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Abstract
The sympatric four wild Paradoxurinae civet species in Borneo share similar ecological characteristics,
but the coexistence mechanism of these species is unclear. We investigated their faunivory, re�ected in
their tropic positions (TP), by carbon and nitrogen stable isotope analysis of bulk hair and compound-
speci�c nitrogen isotope analysis of amino acids. The bulk stable isotope analysis showed distinctly
lower nitrogen isotope ratios in binturongs among the four subject species, suggesting the lowest degree
of faunivory. The compound-speci�c stable isotope analysis con�rmed little faunivory in binturong and
showed a probably varying degree of faunivory in the other species. The estimated TP was the lowest in
binturongs (2.0–2.1) and higher in small-toothed palm civets (2.4–2.5), masked palm civets (2.7), and
common palm civets (2.9). Although the number of the measured sample for the compound-speci�c
stable isotope analysis is small (n = 2 for each species), our results suggest the varying degree of
consumption of animal food sources, such as insects, is the key mechanism of niche partitioning in these
four Paradoxurinae civet species in Borneo. Such subtle but important differences in closely related
sympatric species would maintain high biodiversity in tropical regions.

Introduction
The coexistence mechanism of closely related sympatric species is one of the major themes in ecology.
In general, interspeci�c competition for resources among closely related sympatric species is intense
because they have similar morphology, physiology, behavior, and ecology (Simberloff and Dayan 1991;
Pianka 2000). As an evolutionary consequence of the competition, resource partitioning often occurs
between/among closely related sympatric species (Pianka 2000).

Many ecologists have focused on the coexistence mechanisms of mammalian carnivores because they
form community structures as apex or mesopredators (Ritchie and Johnson 2009). In mammalian
carnivores, sympatric species usually exhibit differences in body size and behavior, which are often
re�ected in dietary, spatial, and temporal partitioning (Vanak et al. 2013; Lovari et al. 2014; Karanth et al.
2017; de Satgé et al. 2017; Hearn et al. 2018; Nakabayashi et al. 2021). Carnivore species richness is high
in southeast Asia and central and southeast Africa (Loyola et al. 2009). Among them, rainforests in Asia
possess a far larger number of sympatric carnivore species than those in the Neotropics and Africa
(Corlett 2007). Civets (family Viverridae) are notable in their relatively greater number of sympatric
species (Burgin et al. 2020). Up to eight species of civets coexist in Asian rainforests and share similar
behaviors such as nocturnal and solitary behaviors.

Four civet species belonging to the subfamily Paradoxurinae inhabit in Borneo with the notable dietary,
spatial, and temporal overlaps. These Paradoxurinae species include binturongs (Arctictis binturong),
masked palm civets (Paguma larvata), common palm civets (Paradoxurus philippinensis), and small-
toothed palm civets (Arctogalidia trivirgata), weighing 6–10 kg, 2.5–3 kg, 1.7–2.7 kg, and 1.5–2.6 kg,
respectively (Yasuma and Andau 2000; Nakabayashi et al. 2017). Radio-tracking and camera-trapping
studies of these species revealed that they occur sympatrically even in a small area (Brodie and Giordano
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2011; Nakabayashi et al. 2017). The results of feeding observations showed that the temporal activity
patterns of these civets are highly overlapped in Borneo (Nakabayashi et al. 2016). Observational studies
revealed that Ficus fruits, hereafter called �gs, dominate the diets of these civet species (Nakashima et al.
2010; Nakabayashi et al. 2016; Nakabayashi and Ahmad 2018; Nakabayashi 2020). Ficus comprises
approximately 75.6% of the observed feeding patches for these civet species (Nakabayashi 2020).
Although there are some species-speci�c differences in the use of plant parts (e.g. tree bark sap, nectar,
oil palm pith, and unripe fruit), these civet species typically eat fruits of the same plant species
(Nakabayashi 2020). Observational studies have suggested that faunivory (the generic term for feeding
on animal �esh [carnivory] and insects [insectivory]) is rare in these four civet species, as no faunivory
was observed in three binturong individuals during a total of 951 days of individual tracking
(Nakabayashi and Ahmad 2018) and only ~ 5% (n = 3/55) of fecal samples of common palm civets
contained visible remains of arthropods (Nakabayashi 2020).

However, the observational evidence on the extensive dietary overlap and little faunivory in these four
civet species is contrary to ecological and physiological expectations. Differentiating food resources is
one of the most fundamental strategies in ecological communities for resource partitioning (Azevedo et
al. 2006). Multiple sympatric species usually have di�culty in coexisting if their spatial and temporal
activity patterns, as well as their food sources extensively overlap (Pianka 2000), and this is especially
true in tropical forests of Borneo, where the availability of fruits is relatively scarce compared to the other
Sundaic regions (Wich et al. 2011). It is also expected that a diet almost exclusively consisting of fruits
cannot ful�ll the nutritional and energetic demands of civets because of their typical morphology as
mammalian carnivores, such as carnassial teeth (Anders 2005) and simple digestive tracts without
fermentation of polysaccharides (Lambert et al. 2014), which predominantly limit types and amounts of
ingestible fruit (Nakabayashi 2015). Therefore, we can expect unrevealed dietary partitioning in these
civet species, though there are other examples of carnivores with extremely specialized herbivorous diets
(e.g. pandas) or eating large amounts of fruit (e.g. some ursids, mustelids, canids, and procyonids
(Draper et al. 2022).

A complete picture of the diet of Bornean sympatric civet species remains unclear although there are
some systematic observational studies on the diet of civets (masked palm civets in China: Zhou et al.
2008, common palm civets in Borneo: Nakashima et al. 2013, binturongs in Borneo: Nakabayashi and
Ahmad 2018; Nakabayashi 2020). More speci�cally, it is not clear whether Bornean civets consume
animal materials, and if so, how much of it they consume. Dietary estimation methods in �eld-based
research, such as fecal analysis and direct observation of feeding animals, are usually a “snapshot” of
reality, making it di�cult to comprehensively determine animal diets and ecological resource uses
(Moreno-Black 1978; Dickman and Huang 1988; Gales and Cheal 1992).

Carbon and nitrogen stable isotope analysis of animal tissues is an effective method to estimate the
actual food sources consumed by individual animals. This is because the carbon and nitrogen stable
isotope ratios (δ13C and δ15N values) of animal tissues quantitatively re�ect the nutritional contribution
of ingested foods (Kelly 2000; Crawford et al. 2008; Crowley 2012; Ben-David and Flanherty 2012). In



Page 4/24

terrestrial environments, the δ13C values of C3 plants are lower than those of C4 plants (Smith and
Epstein 1971; O’Leary 1988), and such a difference is re�ected in the consumers (Cerling et al. 1997). The
δ15N values of bulk tissues (δ15Nbulk values) of organisms show a stepwise increase along with the
increase in the trophic position (TP) in a food web (Minagawa and Wada 1984; Schoeninger and DeNiro
1984). While the precise estimation of the TP with the δ15Nbulk values is hampered in some cases by the

�uctuations in baseline δ15N values of the ecosystem and physiological changes in diet–tissue offset
values, compound-speci�c nitrogen isotope analysis of individual amino acids (hereafter, CSIA-AA)
provides quantitative estimates of the TP of the individual animals (Chikaraishi et al. 2007, 2011; Steffan
et al. 2013; Naito et al. 2016; Ohkouchi et al. 2017). Amino acids can be grouped into “source” and
“trophic” amino acids, and the former fractionates 15N very little (< 0.5‰) during trophic transfer but the
latter is highly (~ 6–8‰) enriched in 15N in each trophic step (Popp et al. 2007; O’Connell 2017; Ohkouchi
et al. 2017). Therefore, the δ15N values of each amino acid from an individual record information both on
the baseline of the ecosystem and the individual's TP (McClelland and Montoya 2002; Chikaraishi et al.
2007). By applying these analyses for diet estimation, though the number of measurable samples in
CSIA-AA is smaller due to its lower throughput, it is possible to investigate whether there is dietary
partitioning among sympatric civet species.

In this study, we investigated the degree of faunivory of the four Paradoxurinae species in Borneo to
investigate their dietary partitioning using bulk carbon and nitrogen stable isotope analysis and amino
acid nitrogen isotope analysis. We hypothesized that the consumption of small animals, such as
arthropods, has been underestimated in the diets of civets and that their contribution to dietary protein
intake is important despite their low detectability. We tested this hypothesis with stable isotope analyses.
In addition to bulk stable isotope analysis, we applied CSIA-AA to a limited set (i.e. two individuals per
species) of representative samples to obtain a perspective on the species-speci�c difference in their
degree of faunivory, re�ected in their TPs. Since the nitrogen isotope ratios of consumer tissues mostly
represent those of proteins in the food sources, the dietary protein contribution, rather than energy
contribution, is investigated in this study. Also, this study only concerns dietary niche partitioning that
appears in TP, which can be estimated from CSIA-AA. Niche partitioning in the same TP (e.g. dietary
partitioning by eating different parts of the same plant) is not evaluated in this study.

Materials and methods
Study sites

We conducted this study in the Danum Valley Conservation Area (Danum) and Maliau Basin
Conservation Area (Maliau) in Sabah, north-eastern Borneo, from May 2012 to May 2014, and from
November 2015 to June 2018, respectively. Danum (4°57 N, 117°48 E) is a 438 km2 protected area, and
90% of this area consists of mature lowland evergreen dipterocarp forest between 180 and 900 m a.s.l.
(Marsh and Greer 1992; Newber et al. 1999). The study area was around the eastern boundary of the
protected area. Maliau (4°49′N, 116°54′E) is a 588 km2 protected area, including lowland dipterocarp
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forests and at least 12 forest types between 300 and 1675 m a.s.l. (Hazebroek et al. 2004). The study
area in Maliau was outside the basin and in a selectively logged dipterocarp forest.

Sample collection

We conducted trapping of civet species using box traps (Supplementary Text 1.1) set on the ground or on
the branches at heights ranging from 3–35 m. In total, we captured 6 individuals of two civet species
from Danum and 21 individuals of �ve civet species from Maliau (Supplementary Table S1). Their hairs
pulled out from the skin were used for stable isotope analyses. Trapping and handling of the animals
conformed to the guidelines of the American Society of Mammalogists (Sikes et al. 2016).

We collected insects and fruits as potential food samples for the civet species. Two insect species (a
dung beetle and a weevil) were found near the base camp and two �g species (Ficus caulocarpa and F.
annulata) were obtained at the height of 3 m from the trees in a phenological survey plot. Based on the
behavior observation of the civets, they strongly depend on �gs as their diet (Nakabayashi 2020).
Therefore, we select �gs as representative plant food items.

Sample collection, transfer, and analyses were approved by Sabah Biodiversity Centre (Access Licence
JKM/MBS.1000-2/2JLD.4(170), JKM/MBS.1000-2/2JLD.6(50), JKM/MBS.1000-2/2JLD.4(170),
JKM/MBS.1000-2/2JLD.7(64) and Transfer Licence JKM/MBS.1000-2/3(66), JKM/MBS.1000-2/3
JLD.3(100)).

Stable isotope analyses

Samples were treated for stable isotope analyses based on the protocols described previously (Campbell
et al. 2017). Brie�y, hair and insect samples were defatted with chloroform and methanol. Strands of
hairs and powders of insects/plants were used for both bulk stable isotope analysis and CSIA-AA. Carbon
and nitrogen stable isotope ratios (δ13C and δ15N, respectively) of bulk hair, insect, and plant samples (~ 
0.6 mg) were measured by Shoko Science, Co., Ltd. with an elemental analyzer-isotope ratio mass
spectrometer (EA/IRMS). Compound-speci�c isotope analysis of amino acid δ15N (δ15NAA) was
performed for selected hair, insect, and plant samples. Samples for CSIA-AA were prepared based on the
amino acid derivatization procedures described in Chikaraishi et al. (2015). The δ15N values of each
amino acid were determined using a gas chromatograph coupled to an isotope ratio mass spectrometer
(GC/C/IRMS) at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) (Ishikawa et al.
2018, 2022). Detailed methods were described in Supplementary Text 1.2.

The TP value was calculated based on the stable nitrogen isotope ratios of glutamic acid and
phenylalanine (δ15NGlu and δ15NPhe, respectively) as follows (Chikaraishi et al. 2011, 2014):

TP = (δ15NGlu – δ15NPhe + 8.4)/7.6 + 1 [Equation 1]
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Glutamic acid and phenylalanine were used to calculate TP in this study, although recent meta-analyses
and feeding experiments propose other combinations of amino acids for the calculation of TP (e.g.
Ramirez et al. 2021; Whiteman et al. 2021). The metabolism of these amino acids has been studied well,
and their positions in nitrogen metabolism represent one of the most obvious trophic and source amino
acids, respectively (Ohkouchi et al. 2017, Ohkouchi 2023). Theoretically, TPs of primary producers (i.e.
plants), primary consumers (i.e. obligate plant eaters, such as herbivorous animals), and secondary
consumers (i.e. obligate eaters of primary consumers, such as some obligate insectivorous animals) are
expected to be 1, 2, and 3, respectively. Propagated errors of TP are calculated based on Chikaraishi et al.
(2009) and Ishikawa et al. (2022).

Results
Stable isotope ratios of bulk tissues

The results of stable isotope analyses are shown in Supplementary Table S1 and summarized in Table 1.
First, the δ15Nbulk values of civets and plants were higher in Maliau than in Danum (Fig. 1). Mann‒
Whitney U tests showed that the δ13Cbulk (U = 36, p = 0.003) and δ15Nbulk (U = 1, p = 0.009) values of
common palm civets from Maliau (n = 10) were signi�cantly higher (+ 0.4‰ and + 1.0‰, respectively)
than those from Danum (n = 4). Similarly, the δ15Nbulk values of small-toothed palm civets (n = 2) and
plant fruits (n = 5) from Maliau were + 1.0‰ and + 3.5‰ higher than those from Danum (n = 2 and 2),
respectively, although no statistical test was applied due to their small sample sizes. Because of the more
comprehensive coverage of civet taxa and the larger number of obtained samples, further CSIA-AA was
performed only on the samples from Maliau, and the results from Maliau are described and discussed
hereafter.
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Table 1
Summary of the stable isotope ratios of bulk samples from Danum and Maliau.

Site   δ13C bulk   δ15Nbulk   n

    Mean SD Mean SD  

Maliau Binturong -26.1 0.4 4.8 0.2 2

  Common palm civet -24.0 0.7 8.6 0.3 10

  Malay civet -22.6 1.0 7.7 0.3 4

  Masked palm civet -24.7 0.3 8.1 0.6 3

  Small-toothed palm civet -24.8 0.7 7.5 0.4 2

  Rodents -25.6 0.7 6.1 1.6 3

  Fruits of Ficus spp. -29.8 0.9 2.0 1.0 5

  Leaves of Ficus spp. -31.6 1.2 2.5 0.7 6

  Insects -27.2 7.8 6.7 3.4 2

Danum Common palm civet -22.4 0.5 7.6 0.3 4

  Small-toothed palm civet -24.7 0.4 6.5 0.1 2

  Fruits of Ficus spp. -29.4 – 0.1 – 1

  Fruts of Microcos �brocarpa -29.2 – -0.4 – 1

The mean δ13Cbulk and δ15Nbulk values of civet species ranged from − 26.1‰ to -22.6‰ and from 4.8‰
to 8.6‰, respectively (Table 1; Fig. 2). Among the �ve civet species in Maliau, binturong showed the
lowest δ13Cbulk and δ15Nbulk values, suggesting that the TP of binturongs is lower, although the feeding

experiments were apparently inconsistent with this assumption (Supplementary Text 2). The δ13Cbulk and

δ15Nbulk values of binturongs and other civets were similar to those of squirrel/porcupine and mouse,
respectively (Fig. 2).

The mean δ13Cbulk and δ15Nbulk values of Ficus fruits were − 29.8 ± 0.9‰ and 2.0 ± 1.0‰, respectively

(Table 1). Compared with the δ15Nbulk values of fruits of Ficus spp., those of binturong and other civets in

Maliau were 2.8‰ and 5.5–6.6‰ higher, respectively (Table 1). The δ13Cbulk and δ15Nbulk values of
insects varied widely (Fig. 2), which hinders the estimation of faunivory from bulk stable isotope ratios.

Stable isotope ratios of amino acids

The degree of faunivory was estimated quantitatively by applying CSIA-AA (Table 2; Supplementary Table
S2; Fig. 3). The δ15NPhe values, which mainly re�ect baseline isotope ratios, were similar among the
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analyzed samples in Maliau (8.6–13.5‰) except for the dung beetle (16.2‰), suggesting that Ficus
fruits, snout beetle, and civets are part of the same food chain. The δ15NGlu values, which typically
increase with the increase in TP, were higher in civets (9.0–14.6‰) and snout beetle (11.9‰) than in
Ficus fruits (3.8‰ and 4.6‰).

Table 2
Summary of the stable isotope ratios of amino acids of civet hair and food samples from Maliau.
Species ID δ15NGlu   δ15NPhe   TP   n

    Mean SD Mean SD Mean Propagated error

Binturong 11 9.0 0.4 9.9 0.8 2.0 0.29 3

  12 9.0 0.3 9.4 0.2 2.1 0.27 3

Common palm civet 14 14.6 0.6 8.8 1.5 2.9 0.43 3

  15 14.4 0.1 8.8 0.6 2.9 0.38 3

Masked palm civet 31 14.4 0.4 9.9 0.8 2.7 0.37 3

  37 13.4 0.3 8.6 0.3 2.7 0.36 3

Small-toothed palm civet 16 11.6 0.1 8.9 0.9 2.5 0.34 3

  17 12.4 0.1 10.2 1.1 2.4 0.34 3

Fruits of Ficus spp. 24 3.8 0.7 11.0 0.6 1.2 0.23 3

  30 4.0 0.7 13.5 0.1 0.8 0.22 3

Insects 41 20.5 1.4 16.2 2.1 2.7 0.50 4

  43 12.2 1.3 8.5 1.3 2.6 0.41 3

The TPs calculated from the CSIA-AA of Ficus fruits were 0.8 and 1.2, and those of civets ranged from 2.0
to 2.9 (Table 2; Fig. 3). Among the four civet species analyzed, binturong had the lowest TP (2.0 and 2.1)
compared with other species: common palm civets (2.9 and 2.9), masked palm civets (2.7 and 2.7), and
small toothed civets (2.4 and 2.5). Their point measurements of TPs (n = 2 for each species) had species-
speci�c clusters with no overlap (Fig. 4). The estimated TPs of insects were 2.6 and 2.7 for snout beetle
and dung beetle, respectively (Table 2). This result suggests taxonomic differences in the degree of
faunivory, although the small sample size prevents further statistical tests.

Discussion
Trophic positions of Paradoxurinae civet species
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Our �ndings show relatively high δ15Nbulk values and higher estimated TP among non-binturong civets,
suggesting the possibility that the consumption of animal foods may have been previously
underestimated. The results of δ13Cbulk and δ15Nbulk values of civets suggest that their diet is different
among species, which is supported by TP values estimated from CSIA-AA. It is di�cult to estimate the
degree of faunivory from these results of varying δ15Nbulk values of possible food sources because the

δ15Nbulk values re�ect variations in both baseline isotope ratios and trophic discrimination. In other

words, it is not clear whether the higher δ15Nbulk values of a given civet species are the result of higher

trophic levels or elevated dietary δ15Nbulk values. It is not practical to collect and analyze dozens of
dietary items from all civets (Nakabayashi 2020) to determine a stable isotopic baseline. As mentioned
earlier, CSIA-AA provides information on both baseline isotope ratios and trophic positions, which enables
the quantitative estimation of the TPs even from a limited set of representative samples.

The measured TP of plant-eating insects was higher (≥ 2.6) than that expected for obligate plant eaters
(i.e. 2), and it is possible that a small amount of insectivory in�ates the TPs of civet species. The higher-
than-expected insect TP may be due to the consumption of microorganisms with a higher TP than
autotrophic organisms (Steffan et al. 2015, 2019). If dung beetles and weevils assimilated proteins from
intestinal bacteria from feces or microbes grown on decaying wood, their TP would be higher than
expected for a strict herbivorous insect. Even so, the TPs of masked palm civets (2.7) and common palm
civets (2.9) were higher than those of insects, con�rming faunivory in these civet species.

The point measurements of TP of the civet species ranged from 2.0 to 2.9, and each species showed
clustered TPs that did not overlap with those of other species (Fig. 3). Although our critical assumption is
that the TP estimates of two individuals per species represent their respective species, this result
suggests possible species-speci�c differences in the degree of faunivory in Paradoxurinae civet species.
CSIA-AA illustrated overall faunivory in common palm civets, masked palm civets, and small-toothed
palm civets, and the tendency of faunivory seems to be stronger in this order if the analyzed individuals
truly represent the diet of each species. Contrary to the other civet species, the TP of binturongs was
almost one-level lower even within the same subfamily, suggesting that their diet consists almost entirely
of plant-based materials such as fruits.

The diet of these civet species can be discussed more in detail with the existing knowledge from
observational studies. First, we used the hairs of the two intensively radio-tracked female binturong
individuals for the analysis (Nakabayashi et al. 2016; Nakabayashi and Ahmad 2018; Nakabayashi
2020). According to the results of individual tracking of these binturongs, spanning over 900 days in total,
79–86% of their diets consisted of �g fruits, and faunivory was not observed (Nakabayashi and Ahmad
2018). Therefore, the obviously low δ15Nbulk values and TP of binturongs, which are similar to those of
plant-eating animals, compared to the other three Paradoxurinae species simply re�ect their fruit-
dominated diet (Figs. 2, 3, and 4). Furthermore, given that �g fruits generally contain pollinating �g wasps
inside (Harrison et al. 2003), �g wasps seem to contribute little to protein intake in binturongs despite the
large consumption of �g fruits (Nakabayashi et al. 2019). Popowics (2003) noted that binturong dentition
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is relatively small compared to the body size and shows a decrease in shearing and crushing functions.
Binturongs usually feed on mature �g fruits, and thus, large teeth to process large hard fruits may not be
necessary for them. Our stable isotopic results, as well as the abovementioned observational studies,
implying that faunivory seldom occur in wild binturongs, at least for females. This result is similar to the
results of individual trackings (Nakabayashi and Ahmad 2018) and conclusions of more than 700 hours
of observation of animals who visited fruiting �g trees in Borneo (Leighton and Leighton 1983; Shanahan
2000).

Compared with binturongs, the difference in TP among other civet species is less clear. To further
investigate their dietary niche partitioning in TP, more samples need to be analyzed by CSIA-AA. Even
though, these civet species have occasional species-speci�c feeding behaviors, especially in small-
toothed palm civets and binturongs. Common palm civets showed similar TP (2.9) to masked palm
civets (2.7), which is equivalent to omnivorous diet. Scat analyses of common palm civets revealed that
they sometimes consume rodents in Borneo (Nakashima et al. 2010, 2013; Colon and Sugau 2012), and
their occasional faunivory was supported by our CSIA-AA. These two species are genetically close
compared to the other two Paradoxurinae species (Patou et al. 2008; Zhou et al. 2017) and show overlap
in several food items (Nakabayashi 2020). However, competition could be mitigated by their habitats
being different in altitude. While the occurrence records of common palm civets are concentrated in the
lowlands, those of masked palm civets are concentrated in the highlands at an altitude of over 700 m in
Borneo (Mathai et al. 2010; Brodie and Giordano 2011; Nagano et al. 2019; Nakabayashi et al. 2021).
Geographical differences may be a more critical niche partitioning factor than diet for these two species.
The measured TP for small-toothed palm civets (2.4 and 2.5) is between those of common palm civets
and binturongs, suggesting their unique dietary niche among Paradoxurinae civets as omnivores
consuming both plant and animal materials. This is partly supported by their unique dietary habits of
feeding on tree bark sap, nectar, oil palm pith, and unripe fruits which the other Paradoxurinae civets do
not consume in Borneo (Nakabayashi 2020). Contribution from these unique food sources would
increase the overall dietary protein contribution from plants and lower the TP of small-toothed palm
civets compared to common palm civets and masked palm civets.

Ecological signi�cance

Our stable isotopic results suggested faunivory in several Paradoxurinae civet species in Borneo, which
has never been con�dently shown in previous observational studies (e.g., Harrison 1961). Paradoxurinae
civet species are thought to be largely dependent on plant foods (Nakabayashi 2020) although their
dental morphology (Anders 2005) and digestive tract anatomy (Gahkod 1878; Liu et al. 1997; McGrosky
et al. 2016) present clear characteristics of Carnivora. Such an adaptation is not unique to civets because
some other mammals in Carnivora largely depend on plant foods, such as extant giant pandas and
extinct cave bears (Naito et al. 2020). However, this study suggested that the postulated assumption of a
plant-dominated diet is only applicable for binturongs among the Paradoxurinae civet species in Borneo.
Common palm civets, masked palm civets, and small-toothed palm civets showed TP values greater than
2.4, suggesting their omnivorous diet (Table 2, Fig. 4). Such an unexpected omnivorous diet was also
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suggested in South American extinct ground sloth Mylodon by CSIA-AA (Tejada et al. 2020). Considering
that small-toothed palm civets evolutionarily diverged from the group containing these four species �rst,
followed by binturongs and masked palm civets (Patou et al. 2008), the possible differences in TP are not
explained by the evolutionary relationship among the subject species. In Viverridae civets, larger species
feed on �brous low-quality food (Gittleman 1985), such as �gs. Binturongs have the largest body size
and they cannot digest fruits e�ciently (Crapo et al. 2002; Lambert et al. 2014), indicating that they need
large amounts of food to extract su�cient energy for survival and reproduction compared to the other
three species (Kleiber 1961). Because Ficus reproduces fruits year-round due to its obligate mutualism
with pollinating �g wasps and has a relatively large crop size (Harrison et al. 2003), it is one of the most
stable food resources in the Bornean rainforest where fruit production is unstable and low (Wich et al.
2011). Therefore, binturongs may strongly depend on �gs for their diet, at least in Borneo. Considering
that Asian rainforests possess a much larger number of sympatric carnivore species than the other
tropical regions (Corlett 2007), strong dependence on plant foods in binturongs may reduce competition
for faunivorous diets among sympatric carnivores.

Direct observation of food items in wild civet species is usually di�cult, and previous �eld-based
observational studies, such as focal individual observations and fecal content analysis (Nakabayashi
2020), failed to detect dietary partitioning in Paradoxurinae civet species. Most civets’ behaviors are not
observable due to their nocturnal, solitary, and semiarboreal habits above 10–60 m canopies
(Nakabayashi et al. 2017; M Nakabayashi personal observation). Observation of opportunistic
consumption of small insects is quite di�cult, and their faunivory had been underestimated. Furthermore,
civets’ feces are di�cult to obtain for fecal content analysis because several civet species, such as small-
toothed palm civets and binturongs, defecate higher in the canopy (Nakabayashi et al. 2019; M
Nakabayashi personal observation), making the detectability of these feces on the ground extremely low.
Even if their fecal samples are obtained, some soft-bodied insects such as larvae and annelids are easily
digested and thus are morphologically undetectable through the identi�cation of macro remains in feces.
This study shows that stable isotope analysis, as well as direct observation, is useful to reveal the entire
diet of the subject species. Additionally, metagenomic and metaproteomic analyses of feces can be
utilized further to reveal the detailed food items of mammalian species (e.g. Mallot et al. 2017; Tsutaya et
al. 2021). The application of isotopic and biomolecular analyses, such as that conducted in this study, to
animal species that are di�cult to observe or have been studied little can illuminate unrevealed
mechanisms of coexistence and facilitate e�cient conservation approaches especially for non-
charismatic medium- and small-sized mammals (Trimble and Van Aarde 2010; Troudet et al. 2017).

As with this study, stable isotope analyses have revealed nuanced dietary partitioning in various
sympatric terrestrial mammalian taxa, such as Malagasy lemurs (Dammhahn and Kappeler 2014), great
apes (Oelze et al. 2014), bats (Campbell et al. 2017; Oelbaum et al. 2019), rodents, and Bovidae (Djagoun
et al. 2020). In general, dietary overlap in sympatric carnivores is extensive, especially for confamilial
species (Arbogast et al. 2017; Webster et al. 2021), because of the morphological and physiological
limitations to digestible diets (Stevens and Hume 2004). In this regard, the inclusion of and dependence
on plant foods, in addition to faunal foods, enabled the Paradoxurinae civet species to compensate for
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their spatial, temporal, and taxonomic overlaps and similarities (Nakabayashi et al. 2016, 2017) and to
occur sympatrically. Such subtle but important differences in closely related sympatric species would
maintain high biodiversity in tropical regions (Whitmore 1984). It is possible that anthropogenic
disturbances would destroy such a subtle difference, such that by exacerbating competition for fruits
(Meijaard et al. 2005), and thus the exquisite coexistence mechanism and biodiversity are impaired.

Conclusions
The diet and TP of four Paradoxurinae civet species in Maliau, Borneo were investigated by applying bulk
stable isotope analysis of hairs and CSIA-AA. Although the TP of binturongs (~ 2.0) suggested that their
diet almost entirely consists of plant foods, the TPs of small-toothed palm civets, masked palm civets,
and common palm civets (2.4–2.9) suggested their omnivorous diets. These results support our
hypotheses that faunivory is more common than previously assumed in Paradoxurinae civet species in
Borneo and imply that its degree systematically differs among the sympatric species. Such a subtle
dietary difference would enable the coexistence of closely related civet species and ensure high
biodiversity in tropical regions.
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Figure 1

Comparison of bulk stable isotope ratios of subject species from Danum and Maliau. Samples analyzed
in CSIA-AA are shown with their ID.



Page 21/24

Figure 2

Carbon and nitrogen stable isotope ratios of bulk samples from Maliau. Samples analyzed in CSIA-AA are
shown with their ID.
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Figure 3

The δ15NGlu and δ15NPhe of Paradoxurinae civet species and their potential food sources from Maliau.
Sample ID and estimated TPs calculated based on Equation 1 are also shown.
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Figure 4

Calculated TP of Paradoxurinae civet species. The error bars represent 1 SD range of propagated
uncertainties. Sample ID was also shown.
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