of Defense contractors must be established for DDC services or have their "need-to-know" certified by the cognizant military agency of their project or contract.

All other persons and organizations should apply to:
U. S. DEPARTMENT OF COMMERCE

OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.

Lymda Addison Deborah D. Aulenback Walter Broderick Arlene Brown Robert J. Burns
Mark Cane
Ronald Chayer
Alan Cohen
Evelyn Cone
Isabel Corbat6
Milan Dabcovich
Jean M. D'Agostino
Richard Delery
Arthur Dolan
Devid Drew
Frank Engel, Jr.
Robert Eubanks
Shimon Even
Patrick Fischer
Alan Gillis
Sheila Greibach
Teruhiro Hayata
Inez Hazel
Mary E. Hester
Yu-Chi Ho
Kenneth Iverson
John J. Jackson
Eric Johansson
Lawrence Kelley
Elena Kirsch
Suaruna Kuno
Beverly Lee
Alan Lemmon

Michael Lesk
Joseph I. Lewko
Irina Lynch
Mary Lynch
Edward Lyons
Rita B. Mahony
Paul Marques
George McManus
Jeri Mignault
Charlotte Modahl
Maxine Nealley
Edward Nelson
Anthony G. Oettinger
Marguerite Pandt
Rtchard Powers
Mary Ranelli
Diane Redonnet
Joseph Rocchio
Gerard Salton
Jacquelin Sanborn
Tina Simeone
Carol Smith
Edward H. Sussenguth, Jr.
Margaret Thompson
Rodney Thorpe
C. Cynthia Tukis

John van Bemmel
Richard 8. Varga
Elizabeth V1iet
Hao Wang
Richard Whalon
Stephen Young
Penclope W. Zimmerman

Code	Organtation	No. of Copies
AF 5	AFPTIC	1
	AFMIC Technical Library - MU-135	
	Patrick Air Force Base	
	Florida	
AF 18	AUL	1
	Maxwell Air Force Base Alabama	
AF 32	OAR	1
	RROS, Col. John R. Fowler	
	Tempo D	
	Lth and Independence Avemue	
	Weshington 25, D.C.	
AF 33	AFOSR	1
	OAR (SRYP)	
	Tempo D	
	Fourth and Independence Avenue	
	Washington 25, D. C.	
AF 43	ASD (ASAPRD - Dist.)	1
	Wright-Patterson Air Force Base	
	Ohio	
AF 124	RADC (RAALD)	1
	Attention: Documents Library Griffiss Air Force Base	
	Griffiss Air Force Base New York	
AF 139	AF Missile Development Center (MDCFI)	1
	Hollaman Air Force Base, New Mexico	
AF 314	Headquarters OAR (RROSP)	1
	Attention: Major Richard W. Nelson Washington 25, D. C.	
Ar 5		
	Commanding General	1
	USASRDL	
	Attention: Technical Documents Center SICRK/SL-ADI	
	Fort Mormouth, New Jersey	

Code	Organization	No. of Copies
Ar 9	Department of the Army	1
	Office of the Chief Signal Officer	
	Attention: SIGRD-4Q-2	
	Washington 25, D. C.	
Ar 50	Commanding Officer	1
	Attention: ORDTL-012	
	Diamond Ordnance Fuze Laboratories	
	Washington 25, D.C.	
Ar 67	Redstone Scientific Information Center	1
	U. S. Army Missile Cormand	
	Redstone Arsenal,	
	Alabama	
G 2	Defense Documentation Center (DDC)	20
	Arlington Hall Station	
	Arlington 12, Virginia	
G 31	Office of Scientific Intelligeace	1
	Central Intelligence Agency	
	2430 E Street, N.W.	
	Washington 25. D.C.	
G 68	Scientific and Technical Information Facility	1
	Attention: NASA Representative (S-AK/DL)	
	P. O. Box 5700	
	Bethesda, Maryland	
G 109	Director	1
	Langley Research Center	
	National Aeronautics and Space Administration	
	Langley Field, Virginia	
N 9	Chief, Bureau of Naval Weapons	2
	Attention: DLI-31	
	Department of the Navy	
	Washington 25, D. C.	
N 29	Director (Code 2027)	2
	U. S. Naval Research Laboratory	
	Washington 25, D.C.	

Code	Organization	No. of Copies
M 84	AFCRL, OAR	1
	(CRXR, J. R. Marple)	
	Laurence G. Hanscom Field	
	Bedford, Massachusetts	
N 73	Office of Naval Research	10
	Branch Office, Iondon	
	Navy 100, Box 39	
	F.P.O.,	
	New York, New York	
U 32	Massachusetts Institute of Technology	1
	Research Laboratory	
	Attention: John H. Hewitt	
	Building 26, Room 327	
	Cambridge 39, Massachusetts	
U 431	Alderman Library	1
	University of Virginia	
	Charlottesville, Virginia	
M 80	ESD (ESRDD, Major W. Harris)	1
	Laurence G. Hanscom Field	
	Bedford, Massachusetts	
	Remaining copies to:	
	Headquarters AFGRL, OAR (CRB, Harry Blum)	10
	Laurence G. Hanscom Field	
	Bedford, Massachusetts	

page
SUMMAEI xiii
Srotion I
SALTON, GERARD: "Some Hierarchical Models for Automatic Document Retrieval"

1. Introduction I-1
2. Retrieval Structures I-3
3. Retrieval Procedures I-12
A. The Quantitative Model I-12
B. The Hierarchical Model with Synonym Lists I-18
C. The Hierarchical Model with Trse Structure I-25
4. Sunmary I-31
SECTION II
THOMPSON, MARGAFET: MAutomatic Reference Analysis"
5. Introduction II-I
6. General Categories of a Bibliographic Reference II-I
7. Automatic Category Selection II-2
8. Conventions II-4
A. Input II-4
B. Logical II-5
9. Imput Data II-5
TABLE OF CONLENTS (continued)
SECTION II (continued)
10. Processed Table Listings II-8
11. Explanation of Table Formats II-11
A. Nine Categories II-11
B. Multiple Citations II-15
c. Descriptive THtIes II-17
12. Output Format II-17
A. Normalization II-17
B. Tables II-18
13. Summary II-19
Appendix A II-22
SECTION III
SUSSENGUTH, EDWARD H., JR.: NThe Use of Tree Structures for Processing Files
Abstract III-1
14. Introduction III-1
15. Definitions III-3
16. Binary and Serial Searches III-6
17. The Tree Allocation III-13

TABLE OF CONTINTS (continued)

page

secilon III(continued)

5. Mindmisation of the Expected Search Time III-22
6. Multidimenaional Indexing, Tries, and Trees III-35
7. Sumary III-43

Appendix. Derivation of the Results for the Optimum Expected Search Time III-4
section IV

LESK, MICHAEL: Man Interpretive Progran for Correlating
Appandix A. Program Parameters IV-10
Appendix B. Sample Program IV-12

SECTION V
$\begin{array}{ll}\text { LESK, MICHAEL: MA Comparison of Citation Data for Open and } \\ & \text { Closed Document Collections" }\end{array}$

SSCTION VI

IESK, MICHAK: MAttempts to Cluster Documents with Citation Data" VI-I
Appondix A. Manual Clustering VI-4
Appendix B. TDCMP Cluatering VI-5
Appendix C. CITED Clustering $\nabla 1-5$
Appendix D. CNO 2 Cluatering VI-6

The present report, number ISR-3, contains a record of the contiming investigation of various techniques for automatic content analysis, and for the storage and search of structured information. In particular, scme storage allocation techniques are examined which are useful in the maipulation of natural langage data; a variety of machine programs and experiments are then described for the proceseing of bibliographic citations; and two models for a completely automatic document retrieval aystem are outlined.

Section I by O. Salton outlines two autcmatic document retrieval systems besed on the usual word frequency counting procedures, supplemonted by a number of auxiliary aids which replace a complete semantic analysis of the language. The principal aids consist of a hierarchical storage arrangement between certain subject categories, a set of cross references between related subjects, and sets of related or synonymous words attached to certain subject categories. Some basic retrieval procedures which make use of these structures are outlined.

Section II by M. Thoupson includes a detailed description of a program deaigned to match bibliographic citations. The program is divided into two parts: the first part normalizes the format of each citation, and the second part porforms the actual comparison between oitations. This prograw, when completed, should be useful for the
automatic construction of citation indexes, and for the manipulation of bibliographic data in general.

Section III by E. H. Suseenguth, Jr., contains a description and evaluation of a chained tree structure useful for the storage of naturel language data. The proposed atorage organization permits a search procedure which is almost as efficient as that provided by a binary search, and yet is easily adapted to file changes, such as additions and deletions.

Sections IV, V, and VI by M. Lesk cover experiments performed with bibliographic citations for purposes of content analysis, as originally described in Section III of report ISR-2. Section IV is a description of the basic interpretive program used to perform the required matrix manipulations; the program accommodates matrices of variable size up to the capacity of the available core storage, and the aymbolic operation codes rectuce the program specification to an almost trivial operation.

Section ∇ contains an analysis of citations and index term sinilarities obtained for a closed document collection for which citations from documents outside the collection are eliminated; the date are then compared with the citation similarities obtained for the corresponding open document collection. The similarity coefficients are found to be smaller for the open document collection, but the basic results are in general comparable for both collections.

Section VI desoribes a cluotering experiment in which documents were grouped in acoordance with sinilarities in the index terme attached to the docments, and in the correaponding oitation sets. The two types of groupings are compared and are found to give dissimilar clusters for the docwment collection under investigation.

I. SOME HIERARCHICAL MODEIS FOR AUTOMATIC DOCUMENT RETRIEVAL Gerard Salton

1. Introduction

Automatic systems designed to furnish references or specific data in answer to search requests are known as information retrieval systams. If such systems are to perfom effectively, provision must be made for the execution of the following types of operation:
(a) the analysis of information items and of search requests;
(b) the generation of identifiers used to represent information content;
(c) the normalization of information identifications to conform with some classification system;
(d) the storage of information items and identifications so as to simplify access to related items;
(e) the matching of information requests with information identifications, and the search for relevant items.

In order to perform a satisfactory analysis of the information, it is generally necessary to identify the basic elements which are used to represent the information and to recognize the rules by which the basic elements can be combined into larger units. For example, if the items of information to be stored consist of chemical compounds, the basic elements are atoms and bonds, and these can in turn be combined into larger molecules in accordance with certain structural rules.

I-2

If the items of infomation to be dealt with are documents or books, the basic elements are words in the natural language, and the larger units are sentences, paragraphs or chapters. The analysis of information consists in this case of the identification of document content. Unhappily, though it is somewhat easy to isolate the individual words in a text, the interpretation of the meaning of the words is much more difficult. Furthermore, no well-defined set of rules is known by which the individual words in the language are combined into meaningful word groups or sentences. Specifically, the correct identification of the meaning of word groups depends at least in part on the proper recognition of syntactic and semantic ambiguities, on the correct interpretation of homographs, on the recognition of semantic equivalences, on the detection of word relations, and on a general awareness of the background and environment of a given utterance.

Because of the many difficulties which arise in the semantic analysis of the natural language, certain simplifications are normally introduced before automatic analyses are attempted. These simplifications take the form of restricting the permitted area of discourse, or, alternatively, of limiting the types of linguistic structures permitted in the texts to be analyzed. Occasionally it is suggested that a special unambiguous language be used in preference to the natural language.

In many cases these restrictions may not be realistic, since it may be difficult effectively to control the area of discourse, or the types of structures being used. Moreover, no simplified or artificial language is likely to prove generally acceptable. The present report is
therefore principally concerned with document retrieval methods using the unrestricted natural language for the representation of information. $A l l$ processes are based on methods which can be carried out automatically including, in particular, those dealing with the identification of document content. A complete semantic dictionary giving all contexts for each word in the language is not constructed in view of the many difficulties inherent in the required linguistic analysis. For similar reasons most of the relations between words and sentences in a text are not explicitly identified. Instead, standard word counting and syntactic analysis techniques are used in conjunction with a small mumber of table look-up operations. The construction of the required tables is further described in the following sections.

2. Retrieval Structures

Since the principal input to the retrieval system consists of texts in the natural language, the words used in a given document must of necessity constitute the basic units to be dealt with. It is also useful to identify the principal classes of relations between words; specifically two main relational classes are normally distinguished: the generic or inclusion relations, sometimes known as analytic relations, and the nongeneric or synthetic relations. The first class of relations is exemplified by the hierarchical subject arrangements provided in most Iibrary classification schedules. For example, the term "artery" may be included under "heart system," which may be included under "organs of the body," which may in turn be included under "physiology," and so on. The
second class of relations may consist of real dependence relation between two terms, such as the cause-effect relation between "poison" and "death," or it may be a formal relation, such as when two normally unrelated words are identified as equivalent in a given context, or are joined by a coordinating conjunction.

In order to perform a reasonably effective content analysis, it is thus useful to take into account not only the presence of certain words in a text, but also the principal analytic and synthetic word relations. If this is to be accomplished without exhaustive semantic analysis of each word, it is necessary to avail oneself of a number of auxiliary aids. The following structures are useful:
(a) a hierarchical arrangement between certain subject categories as provided by many library classification systems;
(b) a set of cross references between related subjects such as those specified by many classified or alphabetized word indexes;
(c) a set of related or synonymous words attached to each subject category to identify terms which may be used in similar contexts.

The hierarchical subject arrangement identifies some of the generic relations, and the cross references and lists of related words specify the dependence and equivalence relations between terms. The cross references are analogous to the "see also" references available in many library classification systems, and the related word lists are similar to the "see" references.

(a) Abstract Hierarchical Structure with Cross References and Synonym Lists

(b) Abstract Hierarchical Structure with Cross References and Criterion Trees

Hierarchical Structures

Figure 1

The complete arrangement is represented abstractly by the structure of Fig. l(a). Each subject category is denoted by one or more nodes in the structure. Inclusion relations defined for certain subjects are represented by nonhorizontal branches between the corresponding nodes, the "included" subject appearing on a physically lower level on the page than
the "including" subject. Cross references are represented by directed lines between specified nodes, and the related word lists by sets of short parallel line segments.

Consider as an example the hierarchical structure shown in Fig. 2 which includes certain terms from the field of physiology. One of the cross references connects the term "heart" considered as an organ to the term "cardiac illness" classified under pathology. It is clear from Fig. 2 that a given term may appear in various places within the hierarchical arrangement. This is true in particular when a subject may be considered from a variety of viewpoints, in which case different generic relations and different related word lists normally apply. The various subject classification provided by the Library of Congress (LC) classification system for the term "sexuality" are shown as an example in Fig. 3. Sample related word lists are included in Fig. 3 as are the LC subject indicators.

A storage arrangement of the type shown in Fig. $1(a)$ lends itself to reasonably effective retrieval procedures. Indeed, document identifications and request identifications may easily be normalized before being used by substituting for each original identifier the subject indicator corresponding to the next higher node in the hierarchical arrangement. Documents can then be classified into subject categories, and document clusters of similar documents can be generated, based not on the words originally extracted from the documents or on the terms originally chosen by a variety of more or less reliable methods, but based on the subject categories corresponding to the nodes within the hierarchies. The normalization procedure will thus make it easier to match documents and requests

Science
Physiology

I-8

Sexuality

```
1. As a social science (H),
including statistics (HB),
family problems (HQ),
social pathology (HV), etc;
    marriage, love, abortion,
        ethics, men, women,
        bed, birth, birth control,...
```

4. Medical and health aspects (R) including gynecology (RG), medical practice (RC), public health (RA), etc;
instinct, operation abortion, hygiene, contraception,...
5. From the physiological viewpoint (2), including sexual organs (QL, QM), reproduction (QP, QH), etc;
sex organs, reproduction, instinct, puberty, anatomy heredity, ...
6. From the point of view of cultural differences among races (G), including ethnology (GN) and folklore (GR); marriage, folklore, incest,...
7. Psychological and religious aspects (B), including reproduction (BF), moral theology (BX), sex worship (BL); reproduction, Oedipus complex, sex worship, emotion, passion, excitement, mystery,...
8. From the point of view of development in the literature (P), including literary history (PN), and English literature (PR); magazine, Freud, sex crimes,...
9. As an art (N), including erotica, etc.

Sample Related Word Lists with
Library of Congress Subject Indicators
Figure 3
for documents since the use of related terms will always refer back to the same subject identified either through the related word lists or by the cross-referencing process.

The retrieval process will also benefit from various other possible transformations. Retrieval requests may, for example, be broadened by replacing the original terms by new terms which appear on a physically higher level in the hierarchy, and by following up the cross references.

Contrariwise, requests may be narrowed or refined by including terms which appear on a physically lower level. The matching procedure may also be extended by considering as equivalent any term within the same list of related words, or any term within a given "distance" from same other term in the hierarchy.

It is often useful to include as part of the normal retrieval structures not only individual disconnected words or terms, but also word pairs or triples, or indeed complete phrases and sentences. A document might, for example, be identified more closely by a set of phrases than by a set of individual words. Each list of related terms included in the hierarchy of Fig. l(a) might therefore be supplemented or replaced by a "list of related phrases" which identifies the subject indicator of the corresponding node. It is convenient to represent the syntactic structure of each phrase in tree form, in such a way that each word is represented by a node of the tree and the syntactic dependencies by the branches of the tree. ${ }^{1,2}$ The trees corresponding to the various phrases attached to a given node in the hierarchy are called criterion trees, and their addition to the system gives rise to the structure of Fig. 1(b).

A sample set of related phrases is shown in Fig. 4. The examples of Fig. 4 refer to the subject "Philosophy of Education" and include phrases such as

```
liberal [education],
    [education] for *,
    [controversy] in [education],
```

$\begin{aligned} & -\quad:[g o a l](\mathrm{n} .) \\ & -\mathrm{PR}: \quad \text { of } \end{aligned}$	$\begin{array}{ll} -S & : \text { [education] (n.) } \\ -\varnothing & :[\text { world }] \end{array}$
$-P \varnothing$: [educational] (n.)	$\begin{aligned} & -\mathrm{V} \$ \text { [desirability] } \\ & -\mathrm{V}:[\text { assist] (V.) } \end{aligned}$
1...A: (adj.)	
1...: [education], means	
-A : (adj.)	- : [controversy]
- : approach (n.)	-PR : in, about, ever
-PR : to	$-\mathrm{P} \varnothing$: [education] (n.)
$-P \phi:[$ ecucation] (n.)	$\begin{array}{lcc} - & : & \text { [development }] \\ \text {-PR }: & \text { of } \end{array}$
- : [education] (n.)	
-PR : for	$-P \emptyset$: [ability], [knowledge] (n.)
-PøPM: -	$-\mathrm{Q}: \text { [education] }$
```-A : Iiberal (adj.) - : [attempt], [suggestion] (n.), [education] (n.)```	$-Q \quad: \quad(\mathrm{n} .)$
	$\begin{aligned} & -\quad \text { [education] (n.) } \\ & -P R: \text { for. in, of } \\ & -P \phi: \text { [ability] } \end{aligned}$
-S : [education] (n.)	
-V\$ : [desirability]	-A : vocational
-VDVR:	- : guidance, [education] (n.)
-VDV : - (v.)	-V : [education]
-S : [education] (n.)	-VPR : for
$-V \$: \quad \text { desirability] }$	-V : [education]
-фVR : to	-VPVR: to
-OV : - (v.)	

## Sample Criterion Trees for

 "Philosophy and Aims of Education"Figure 4
and so on. The bracketed items represent special synorym classes or sets of related terms, and the asterisk stands for any arbitrary word. For the class [education] it is thus possible to substitute any one of a number of terms such as "education", "school", "university", "college", "academy", "lecturing", "explaining", and so on.

As a result, each one of the criterion phrases of Fig. 4 represents a number of actual word strings related to one of the subject indicators in the hierarchy. The individual words of each phrase are listed in Fig. 4 with a special syntactic code, and the set of codes corresponding to any given phrase can be used to represent the syntactic tree structure of the phrase. Furthermore the set of syntactic codes can be produced automatically as output of a syntactic analysis routine, and it is possible automatically to transform the tree structure into the code structure and vice-versa. ${ }^{3}$ The terms "criterion phrases" and "criterion trees" can therefore be used interchangeably.

The criterion trees can be used in conjunction with syntactic analysis techniques for the classification of documents. It is necessary to obtain only the syntactic tree form of the sentences in a document, and to match these analyzed document excerpts with the criterion trees. Wherever a match occurs, the subject indicator attached to the corresponding node of the hierarchical structures is assigned to the given document. This will be further detailed in the next section.

The techniques of language normalization and of request alterations which were previously mentioned in connection with the model of Fig. 1(a) can be used unchanged with the tree structures of Fig. I(b). In addition to the generic and cross-reference substitutions previously described. the model of Fig. $l(b)$ also makes possible syntactic substitutions of various types before search requests are matched with document identifications. Various kinds of syntactic equivalences may, for example, be defined; phrases or words exhibiting specific syntactic indicators may be ignored in the matchinf process; and completely unspecified nodes may be admitted as part of the tree structures.

In the next section, machine programs are outlined which make use of the retrieval structures of Fig .1 for the classification of information, for the generation of document clusters, and for the matching of document identifications with search requests.

## 3. Retrieval Procedures

A. The Quantitative Model

It is well known that word frequency counting procedures are being used extensively for the identification of document content and for a variety of other documentation tasks, including in particular, automatic indexing, automatic abstracting and the generation of word and document associations. 4 The basic procedure consists in performing a frequency count of all the words in a document, rejecting certain high-frequency function words, such as prepositions and confunctions, combining varying forms of words
with similar stems, and using the remaining high-frequency words to represent the document content. Each document is thus identified by a epecific set of high-frequency words $W_{1}, W_{2}, \ldots, W_{n}$.

It is often desirable to use word groups instead of individual words for the identification of document content. Such word groups are generated by identifying those sets of words which tend to occur jointly in similar contexts. More simply, the assumption is made that if two high-frequency content-words co-occur in several sentences of a text, they are related in some sense, and may therefore be grouped.

A typical method for the generation of word groups is:
(a) construct a word-sentence incidence matrix $C$ which lists content words against sentences; matrix element $C_{j}^{i}$ is defined to be equal to $n$ if and only if sentence $j$ contains word $i$ exactly $n$ times;
(b) define a coefficient of similarity between words based on frequency of co-occurrence between pairs of words in the sentences;
(c) generate a word-word similarity matrix $R$ which exhibits all similarity coefficients between pairs of content words;
(d) define word groups corresponding to those word pairs whose associated similarity coefficient is greater than some stated tnreshold value.

A typical word-sentence incidence matrix $C$ is shown in Fig. 5(a).
To obtain a coefficient of similarity between two words based on the
frequency of co-occurrence in the various sentences of a document, it is only necessary to perform a pairwise comparison of the corresponding rows of $C$. A useful coefficient of similarity between rows of a numeric matrix is the cosine of the angle between the corresponding m-dimensional vectors. 5 The similarity coofficients can be displayed in an $n \times n$ symmetric word similarity matrix $\underline{R}$, where the coefficient of similarity $\underline{R}_{j}^{i}$ between word $W_{i}$ and word $W_{j}$ is

$$
\underline{R}_{j}^{i}=\underline{R}_{i}^{j}=\frac{\sum_{k=1}^{m} C_{k}^{i} C_{k}^{j}}{\sqrt{\sum_{k=1}^{m}\left(G_{k}^{i}\right)^{2} \sum_{k=1}^{m}\left(C_{k}^{j}\right)^{2}}}
$$

A typical word-similarity matrix $\underline{R}$, corresponding to the wordsentence matrix $\underline{C}$, is shown in Fig. $5(\mathrm{~b})$. Since $\underline{R}$ is symmetric, it is necessary to scan only the right (or left) triangular part in order to detect word pairs withlarge similarity coefficients. The word grouping procedure may be refined by various methods, including in particular:
(a) the use of a normalizing procedure which deletes word suffixes and combines the various forms of words with identical stems;
(b) the use of a dictionary of synonyms or thesaurus, which would permit the replacement of each high-frequency word by the corresponding thesaurus head;
(c) the generation of complete phrases, instead of only word pairs, by extracting from the text the related word pairs together with their context.
*.

(a) Typical Word-Sentence Incidence Matrix $\underline{C}$ ( $\underline{C}_{j}^{i}=n \Leftrightarrow$ Sentence $S_{j}$ contains word $W_{i}$ exactly $n$ times)

$$
\begin{array}{c|cccc}
\begin{array}{c}
\text { Word } \\
\text { Word. }
\end{array} & W_{1} & W_{2} & \cdots & W_{n} \\
\hline W_{1} \\
W_{2} \\
\vdots \\
W_{n}
\end{array} \left\lvert\,\left(\begin{array}{llll}
R_{1}^{I} & R_{2}^{l} & \cdots & R_{n}^{l} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
R_{1}^{n} & R_{2}^{n} & \cdots & R_{n}^{n}
\end{array}\right)=\underline{R}\right.
$$

(b) Typical Word-Word Similarity Matrix $R$

$$
\left(\underline{R}_{j}^{i}=R_{i}^{j}=\sqrt{\sum_{k=1}^{m} C_{k-C_{k}^{i}}^{\sum_{k=1}^{m}\left(C_{k}^{i}\right)^{2} \sum_{k=1}^{m}\left(C_{k}^{j}\right)^{2}}}\right)
$$

Matrices Used for Word Orouping
Figure 5
.

If it is desired to generate document associations or document clusters instead of word associations, the same procedures can be used with some slight modifications. Instead of starting with a word-sentence matrix C, as shown in Fig. 5(a), it is now convenient to construct a word-document matrix $\underset{F}{ }$, listing frequency of occurrence of word $W_{i}$ in document $D_{j}$. Specifically, $\underline{F}_{j}^{i}=n$ implies that document $D_{i}$ contains word $W_{j}$ exactiy $n$ times.

Document similarities can now be computed as before by comparing pairs of rows, and obtaining similarity coefficients based on the frequency of co-occurrence of the content words included in the given document. ${ }^{5}$ This procedure generates a document-document similarity matrix which can in turn be used for the generation of document clusters, for example, by defining a cluster as including all those documents whose gimilarity coefficients with all other documents in the same cluster exceed a given threshold value. ${ }^{6}$

Consider now the problem of document retrieval in the present context. Specifically, it may be desired to identify those documents whose lists of high frequency content words exhibit similarities with the terms used in a given search request. The preceding model can then be used unchans ad by adding to the $m \times n$ document-word matrix $\underset{F}{ }$ a special row $\underline{F}^{m+1}$ which includes the terms used in specifying the search request. Specifically, $F_{k}^{m+1}$ is set equal to $W$ if term $W_{k}$ is used in the search request with weight $w$; if word $W_{k}$ is not used in the given search request $F_{k}^{m+1}$ is set equal to 0 . If no weights are specified by the requestor, the values of the elements of row $\underline{F}^{\mathrm{m}+1}$ are of course restricted to 0 and 1 .

A typical document-word matrix F of dimension $(\mathrm{m}+1) \times \mathrm{n}$ is shown in Fig. 6. To obtain the set of all "relevant" documents, it is only necessary to compute the similarity coefficients between row $\mathrm{F}^{\mathrm{m}+1}$ on the one hand, and each of the other document rows $\underline{F}^{1}, \underline{F}^{2}, \ldots, \underline{F}^{m}$, on the other. The procedure previously outlined can be followed, in that the set of relevant documents can be defined to include all those documents whose similarity coefficients with the search request exceed a given threshold value. The terms used in the search request can also be normalized by the thesaurus look-up method described previously for the high-frequency text excerpts.

## Document-Term Matrix F including Extra Row

 Specifying Search RequestFigure 6

The complete procedure is summarized by following the simple arrows between the boxes of Fig. 7. The processing specified for the search requests is seen to be parallel to that used for the documents themselves. Furthermore, the machine program which identifies word clusters by row correlation of the word-sentence incidence matrix, can be used unchanged for the identification of document clusters, and also for the identification of relevant documents by substituting the document-word matrix for the word-sentence matrix.
B. The Hierarchical Model with Synonym Lists

The quantitative model is besed primarily on the words which occur in the individual documents: documents are identified by sets of highfrequency words; they are grouped or clustered by using similarities between these sets of high-frequency words; and they are retrieved by comparing words extracted from search requests with high-frequency words extracted from documents.

In contrast, now consider a system which includes semantic associations as represented by the structure of Fig. $1(a)$. Each node in the hierarchical structure represents a subject category, and a given word occurring in a text may therefore be associated directly with one or more nodes in the hierarchy if it identifies such a subject category. More commonly, a word occurring in a text will be associated with one or more of the related word lists which are attached to the nodes of the hierarchy.


```
Key
\(\longrightarrow\) quantitative method
\(\Longrightarrow\) use of hierarchy with synonym lists \(\Longrightarrow\) use of hierarchy with syntactic analysis
```

Simplified Procedures for the Generation of Document Identifications, Document Clusters and Relevant Documents

Given a high-frequency word occurring in a text, the etructure of Fig. $I(a)$ can be used to identify the following types of semantic associations:
(a) the subject category or categories with which the given word is immediately associated;
(b) the subject category or categories which are generically superior, that is, located on a level inmediately above, and linked to the nodes identified in part (a);
(c) the subject category or categories which are generically inferior, that is, located on a level immediately below, and linked to the nodes identified under (a);
(d) the first-order cross references, that is, all subject categories directly cross-referenced by the nodes identified in part (a);
(e) the set of all related words or phrases associated with the nodes identified under (a)

It is clear that the procedure for document identification, clustering, and retrieval can be improved considerably over those which are possible with a strictly quantitative model. Consider first the document identification: the word frequency lists identifying the various documents can be replaced with subject category lists by a look-up procedure in the hierarchical structure, and the corresponding subject category indicators can be arranged in frequency order to identify the documents. The procedure is described by means of an example.

Figure 8 contains a list of high-frequency words and phrases for a sample document. When each of the high-frequency words is looked-up in a hierarchical structure of the type shown in Fig. $1(a)$, and the corresponding category list is produced as shown in Fig. 9, it may be noticed that a total of 15 different subject categories are identified. These 15 categories, in turn, lead to 7 main subject headings by substitution of generically superior terms from the hierarchy: sociology, medicine, science, military science, technology, philosophy, and agriculture. The subject categories and the corresponding codes shown in Fig. 9 are taken from the Library of Congress classification schedules.


High Frequency Words or Phrases in Sample Document ${ }^{\dagger}$
Figure 8

[^0]I-22

H (Sociology)	HV Yount Men (social pathology)   HQ Youth (family, marriage, women)   HF Suggestion Systems (commerce)   HQ Female   HQ Men
R (Medicine)	RC Heart Attack (medical practice)   RC Blood Diseases (medical practice)   RC Sex Hormones (endocrinology)   RS Medical Chemistry (pharmacy)   RB Blood Chemistry (pathology)   RM Stimulants (therapeutics)   R Laboratory Animal (research)
Q (Science)	QP Cholesterol (physiological chemistry)   QP Blood (physiology)   QP Blood Chemistry (physiology)   QP Sex Hormones (physiology)   QP Laboratory Animal (comp. physiology)   QP Cholesterol (chemistry)   QH Physical Research (physics)   QP Reticulo-Endothelial System (physiology)   QL Laboratory Animal (zoology)
U (Military Science)	UG Attack (military engineering)
T (Technology)	TA Leveling (engineering)
B (Philosophy, Religion)	BJ Young Men (ethics)
$S$ (Agriculture)	SF Laboratory Animal (animal culture)

Subject Categories Obtained for Sample Document
Figure 9


#### Abstract

The subject heading "military engineering," for example, is obtained by cross reference from the high-frequency word "attack," similarly, "agriculture" is obtained by cross reference from "laboratory animal." Four of the seven major subject headings can be eliminated because they are identified with insufficient frequency. The remaining


major subject headings are "science," "medicine," and "sociology," respectively, and the principal subject categories in decreasing frequency order are

> physiology, medical practice, family and marriage,
and so on.
The list of subject categories produced by the look-up procedures in the hierarchical structure can be used not only for purposes of document identification, but also for document clustering and retrieval. Specifically, lists of high-frequency words or phrases together with the relevant subject categories are obtained as before from the hierarchical structure for a given document collection. These phrases are then listed in a document phrase matrix $G$, similar in nature to the document-term matrix F of Fig. 6. However, whereas each applicable term is listed only once and is thus represented by a single matrix column in F , all semantic contexts are provided for each phrase in $G$ by listing the phrases as many times as there are applicable subject categories. A given phrase may therefore be represented in $\underline{G}$ by several matrix columns. Thus if matrix element $\underline{G}_{j k}^{i}=n$, it is implied that a given phrase $P_{j k}$ occurs $n$ times in document $D_{i}$; the first subscript attached to the phrase refers to the phrase muber, and the second to the subject category of the phrase. Figure 10 shows a typical document-phrase matrix $\underline{Q}$ in which the phrases have been ordered in such a way that all items belonging to one and the same subject category appear in adjacent matrix columns.

I-24


Document-Phrase Matrix with Specified Subject Categories
Figure 10

Document clusuers can now be generated by using the procedures previously described for the quantitative model, except that matrix $\underline{Q}$ is substituted for F. Specifically, a document-document similarity matrix is obtained by pairwise comparison of rows of $\underline{G}$, and clusters of documents are defined as a function of the document similarity coefficients as before. The procedure for document retrieval is also parallel to that previously described in that an extra row specifying the search request is added to the phrase-document matrix $\underline{G}$. Row $\underline{G}^{m+1}$ is then compared against all other document rows to obtain an n-dimensional vector of similarity coefficients, and documents with sufficiently large coefficients are considered to be relevant to the given request.

The request vector $\underline{a}^{m+1}$ is constructed by substituting for the words used in a given search request the category indicators and first-order
cross references found in the hierarchical structure, and by labeling the appropriate matrix elements in row $\underline{G}^{m+1}$. The value of the individual elements may be either 0 or 1 , or alternatively a weight $w$ may be assigned as previously explained. The row correlation program which is used to identify the relevant documents, as well as the word and document clusters is the same as that used for the quantitative model.

The complete procedure is again summarized in the chart of Fig. 7 where the double arrows are to be substituted for the simple arrows wherever an alternate path is provided.

## C. The Hierarchical Model with Tree Structure

The preceding model, even though providing for the addition of semantic associations by introducing new words related analytically or generically to the ones originally used in search requests and documents, is still primarily based on the word as a unit of information. In particular, two documents are assumed to be related, if the words originally contained in them, or their respective substitutes, can be matched. The same is true for the matching of requests with documents. Phrases, rather than words, can of course be used, as illustrated by the document-phrase matrix of Fig. 10. However, in the hierarchical look-up process used up to now it is assumed that two phrases can be matched if they contain one, or two,... or n words which are identical (except for the permitted semantic substitutions). The syntactic structure of the phrase itself has not so far been taken into account; this makes it possible to match distinct concepts such as for example, "school children," "children in school," and "school for children."

The internal structure of the phrases can be utilized, and a more accurate matching process can be obtained by providing syntactically analyzed phrases and requiring matches of the individual words as well as of their syntactic structure. This is accomplished by using the model of Fig. $1(\mathrm{~b})$ in which the sets of related phrases or criterion trees are listed in syntactic tree form. The principal modifications introduced in the over-all process by the structural analysis are shown in Fig. 7 by means of besee interconnected by triple arrows.

The process starts as before by a word frequency count and a normalization procedure designed to combine the varying forms of words with similar stems. Excerpts containing a large number of high-frequency words are then extracted from the original documents. Instead of extracting only individual words, it is convenient to use larger units, such as clauses or complete sentences. A syntactic analysis is then performed of both the search requests and of the extracted parts of the documents, and the analyzed output is represented in tree form. $1,2,3$ Instead of physically manipulating the two-dimensional tree form, it is convenient to attach to each word of the text a syntactic code which exhibits the syntactic function of the given word and also the syntactic dependency structure. The principal words of the sentence, such as main verb, subject, object, and so on, are assigned short strings of code characters, and the remaining words which are syntactically dependent on them are assigned longer strings. Thus, the length of the character string attached to a given word signifies "depth" of syntactic dependence and therefore depth of location in the corresponding tree structure. ${ }^{3}$ A sample excerpt
is shown in column 1 of Fig， 11 and the corresponding syntactic character strings are given in column 3 of Fig． 11.

1	2	3	4	5
Excerpt from Original Text	Subject Category	Coded Syntactic Tree Structure	Matching Code String	Matching Criterion Tree
Many		1s		
of		1SPQ		
the		$1 S P \chi_{\text {A }}$		
new		1SP¢A		
citizens	［person］	$15 P \varnothing$		
began		1 V		
to		IVPR		
perceive	［consider］	1VFV		
the		1VF $\varnothing$ A		
schools	［education］	1VFD	－V ：	
as		IVPVPR	$-\emptyset:\}=\{-Q:$	［education］
a		IVIVPOA	－PR：$\}=\left\{\begin{array}{l}\text {－Q：}\end{array}\right.$	（n．）
means	［means］	IVPVP¢	$-P \phi: J$	
by		1VPVPф7VPR		
which		1VPVPめ7VPØ		
their		1VPVPめ7SA		
children	［person］	1VPVPめ7S		
might	［desirability］	IVPVPめ7VX		
have		IVPVPめ7V		
a		1VPVPめ7		
fuller		1VPVPф7¢		
life	［world］	IVPVPめ7 ${ }^{\text {d }}$		
－		1.		
Hence		1VD		
		1.		
in		IVPR		
addition		1VPめ		
to		1VPめPR		
educating	［education］	1VP $\varnothing \mathrm{P}$ ¢	－：	［education］
for		1VPめPQGPR		for
intelligent		1VPфP¢GPDA	－PR ：	（n．）
citizenship	［world］	1VPфPEAPめ	－Pф：	

Sample Tree Matching Output
Figure 11

Following the syntactic analysis, the words and associated code strings extracted from documents and search requests are compared with the criterion trees included in the hierarchical structure, and the semantically associated information, including cross references and generically related items, is extracted from the hierarchy whenever a match is found. The operation required to find matches between word strings on the one hand, and criterion strings on the other, is however not as simple as the word matching procedure used before. Indeed, only a small mumber of general criterion trees are provided, each of which may be matched with a multiplicity of actual word strings. This is achieved by associating general terms, such as subject categories, with the nodes of the criterion trees, and by leaving the syntactic structure of the criterion trees largely unspecified. "Variable" characters are therefore introduced in the syntactic code strings associated with the criterion trees, and each "variable" character can replace a specified set of "fixed" syntactic characters of the type shown in Fig. 11. The dashes used in the code strings of the criterion trees shown in Fig. 4 are examples of such variable characters.

In order to find a match between a given word string extracted from a document and its associated sequence of fixed syntactic codes, and a given criterion string and its associated sequence of $f$ ixed or variable code characters, the following operations are therefore necessary.

> Each word in the word string must be looked up in the hierarchical structure, and replaced by the corresponding subject heading (this operation is equivalent to the thesaurus look-up described in connection with the quantitative model).
> Each variabie code character associated with each term in the criterion tree must be replaced by a sequence of fixed characters.

A match is then obtained between a given word of a word string and a given term of a criterion string if the associated subject headings as well as the associated fixed character strings are identified. Furthermore, a complete criterion tree will match a complete sentence extracted from a text if there exists a sequence of fixed characters such that each term in the criterion tree matches at least one word in the sentence in the same linear order.

Given any sentence, it is necessary to test in order all the criterion trees which contain any of the relevant subject categories. Various strategies are possible for matching sentences (word strings) and criterion trees. The most immediate method consists in taking the first term in the first criterion tree and comparing it in turn with each subject category associated with the words in the sentence until a match is found. The next term is then taken and matched against all the subsequent words in the same sentence, and so on, until either the terms in the criterion tree or the subject categories associated with the sentence are exhausted. If the sentence is exhausted before the criterion
tree, no match can possibly exist, and the next criterion tree must be processed. If the criterion tree is exhausted before the sentence, a match may or may not exist. The procedure will in general permit the matching of long sentences with short criterion trees, since many of the words in a sentence are disregarded in the process. Thus, it is always possible to disregard subordinate clauses, adverbial or prepositional phrases, or any other sentence parts which may not be included in any given criterion tree.t

The strategy used to assign sequences of fixed code characters to the variable characters associated with the criterion trees is similar to the previously described method for matching word and criterion strings. The variable characters are processed from left to right and are initially assigned the shortest possible fixed character string3. This process is continued until either the given character string is exhausted or it is determined that the complete assignment of fixed character strings to all variable characters is impossible. In the latter case a new assignment is tried by using successively longer fixed strings to replace the variable ones. As an example, the fixed character string " $1 \mathrm{SP} \boldsymbol{\beta}_{\mathrm{A}}$ " matches the string "-S*A", by replacing the variable characters "-" and "*" respectively by the fixed characters " 1 " and "Pø".

Two matches are found when the word string illustrated in Fig. 11 is compared with the criterion trees of Fig. 4. The subject headings which replace some of the words in the sentence are shown in column 2, and

[^1]the matching code strings and criterion trees are shown in columns 4 and 5 of Fig. 11 respectively.

Following the look-up procedure in the hierarchical structure and the comparison of sentences with criterion trees, the item-sentence and item-document incidence matrices are constructed as before. Each item is now a criterion tree instead of a single word, and a given sentence or document is characterized by the matching criterion trees contained in it. The remainder of the procedure outlined in Fig. 7 is also followed unchanged in that the item-item similarity matrix is used to generate item clusters; the document-document correlation matrix similarly generates document clusters, and the item-document matrix augmented by the request vector determines documents which are relevant to a given search request.

The complete process can of course be kept more or less flexible by assigning completely variable code strings to the terms of the criterion trees, or alternatively by not permitting any variable code characters at all. Similarly the criteria used to match word strings with criterion strings may be made more or less restrictive.

## 4. Summary

Three models have been described for automatic document retrieval systems. The first one is based largely on the words used in the documents and search requests. The second adds semantic associations by introducing a hierarchical structure consisting of generic inclusion relations, cross references, and lists of related words. Finally, the last model also exhibits syntactic associations through the introduction of syntactic tree structures.

The programs needed for document clustering and retrieval become increasingly complex as semantic associations and syntactic structure are taken into account. The following programe are specifically required:
(a) itemization of linear text;
(b) normalization of word forms by suffix cutoff and condensation of words with identical items;
(c) word frequency count;
(d) extraction of words, phrases, or sentences including high-frequency words;
(e) thesaurus look-up process to replace a given item by the corresponding subject heading;
(f) construction of item-sentence and item-document incidence matrices;
(g) row-correlation process to obtain word and document clusters, and to compute a relevance index for documents.

The hierarchical models with synonym lists and criterion trees are based in addition on the following programs:
(h) a hierarchical look-up proce-s designed to identify generically superior or inferior items, crose-referenced items, and lists of related items;
(i) a syntactic analysis procedure which furnishes the syntactic tree structure of each sentence;
(j) a tree matching process which compares a fixed tree structure representing a word string with a variable structure representing the criterion trees.

A useful comparison of the three models is difficult to perform, since the usual criteria of efficiency including time of execution and internal computer storage requirements are obviously not sufficient by themselves. Some measure of goodness or accuracy of retrieval is also needed. If speed and storage requirements alone were of importance, the
quantitative model would clearly be most efficient. Comparative tests: with actual document collections are needed to determine whether the more complicated hierarchical look-up and syntactic tree matching processes provide a sufficient improvement in retrieval accuracy to warrant the cost in both time and equipment required by the hierarchical models.

## Acknowledgment

This study was supported in part by the Air Force Cambridge Research Laboratories and in part by Sylvania Electric Products, inc.

## REFERENCES

1. Plath, W., "Automatic Sentence Diagramming," First International Conference on Machine Translation and Applied Language Analysis, National Physical Laboratory, Teddington (September 1961).
2. Salton, G., "The Manipulation of Trees in Information Retrieval," Communications of the ACM, Vol. 5, No. 2 (February 1962).
3. Kuno, S., "Sentence Structure Diagramming," Mathematical Linguistics and Automatic Translation, Reports to the National Science Foundation by the Computation Laboratory of Harvard University, Cambridge, Massachusetts, NSF-9, Sec. I, part 6 (to appear).
4. See for example, Luhn, H. P., "Auto-Encoding of Documents for Information Retrieval Systems, " in Modern Trends in Documentation, M. Boaz (editor), Pergamon Press (1959).
5. Salton, G., "Same Experiments in the Ceneration of Word and Document Associations," Fall Joint Computer Conference, Philadelphia (December 1962).
6. See also, Needham, R.M. and Parker Rhodes, A.F., "The Theory of Clumps," Cambridge Language hesearch Unit, Reports ML 138-139 (1960).
7. Sussenguth, E.H. Jr., "Graph Isomophism and Subgraph Testing Procedures," unpublished.

188-3 April 1963

1. Introduction

With the development of versatile character recognition equipment, it beocmes inoreasingly possible to use as basic machine input modtted runtag toxt as it appearis in books, wagasines, or journals. Bibliographic references or citations constitute an integral part of most technical articles, and mothods must be available for processing such bibliographic citations automatically. In particular, it becomes necesaary to identify similar, or equivalent citations, and to rearrange a referance list into some specified order. The difficulties ariaing in this connection are largely due to the extrene variability in format and to the lack of standardisation which prevails in the publication of citations.

The present progran takes bibliographic citations and automatically arranges them into a atandard format, in such a way that the various parta of the citation are unambiguously identified. These atandardised citations can later be processed by sorting and matching prooedures to identify aimilar oitations and to effeot various reariencemente.

## 2. General Categoriea of a Bibliographic Reference

411 reforencen oan be manually mparated into nine or fower general oategories. The preant progran handies this eeparation automatioally with

II-2
a miniman of manual preparation of the input data. The reference oategories to be recognised are as followss
(a) author(s), including initial(s), Jr., III, etc.,
(b) title of paper or book,
(c) title of journal,
(d) volune number,
(o) isaue number,
(f) pege number,
(g) name of publisher,
(h) oity of publisher,
(i) sear of publication.

All given input information is classifled under one of these headings; however, one or more of these categoriea may be misadng from a legitimate reference.

## 3. Automatic Catogory Selection

The first part of the progran reads in the complete data from a single reference. Fields are pieces of data information ending with some punctuation maxk. Categories contain one or more fields onding with some koy punotuation mark. Categories are identifiod and formed in the order desoribed in Part 2. Irom the complete reference source coneecutive fielda are exanined to dotemaine if the data fit into the desoription of the category being formed. It may happen that a part of a category is read and further flelds are necesmary to complete the category.

In the author oategory; certain dofined formats are likely to begin the oftation. The nost common formata are teated first inch as one or two initials precoding the authors last name, or the authors last nave followed by one or two initials. The more aubtle, leas frequentiy occurring formats are then tested; in particular in a seriea of last nawe of authors, the word "ARD" is searched for immodiately before the final author.

4 typloni mathor eabegory formation might bet first fiela contains an initial, "I."; the second field contains the authors last mane, "rains; the third field contains the title of a papor, "Compaters.......Constants." Fields one and two are colleoted, put in a atandardised format, and ontered in the Author Table as "MMYY, I." Field three did not contain "Jr." or anothor author. Therefore this is the firet data field coneidered in formulating the next category. If more data are necessary for the second category, additional fields are read from the complete reference source. This procedure continues until all nine categories are formod or it is deterained that one or more of the oategories are vacuous. If a category identifier is found before the teating occurs, the pertinent data are identified and saved, until that particular category is boing formed.

In certain cases, special words are also used to help identify the category to which a field belonge. For exmple, "vol" identifiea the data with the volume mumber category.

If a blank word is read or all nine category tablee inolude at leat one ontry, the referonce has been fully procesced. The program

II-4
reoyales to procese the mat referpace in the ane mamor. See appendix 4 for more detailed flow diagrans of ontire progran.
4. Convent1ons

Two typen of rentrictions are required: input and logical.
A. Input

To digtinguish urmarked munorical fields and to overcome the linitations of the character eet available on the IBM 026 keypunch machine, the following conventions are imposed on the input data:
(a) dollar sign (\$) is inserted before any boldrace. This aign indicates that all data up to the next panctuation mark are entered in the Folue Table;
(b) asterick (*) roplaces colons and senicolons. This will distinguish an othorwise unnarked (absence of special words, "voln otc.) volune mamber and isaue muber from an urmariced page number. If there is a comen in the body of a title, the title categery uaually ands with a colon or seaicolon. The replacement of the colon or senicolon by an asterisk will pernit complete title eelection in this aituation;
(o) a sories of two or more minus signs (---) replaces a dach. Only the 11-punch mime sign will be reoognised;
(d) aingle (1) or double (I') apostrophe replaces a quote;
(o) Roman mumarale are converted to arabic numbers.
B. Logioal

The known logical linitations within the progral itcolf are ae followe:
(a) there must be an author and/or a paper (book) title for each reforence proceseed;
(b) editors are treated as authors;
(c) translators, when given, are ignored. The original author(s) only are processed;
(d) occasionally a cited journal artiole is referred to only by page number, rather than by the actual title of the article. This journal title is listed in the "Title of Paper (Book)" Table. Yo entry is made into the "Title of Journal" Table. The journal title is substituted for the misaing paper (book) title;
(e) a leading long dash beginning a reference indioates that this oitation has the ane author as the oitation imediately preceding. For this reason, the firet reference to be proceased oannot begin with a daeh.
5. Inpat Data

The following list represents ane typical input examples as
thoy appear after manual pre-editing. The titles have beon ahortened whore a series of dots ocours.

1. Cook, C. B., "Modification ... Forms," Proo. 1958

Matl. Eleotronios Conf., pp. 108-1067.
2. Hildebrand, F. B. * Introduction to Mumerical

Analysis. MoGraw-H11l, Mow York, 1956.
3. Ceodl Hantings, Jr., Approxinations ... Computers.

Princoton Univeraity Prese, 1955.
4. S. Sobechter (8d.), Muclear ... Mewsletter,

New York Univeraity.
5. Cesaro, Ernesto * Rinleitung ... Rechning;
translated by G. Kawalewaki. Toubner, Loipsig, 1922.
6. Memo from R. B. Reddy to A. G. Carlton, The

Computer ... Constants, JHU Applied Physica
Laboratory, April 6, 1954.
7. Copi, I. M., Hlgot, C. C. and Wright, J. B.,

Realisation ... Jivents. J. Assoc. Comput. Mach. 5 (1958), 181-1\%.
8. Courant, Freidricks, Lewy, G. B., Uber ... Physio, Math. Ann. 100, 32 (1928).
9. British Association for the Advanconont of Soionce, Mathomatioal Tables, Cambridge Univ. Press, 1952.
10. ------, Generation ... Conputers. Math. Tables ...
aids Comput. 11 (1957), 255-257.
11. Inoyalopaedia Britannica. 24 vols. 1944.
Res. 8, 730-733 (1960).
13. P. M. Morse and H. Feshback, Methods ... Physics, Past 1 and 2, MoGraw-Hill, Mew York, 1953.
14. V. Vather and W. Sangren, "Abstracts - MR Codes,' Commuications ... Machinery, 2*1 (Januery, 1959).
15. Aitken, A. C., Determinants and Matrices.Ednburgh * Oliver and Boyd, 1948.
16-17. P. A. M. Dirac, Proc. Roy. Soc., 1 133, 60 (1931); Phys. Rev. 74, 817 (1948).
18-19. Bosenblatt, F., (a) The Perception ... Syatems. Cornell sero. Lab., Inc., Report Ho. VG-11\%-G-1(1958). (b) Two Theorems ... Perception. CornellLero. Lab., Inc., Report No. VG-11\%-G-2 (1958).
20-21. P. A. M. Dirac, Proc. Roy. Soc., 4 133, 60 (1931) * $8 e e$ also F. London, Superfluids, Wiley, Hew Iork, 1950, Vol. 1, p. 152.
22. Bickley, W. G., See Tomple and Bickley
23. Samuelson, P. A., 'Iterative ... Roots,' Journ. ofMath. and Phys. 28 (1949), 259-301.
24. ----e, 'A Simultancous ... Equation,' ibid. 242(1950).
25. Letting B111s Pay Themselves, Business Week,October 27, 1956.
TABLI 1 (continued)

## 6. Processed Table Listings

The input examples given in Part 5 are listed in Table 2 as they appear as the result of the atandardisation procedure.


Category Tables After Processing

II-9
4

Author(s)	Title of Paper (Book)	Title of Journal	Vol. Ho.	$\begin{aligned} & \text { Ismad } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$	Publishar	City	Year
8. Courant Friedriaks Iny	Über ... Phyaik	Math.   Annals   100	32					1928
9. Britich Ascoalation for the Advancement of Soienoe	Mathonatical Tables					Cambridge Oniveraity Presa		1952
10. Britich	Gomaration	Hath.	11		255-			1957
Ancu00iation for the Advencement of Saience	Computers	Tables ... Aids Comprot.			257			257
11.	Bayclopreada Britamica		24 vols.					1944
12. Acsel, M. A.	Befect:... Priorlties, The	$\begin{aligned} & \text { Opas. } \\ & \text { Res. } \end{aligned}$	8		$\begin{aligned} & 730- \\ & 733 \end{aligned}$			1960
13. Morse, P. M. Peshback, H .	Mothods ... Phymics		Part 1 and 2			$\begin{aligned} & \text { Mograw- } \\ & \text { Hill } \end{aligned}$	Yow	1953
14. Mathor, V. 8ageren, \#.	Abatracta II A Codes	$\begin{aligned} & \text { Conmini- } \\ & \text { cationa } \\ & \text { Machinery } \\ & \text { Ma. } \end{aligned}$		1				$\begin{aligned} & 1959 \\ & \text { Jamary } \end{aligned}$
15. Aitken, 4. C.	Determinants and Matrices					011ver and Boyd	$\left\lvert\, \begin{aligned} & \text { Ddin- } \\ & \text { bargh } \end{aligned}\right.$	1948

TABLI 2 (contimed)

II-10

authore(s)	$\begin{aligned} & \text { Title } \\ & \text { of Paper } \\ & \text { (Book) } \end{aligned}$	Title of Journal	Vol. No.	$\begin{aligned} & \text { Iswue } \\ & \text { No. } \end{aligned}$	Page	Publishar	Cits	Tear
16. Dirao,		Proc. Doy. Soc.	123	60				1931
17. Dirac, P. $\mathbf{L .}^{\text {. }}$		Phys. por.	74	817				1948
18. Pocenblatt,	Perception ... Syitones,		Beport 10. Va 1196-6-			$\begin{aligned} & \text { Cornell } \\ & \text { lero. Lab., } \\ & \text { Inc. } \end{aligned}$		1958
19. Bosenblatt, F.	170 Theorema -.. Peroeption		Roport 70. 70 11\%62			Cornell Aero. Lab., Inc.		1958
20. Dirac,		Proc. Doy. Soc.	$133$	60				1931
21. London, I.	Suporfluide		1		1152	Wiley	Yow	1950
22.								
23. Sameleon, P. A.	Iterative ... Doots	Journ. of Math. and Phys.	28		$\begin{aligned} & 259- \\ & 301 \end{aligned}$			1949
24. Samueleon,	$\begin{aligned} & \text { Siml- } \\ & \text { tanecus } \\ & \text {-." } \\ & \text { Equation, } 4 \end{aligned}$	Journ. of Math. and Phys.	$2 / 2$					1950
25.	$\begin{aligned} & \text { Iotting } \\ & \text { Bills Pay } \\ & \text { Thameelres } \end{aligned}$	Buadness Feek						$\begin{aligned} & 1956, \\ & \text { Octobers } \\ & 27 \end{aligned}$

TMBLI 2 (contimaed)

1 prolininary outpart is plannad to teat acourate oategory eoparation after procesaing of each reforence. Rach oategory of a reforence will be liated on a separate line in the order desoribed in Part 2. All antegory listings will be indented except the author, and apacing within a reforence listing indicates that no information was given or procesaed for this particular category.

Input: Cook, C. E., "Modification ... Forme," Proc. 1958
Mati. Electronice Conf., pp. 108-1067.
Prelininary Oatput:
(a) Cook, C. B.
(b) Modification ... Porms
(c) Proc. 1958 Yatl. Rleotronios Conf.
(d)
(e)
(f) 108-1067
(g)
(b)

Pinal Output: See Part 6, Table 2 and Part 8, Table 3
7. Explanation of Table Formata
A. Mine Categories

## Anthory

(a) Author's last name ocours first, followed by initiala.

## All exanplea.t

(b) Jr., III, etc. are inoluded.

Bxample 3.
(a) Editors are treated as authors.

Branple 4.
(d) Tranelators are ignored.

Ixample 5.
(e) Private comunications, menon, oto., the originator
(from) is conaidered the author and porson(s)
addresmed (to) are ignored.
Franple 6.
(f) If more than one author is cited, all authors are listed and the rest of the reference infornation is listed after last author. "ABD" ocours before last author.

Branple 7.
Froeption no "AMD". Only last nemes of maltiple
authors are given and the title is greater than
one word.
Freaple 8.
(g) If apecial worda (Staff, Assooiation) indicating miltiple authors occur, this field is conaidered the author.

Bremple 9.
(h) An initial long daah refers to provious author and all author information from previous reference is repeated. Bxamples 10, 24.
(1) A reference hae no given author if the special worde "Tables," "Inoyclopaedia," "Diotionary," or "U.S." appear in the first field. Franple 11.

## STEIe of Paper (BooK)

Book titles (Fxample 2) and titles of papers appearing in
joumals (Tranple 1) are listed in this categoyy.

## Title of Joumals

This category lists all titles of journals (Brample 2)
and has no entries from books (Frample 2).

## Volme Mumber

(a) 411 information after a boldface indicator (i) up to the next punctuation mark is considered the volune number.
(b) 411 integers preceding a colon indicator (*) are conaidered the voluse muber.
(c) An occurrence of one of the following special words with or without prefix or auffix integere will indionte a volume number entrys vol., v., part, pt., diaxy, report, rept., Beport no., paper, technical note, tech. note, T. M., theals, dootoral theais.

Tranples 11, 13.

## 

(a) If a mmerical field occurs after the volume number or colon indicator (*) and is not the date or page number, it is entered in the Issue Number Table.
(b) An occurrence of one of the following special worde with or without prefix or suffix integers will
indicate an isaue number entry: edition, ed., series, minaber, no.

## Pere Yumber

(a) An occurrence of one of following apecial words with 05 without prefix or alffix integers will indicate a page mumber entry: p., pp., section, ohapter(s), chapt., monograph.
(b) Any number that has not been processed up to now, is not the date and has a dash, is conaidered the page mumber.

Trample 7.

## Publisher and City

Publisher and aity occur only for books.
(a) Any field of nonnuneric characters (excluding monthe and I.D. no date), not processed up to now, is conaidered the publisher and/or oity of publication. Moat referenoes have the publicher first, followed by the city of publiation. Brample 2.
(b) Docactonaliy the oity appears before the publisher, therefore a sall table of auch oities will be searched prior to calling this field the publisher. Trample 15.
(o) An ocourrence of one of the following apecial words with or without prefix or suffix data will indseate publicher and eity entrigs laberatery, lab.

## Iecr

(a) If MM.D." (no date) is present there is no date ontry.
(b) Any four character integer not processed up to now, beginning with 18-- or 19--, is considered the yeer of publication.

Trample 2.
The month and day of month is included in the year entry, if present.

Frample 14 .

## B. Multiple Citations

Multiple citatione occur when a single reference containe two or more oited articles or books by the same author or each cited work may have adfferent author. Multiple citationa appear in two genoral formas the sane author and mitiple authore. There are two apecillo formats for each of thome forms. These four formats, if present, mant
be identified at the beginning of each category to be processed after the author.

> Sane Luthor - two or more citations
(a) Repetition of boldface.

Eranples $16,17$.
(b) Oocurrence of the form "(a) $\qquad$ (b) $\qquad$ "

If either of these two conditions occurs the ane anthor is again ontored into the author table and the infornation following the repeated punctuation is processed.

Bramples 18, 19.

Multiple Authors - multiple citations
(a) "see also" The processing of a new reference begins if this special word is found at the begiming of a new category.

Frample 20, 21.
(b) ibid. - in the same place
-loc. ait." - in the same location
"op. cit." - in the same mork
The occurrence of the ee special words indicates the same book or journal source as the previous citation and this information is repeated.

Example 24 .

## C. Desoriptive Fitles

If the firet field of the citation (up to flrst punctuation mark) containg four or more words, after teats for initials and all apecial worde likely to oceur in the author field have failed, a desoriptive title, having no given author, is assumed. This information is entered in the THtle of Paper or Book Table. Example 25.

## 8. Outpur Format

## A. Mormalisation

Mormalisation is necessary to atandardise the output from this part of the progran before entry to a SOBT program. The following standardisations have been adopted. See Parts 5 and 6, Tablea 1 and 2.
(a) Authore are given with lant name first, followed by any inftials.
(b) The title of a book or paper has leading "The" or - A" at the end, otherwise same as original source.
(c) The original form, of the journal title is kept even if abbreviated. This nay have to be nodifled as some journals are abbreviated in more than one way and this may interfere with the later matohing procese.
(d) The words vol. or v. will not be used in the Volwo Yumber Table if they oocur before the integer.
(e) 411 apecial words for the isme number are included in the Iasue Iunber Table.
(f) The worda p. or pp. will not be used in the Page Yunber Table.
(c) The pablimhor and oity are now processed as thoy exint. This may need modifications as abbreviations tay oocur.
(h) The year is entered flrat into the Iear Table, followed by month and day, if present.

```
B. Tables
```

(a) Unit

For each referenoe processed, a maximum of one data entry is made to each of the nine category tebles with one exception. Each author of a multiple author reforence is entered separately in the Author table. Otherwise, there is a maxinus of nine data entries per reference. The noxt reference is then processed and an addition may or may not be made to each of the nine tables. After all references are processed, there are nine separate tables in memory of varying longth. Fach of these tables may be processed as a unit (0.g., alphabetion 11sting of all authors from Author table).
(b) Modification

To make it possible to ascociate all parts of a aingle reforence (given a title, get the author(s), etc.), some identification has to be attaohed to each table entry. Data entry to any category table generated from a single citation would carry the eame idontifiention mumber. A sequential mumbering or chaining inoreaned by one for each
new citation processed, mast be handled during the category formation of each reference. The chain linke the eeparated information from the same source. Hote that only multiple authors have more than one data entry por table from the same reforence (same identification number). After all reforences are prooessed, the tables are collected and an output tape is made containing the data with identification.

Table 3 shows how the category tables including identification will appary in mangy after ell reforwoos have beon processet.

Table 4 showe the final output tape. The number of files on the tape equals the number of category tables to which ontries have been made during procesaing of all citations. The firat record of each file contains the table nawe. The first word of a record contains the identification mumber. In this was, each separated category can be workod with independently (e.g., all authors) or, ueing the entire output, perte of a single reference may be extracted.

## 9. 8umary

Thie progran, whon completed, should identify and normalise all reforences into the categorien described earlior, and set these up as tablea readily available for use by a Sole program. The automatio analyais preapposes the abeonce of almont all pre-editing and mamal deternination of information content of the input data. a sone progral oan later be used to extraot from these prepared tables thom iteas which oboy some given search oriterion. For example, authora may be listed alphabotically, multiple authore and oitations may be extraoted, and many other rearrangemonts may be offectod autcmatioally.

II-20

Authors	Title   Paper, Book	$\begin{aligned} & \text { Journal } \\ & \text { Title } \end{aligned}$	Vol.	Issue	Page	Publisher	City	Year
$\gamma_{1)}$ cook, c. . ${ }^{\text {\% }}$		Proc. 1958 Hat. Eleatronics Conf.	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		$\left\|\begin{array}{r} 1 \\ 108- \\ 1067 \end{array}\right\|$	2   Princeton   Univer.   aity Prese		$\begin{gathered} 2 \\ 1955 \end{gathered}$
$2$   3) Hactings, C. Jr.		3 J. A8soc. Compt. Mach -			$\begin{array}{\|r\|} 3 \\ 181- \\ 196 \end{array}$			3 1958
7) Copi, I. M.   3 H1got, C. C.   3 Mright, J. B.	3   Realisation... .........Evente							

Category Tables After Processing TABLS 3

[^2]I.


Volve
5
Pere
108-1067
181-196
Publisher
2
Princoton
Oniveraity
Press
Year
2
1955
1958

Category Tables After Chaining TMBL 4
${ }^{7}$ Identification numbers.

APPEDIX A

Flow Chart: Identification and Standardisation of Mine Beforonce Categories.

Main Progren: Roade in data of next reforence.
Controls sequence of 9 main subroutines.
More references to process $\xrightarrow{\text { Ho }}$
Author $\longleftarrow$ - Ies

Author


I


II-24

## Papor

Field begin or end


Journeal Caterary
$i$
Journal


## Volune


c

## II-26

Isense


## Page



## Publiaher


city


Also at beginning of each of the nine categories two teats are alware mades
(1) Any data in Save Tables for this oategory


III. THE USE OF TREE STROCTURES FOR PROCESSING FILES<br>Bdward H. Sussenguth, Jr.

ABSTRACT

In data processing problems, files are frequently used whick muet both be searched and altered. Binary search techniques are efficient for searching large files, but the associated file organisation is not readily adapted to the file alterations. Conversely, a chained file allocation peraits efficient alteration but cannot be searched efficiently. A file organised into a tree-like structure is discussed, and it is shown that such a file may both be searahed and altered with times proportional to $s \log _{\mathrm{g}} \mathrm{X}$, where I is the number of file itens and is a parameter of the tree. It is also shown that optimising the value of $s$ leads to a search time which is only $25 \%$ slower than the binary search. The tree organisation enploys two data chains and may be considered to be a compromise between the organisation for the binary saarch and the chained file. The relation of the tree organisation to multidimensional indexing and to the trie structure is also discuseed. An example of an automatic dictionary for language translation is used to illustrate the principles involved.

1. Introduction

In mang data processing applications large files of information mat be searched to extract some pertinent data and new data must be
added to the file. There are many waye to perform these manipulations depending upon the etructure of the file and the ohareoteristios of the computer. When it is necesary to both search and alter the file, a sorting procedure is frequontiy omployed in conjunotion with the eoarch technique to keep the file updated. Another attack is to avoid time conmaning sorting by allocating the file in the computer momory so that alteration is effioiont; the soarohing of auch a file is urually difficult, however. Soveral etrategies for anoh problom axe roviowed and analraed below. The body of the paper, however, is concerred with a mothed of sllocatix (and inplioitly sorting) the itens of a file so that the file may both be searohod and altered officiently.

Before exarining the details of the propoeed teahniques, a mame problea will be ueod to domonetrate the relative efficienor of the procedure when compared vith other sorting and searoh methods. Specilically it is deaired to deaign an efficient ayoten to produce a listing of all distinot itens from a given list of itame.t olearly this is problen of the type entioned above in whith it is necesaary to search and frequontir alter the conatructed file. An example of this problen is the tabulation of mybolic addressea and literals in assenbly and compiler prograna. another illuntration is the frequency counting of words in a text, a commen prosedure in the information retrieval field.

Lot $M$ be the total number of items in the given list, and let $I$ be the number of dietinot iteng in the 11 st. If tho main 11 ot is sorted and

Trbit problon is considered in nore detail in Ref. 1.
the duplicate item identified and removed, approximately $\mathrm{M}_{\mathrm{I}}^{\mathrm{log}} \mathrm{g}_{2} \mathrm{I}$ operation (1.e., comparisons and/or tranafers) are required. (The IBM Fortran Assembly Progran (FAP) uees this ayeten to form ite aybol table. ${ }^{2}$ ) Instead of sorting, the main f1le may be exanined iten by item and a file of distinot itenc construoted. If the oonstructed file is maintained in some preanaigned order (to reduce the time required to test if a given iten has ocourred already), an approximate upper bound on the manber of operations is M/3. (FAP uses this sjoten to form its table of Ifterale. ${ }^{2}$ ) If the oonitruatad file is not kept in order (thereby increasing the search time, but decreasing the time required to add an 1tem to 1t), an approximate upper bound on the mumer of operations is $M\left(\log _{2} M+\frac{N}{12}\right)$. Finally, if the tree structure proposed below is used to construct the list of dietinct iteme, the upper bound is approximately $\frac{1}{4}\left(M+m^{\log _{j} h}\right)\left(\log _{2} M\right)$ operations.

Thus, the tree procedure is significantly more efficient when there are relatively fow distinct items. For example if there are 100 distinct iteas in a file of 1000 items, the number of operations for the four procedures are in the ratio (5:16:7:1). Hence, if the tree procedure is not too complex (so that one tree "operation" is comparable to a sorting "operation"), it merits consideration for that olase of probleas involving files which are both searched and altered.
2. Definitiona

The underlying principle of most search techniques is to partition the main file into several mall subfiles and to select one
mbile for further coruting. As the partitioning and seleotion proens may be illuctrated and explaised in terns of tree etruetrases, it is convoniont to collect all deflnitions of term ascoolated with treas. Most of those dofinitions have been adopted fron Irerron. ${ }^{3}$ soveral babis definition are 111untratod in Fig. 1.

4 fraph comprices a cot of modes and a set of unilateral ascoci-
 mode $J$, the asceoiation is called a branh from initial mode $i$ to terminal
 oach branch coinciles rith the initial node of the mecouling branch. Mede $j$ is memole frem mode 1 if thore is a path from modo 1 te node $j$. The maber of brascion in a path is the longth of the path. A airetit is a path in which the initial mode coimeiden fith the teanimal mode.

A tye le a craph which contadno modrenite and hat at not ono brameh uthortng each mole. 1 rect of a tree is a mole which has no branohes untering 1t, and a Inf is a mede which has ne branches leavine it. 1 reot is mad to lie on the firithern of the tree, and a mode Which 1100 at the ond of a path of lougth $\mathrm{f}-1$ from a root 10 on the fth 19n1. The oot of modoe which 11 e at the ond of a path of longth ono frem note $x$ are sald to be governod by node $x$ and comprise the nodes of the glatyon rooted at role $x$. 1 ghin is a tree which has at mout ome brach leavisg each solo.


A Piotorial Representation of a Tree, Illustrating Som of the Terminology

Fgure 1

0
3. Binary and Seriel Searches

If a file of N item is atored in a randon acoene memory with the items arranged so that their keya are in ancending order, a binary search may be ueod to locate an iten in a timo approximately propertieaal to $\log _{2}$ M. The binary search beging by teating firat the item which is at the midpoint of the file. 4 conparison deternines whether it is the deaired item and, if it ia not, the comparison apecifies in which half of the file the desired iton 11es. This half is thon biseoted and, if mocecenty the quarter of the file combtining the doalred 1ten is deteryined. The bisection procens contimes until the itan is looeted. The bianry searoh procedure is conveniontly depioted by a tree in which each mode reprocente a file itole. The mode on the firat tree level cosreaponde to the item at the aidpoint of the file; the tive itcme on the cecond lovel correapond to the iteme at the ono-quarter and threequarter points of the files otc. Fxeopt in the last one or twe levela, two brenches canate from each node; which of these brenches is follewed 1a determined by the conparison of the desired iten with the iten amoodated with the node in question. Selecting one branch obvioualy elininates half of the remaining condidate itens.

Brample: To clarify sone of the principles introduced, an cxample of an automatic dictionary will be used. The key for meh ale is an Ingliah werd and the information value of the koy is its equivalent in a forelan languge. For purposes of apeoific illuntration the trgilabGermain seotion of mThe How Gasaell's German Diotionaryal is med.

Figure 2 show the menory map of a file of 38 Inglish worde arranged in alphabotioal order and etored in loantions 301 to 338 of a random accose menory. The binary searoh for the word "wallah" proceeds as followss Comparison with the iten "waist" at the midpoint of the sile indioates that "wallah" is in the lowor half of the file beoance "wallah" is below "waist" in the alphabetical order. The item in the center of the lower half is "wallop;" oomparison with it indicates "wallah" is in the upper half of this subfile (i.e., in the third quarter of the main file). Another conparison, this time with "walk" indicates that "wallah" is in the lower half of the third quarter. The fourth comparieon then locates the desired iten.

The tree representation of this binary search is shown in Fig. 3.

The binary search requires that the itens be arranged in increaning order in consecutive locations of a randoa access monory. Although the expected search tine for this arrangenent ( $\log _{2} \mathrm{I}$ ) is relatively eanll, the time to alter the file by adding (or deleting) itene is proportional to $Y$ because many itens mast be moved to make room for the new item. The time to alter a file may be draatically reduced by chaining the itens together inatead of atoring thea is consecutive monory locations. With each item in the chained structure is atored the location of another item of the flle. Thus, the addition of a new iten is simply acoomplished, because the ohain nay be broken at any convenient point and then relinked with the new itel inserted. The time to searoh auch a file in, however, proportional to (whothor

```
 301 WABBLS = #LCKANM
 302 TAD = BOMDIL
 303 TADDLS = MATSCHTLM
 304 TADE = WATMM
 305 WAFIR = WAFTHL
 306 TAFTLE = MAPTLI
 307 TAFT = FORTMINTM
 308 #LO = WIDNH
 309 WACS = LCTM
 310 WACNR = WITTS
 311 |ACGIRI = SPASS
 312 NAOGLS = W_CDIM
```



```
 314 WAGYuIL = 8TMLS
```



```
 316 TAIL = JNMmam
 317 WАIN = waOTM
 318 UAIMBCOT = TNFLOME
 319 LAIST = TMILN
 320 TAIT = WARTIT
 321 ILIVI = \WOTIN
 322 WAXE = W\CMm
 323 TALS = STRITM
 324 WNLI = 01:5%
 325 WALL = MAUES
```



```
327 TLLLAE = BUR8CES
 328 WALKTP = BRIFINSCD
 329 WALLOP = WUCET
 330 WALLOM = SICH WILSIM
 331 WALTOY = WALmoss
 332 WALDMs = WAL20ss
 333 WALIZ = WALEIR
 334 TAMPOI = MOSGBRIAIED
 335 WAll = BLEICH
 336 TAND = ROTE
 337 UAIDIR = WAMDIPM
 338 WAME = ABMEMTM
```

4 II ting of 38 Words with the gonte of the Binary Seareh for the Word mmiruip"

Figure 2

or not the order is maintained), becauce only one other item is accemible from any given itom. Hence the mearch man proceed serially, itom by itom. The tree representation of this serial search reduces to the trifial aase of ahain. Also trivial is the new subfile partitioned at each stop; it is merely the provious file lese one itone.

Frample: Figure 4 is representation of that portion of random acces momory containing the file of the 38 words of Fig. 2 in a ohained allocation. The worde are not axranged in any oxder with renpeot to the memory Iocations, but the alphabetic ordor is maintainod by the ohoin. To retrieve the word mallop," firat the word "wabble" at the etart of the obain (its locetion 312 is prospecified) is tasted. Le it is not the deaired iten, the next mord of the chain, Mwad," ie tested; the looation of "rad," 323, is givon an part of the data of Mabble." The chaiaing link of the word "wad" indicates looation 313 is to be tested next. Thus the items along the ohain are tested until the desired iten is found. Figare 5 shows the tree representation of this serial searoh.

To add the word "waitog" to the chained allooation, the data for maiterm is etored in an available location (339), the ohain broken after "wait," and the new iter incerted. Thus after inserting "waiter," location 317 contains

```
WAIT = WARTM 339
```

and looation 339 containa

301	WIDE	316
302	WMENS	319
303	Wha	332
304	W/	329
305	RMINSCOT	318
306	M	314
307	WMMPTM	304
308	WAJLOP	333
309	WATLET	308
310	WIGOLE	324
311	Whas	*
372	Wemeich	330
313	Wamper	301
314	WIIF	331
315	ROLNOT	302
316	RUFER	320
317	WITIT	323
318	WMST	317
319	WULTZ	307
320	WLPTLE	330
321	Watil	337
322	HLGGERY	310
323	WIVE	326
324	WIOON	306
325	KINDER	311
326	Ware	336
327	WILS	321
328	WILICAH	309
329	WCND	325
330	WITT	303
331	\%azt	334
332	wios	335
333	WItrow	315
334	WOLM	305
335	majer	322
336	HLCE	327
337	WCLTABY	328
338	WID	313



# The Tree Implied by a Serial 8earch <br> Higure 5 

To add ${ }^{\text {waiter" }}$ to the ordered listing (Fig. 2), however, requires moving all words fram "waive" to "wane" dow one location in memory before inserting "waiter" in its proper location at 321.

Sommarising, it is seen that the ordored arrangement with a binary search is efficient for a file which is Irequently searched and infrequently altered, and the chained arrangement officient for a file which is frequently altered but infrequently searched. If it is necessary both to search and to alter the Iile, neither arrangement is attractive and another may be praferable.

The tree allocation, described in the following sections, is a compromise arrangement which utilises the effective partitioning of the file
found in the binary search and which chains items together for simplicity of organisation and alteration. It $w i l l$ be shown that the tree allocation may be both searched and altered with time proportional to $\log _{\text {g }} \mathrm{H}$, where is a parameter associated with the tree structure. It is useful both whom the file is completely stored in random access memory and when the bulk of it in in a dine or drum memory.

## 4. The Tree Allocation

In a tree allocation the partitioning of the file is accomplished by breading the key into several disjoint parts. Each part or element of the key is mande to correspond to a level of the tree. The fret tree level lists all possible values of the first element of the key. With each of these clements is associated a lint of those second elements Which mas be used in combination with that first olenont. 4 complete list of all possible second elements is not neosaary for som of then will never be used.

Frappe: 4 natural way to break an English word into several parts is to partition it into its component letters. Then the first tree level will have 26 nodes, one for each letter of the alphabet. With asch letter is associated a list of letters which nay be need with it as the start of an English word. Thus with the letter wnw on the first level in associated a list of the following letters on the
 Is not included in this list as no maglish word starts with the pair - w iv

The two-level tree Eay partition the file into onough subfiles so that any one of then may be conveniently searohed serially. Then with each second-level tree node, l.e.g with each pair of elemente, is asmocinted the blook of items governed by the partition implied by the pair. However, if the muber of elements in each subfile is otill 50 large that an efficient search ia not posaible, the tree may be extonded to include more levels. In this case, a list of those key elenents which may be used with the pairs corresponding to the seoond-level nodes is
 oxtonded in this mannor through as many level as desired, and one part of the tree may contain more levels than som othor part. By varying the moner of levele in different parta of the tree it is poseible to anke the number of iteme in each aubelle nearly unforn, if this is deaired. Indeed it is poseible to extend the tree levels so that each subfile consiste of only one iten. The remainder of this section describes a procedure by which the muber of levels and the subfile sises may be chosen so as to minimise the expeoted marok time.

Freaple: There are about 14,000 Inglish werde 11 sted in the Inglish-German cection of Caseoli's dictionary. The partiticaing inposed by a one-level tree is shown in Fig. 6, where it is meen that "w" gorerns 355 itens. Partitioniag on the firat two lotters breake the man portion of the file into the abifice of the following aises (see His. 7):

w. 75	wh 70	wo	45	
we	55	wi	78	wr
31				
			wy	2.

t

A	755	N	270
B	775	O	355
C	1335	P	1170
D	815	Q	100
E	515	R	840
F	680	S	1695
G	395	T	785
H	480	U	615
I	535	V	200
J	100	W	355
K	80	X	15
L	540	Y	50
M	675	Z	30

## Distribution of Initial Letters of a Sample of 14,000 Rnglish Words

Figure 6

The subfile associated with "wy" is certainly small enough to be conveniently searched on an item-by-item basis. However, the other subfiles associated with "w" would require an item-by-item search which is considerably longer and perhaps should be partitioned on the third letter. Figure 8 shows part of a four-level tree for this file.

The search for a given item in a tree allocation is conducted by scanning the set of nodes on the first level until the element which matches the first element of the key is located. Then one proceeds to the set of elements associated with that node on the next level; that is, to the filial set of that node. This set is scanned until the second key element is matched. Its filial set is located and scanned similarly.


Diatribution of Second and Third Letters When Initial letter is W Figure 7

H


This proces continnes, building a path threngh the tree to the final bloak of koy elements. This block is juct the fillal not of the laet sode of the path; it differs from the other filial sote in two wave. Firet, it has ascociated with each of its nodes, not one elemat of the key, bet all of the lements of the key not already ascooiated with the modes of the path loading to it. socond, oach of the modos of the finel filial aot does not have a filial not of its own bat rather indicaten the information valne of the key whion the node ropresente.

These are aeroral ware in which a mode mar be joimed to its filial sot and the modes within a flilal set mar be lopt together. A very convoniant technique is to chain cach node to its fllial act and be chais the modea within each filial net togother. Thie asrangenomt is called a doubly-ohained tree.t UBing this mothod, oach tree mode 1s reprecented by one oomparter merd. The oomputer word is divided inte three Pleldes the first indicatea the koy elomont value of the mode, the cecond containe the address of another node in the filial aot of which the giron node is a momber, and the third oontains the addrese (of the firet malo) of ite filial set. (See Fig. 9.)

> Fiverwon ${ }^{3}$ desoribes a sinilar arrangement called a filial-hoir ohain represeatation. Johnsom ${ }^{5}$ aleo disouscen this arrangenent. The tree is alec alomir related to list etruotures.?

[^3]

Schematic Representation of a Doubly-Cheined Tree
Figure 9

Erample: Figure 10 ghows the actual contents of memory for the doubly-chained allocation of the tree in Fig. 8 .

The filial set is scanned by following the chain of addresses in the second field of the computer word and comparing the given key element with the key olement values of the nodes of the filial set. When a match is found, the next tree level is reached by brenching to the address given In the third field. Thus if there are $s$ nodes in the filial set, the expected number of chaining links required to find a match is $\frac{1}{2}(s+1)$ : one link to reach the filial set and $\frac{1}{2}(s-1)$ to search $1 t . *$

It is easy to add an item to the doubly-chained tree allocation. The tree is entered assuming the item is in the file, and the path for the key found. At some point a key olement will not be found in an exdating filial set. This new key element is then addod to that flifal set by breaking and relinking the filial set chain. The double chaining feature permits the use of any available memory locations for the new tree nodes. Moreover, this feature allows an ftem to be added to the file in roughly the same time that is required to locate an item. ${ }^{\circ}$

In many applications the file is so large that it will not fit into fast random access memory but is stored on slower media such as discs

[^4]

The Storage Map of the Tree of Fig. 8
Figure 10
or drums. 1 file stored on a disc or drum is phyaically mbivided by the track of the diso or drue into mubillen, one aubille per treok. In this oase the tree structure may be thought of as a transformation from the koy to the track address of its associated data. The aubile corresponding to this track may then be soamed for the desined 1tem on an item-by-iten basis or tranaferred to the random access menory for seanning by the binary search.

## 5. Muimisation of the Expeoted Eearch Tine

Asoming the search tine is proportional to the number of chaining linte traveraed, the oxpected search tine nay be ouloulated if all of the filial set sises are known. However, it is inconvenient to use the set of all filial set sises in macosoopio oaloulation. Por computational purposes an average filial sot aise for each tree level is dofined ass

$$
\begin{equation*}
E_{1}=\frac{\text { number of nodes on lovel } 1}{\text { nunber of Ifllal eots on level } 1} \tag{1}
\end{equation*}
$$

Since the average time to cearch a filial sot on the ith level is $\frac{1}{2}\left(a_{1}+1\right)$, the expected tise to search an h-level tree is

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{h}\left(s_{i}+1\right) \tag{2}
\end{equation*}
$$

Thus the expeoted soeroh time, $Z$, for a file of 1 itens alloceted as an h-level tree with blocke of average aise $B$ is

$$
\begin{equation*}
\bar{t}=\frac{1}{2} \sum_{i=1}^{b}\left(e_{1}+1\right)+t(B), \tag{3}
\end{equation*}
$$

Where $t(B)$ is the expeoted time to search one blook.
Iquation (3) gives the expectod search tiac in terma of the paranotors $e_{i}, h$, and $B$. These paraneters are related by the expresaion

$$
\begin{equation*}
B \prod_{i=1}^{n} e_{i}=M, \tag{4}
\end{equation*}
$$

because $\prod_{i=1}^{n} a_{i}$ represents the number of nodes on the hth level, which is juat equal to the muber of blocke. Frequently whan dealening an ellocation and eearch ayeten for a particular file the ueer is free to vary one or more of $a_{i}, h$, or $B$ under the constraint of Iquation ( 4 ) to achiove an efficient ayotem. Several auch situations are disousead belew.

CASI A: In many date procesaing problone the file fita within the random accose momoxy, and the data procesaing requirenorte are moh that the key elemonts may be manipulated at will as long ail the propor reaposee is reoeived from a given query. The koye may then be conaidered to conaist of a aingle otring of binary digite rather than eororal diajoint elements each of which consista of eeveral binary digits. For exanple, the

[^5]III-24
key "CATM is considered as the binary etring "010011010001110011" rather than the set of diatinot elements ${ }^{\prime \prime} C, \|^{\prime \prime \prime}$ and "r," or equivalently, the dintinct elements "010011," m0001," and "110011." With keye of thise format, the binary digits may be grouped to give the mont officiont searah systen; that is the $s_{i}, h$, and $B$ may be releoted without conetraint (othor than (4)) to niniaise $₹$. It is ahown in the appondix that the miniman $F$ is achioved whons
(1) 11 pathe from a root to a leaf have the ane longth, $h$;
(2) all filial sets have the mane number of menbers, $s$, that 1* $\epsilon_{1}=\varepsilon_{2}=\cdots=e_{h}=\xi$
(3) the number of elements in a block, B, is the same as the coman filial sot aise, that is $B=a ;$ and
(4) the common filial set sise is $\mathrm{m}^{1 / \mathrm{h}+1}$.

The remult: (1) through (4) fix B as equal to but related s, $h$, and $M$ only by the relation $e^{h+1}=H, 00$ that either or $h$ nay be eeleoted arbitrarily. Another analyais, also in the appendix, ahowe that the s, which satisfies this conotraint and alm miainises $\bar{f}$, is 3.6 noden per filial set.

CASE B: Another class of data processing problona has characteristios dirilar to those of case 4 , except that the file is too large to fit within the random access memory and is stored instead on a drye or dise menory. Here the block sise $B$ is nomally deternined by the number of 1tens, I, which can be acoomodated by one track, and not by conaiderationa which minimise the orec-all mearch timed for these cases the tree aots as
a tranaforaation from the set. of koys to the set of track addresses, and $\bar{Z}$ may be mininised by varying the $e_{1}$ and $h$. It is shown in the Appondix that when B is fixed at I the minimu $\mathcal{Z}$ is mehioved when
(1) all pathe from a root to a leaf have longth h;
(2) all filial sets have the same muber of monbers, os and (3) the common filial sot aize $s$ is $\left(\frac{1}{T}\right)^{1 / h}$.

As in Gase 1 , absolute values for $s$ and $h$ are not flxed by these reaults, and it can be ahown that the optime s is also 3.6 nodes por net.

CASE C: For some applications it may be inconvenient or unnatural to conaider the keya as single strings of binary digita; rather the keys mast be considered to consist of several distinct elemente. If the number of elemente per key is a constant, $h$, for all itens of the file, or if it is deairable to form a tree uaing $b$ levels, the analycea of Cases $A$ and $B$ apply, asauming $h$ to be fixed rather than variable. Then, the minimu search time is achieved when the filial set aises are all equal to the optimum value of either $1^{1 / h+1}$ or ( $\left.\frac{1}{T}\right)^{1 / h}$, according as the file fite within randon access menory or the file is atored on a dise mamory.

The optiman tree allocation for these three caces requires that all pethe within a tree be of the ame length. Frequently, howevor, it is profitable to vary the path lengthe within the tree, atopping the branching in each path at some optimum path length. For the case when the main atorage is a dise, the proper path loagthe are easily doternined becauce each leaf mat govorn T iten. Thas, if a partioular node govorng $T$
or fawor itan, the branohing along that particular path may be atopped. If, however, the node governe more than I item, the branching munt be oontimed for at least one more level.

If the file fite within the randon accese nemory, the optima path losgth doternination is based on the number of itom, s, which a partioular sode governe and the number of nodes, $a$, in its filial eot. A dotailed analyais of this optimisation is premonted in the appondix; the main resalt is that in moot cases the optime longth of a path is achioved whon the branching in discontimed at the firat mode which governe foror than aix iteme.

In Caces A and B in which it was poseible to manipalate the koys to deternine a mininue expeoted searoh tine, it was found that the ninimun was achieved whon all filial sots had the same number of menbers, s, and the optimue was 3.6. Substituting into Equation (3) it can be shown that (see Appondix)

$$
\begin{equation*}
E=\frac{a+1}{2} \log _{a} n \tag{5}
\end{equation*}
$$

whore $M$ is either $M$ or $\frac{M}{T}$ according as the file is atored in the random acoese monory or on a diec monory. Loting a take on its optimum value of 3.6, one finds

$$
\begin{equation*}
E=2.3 \log _{3.6} M=1.24 \log _{2} M . \tag{6}
\end{equation*}
$$

That is, the expected search time in the optime oace is onis $24 \%$ elewor than the binary eearch tim. Moreover, as was indicated in the provious section, the time to add or delete an iten to the file is approxdmately the
sam at the search time, a considerable improvenent over the file ellocated for binary searohing.

It is not elwaye neoessary to manipulate the koys mo that the conetrueted elements are complotely different from the natural -lemonte, although in goneral any natural partitioning of the koys (e.g., partitioning Ingliuh words into thoir componont letters) will not lead to filial sets of the optimun sise. If the sises, are are maller than the optimen, two or more tree levels may be combined to a aingle level vith more nodes per filial not by considering two or more koy elements to be aingle olement. Conversely, if an in mach larger than the optiman, one tree level may be aplit into soveral levels by factoring the correaponding key element. The simplest way to acconplish the factorigation is to take the binary representation of the element in several pleces of a few bits each, o.g., conaider a six-bit element as two pieces of three bita each or three pieces of two bits. Factoring in this way should malo the filial sote relatively conotant in aise, not only from level to level, but also within the sane level.

Fraple: Figure 11 shows a tree in which two levels have been combined into a single level by considering the second and third lotters to be a single key eloment.

Figure 12 shows how one level nay be aplit into two levels by factoring the binary represontation of the key elements.

The efficient search time of the tree otruoture noted above is ahieved by using a relatively amall filial set sise. Small filial mets


The 8econd and Third Levels of the Upper Tree axe Combined into a Single Level of the Lower Tree

Tgure 11


The Third Level of the Opper Troe is Split into Two Levele of the Lowar Tree
piguse 12
in turn imply ralatively larger amounts of randam access storage locations to accomodate the tree. Epecifically, the totel nupber of nodes in a tree of $h$ levels, asouning there are leaves only on the hth level, is

$$
\begin{equation*}
w=\sum_{j=1}^{n} \prod_{i=1}^{j} e_{i} \tag{7}
\end{equation*}
$$

If it is asmed that $i_{i}$ are all equal, $s^{h}-N$, and ( 7 ) becomes

$$
\begin{equation*}
W=\sum_{j=1}^{h} \frac{s^{h}-1}{s-1}=\frac{a}{-1^{n}} \tag{8}
\end{equation*}
$$

Equation (8) shows that as sincreases, the number of atorage locations required decreasea.

Thus an efficient search time is achieved with relatively small , but fewer etorage locations are needed with relativaly large . To achieve a balance between these conflicting cxiteria, the measure of officiency may be taken to be the product of search time and storage capacity. This measure is directiy related to the cost of the system for it roflects both the amount of equipment and the length of time the equipment is in use. Using (5) and (8) ons finds that the cost $C$ is

$$
\begin{equation*}
c=\frac{s}{2}\left(\frac{s+1}{s-1}\right)\left(s^{h}-1\right) \tag{9}
\end{equation*}
$$

The cost $C$ achieves its minimum value when $s=5.3$.
The curvea plotted in Figs. 13, 14, and 15 show, reapectively, the expected search time as function of (Case $A$ or B), the cost as a function of : (Case 1 or B), and the search time as a function of

## $t$


$\mathfrak{c}$

III-32


## *



Pigure 16
and g(Gase C). 111 curves are normalised so that the minimum values are unity. In each case there is a shallow niniman, indicating that it is not tee expensive in terms of time or cost if the average filial set else varies from the optimum value. Than, for example, a apood decrease of leas than $\mathbf{2 0 \%}$ free optimum is observed if the actual filial sot else is between 2 and 8 nodes, and, similarly the cont increases lose than 206 from optime if the actual sse is between 3 and 12.

In armory, therefore, if it is possible either to eoleot or to manipulate the size of the fIlial cote, they mould be chosen to be in the range of 4 to 8 nodes per aet for mont efficient operation. In this ace each path from root to item will have the ane length. If it is not possible to choose the filial set rise, the noes efficient operation will be achieved when the path lengths vary, and the optima path length is determined by terminating the path at any node which governs ax or former items.
6. Multidimensional Indexing, Tries, and Treen

Multidimensional indexing techniques ${ }^{6}$ provide a means for partitioning a file into subfiles which is sinpior than the tree structure and also peraite more rapid entry to a aubfile than the tree. An b-dimonaional indexing arrangement is essentially an $h$ dimensional array of addresses. Element ( $i_{1} i_{2}, \ldots, i_{h}$ ) of the array indicates the address of the subtile composed of those items whose first $h$ key elements are key element $i_{1}$, key element $i_{2}, \ldots, \ldots$ kay elegant $i_{h}$. Such an arras requires $n_{1} \times n_{2} \times \cdots \times n_{n}$ computer words

Of storage (where $n_{j}$ is the rumber of elements in the $j$ th key position). In mort data procesaing applioations, many of the entrien are not used and, hence; are wasted. Moreover the alse of the subilles is not uniform, thereby inoreasing the oxpeoted search time.

An h-dimensional axray may be loosely thought of as an h-level tree with the jth dimenaion corresponding to the jth tree level. Thun, the $h$-dimenaional indoxing teobniques is roughly equivaleat to an h-level tree. In this tree each node poscosses complete filial sot; that is,
 to amaning that each koy eloment may be followed by overy key elomont of the next level, no elision taking place beoanse of nonocourrence of elonent paira. See Pig. 17.

Menne: 4 threo-dimasional indexing technique for the Inglieh dietionary requires $26 \times 27 \times 27=18,954$ locations. The aise of the abifles varies greatlys enpty for man lotter tripless on iten for "aja," 113 for "int." The equivalent tree has 26 nodes on the firet lovel and 27 noden in overy filial sot of the tree. Thus nodes mak an "q" (which neods only one node in ita sib eot) and "wk" and "waq" (which need no filial sets) all have filial seta of 27 elemorta.

An obvious modification to this tree atructure is to elininate the filial sets which are never used. That is, if one or more modes of a filial sot are uned as parts of itens, that complete.filial mot is retained in the tree; if none of the nodes are used, that filial net in romored. gee Mg. 17. Motiee that there etill axe nodes remaining in the tree which are never uned; if these nodes are also romored, the



MULTIDTMENSIONAL INDEXING TREES


TRIE
tree

Comparison of a Multidimensional Indexing Tree, a Trie, and a Tree

III-38
structure reduces to the tree discussed in the preceding parts of this paper. See Fig. 17. In some cases, however, the reteation of these unused rodes is ueeful, because all filial sotim in the tree are conplete and may be conveniemtly ontored by almple indexing, elininating the node-by-node comning of the sot required for incomplete filial setie

This modification which removen umsed filial sets is escontialis the tree organisation desoribed by Fredzin ${ }^{7}$ and dubbed a trie (rotrieval). The Univeraity of California at Borkeley uses a trie (although they do not call it a trie, or ores a trea) for thair Innguge tranalation diotiomary of 20,000 worde.

The representation of a tric in a compater is sinilar to that of a tree. Ls before, one computer word is made to correspond to one tree node, and the nodes of one filial set are reprenented by continguone compater words. The conputer word need contain only onefield, the chatning address to link the node to (the firat word of) ite filial aet. The key elenent value of the node need not be stored as ite value is inpliait in the poaition of the mode vithin the filial sot.

Erapple: Figure 18 shows the fourmerel trie which correspende to the tree of Fig. 8. Mote the filial set of the node "n containe the complete alphabet, but only the nodes "wa," "we," "wh," eto. have filial sete thomselves. These filial sots also contain the complote alphabet. Figure 19 shows the menory map for the trie of Fig. 18.

Betrieval from a trie structure requires essentially only one indexing manipulation for each level of the trie; thus the expeoted saarch time is proportional only to the average path length, $h$, rather

## 9




The Storage Map of the Trie of Fig. 18
Figure 19
than $\frac{h}{2}(s+1)$ as in the tree struoture. This opeed advantage is compensated for by requiring more storage locations, however. To estimate the muber of locations, let $n$ be the (average) muber of eloments possible in each key element position and se the (average) nuber of eloments utilised in each position. The trie requires n nodes on the firat level and $n$ nodes in each filial set of every other level. On the average, of the nodes in oach filial set will have filial sets thenselves. Thus, the total number of nodes in the trie iss

$$
\begin{equation*}
n+s n+8^{2} n+\cdots+s^{h-1} n=n \frac{s^{h}-1}{8-1} \tag{10}
\end{equation*}
$$

4 comparison of Equation (8) with (10) shows that the storage requirements of the tree and the trie are in the ratio $\mathcal{d} \mathbf{n}^{+}$
$(a / n)^{h}$ may be considered to be the density of key words which actually occur in usage in the set of all possible key words. For most practical data processing applications (e.g., automatic diotionary, personnel, file, inventory records, etc.) it does not seen that the density is very high.

Fenple: For the dictionary $n=26$ for the firat level and $n=27$ for all other levels. $s=26$ for the first level, also. Vowela on the firsi level have filial sets with $s$ near 26, consonarats have about 8 or 10 ; thus an average for the second level is about 15. For the third level, it appeary that $s$ is about 10 , and for

[^6]
## III-42

subsequent levels a appears to be less than 5. (Detailed analysis of these data has not been made.) Thus $s / n$ for the dictionary considered is about $1 / 2$ considering the first four or five levels.

If $s / n$ is near unity, the trie organization is preferable to the tree as its search is much faster and its representation requires about the same storage space. In this case, however, the total number of atorage locations required is greater than $n^{h} ; h-d i m e n a i o n a l$ indexing requires $n^{h}$ locations and its expected search time is lese than that of the trie. Thus if $\quad \approx n$, it appears that a multidimensionel-indexing organiation is preferred to either a tree or a trie.

If $s$ is significantly less than $n$, the speed advantage of the trie is more than compensated for by the excess storage requirement, unlest the random access memory can accamodate this excess. If $s$ is quite small, it was suggested that two or more levels be combined to Field an 8 closer to the optimum value. Such a technique would be disastrous with the trie organization because the number of possible key elements in such a combination grows very rapidly (e.g., $n^{2}$ for two levels), reducing the over-all density enormously.

Thus the trie may be considered to be an organization intermediate to the tree and to multidimensional indexing, and it may be considered to be a special case of each. If the density is almost unity, the multidimensional indexing techniques are superior; if the density is far from unity, the tree organization is superior; samewhere in between the trie may be used advantageously.

## 7. Sumary

The tree organisation of the keys of a large file has been reviewed. Such a structure was found to be useful either whon the eatire file is atored within a random acoess memory or when the bulk of the file is beld on a dise or dram momory.

The most important characteristic of the tree organisation is that it can be both searched and altered efficiently. The axpeoted branch and add-iten times were shown to be proportional to $\log _{\mathrm{s}} \boldsymbol{n}_{\text {, }}$ where s is the average filial set sise and $n$ is either the miner of item in the file for randon acoes memories or the muber of tracks for also momory. The optimes was found to be betweon 3 and 8, and, using the optimun s, the expected search time was oaloriated to be only $25 \%$ slower than the binary searoh.

## Acknowledgrent

This investigation was begun under the supervision of L. R. Johneon of the IBM Research Center. He and K. E. Ivereon, also of IBM Research, suggented the basic tree search technique.

III +4

## Rympenas

1. Enasonguth, B. H., ML Study of Procedures for Froquoney Connting of Woris in manning Toxt, Beport ISE-h, The Comprtation Laboratery of Insrand Univeraity (to be prabliahod).
2. IM Corperation, moxtran Aascmbly Progran (FAP) for the IM 709/7090, IBM Porm 528-6098-1 (July 19\%1).
3. Ivereon, K. E., \& Prorraning Linace, Wiley (1962).
4. Botteridge, H. T. (ed.), The How Gasoll's Ceran Diotienny, Tank and Iomo11s How Iork (1958).
5. Johneon, L. R., Mo Operand 8trueture, Ropresentation, 8torage, and Seareh, Beccareh Report Ho. 603, IBM Corporation (1962).
6. Hollesman, H., Mddreacing multidimensional Arpays, car (Aproll 1962).
7. Tredkin, B., "Trie Momory," cuMy (Septomber 2960).
8. Lenb, S. M., Jacobeen, W. H., MA High-Speed Large-Capacity Dictionary Syeten, Mech. Trmol. (Horomber 1961).
9. Iowell, L. (ed.), Information Proconaing Lanopere - Y Mapnl, Preatiee-Rall (1961).

APP PIDIX

DERIVATIOM OF THE RESULTS FOR TEB OPTTMU EXPETE STARCH TTIE

Iquation (1) gives the definition of the average filial at aise for tree level i. Since the number of filial sots on level $i$ is just the mober of nonleaf nodes on level i - 1, an equivalent definition,
which is sometimes more convenient is

$$
\begin{equation*}
s_{1}=\frac{\text { number of nodes on level } 1}{\text { number of nonleaf nodes on level } 1-1} \tag{AI}
\end{equation*}
$$

(and $\mathrm{a}_{1}$ - number of nodes on level 1).
For Case A it is assumed that the blocks are searched on an item-by-item basis so that $t(B)=\frac{1}{2}(B+1)$. Thus Equation (3) becames

$$
\begin{equation*}
\bar{E}=\frac{1}{2} \sum_{i=1}^{h}\left(s_{i}+1\right)+\frac{1}{2} \frac{N}{\prod_{1=1}^{h}} s_{i}+1 \tag{A2}
\end{equation*}
$$

From the symmetry of Equation (12) in $s_{1}, s_{2}, \ldots, s_{h}$ it is clear that the expected search time is independent of the order in which the levels are taken and that the minimum search time is achieved when the $s_{i}$ are all equal. The latter assertion is proved by setting the derivative of (A2) with respect to $s_{k}$ equal to zero. This yields

$$
\begin{equation*}
s_{k} \prod_{i=1}^{h} s_{i}=N \tag{A3}
\end{equation*}
$$

By letting $k=1,2, \ldots, h$ one finds

$$
s_{1}^{2} s_{2} \cdots s_{h}=s_{1} s_{2}^{2} \cdots s_{h}=\ldots=s_{1} s_{2} \cdots s_{h}^{2}=N
$$

so that

$$
\begin{equation*}
o_{1}=s_{2}=\ldots=s_{h}=N^{1 / h+1} \tag{4}
\end{equation*}
$$

This means that the time spent searching the block at the end of the tree should be the same as the time spent searching a filial set.

That is, the block alse should be $1^{1 / h+1}$, 0 that the ontire etruoture may be viowed as a tree of $h+1$ levels. Setting

$$
\begin{equation*}
L=h+1 \tag{A5}
\end{equation*}
$$

(12) and ( 14 ) becomes

$$
\begin{equation*}
E=\frac{\Sigma}{2}(a+1) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
a=y^{1 / L} \tag{A7}
\end{equation*}
$$

If the file is stored on a drum or dise as in Came $B$ and not in random accens monory, the block sise, $B$, is normally deternined by the mamber of itean, $T$, which can be accomodated by one track and net by conciderations which mininge the over-all searoh time the tree acts as the tranaformation between the at of keys and the not of track addrecces.

In this oase $B=T$, and the tree has $h$ levele, whore $h$ is the largect $k$ which satisfies:

$$
\begin{equation*}
\prod_{i=1}^{k} e_{i} \leq \frac{M}{T} \tag{48}
\end{equation*}
$$

Sinee $B$ is fixed by an external constraint, it is afe to aname $\bar{Z}(B)$ is also fixed, so that the problem of minimising the over-all expeoted macch time is reduced to ohoosing the $a_{1} 00$ that

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{h}\left(s_{i}+1\right) \tag{49}
\end{equation*}
$$

is minimised, aubject to conetraint (A8).
again it is clear that the ninimum is achieved whon

$$
s_{1}=a_{2}=\cdots=a_{h}=s
$$

Then

$$
\begin{equation*}
E=\frac{n}{2}(s+1) \tag{م10}
\end{equation*}
$$

and

$$
\begin{equation*}
E=\left(\frac{N}{T}\right)^{1 / h} \tag{AII}
\end{equation*}
$$

Mavationg (A10) and (A11) have axaotly the anco form as (16) and
(A7). From either pair one obtains

$$
\begin{equation*}
E=\frac{s+1}{2} \log _{2} M . \tag{412}
\end{equation*}
$$

It is possible to determine a mererical value for the optinua filial eet aise from either pair of equations. Mininising

$$
\begin{equation*}
E=\frac{h}{2}(s+1) \tag{A13}
\end{equation*}
$$

aubjeot to the constraint

$$
\begin{equation*}
==n^{1 / h}, \tag{114}
\end{equation*}
$$

leade to the requiremont that

$$
a+1=\ln a
$$

Which has a solution at $:=306$. Figure 13 displays (A13) subjeot to (A14) nomalised to $E$ opt $=1$.

In Case $C$ when the file fits within randon accese memory, the optimer path lengths are determined by the following arguent.

A path leading to a block of items is considered to have its optimum length if the expected search time for items in the block is increased whon the path length is changed. To deterrine the optimum length for a path, assume a node $x$ of the tree governs $g$ items and has nodes in its filial set. Then the nodes of the filial set each govern an average of $\frac{g}{\mathrm{~g}}$ items. If the branching is discontinued at node $x$, the expected search time from $x$ is

$$
\begin{equation*}
t_{d}=\frac{1}{2}(g+1) \tag{115}
\end{equation*}
$$

If, however, the branching is continued for one more level, the expected search time from $x$ is

$$
\begin{equation*}
t_{c}=\frac{1}{2}\left(s+\frac{g}{s}\right)+1 \tag{116}
\end{equation*}
$$

Thus, the expected search time from $x$ will decrease if the branching is continued when $t_{d}>t_{c}$.

$$
t_{d}>t_{c} \text { when }
$$

$$
\begin{equation*}
s^{2}+(1-g) s+g<0 \tag{117}
\end{equation*}
$$

The seros of (119) are at

$$
\begin{equation*}
\sigma_{1}, \sigma_{2}=\frac{g-1 \pm \sqrt{g^{2}-6 g+1}}{2} \tag{118}
\end{equation*}
$$

Thus if $g^{2}-6 g+1 \geq 0$, there is a range of (real) s for which adding one more level does decrease the expected searoh time. Conversely, if $g^{2}-6 g+1<0$, there is no auch value. The zeros of $g^{2}-6 g+1$ are at $3 \pm 2 \sqrt{2}$.

Therefore, the expected search time will be decreased if branching is continued from any node which has

$$
\begin{equation*}
g \geq 6 \tag{119}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{1} \leq \theta \leq \sigma_{2} \tag{120}
\end{equation*}
$$

Figure 15 displays (A17). For any node with its (g, e) lying in the pie-shaped region to the right of the solid curve of Fig. 15 , (119) and (120) are sutiafled; that is, the search time can be decreaced by continuing the branohing from that node. The dashed ourves indicate the relative improvenent in the search time between the cases of continuing and discontinuing the branching from the node.

Exanple: See Figs. 6, 7, and 16. Conditions (119) and (120) are certainly satisfied for all nodes on the first level of the tree for Cascell's Dictionary. They are also satiafied for all the nodes on the eecond level of the " ${ }^{n} w^{\prime \prime}$ subtree except the "wy" branoh; the "wy" node mould not branch but indicate the location of the liat wyoheln," "wyvern." Similarly (419) and (120) are satisfied for nodes "wrem and "wri," but not for the other nodes of the aib set of "wr" node "wra" satiafies (A19) but not (420), the others do not satisfy (120).

Yotice that the argunent leading to (119) and (120) involves adding one level at a time. In rare cases it might be advisable to add a level which increases the expected searoh time if subsequently another level is added which deoresses the over-all tise.

Example: The firat level node "q" of the tree of Fnglieh worde has $a=1$. Hence adding the eecond level, to form "qn," inoreaces the search time. However, adding a third level ( $=4$ : "qua," "que," "qui," and "quo") mubatantially decreases the search time。
IV. AN INTERPRETIV: PROGRAM FOR CORREMATING LOOICIL MATRTOBS

Michael Lesk

Several experiments in automatic content analysis have been conducted in which properties of a document collection were conveniently expressed by logical matrices. For example, a subject index may be represented by a matrix in which each row correaponds to an indax term, and each column to a document. The documenta associated with each term are then indicated by $I^{\prime}$ ' in the proper columns. Bibliographic citations may also be represented in this form; apecifically, logical matricea were used recently to compute an index of relations between citations and document content. ${ }^{2}$ the present report describes a computer program deaigned to manipulate logical matrices in accordance with the apecifications outlined in ref. 1. The following operations are neededs matrix tranaposition, Boolean multiplication, and correlation of logical matrices. Two types of correlations may be produceds row correlations, which compare rows of the same matrix, and cross correlations, which compare two different matrices.?

The program is writton for the IBM 7090 computer, which has binary logic inatructions permitting efficient storage and processing of matrices. The number and aize of the logical matrices to be processed is limited only by the apace available in 7090 core (there is a normal limit of 25 aatrices, but this can be raised easily as described in the appendix). Munarical matrices of row correlationa may not be placed in core atorage,
but are written on intermediate tapes. Logical matrices are referred to at all times by their names, consiating of any five BCD characters (except five blanks). Each matrix is aseigned a unique name when it is read into storage or generated by the program.

The input cards to the program consiat of instructions and (where needed) descriptions of matrices. The instruction cards include a psoudooperation code beginning in card column 1, extending as far as necessary, and terminating with blank columi. The names of any matrices or taper to be used in the instructions are written following this blank column. Operation codes recognized by the program include the following:

ASYMLOGIN MAEA - Asymmetric logical matrix input. This instruction causes the program to generate a matrix, named MAME1, as apecified by the cards following the operation card. "Asymmetric" implies that the rows and colums are not referred to by the same names, and has nothing to do with the symuetry properties of the matrix elements. Immediately after the ASYMLOGIN card a list of the names of every row of the matrix, called the "row identifiers, $"$ followa. Each name conaists of five characters (not all blank) and is followed by a blank. This permits twelve identifiers to be punched in one card, colume 1-72. As many cards as needed are used, the end of the list being aignaled by aix consecutive blank columns (on a new card, if need be). The next set of cards after this sentinel contains the "column identifier" list in precisely the eame format (with the aame onding sentinel), but specifying the names of the columns rather than the rows. The cards which describe the actual matrix follow the column identifier list.

Each olement of the matrix is apecified by ite row and colum identifiers: The carda describing the matrix have blanks in colume 1-6, a row identifier in columne 7-11, and a list of column identifiers (with a aingle blank colum after each identifior) in columa 13-72. The program assigns a value of 1 to the matrix element specified by the row identifier and each column identifier on that card. Op to ten elemente may be specified on one card. If a row has less than eleven l's in it, it is described by a single card with the row identifier in columa $7-11$, followed by the column identifier for each column in that row at which there is an elemont with the value one. A row with more than ton 1 's in it will require more cards to apecify it; a row identifior may occur on any number of carda. If a row bas no 1 's at all, no card is needed for that row. The order of the colum identifiers on a card, or of the cards that apecify the matrix, is immaterial, but all matrix apecification cards muat follow all cards giving the identifier lists. The end of the epecification cards is marked by a card conteining something other than six blanks in the first six columa (this card will be the next pseudo-operation). 1 card in the matrix apecification section with a row identifier not given in the list of row identifiers which preceded the matrix specification will cause an error notation on the output copy. Aside from this notation, mach a card will be ignored. If a card contains a colum identifior that was not given In the colum identifier lista, an error notation will be made and that identifier ignored. The progran will try to interpret the remainder of the card, however. Within the lists of row and column identifiors, each identifior mat be givon only once. If an identifior is repeated in an
identifier list, the progran will detect the accond occurrence, make an orror notation, and ignore the repetition.

SIILOOIN NMMEI - Symateric logical matrix input. This psendooperation reads in a matrix whose rows and colums have the same names. Only one identifier list, which serves for both rows and colums, is given; otherwise, the operation is identical with ASYMOOIN.

LOGRITE MMEI T - Write logical matrix on tape. There are two intermadiate tapes, denoted $P$ and $Q$. To write a logical matrix on one of them, this instruction is used with either the character $P$ or the character $Q$ replacing I in the instruction. MMEi is writton on the tape as two record file.

LOCREAD I MMIR - Read logical matrix from tape. a matrix writton by a LOONRITB instruction is read from tape (again, $T$ mast be either $P$ or Q), and namad MARIS. If a matrix written by a LOOFRIT: is not in position on the apecified tape, there will be an error printout, and the operation will not be executed. Marisl may be omitted from the instruction; if no name is given, the matrix will retain the name it had when it was written on the tape.

FREN NAMEI NANE2 NAME3 ... - Pree storage areas used by MAME1, oto. (operation terminates when six blank column are encountered on the instruction card). This card tells the program that the atorage being occupied by Murit, etc. is now available for use by other matrices. No further reforences may be made to Mand, etc. An alternative method of Ireeing a matrix is to
insert an $F$ after its nam in any pseudo-operation that refors to the matrix. This causes the matrix to be freed after the pseudo-operation is performed. Thus, LOGWRTIE NAMEAF $P$ is equivalent to LOGWRITE HAMAI $P$ followed by FRES MANEI; either will cauec MAMg to be written on tape P, and then freed so that the core storage it occupied becomes available for further operations. To decide when matrices muat be freed, the following formula is used: $\operatorname{let} R$ be the number of row of a matrix, $C$ the number of colume, and let $N$ equal $C / 36$ (add one if any remainder). Then the number of words of core occupied by the matrix is $6+C+\mathbb{R}(N+1)$. $C R / 36+C+R$ is a good approximation. Whenover the total apace used by matrices would exceed 29,000 locations, matrices must be freed or an error printout will result.

TRAKSPOSE NAYEI NAME2 - Transpose logical matrix. MAMPI is transposed and the reault called NAMr2. Note that during the execution of this instruction, the storage space required is equal to twice that for MMIBI plus the storage for MAYR2. If the instruction is of the form TRANSPOSE MAYRIP MAYE2, however, the apace needed is only that for MAKI and MAH2.

MULT NAMEI NAKE2 NAME3 - Multiply logical matrices (Boolean multiply). Matrix Mais 3 is defined as follows its row identifier list is the row identifier list of Narisl, its colum identifier list is the colum identifier list of MAYR, and its elemente are defined by normal multiplication of matrices, with "multiply" repliced by "logical and" and "add" repleced by "logical or" throughout the definition of matrix maltiplication. That is, if wo call $A$ the matrix named Mring, $B$ the
matrix MMR, and $\underline{C}$ the product matrix MARB3, then $\underline{C}_{j}^{1}=1$ if and only if
 list of NANEI must be the same as the row identifier list of NAME2 for this pseudo-operation.

MULTX NAYIE1 MAME2 NAME3 - Boolean matrix multiplication by transpose.
MARES is defined to have the row identifier list of MANEA, a column identifier
 if and only if there is a $k$ such that $A_{-k}^{j}$ and $B_{-k}^{j}$ are both 1 . Thus Mars 3 is the product of NAMRI by the transpose of NAMRE. It should be noted that MULT is performed by executing a TRANSPOSE followed by a MULTX, so that MULTX is faster than MULT.

ROWTAFE NAMEI T - ROW correlate NMER, write the results on the output tape and on T. Row correlations are comparisons between rows of a matrix. The correlation factor, $r$, between rows $\underline{X}^{i}$ and $\underline{X}^{j}$ of a matrix $X$, is defined

where matrix $X$ has m rows. ROWTAFB computes the correlation for each patr of rowe in NANEL (unless a SMECT pseudo-operation has been oxecuted; see that operation), and writes these correlationa on the output tape and the tape apecified by $T$ (either $P$ or $Q$ ). The output appears in a triple colum
format with 56 lines per page. Each output item consists of two row identifiers and the correlation factor, thus: ROW 13 ROW IL 4937.

The number of l's in each row of the matrix is also written on the output tape and is called the row sum.

ROWTAPESUPP NANEI T - ROW correlate, write on intermediate tape. This operation is the sam as ROWCuF except that the row correlations are not written on the output tape. The row sums are written on the output tape as before, however.

ROWPRINT NAME I - Row correlate, print (offline). Same operation as ROWTAFs, except that nothing is written on an intermediate tape.

LOCCROSS HAMIA NHE2 - Gross correlate NALIA, MWIS2. Gross correlations are a measure of similarity between sots of row correlations derived from two distinct logical matrices. For every row in a logical matrix we can form a set of row correlations of the row; this set is a vector $\underline{R}^{i}$, where the elements $\underline{R}_{j}^{i}$ are the row correlations of row $i$ with row $j$. If two matrices have the same row identifier lists, we may define a corresponding $\underline{s}^{i}$ for the sam row in the other matrix. Now, the crone correlation between row in these two matrices is defined as

## IV-8

LOGCROSS computes these crose correlations from the logical matrices by first computing the row correlations for a row in each matrix, and then the cross correlation for this row. The row correlations, although computed as intermediate data, are not available as output. An Mover-all" crose correlation is also produced; this is the quotient


LOGCROSS writes on the output tape the row sums of each matrix, the cross correlation for each row, and the over-all cross correlation.

TAPECROSS - Gross correlate two matrices on tape. If there is a numerical matrix of row correlations on tape $P$, and another on tape $Q$ (written by ROWTAFE and ROWTAFESUPP operations), and both matrices bave the same row identifiers, TAPSCROss will compute the crose correlations for each row and the over-all cross correlations, and write them on the output tape. If tapes $P$ and $Q$ do not both contain numericai matrices with the same row identifiers, error printouts result.

SELECT NAMEI - Selects row identifiers. If two matrices have difforent row identifier lists, they cannot be processed directly by LOGCROSS and TAPECROSS. If portions of the identifier lists coincide, howerer, and it is wished to correlate some or all of the common rows, the SEWECT peoudooperation may be used. It muat be followed by an identifior list in Asniocm
format. The program will flag all row identifiors in Malmi not givon in the liat supplied aftor the serser card, and all such flagged identifiers will be ignored during computation of row correlations. Thus if the unflagged portions of the identifier lints of two matrices are the rame, they may be cross correlated, although the flagged portions of the identifior lists are difforent.

BACKspACE $T_{1}=T_{2} n$ - Backapace tape. Tape $T_{1}$ (eithor $P$ or $Q$ ) is moved backuards in files (one logical matrix or one set of row correlations is one file), and tape $\mathrm{I}_{2}$ is moved beckwarde n files. If oithor $m$ or $n$ is blank, it is intorpreted as 1 . If $\mathrm{T}_{2}$ is blank, only one tape is moved. If $T_{2}=T_{1}$, the second apecification overrides the firat.

DATE iliililiilililii - The fifteen charactor: following DATE are copied onto the page heading.

END - Stops the run. This should be the last card of any deck of inatructions. If it is inedvertently ouitted, the program will stop uben an end-of-file appears on the input tape.

Ls ascombled, this program will run under the PORTGAK monitor syaten on any 7090 with 32 x storage and sufficient tape unite (two channels, five tapes on each). The program reada BCD unblocked recorde from 12 and writes BCD unblocked recorde on 13 as output. The intermediate tapes used are 15 ( $P$ ) and B5 (Q). Output in to be peinted PC; nothing is printed past position 72 on the page.

In a standard FYS system, the following cards are needed:
(1) job ID card for FAS sign-on record; check individual system requirements;
(2) $* X E Q$ (*in column $1 ; ~ X, E, Q$ in columan 7-9);
(3) binary program deck, in normal relocatable column binary format;
(4) *DaTA (*in column I; D, A, T, A in columns 7-10);
(5) instructions and other data, terminated by an END cand.
seratch tapes must be mounted on tapes $P$ and $Q(15, B 5)$.
(Note: To date it has never been necessary to use the pseudo-operations TAPSCROSS and SHESCT. As a result, these two instructions cannot be guaranteed to operate correctly.)

APPENDIX 4

PROGRAM PARAMETERS

Some program parameters may be changed without excessive difficulty.
Four particularly important cards in the FAP deck are (all near the beginning):

Cola. 1-6	Cols. 8-15	Cols. 16-72
LNADIB	EQU	50
MAXSX	EQD	29000
P	TAPNO	ASB
$Q$	TAPHNO	B5B

LNADFB is twice the absolute maximum number of matrices that may be kept in 7090 core; it is presently set for 25 matrices. MAXST is the main storage area, and determines the size of the storage area for matrices and other temporary storage (such as I-O buffers; none of thase other storage areas is likely to be large). At the moment, the distribution of core storage is

Ineoeeseible lower end upper core areas:	306 locations
Main program, lower storage:	3,178 locations
Subroutine EXIT, lower storage:	18 locations
Subroutine SaRT, lower storage:	44 locations
Address table (LNADTB), lower storage:	50 locations
Main storage area, upper storage:	29,000 locations
Unoccupied storage:	172 locations
Total 7090 core storage:	32,768

In changing the input and output tapes, it must be remembered that tape reading and writing is not done through (IOU) and reassembly will be required if the system configuration is changed from the version in the FORTRAN manual. The input tape is defined by a card $R$ TAPENO A2; the output tape is defined when FD9OUT is called to write a line of output ((STH) is not used). To change the output tape, use the symbolic reference table in the assembly listing to find calls to OUT and OUTNC, and the SHARE writeup of FD9OUT (with the comments in the listing) to determine how to alter the calling sequence to change the output tape.

## APPENDIX B

## SAMPLE PROGRAM

The sample progran investigates the relation between citations and content as outlined in ref. 1. It uses two ditation correlation matrices, CITNG and CNG2, and computes their cross correlations with the term correlation matrix TDCNP. There are two input matrices, CITED and TTCMP. CITED represents a citation index; if we call this matrix $A$, then $\underline{A}_{j}^{1}=1$ if document $j$ cites document i. TTGMP represents a subject index; calling TICMP B, $\underline{B}_{j}^{i}=1$ if term $i$ applies to document $j$. The program generates from these matrices the needed matrices CITNG, CNG 2, and TDCNP. It then computes the row correlations for CNG 2 and the cross correlations for both CITNG and CNG 2 with TDCMP.

The program, complete with all descriptions of matrices, is given in the attached listing; the instructions are reproduced here:

DATE OCT. 18, 1962

SWMLOGIN CITED

TRANSPOSE CITED CITMG

This instruction causes OCT. 18, 1962
to appear on the top of each page of output.

Reads in CITED. The next six cards give
the identifier list; matrix specifi-
cations follow. Note that only one identifier list is given.

CITNG, the matrix of citations produced by transposing CITMD, represents the actual bibliographies of the documents; each row

## MULTX CITNG CITEDP CNO 2

ROWPRIAI CNO 2

ASMILOGIN TTGYP

TRANSPOSE TTGMPF TDCMP
corresponds to the references pertaining to one document.

This instruction produces CNG 2, the second order citation matrix. In. CNG 2, $A_{j}^{1}=1$ if there is a docwent $k$ auch that $i$ cites $k$ and $k$ cites $j$. By reference to the definition of MULTX, it will be seen that CNO 2 is precisely the matrix produced. CITED is no longer needed and is freed. The row comrelations of CNC 2 are compled and written on the output tape. They are not stored internally or on intermediate tapes and will not be available for future processing.

TMCMP, the subject index, is read in from the input tape. Note that two identifier lists are given; there are fifty-six terms -Ind sixty-two documents, each with a distinct set of names.

THOXP is tranoposed to get a matrix with the same row identifier list as CNO 2 and CITMG. TDCNP, the transposed matrix,
represents a set of descriptiors; salling It $A, \Delta_{j}^{i}=1$ if term $j$ applies to document 1. TTGPP is freed.

LOCCROSS TDCAP C:INC

Loccross CNG 2 T:CMAP

ED

Gross correlations are produced for TDCMP and CITNG. This is done by computing the row correlations for each row of each matrix internaliy, and cross correlating the row correlation vectors, row by row. A cross correlation for each row and an over-all cross correlation are produced. Row correlations are not written on tape for printing.

Cross correlations are computed for TDCMP and CNG 2, as above.

Stops the run.


```
DATE OCT. 18, 1962
SYMLOGIN CITED
B0319 80407 BO408 C.H5O4 CO2O8 CO305 CO317 CO4O2 CO403 FO4O9 FO415 F0496
F0506 F0603 FR205 FR303 FR304 FR309 FR405 FR406 FR612 G8604 GE302 G1209
G1491 G1495 GR202 GR204 GR313 IS311 15312 IS411 J0201 J0310 J0314 J0316
J0413 J0607 J0609 J0611 RU605 LE606 LY414 LY602 MA301 MG404 MG493 MJ203
MJ306 MJ318 MJ494 MJ5O5 OE442 PL315 PL6O1 RO2O1 SA4O1 SH2O6 VC307 VS3OS
WA410 WA412
 B0319 CO317 FO4lb lS311 PL3lh VC307
 80407 G8604 KU6nS PL6nI
 80408 80407 PL601
 CHSO4
 CO2N8 80319 CO317 FO41S FR2OS .0609 LEG06 SHPO6 VS308
 CO305 vS30a
 CO317 FR40S FR61?
 CO402
 C0403 J0609 LV002
 F0409 15411 J0413 WA410. WA412
 F0415 IS411 J0609 LE606
 F0496 50609
 F0506 F0415 .0609 \S31!
 f0603 PL601
 FR205 80319 C0403 FR304 IS311 10310 50607 SA401 VS308
 FR303 CO317 VC3n7 VS3ne
 FR304 CO403 FO409 vS300
 FR309 J0310 J0413 PL31S VS30A
 FR4OS CO4O3
 FR406 CO403
 FR612
 G8604
 GE302 C0317 J0316 vS300
 61209 80319 J0314 MA301 SA401 V5300
 G1491 CH504 FO496 Gl495 J0201 J0609 MJ2O3
 61495 FO496 J0201 .00609
 GR202 PL31s
 GR204
 GR313 CO317 F0409 FR304 IS411 WA4IO WA4I2
 15311 J0609
 15312 FR304 J0316 J0609
 15411 WA412
 J0201 80319 80407 80408 CO317 CO403 FR205 FR309 GR202 GR204 J0310
 J0201 J0314 J0316 J0413 J0607 J0611 SA401 VS308
 J0310 CO317 FR309 FR405 G6604 MA3O1 PL315
 J0314 J0611 MA301 MG404 SA401
 J0316 CO403 1S411 J0413 J0607 WA412
 J0413 J0607
 J0607
 J0609
 .J0611
 <u6n5
 LEG06
 LY414 F0603.J0609 LY6n2
 LY602 F0603 J0609
: MA3OL J0314 SA401
 MG404 CO4n3 J0609
 MG493 FO496 G1495 G1204 J0609 MJ2O3 MJ494 MJSOS SH206
 MJ203 JO413 J0609 Lr602 SH206
 mJ306 C0317 C0403 1S311 J0607 PL313
```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
MJ31 \\
MJ49 \\
MJ50 \\
MJSO \\
OE49 \\
PL31 \\
PL60 \\
RO20 \\
SA40 \\
SH2O \\
SH2O \\
VC3n \\
VS30 \\
WA4 1 \\
WA4 1 \\
COSE
\end{tabular} \& \(J 0609\)
\(J 0609\)
\(C 0208\)
\(V C 307\)
\(C 0403\)
\(F 0603\)
\(C 0305\)
CO317
PL315
\(C 0317\)
\(C 0305\)
\(W A 412\)
FO603
IIEQ C \& \begin{tabular}{l}
CO4O3 \\
MJ505 \\
F0409 \\
VS308 \\
FR309 \\
CO4O2 \\
CO4O3 \\
VC307 \\
FR303 \\
19411 \\
IIMC
\end{tabular} \& PL315
FR405
FR405
C0317
FR205
V5308 \& G1209
J0310
FR303
FR303 \& 10310
LY602
FR309 \& 30609
VS308
GE 302 \& \(1 Y 602\)
15411 \& MJ203

0310 \& MG404 \& SM206 <br>

\hline \multicolumn{12}{|l|}{| ibanseose cifea citma |
| :--- |
| MULTX CITMG CITEDF CNG 2 |
| ROWPRINT CNG 2 |
| ASYMLOGIN TTCMP |
| ADJEC BIBLI CIRCT CUMPL CMPOR CMPOV CONTX CORUN CRECT EXTRC LOXUP DICOR |} <br>

\hline EDITG \& DICT \& FEEDB \& FILOR \& FREQU \& GKAGR \& GRCOD \& HOMOG \& HADIC \& IMFLE \& IMFLR \& IMPEO <br>
\hline INPPR \& JAPAM \& H MASHD \& MUCOK \& NOUNS \& NUMLS \& POED 1 \& PRSAN \& PREPO \& PRODS \& PROER \& PROMS <br>

\hline $$
\left\lvert\, \begin{aligned}
& \text { RFVBS } \\
& \text { TEXTS }
\end{aligned}\right.
$$ \& SERCM

TIMM \& SEGMT
TRNSL \& SEMAN
TRLIT \& SEDIA
UPDAT \& SELGI
Verars \& SORIG
WDCLS \& STOAC
WOSTM \& StKAN \& SUFAN \& SYMAR \& stmaE <br>
\hline RO319 \& 8040 \& B0408 \& CH5O4 \& CO208 \& C0305 \& CO31- \& CO402 \& CO403 \& F0409 \& FO4is \& F0496 <br>
\hline F0506 \& F060 \& FR20S \& FR303 \& FR304 \& FR309 \& FR405 \& FR406 \& FK61\% \& GBh04 \& GE302 \& 61209 <br>
\hline 61491 \& 61495 \& GR202 \& GR204 \& GR313 \& 15311 \& 15312 \& 15411 \& J0201 \& 10310 \& 10316 \& J0316 <br>
\hline J0413 \& 1060 \& 130609 \& J0611 \& KU605 \& LE606 \& LY414 \& LY602 \& MA301 \& MG404 \& MG493 \& MJ203 <br>
\hline \multirow[t]{25}{*}{WA410} \& MJ318 \& 2 MJ494 \& MJ505 \& OE492 \& PL315 \& PL601 \& R0207 \& SA4OI \& SH206 \& VC307 \& V5 108 <br>
\hline \& ADJE \& CRH05 \& FR6 12 \& \& \& \& \& \& \& \& <br>
\hline \& B18L \& CO402 \& R0207 \& \& \& \& \& \& \& \& <br>
\hline \& CIRC \& CH504 \& \& \& \& \& \& \& \& \& <br>
\hline \& COMPL

CMPOR \& $$
\begin{aligned}
& \text { G1495 } \\
& R O E 492
\end{aligned}
$$ \& 10609 \& M.J494 \& \& \& \& \& \& \& <br>

\hline \& CMPD \& $\checkmark$ CH504 \& $0 E 492$ \& \& \& \& \& \& \& \& <br>
\hline \& CONT \& $\times 80319$ \& C0317 \& FR309 \& FR405 \& J0314 \& MJ203 \& VC307 \& \& \& <br>
\hline \& CORUN \& N G1491 \& GR204 \& J0201 \& $J 0316$ \& 50413 \& J0607 \& VS308 \& \& \& <br>
\hline \& CREC \& T CO208 \& F0415
15311 \& FR205 \& FR304 \& GR204 \& 15312 \& J0314 \& J0609 \& LE606 \& v5303 <br>
\hline \& LOKUP \& P 80407 \& J0201 \& 10609 \& SA401 \& \& \& \& \& \& <br>
\hline \& DICOn \& G1491 \& MJ494 \& MJS05 \& \& \& \& \& \& \& <br>
\hline \& EOIT \& G 10609 \& J0611 \& \& \& \& \& \& \& \& <br>

\hline \& | DICT |
| :--- |
| FEED | \& \[

$$
\begin{aligned}
& \text { E } 80407 \\
& 8 \quad 08604
\end{aligned}
$$
\] \& 61209 \& J0314 \& Ma301 \& \& \& \& \& \& <br>

\hline \& FILOA \& G1491 \& \& \& \& \& \& \& \& \& <br>
\hline \& freou \& CO309 \& FR205 \& FR303 \& VS308 \& \& \& \& \& \& <br>
\hline \& GRAGA \& C CO 117 \& FR405 \& FRAI? \& \& \& \& \& \& \& <br>
\hline \& GRCOD \& 0 B0407 \& CO2O8 \& CO4O3 \& F0409 \& F0496 \& F0506 \& FR303 \& F员309 \& GR313 \& 15411 <br>
\hline \& GRCOD \& 0 J0.310 \& J0413 \& LY414 \& LY602 \& MG404 \& MJ2\%i \& MJing \& MJ31R \& MJ494 \& mJ505 <br>
\hline \& GRCOO \& 0 PL315 \& P6601 \& SM206 \& WA410 \& WA412 \& \& \& \& \& <br>
\hline \& HOMO \& C CO208 \& C03:7 \& GE30? \& 5+1206 \& VC107 \& \& \& \& \& <br>

\hline \& HADI MADI \& C CO208 \& C0403 \& FO415 \& FR209 \& FR304 \& $$
\begin{aligned}
& 6.1209 \\
& 01315
\end{aligned}
$$ \& 61491 v5300 \& Gi495 \& 13312 \& 15611 <br>

\hline \& HAOI

INFL \& $$
\begin{aligned}
& \text { C } 10609 \\
& \text { E } 80409
\end{aligned}
$$ \& LE606

GH313 \& MG404

IS411 \& $$
\begin{aligned}
& \text { MJ494 } \\
& \text { WAHIn }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { MJ505 } \\
& \text { WA412 }
\end{aligned}
$$
\] \& OL.315 \& V5300 \& \& \& <br>

\hline \& IMFL \& R FO496 \& F0506 \& MG443 \& Mjg 05 \& \& \& \& \& \& <br>
\hline \& I NPE \& - GR202 \& \& \& \& \& \& \& \& \& <br>
\hline \& 1 INPPA \& GR202 \& GR204 \& \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

```
JAPAN KU6OS
MASHD SA401
MUCOR JO611
NOUNS CO317 FR405 FR612 VC307 WA440
NUMLS MG404
POEOT G1209 J0314 MA301
PRSAN 80407 BO4OE GB604
PREPO MJ306
PRODS 80319 B0407 80408 C0208 C0317 F0409 F0415 F0496 F0S06 FR205
PRODS FR304 GE302 GI491 GI495 15311 15312 IS411 J0201 J0310 J0316
PRODS J0413 J0607 J0609 LE606 SA401 SH206 VS308 WA412
PROER J0310
PRONS MJ318
RFVAS LY414 LY602
SERCH GT49I OEW52
SEGMT KU605 5A&O1
SEMAN LY414
SEDIA PL6OL
SELGT CO3OS
SORTG FR2O5 G1491 IS311 IS411 V5308
STOAC OE492
STRAN F0603 PL601
SUFAN CH504 GI491 GR313 J0316 KU605 LY414 MJ2O3 SH206
SYNAR BO319 F0409 F0603 FR205 FR304 FR406 FR612.15411 J0310 LY414
SYNAR PL601
SYNAE BO407 B0408
TEXIS CO402 R0207
TIMNG GR204
TRNSL F0603 G8604 G1209 J0314 KU605 LY602
TRLIT CHSO4 GR202 KU605
UPDAT CO2O8 F0415 G1495 1S312 J0609 LE606 PL.315
VERES FR406 FR612 FR909 FR405 FR406 FR412 GR313 RUG05 MG493 MJ203
WDCLS F0409 FR303 FR309 FR405 FR406 FR612 GR313 RU605 MG493 MJ203
WOCLS MJ306 MJ318 MJ494 SH206 VC307
WDSTM FR309 GE302 MJ203
TRANSPOSE TTCMPF TOCMP
LOGCROSS CITNG TDCMP
LOGCROSS CNG 2 TDCMP
ENO
```


# V. A COMPARISON OF CITATION DATA FOR OPEN AND CLOSED DOCUEENT COLLECTIONS 

## Michael Lesk

In a study by Salton of the relation between bibliographic citations and document content, ${ }^{1}$ the set of citing documents was assumed to be identical with the set of cited documents; that is, citations to and from documents outside the given document collection were disregarded. It was suggested, however, that the same methods might be used with open collections in which all citations would be allowed. ${ }^{2}$ This section describes an experiment in which the same computations performed previously were repeated with an extended citation network including all citations to and from the collection, regardless of source. The code names previously used for matrices, index terms, and documents have been retained unchanged in the present description.

Three of the matrices were processed on the IBM 7090 computer in both the open and closed forms. These are the matrices CITED, CITNG, and CNO 2. In each case the larger number of documents leads to lower-row correlations in the open collection, but the relationship to content is not seriously impaired.

The change from CITED closed to CITED open resulted in a relatively mall change, because a comparatively mall amount of additional"data was introduced. Although the number of citations rose from 165 to 295 , oniy 21 new documents were introduced in the open collection. Furthermore, most of the now citations were from five works, which had long, exhaustive bibliographies.

The over-all cross correlation between CITED and TDCMP dropped from . 405 in the closed collection to .389 in the open collection. of the five documents with the highest cross correlations, three were common to both collections, as shown in the following table:

CITED Closed Document

## Cross Correlation

MA301	.753
MJ505	.735
MJ306	.651
C0208	.633
SH206	.612

CITED Open

Document | Cross |
| :---: |
| Correlation |

MJ505 . 689
SH206 MJ203 MJ494 MJ306

$$
689
$$

$$
.682
$$

$$
.680
$$

$$
.645
$$

$$
.610
$$

The row correlation data are similar in both collections, but the coefficients are somewhat smaller in the open collection. This is, of course, not true for the documents in report NSF-6, the most recent report in the collection, where the closed collection row correlations are entirely zero because of the total lack of citation data. The open collection does not remedy this defect entirely, however; newer documents atill have fewer than the average number of citations, and some articles (such as the sole article on analysis of Japanese) have no citations at all. Only one document in report NSF-6 has a cross correlation with TDCMP which is as large as the over-all cross correlation. The lack of data for the last report can be attributed to the Imited circulation of the reports, preventing most non-Harvard writers from citing them, and to the existence of only one additional report in the NSF series, whose authors do have access to the documents in the collection. Document collections tsken from
more accessible publications and printed earlier than the collection studied would probably not show a lack of data for the more recent documents.

The extent of the similarity between the open and closed collections in the CITED matrix may be demonstrated by considering the detailed row correlations of a typical document, C0208. The row correlation vectors for document $C 0208$ are shown in Table 1 . The cross correlation For this document in the closed collection was . 633 ; in the open collection, .527. Almost all the row correlations are lower in the open collection, although the arithmetic difference between the correlations in the open and closed collections varies from document to document. Several articles, in fact, do not follow the normal trend, having higher row correlations with document $C 0208$ in the open collection than in the closed collection. These are documents $\mathrm{CH} 504, \mathrm{GI} 209, \mathrm{GI} 491$, J0201, J0310, MJ494, SH206, and GI495, which are indicated in Table l by an asterisk. CH5O4, whose row correlation rose from . 0000 (closed collection) to .3333 (open collection), is unimportant; the rise is due to a single citation that appeared in the open collection. The content of $\mathrm{CH5O} 4$ is completely unlike that of any other article, and presumably a sophisticated program evaluating citation data would recognize that the high-row correlation was caused by only one citation, and would ignore CH 504 in studying the content of 60208.

The other articles that exhibited larger row correlations in the open collection were furnished with a substantial number of citations. It may therefore be of interest to study the relation of their content to that of C0208. CO2O8 deals with dictionary correction and updating;

## V-4

Document	Closed	Open
B0319	.3162	.2981
CH504	.0000	$.3333 *$
CO305	.3536	.3333
COLO3	.2500	.1667
FOL15	.4082	.3849
FO496	.3536	.2722
F0506	.4082	.4082
FR205	.2500	.2222
FR303	.4082	.3333
FR304	.2041	.1667
FR309	.1768	.1667
GE302	.4082	.3849
GI209	.3162	$.3536 *$
GI491	.1443	$.1849 *$
GI495	.2041	$.2357 *$
GR313	.1443	.1179
IS311	.3536	.3333
IS312	.2041	.1667
JO201	.3430	$.3727 *$
JO310	.1443	$.1491 *$
IY414	.2041	.1925
LY602	.2500	.2357
MG4O4	.2500	.1361
MG493	.2500	.1721
MJ203	.3536	.2520
MJ306	.3162	.2222
MJ318	.2041	.1361
MJ494	.2500	$.2520 *$
MJ505	.3062	.2910
RO207	.2887	.1491
SH206	.2942	$.3234 *$
VC307	.3536	.3333

Row Correlations of CO208
(All row correlations not iisted are .0000)

## TABLS 1

thus, GI209 (postediting, translation algorithms), J0310 (recognition of phrases within sentences), and SH206 (word-by-word ayntactic analysis) are articles that we should expect to have low-row correlations. JO2O1 (continuous dictionary run) should also exhibit a low-row correlation,
while GIL91, GI495, and MJ494 (dictionary compilation) might be considere partial successes for the open collection, since they exhibited larger row correlations in that collection. Unfortunately, such directly releva articles as FOLl5 had lower row correlations in the open collection than in the closed collection. Thus, as far as CO2O8 is concerned, the closed citation data give slightly better results, as indicated by the respectiv cross correlations.

Greater differences between open and closed collection data are shown by matrix CITNG. Here the total number of citations more than doublied (from 165 to 393) and the number of documents went up correspondingly (from 62 to 175 ) in going from the closed collection to the open collection. The over-all cross correlation fell from .366 (closed collection) to . 239 (open collection). There is no regular decrease in either the row or cross correlations, which increase in the open collection for some documents and decrease for others. The five highest cross correlations are as follows:

CITNG Closed

Document	Cross   Correlation
C0317	.629
J0413	.629
VS308	.623
J0609	.620
ISL11	.606

CITNG Open

Document	Cross   Correlation
B0319	.614
IS411	.601
J0609	.526
J0314	.411
F0603	.408

Only two documents are common to both lists, and the cross correlations of the open collection are distinctly lower. The row correlation also change more than in CITED. BOL 08 has a . 080 drop in cross correlations from the closed to open collections (.444 to .364). Its row

V-6
correlation vectors are reproduced in Table 2. No uniform pattorn can be found. The open collection does not give the impreseion, as it did for CITED, of being a scaled-down version of the closed collection. In the values of its coefficients, the open collection has a definite advantage in the low-row correlations of GR2O2 and GR204 (. 2887 open, 1.0000 closed),

Document	Closed	Open
B0319	.5000	.2041
BOL07	.7071	.5000
C0317	.3015	.1491
COL03	.0000	.2801
F0603	.0000	.1925
FR205	.5774	.1925
FR309	.5000	.1925
GB604	.0000	.4364
GR202	1.0000	.2887
GR204	1.0000	.2887
IS411	.0000	.1925
JO310	.4082	.1925
J0314	.5000	.2582
J0316	.5000	.2887
JOL13	.4472	.4364
J0607	.5000	.4714
J0609	.0000	.1179
J0611	.5774	.2582
K6605	.0000	.3482
PL601	.0000	.2041
SAL401	.4472	.1925
LY602	.0000	.1667
VS308	.2887	.1325
WAL12	.0000	.2357

Row Correlations for BO 408 CITNG
(All correlations not listed are . 0000 )

## TABLE 2

which are totally unrelated in content to BOLO8. The higher-row correlation of GB 604 in the open collection is also desirable, as both aB 604 and B0408 deal with the same topic (predictive syntactic analysis). A diatinct
disadvantage of the data from the open collection is the introduction of many small row correlations with BOLO8 for documents which previously had a zero correlation, and are not closely related to BOLO8 (e.g., LY602, COLO3). Such correlations lower the cross correlation because they do not correspond to high-row correlations in TDCMP, and also interfere with attempts to derive index terms because of their lack of relation to the content of the articles.

The open CITNG matrix was also used for attempts to assign index terms to documents from the citation data. The results were not, unfortunately, better than those provided by the closed matrix. The introduction of a more sophisticated index term assigning procedure also failed to raise accuracy above fifty percent. It should be noted, however, that the cross correlations are lower in the open collection than in the closed collection. Results of the attempt to assign index terms are shown in Table 3. The new method for deriving index terms is:
(1) Select the five highest row correlations for any given document. To each of the related documents producing these high row correlations, assign a weight equal to the row correlation with the given document divided by the number of index terms associated with the related document. For example, a document with a row correlation of .7071 and with five assigned index terms would be weighted .1414 =.7071/5.
(2) For each index term, compute the sum of the weights of each document of the above five that it is associated with in TDCMP, and associate this weight with the term.

V-8

(1)	(2)	(3)	(4)	(5)
Document	Index Terms Assigned Automatically from CITNG	Number of. Terms in (2) Correct (also assigned manually)	Total Number of Terms Assigned Manually	Cross   Correlation
FR304	5	1	4	.3426
J0607	3	1	2	. 2101
F0409	4	3	- 5	. 3006
C0208	6	3	6	. 3711
J0413	3	3	3	. 2777
TOTAE	21	11	20	

Index Terms from CITNG Open
TABLE 3
(3) Select those index terms which have a weight greater than the weight of any single document. For example, suppose documents $A, B, C, D$, and $E$ had weights (respectively) of .1, .15, .15, .08, and .2. A term assigned to documents $A$ and $D$ would not be selected (.1 + . $08=.18$ is less than . 2 ), while a term assigned to documents $A$ and $C$ would be selected $(.15+.1=.25$ is greater than .2).

The matrix CNG 2 has far more citations and far more documents than either CITNG or CITED. Cross correlations are much lower in the open collection than in the closed collection; the second highest cros? correlation is only .201 in the open collection as opposed to .747 in the closed collection. The over-all crose correlation drops from . 482 to .116. The changes in the row correlation vectors are not consistent with respect to content, but many new low-row correlations are introduced, making the study of the correlationsmare difficult and adversely affecting the
$i$
determination of index terms. Irrelevancies may be introduced; the open CNG 2 collection contains citations to Mark Twain's "The Jumping Frog of Calveras County" and Lewis Carroll's essay on assigning prizes in tennis tournaments.

In summary, then, the open collection of documents is inferior to the closed collection in terms of content-citation relationships. This is probably due to the greater number of extraneous citations which obscure the relevent data. Thic effect is strongly evident in CNG 2. In other matrices, the inferiority of the open collection is not as strongly marked, and it is possible that it might be of more use in analyzing citation data. As was pointed out under CITNG, there is some improvement in the relation of the high row correlations to content, while the small row correlations are less indicative of content than they were in the closed collection. Thus a scheme of analysis concentrating on the large correlations might give better results using the open collection, but this seems unlikely. Work done to date confirms the impression of the cross correlations, that is, the superiority of the closed collection. A conclusion as to the relative merits of CITED and CITNG cannot be drawn from these data, because the amall circulation of the document collection has provented adequate citation of its members. The lack of data for the more recent documents in the matrix CITED prevents general comparisons with matrix CIING, which has no corresponding restriction.

## REFERENCES

1. Salton, G., "The Use of Citations as an Aid to Automatic Content Analysis," Information Storage and Retrieval, Report ISR-2, Section III, The Computation Laboratory of Harvard University (September 1962).
2. Ibid., p. 30.

# VI. ATTYEPTS TO CLUSTER DOCURENTS WITH CITATION DATA 

Michael Lesk

Since citation data alone are probably not capable of producing detailed, accurate, and reliable index terms for documents, an attempt was made to determine whether citation data could be used for placing documents within general groupings, each group containing documents of similar content. The need to place individual documents into subgroups of a large collection may arise in two distinct situations:
(1) An already subdivided collection exists, and it is desired to place newly acquired documents into their proper groups;
(2) Groupings are to be produced from a collection which has not been previously divided.

Problem (1) will be considered first. Here we may assume, for any given document, that the groupings for all other documents are known. The citation data used to study this first problem consisted of the row correlation matrix CTMED. ${ }^{1,2}$ A manual division of the collection into nine groups, of three to nine documents each, was made. These groupings were made solely on the basis of content. Seventeen documents which did not fit into groups were omitted. The grouping is given in Appendix A.

An attempt was then made to plaçe each document into its correct group, using the citation data for that document and the known grouping of all other documents. This was done by considering the three highest row correletions of the given document in CITED, and the related documents
associated with these numbers. If two of these related documents belonged to the same group, the given dooument was assigned to that group. If the three related documents belonged to three different groups, the group containing the document with the highest row correlation was chosen as the cluster to which the given document was to be assigned. This procedure was applied to the forty-one documents which were previously grouped by hand and which had citations in CITsD (open). Of these, the correct group was selectcd in all but eight cases. Two of these eight cases involved articles in Report NSF-6, for which CITED does not give sufficient data. Two more errors involved a single article which was cited more than any other article and may have suffered from irrelevant citations. The elimination of these three articles with either too few or too many citations leaves four errors in thirty-seven documents, or a success rate of $89.2 \%$.

A direct division of the collection into groups was also studied, where only citation data were used to derive the clustering. The method employed was suggested by Mr. Edward Sussenguth. We may consider any two documents as Iinked by a strength proportional to the size of the row correlation between the two documents in a citation matrix. Let us define as major links those with row correlations exceeding 0.7. If a document has at least one citation link with a coefficient exceeding 0.7 , we may define a group containing it as the set of all documents joined to the given document through a chain of links all greater than 0.7 in strength. This produces several clusters in a typical citation matrix, but leaves documents without links of 0.7 or greater ungrouped. These documents may be grouped by assigning them to that cluster which contains a document that is linked
to the given document by a strength of 0,06 or greater, if any such cluster exists. If the given document in: s no links of that strength (including all row correlations more than. 0.6), it may be viewed as on extraneous document, or links of strength : 0.5 can be studied. Clearly, the constants 0.6 and 0.7 in this method 8 are arbitrary and can be raised or lowered as demanded by the indr-vidual data.

The citation matrices CITED (open...) and ONG 2 (closed) were clustered by this procedure. TDCTP wasa-Iso clustered in the same way to compare it with the hand division made earlier. The rough results are shown in Anpendices B, C, and D. Geneerally, the groupings do not accurately reproduce the hand division. TMCMP comes closest, as would be exptected. ONG 2 is the worst, respitee the fact that the cross correlation of CNG 2 with TDCMP is higher than that of CITED with TDCMP. Poughly, of the nine groups in the hand ditision, six are retained more or less intact in the TDCMP clustering, athout three in CITED, and one in CNG 2. For example, the group of douments on postediting and the "trial trenslator," which consists of Gircos, MA301, and J03lh, is retained in the TDCMP clustering (with the addition of GB 604 , which does not belong in this group), is still retalmed in the CITED clustering, but is split over three groups in the Gil 2 clustering. The continuous dictionary run articles, J0201, J0316, N0/413, and J0607, are still clustered in the TDCNP grouping, but are seplit up in the CITED and CNG 2 groupings. Other rearrangements aree also apparent from the clusterings given in the Appendices.

VI-4

More sophisticated methods of clustering the collection from the citation data have been proposed, but it is doubtful that really substantial improvement is to be expected. For example, the links between BO L 08 , OR 202 , and GR2OL in CNG 2 are all of maximum strength (all row correlations 1.0000), and yet the documents should not be in the same group. It would seem that some form of additional information will be needed to succeed.

APPENDIX A

MANUAL CLUSTERTNG
(1) GI2O9 - MA3O1 - J0314 (postediting)
(2) J0201 - J0316 - J0413 - J0607 (continuous dictionary run)
(3) BO 407 - BO 408 - OB 604 (predictive syntactic analysis)
(4) FO603 - Wh410 - WN412 - FO409 - GR313 - ISHII (English inflection)
(5) FR3O4 - FR205 - V3308 (editing programs for syntactic study)
(6) GI491 - GI495 - MJ505 - COLO3 - MJ306 - MJ318 - PL315 - MGLOL - MJ2O3 (dictionary compilation)
(7) $\mathrm{CO208}$ - FOL15 - IS312 - 50609 - LB606 (dictionary correction)
(8) SH2O6 - FR3O9 - GE302 - FRLLO6 - FR612 - FRL405 - C0317 - FR303 (Russian syntactic analysis)
(9) MO493-FOL96-F0506-MJ494 (Russian inflection)

## APPENDIX B

## TDCMP CLUSTERINO

```
(1) aI209 - MA3O1 - J0314 - GB604
(2) J0201 - J0316 - J0413 - J0607
(3) BOLO7 - BOLO8
(4) WM412 - Wh410 - FOLO9 - IS411 - GR313 - FOL96 - FO506 - S5206 - J0310
(5) CO208 - FOL15 - IS312 - FR3O4 - FR2O5 - vS308 - IE606 - J0609 - GT495
(6) MOLOL - COLO3 - PL315 - MJ5O5 - MJ494
(7) MJ2O3 - MJ318 - MJ306 - FR303
(8) CO317 - FR405 - FR6I2 - FRLO6 - VC3O7
(9) RO2O7-COLO2
```

APPENDIX C
CITED CLUSTERING
(1) GI209 - MA301 - J0314
(2) $\mathrm{BOL} 07-\mathrm{BO} 408-50607$
(3) WAL10 - IS411 - FOLOO - J0316 - JOL13 - FR612 - J0611 - FRLO5 - FRLH
(4) COLO3 - MJ2O3 - MJ318 - MOLOL - MJ306 - VS308 - IS312 - FR3OL - FR2O5
(5) FO496 - FO506 - MJ494 - MOL493 - GIL91 - GIL495
(6) LY602 - LY4 414 - IS3II

## APPENDIX D

CNG 2 CLUSTERING
(1) MA3O1 - CB6O4
(2) J0314 - J0316 - B0319 - GE302 - FR2O5 - SALO1
(3) aI209 - C0208 - SH206 - J0201 - FOL96 - MJ505 - MJ203
(4) BOLIO7 - BOLLO8 - GR2O2 - GR2OL
(5) FR3O4 - IS311 - FO415
(6) FRL105 - FR309 - FR612 - CO317 - FR303 - PL315 - COLO3 - VC307 -

V3308 - JOh13 - C0305 - J0310
(7) LY602 - J0609

## RTMETRENCES

1. Salton, G., "The Use of Citations as an Aid to Automatic Content Analysis," Information Storage and Retrieval, Report ISR-2, Section III, The Computation Laboratory of Marvard Oniversity (September 1962).
2. Lesk, M. E., "Comparison of Citation Data for Open and Closed Document Collections," Information Storage and Retrieval, Report ISR-3, Section IV, The Computation Laboratory of Harvard University (January 1963).


Defense Docmentation Center Catalog Card

The Computation Leboratory of Harvard	1. Information lotifieval
Onivaruity, Canbridge, Masceokucotte,	
Indomirion smomics and remelivil,	
Projeot pirector, Appil 1963, the pp.	
APOEL-63-13h Onclassified raport.	I. Seltom, 0 .
Thie report contains a record of the continuing investigation of various techniques for automatic content analyais, and for the storage and search of struetured information. In particular, com otorece allocation technigues	
are axmined wich are useful in the manipulation of natural language dates a variety of machine prograns and experiments are then described for the procesaing of bibliographic citations; and two models for a completely automatic document retrieval syate are outlined.	
	UMCLASSIPITR

Defense Documentation Center Catalog Card



Dafense Documentation Ceater Catalog Card


[^0]:    $\uparrow$ See H.P. Luhn, "Auto-Encoding of Documents for Information Retrieval Systems," Modern Trends in Documentation, M. Boaz (editor), Pergamon Press, 1959.

[^1]:    TA different matching procedure which uses the graph theoretic properties of the syntactic trees and finds the subgraphs of a given graph instead of proceeding on a node-by-node basis has been programmed by E. H. Sussenguth. 7

[^2]:    ${ }^{7}$ Example numbere refer to reforence numbers in Tables 1 and 2.
    FIdentification mubers.

[^3]:    $\$_{4}$ aingly-chained tree is also posaible. The noden of a filial oet are stored in conceoutive memory locations, instead of being chained togethers. Then each computer word contains a value field and only ane addresa Iield.

[^4]:    FIt is asaumed all nodes in the filial set have the seme probability of being selected. If the probabilities differ, the nodes should be tested in order of decreasing probability for greateat officiency. An easy way to do this is to arrange the nodes in the order of the number of items they govern.
    F In a aingly-chained tree the new tree nodes must be added at a location adjoining the locations reserved for their filial set. To do this may ontail relocating the entire filial set.

[^5]:    Frais angunes there are no leaves on levels l,2,..., h-1.

[^6]:    Since the trie requires a morter word length then the tree (one address field re. two (posaibly one) addrese fields and one value field), the ratio $2 \mathrm{a} / \mathrm{n}$ might be more appropriate.

