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—— Abstract

Dynamic graph matching algorithms have been extensively studied, but mostly under edge updates.
This paper concerns dynamic matching algorithms under vertex updates, where in each update step
a single vertex is either inserted or deleted along with its incident edges.

A basic setting arising in online algorithms and studied by Bosek et al. [FOCS’14] and Bernstein
et al. [SODA’18] is that of dynamic approximate maximum cardinality matching (MCM) in bipartite
graphs in which one side is fixed and vertices on the other side either arrive or depart via vertex
updates. In the BASIC-incremental setting, vertices only arrive, while in the BASIC-decremental
setting vertices only depart. When vertices can both arrive and depart, we have the BASIC-dynamic
setting. In this paper we also consider the setting in which both sides of the bipartite graph are
dynamic. We call this the MEDIUM-dynamic setting, and MEDIUM-decremental is the restriction when
vertices can only depart. The GENERAL-dynamic setting is when the graph is not necessarily bipartite
and the vertices can both depart and arrive.

Denote by K the total number of edges inserted and deleted to and from the graph throughout
the entire update sequence. A well-studied measure, the recourse of a dynamic matching algorithm
is the number of changes made to the matching per step. We largely focus on Maximal Matching
(MM) which is a 2-approximation to the MCM. Our main results are as follows.

In the BASIC-dynamic setting, there is a straightforward algorithm for maintaining a MM, with

a total runtime of O(K) and constant worst-case recourse. In fact, this algorithm never removes

an edge from the matching; we refer to such an algorithm as irrevocable.

For the MEDIUM-dynamic setting we give a strong conditional lower bound that even holds in

the MEDIUM-decremental setting: if for any fixed n > 0, there is an irrevocable decremental

MM algorithm with a total runtime of O(K - n'~"), this would refute the OMv conjecture; a

similar (but weaker) hardness result can be achieved via a reduction from the Triangle Detection

conjecture.

Next, we consider the GENERAL-dynamic setting, and design an MM algorithm with a total

runtime of O(K) and constant worst-case recourse. We achieve this result via a I-revocable

algorithm, which may remove just one edge per update step. As argued above, an irrevocable
algorithm with such a runtime is not likely to exist.

Finally, back to the BASIC-dynamic setting, we present an algorithm with a total runtime of

O(K), which provides an (-2 )-approximation to the MCM.

To this end, we build on the classic “ranking” online algorithm by Karp et al. [STOC’90].

Beyond the results, our work draws connections between the areas of dynamic graph algorithms and
online algorithms, and it proposes several open questions that seem to be overlooked thus far.
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1 Introduction

Dynamic matching algorithms have been intensively studied in recent years. The great
majority of previous work considers graphs that change via edge updates, where in each
update step a single edge is either inserted to or deleted from the graph. In dynamic graphs
that are subject to vertex updates, where each update step consists of an insertion or a
deletion of a vertex (with all its incident edges), the literature is much more sparse and, to
the best of our knowledge, essentially all of it is restricted to incremental (insertion only) or
decremental (deletion only) updates. This work studies matching algorithms in fully dynamic
graphs under vertex updates.

1.1 Background

In the area of dynamic graph algorithms, one can try to optimize the amortized or worst-case
update time of an algorithm, where both measures are defined with respect to a worst-case
sequence of updates, and the worst-case (resp., amortized) update time designates the
maximum (resp., average) update time spent by the algorithm over all update steps.

In graphs subject to vertex updates, which is our focus, when it comes to the update time,
one should care about amortized bounds. Indeed, the update time following a vertex update
must be at least linear in the degree of that vertex. Due to possibly significant differences in
the degrees of updated vertices, the worst-case update time is rather meaningless. On the
other hand, the amortized update time is a normalized notion of the total runtime of the
algorithm, where we divide the total runtime by the number of edges ever inserted and deleted
to and from graph; dividing by the number of vertex updates is far less informative. Thus,
in the background survey to follow (also in graphs subject to edge updates), we usually omit
the distinction between amortized and worst-case bounds. We start with dynamic graphs
subject to edge updates (Section 1.1.1) and later move on to vertex updates (Section 1.1.2).

1.1.1 Edge updates

We do not cover in this survey the entire literature on matching algorithms under edge
updates. We shall restrict attention to the state-of-the-art results on matchings whose size
approximates that of the maximum cardinality matching (MCM) to within a factor of 2,
which is the focus of this work; this includes maximal matching (MM), which provides a
2-approximate MCM.
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Maximal matching (MM)

Deterministically, the only improvements to the naive MM algorithm with update time O(n)
are for sufficiently sparse graphs: update time O((n + m)V2/2) was achieved in [24], which
was improved in [27] to O(y/m), where n (resp., m) denote the fixed (resp., dynamic) number
of vertices (resp., edges) in the graph, respectively.

Better deterministic algorithms are known for bounded arboricity graphs. The arboricity
of an m-edge graph G, denoted by o = a(G), is the minimum number of forests into which
it can be decomposed; this parameter ranges from 1 to \/m and is a common measure of
“uniform sparsity”. The current state-of-the art is update time O(a + /alogn), due to [20].

Allowing randomization against a (non-adaptive) oblivious adversary, an update time of
O(logn) was achieved [2], which was subsequently improved to O(1) [31]. We remark that
an oblivious adversary is not allowed to learn anything about the random bits used by the
algorithm, which can alternatively be viewed as if the entire sequence of updates is fixed by
the adversary in advance, i.e., prior to any random choices made by the algorithm.

Can one improve the y/m deterministic update time of [27], even using randomization
against an adaptive adversary? No lower bound whatsoever is known.

» Question 1.1. Is there a deterministic algorithm, or a randomized one against an adaptive
adversary, for maintaining an MM in general graphs with a sub-polynomial update time?

Better-than-2 approximate MCM

A (1+¢) (resp., (3/2+¢))-approximate MCM can be maintained with update time O(y/m/e?)
[19] (resp., O(m!/*e=25)) [6, 7], for any 0 < e < 1/2. These results were generalized for
bounded arboricity graphs: A (14 ¢€) (resp., (3/2+ €))-approximate MCM can be maintained
with update time O(a/e?) [28] (resp., O(a/*e=2% + ¢=6) [17]), where « is the arboricity
bound, which, as mentioned, ranges from 1 to /m.

A randomized algorithm against an oblivious adversary for maintaining a (2 — Q(¢))-
approximate MCM with update time O(A€+polylog(n)) was given in [3], where € is a constant
and the Q-notation in the approximation bound hides a tiny constant. For bipartite graphs,
similar results can be achieved without making the oblivious adversary assumption, either via
a randomized algorithm against an adaptive adversary [8, 33] or via a deterministic algorithm
8, 9]. We also mention a result for graphs of bounded neighborhood independence 3: There is
a randomized algorithm against an adaptive adversary for maintaining a (1 + €)-approximate
MCM with update time O(eﬁ3 log 1) [26].

For any fixed € > 0, a (1 4+ ¢)-MCM can be maintained in constant (resp., polylog(n))
update time in incremental general (resp., decremental bipartite) graphs [16] (resp., [9]).

The following is a major open problem.

» Question 1.2. Is there any algorithm for maintaining a better-than-2 approximate MCM in
general graphs with a sub-polynomial update time? Further, is it possible to get a significantly
better than 2 (say, 1.99) approxzimation with a small polynomial update time?

L' The neighborhood independence (number) of a graph G, denoted by 8 = B(G), is the size of the largest
independent set in the neighborhood of any vertex.
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1.1.2 Vertex updates

For matching algorithms under vertex updates, which is the focus of this work, the literature
is much more sparse. In FOCS’14, Bosek et al. [11] considered bipartite graphs in which
one side is fixed (n fixed “servers”) and vertices (“clients”) on the other side either arrive
or depart in n vertex updates; we will refer to these settings as BASIC-incremental and
BASIC-decremental. They optimized two measures: The total runtime of the algorithm
(or equivalently the amortized update time) and the recourse bound, which measures how
many changes to the matching are done per step. They designed an exact (respectively,
(1 + €)-approximate) MCM algorithm with a total runtime of O(m+/n) (resp., O(me=1)),
where n and m are the number of vertices and edges in the graph, matching the performance
of the celebrated Hopcroft-Karp [22] algorithm for a one-time static computation. Their
exact and approximate algorithms admit recourse bounds of O(y/n) and O(e1), respectively.
A different exact MCM algorithm with an amortized recourse bound of O(log2 n) was given
in SODA’18 by Bernstein et al. [4]. See also [18, 14, 12, 13, 5, 32], and the references therein.

The recourse bound

The recourse bound is a basic measure of quality, and has been subject to growing attention
in recent years [18, 14, 12, 13, 4, 5, 30, 29]. In some applications such as job scheduling, web
hosting, streaming content delivery and data storage, and in situations where the matched
edges are hardwired in a physical sense, a replacement of a matched edge by another one
may be prohibitively expensive, possibly much more than the time needed to compute these
replacements. Moreover, a low recourse bound is important when the matching algorithm is
used as a black-box subroutine inside a larger data structure or algorithm (see, e.g., [7, 1]).

The worst-case (resp., amortized) recourse bound of an algorithm measures the maximum
(resp., average) number of changes to the output matching per update step, over the entire
sequence of updates. The recourse bounds in the algorithms of [11] and [4], as well as in
other previous works [18, 14, 12, 13, 5] are amortized. Under vertex updates, as mentioned,
the worst-case update time is not too informative, as it is problematic to compare update
times following updates of vertices with significantly different degrees; the same is not true
of course for edge updates. However, the recourse bound is not necessarily affected by the
degrees of the updated vertices, and so optimizing the worst-case recourse bound is not less
natural or important than optimizing the amortized recourse bound.

It was shown in ITCS’21 [30] that any dynamic algorithm for maintaining a y-approximate
MCM with update time T', for any v > 1, T and € > 0, can be transformed into an algorithm
for maintaining a (y(1+¢))-approximate MCM with update time 7'+ O(1/¢) and a worst-case
recourse bound of O(1/e). This transformation applies to both edge and vertex updates.
Although this transformation only increases the approximation guarantee by a factor of
1+ ¢, the transformed algorithm does not preserve the qualitative properties of the matching
maintained by the original algorithm; in particular, an MM algorithm will be transformed
into an algorithm that maintains a (2 + €)-approximate MCM, which is very different of
course than an MM.

1.2 QOur contribution

As mentioned, our work studies matching algorithms in graphs that change dynamically
under vertex updates, whereas most previous work in the area considers edge updates. In the
area of online algorithms, on the other hand, most of the literature revolves around vertex
updates. In both areas, vertex updates are easier to deal with than edge updates (further
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details on that are given in Section 1.2.1). We stress that the objectives in the areas of online
algorithms and dynamic graph algorithms are inherently different. In the former the objective
is to optimize the competitive ratio of an online algorithm (the ratio of the approximation
guarantee provided by the online algorithm to that of the best possible offline algorithm),
each decision of the algorithm is irrevocable, and no runtime measure is considered. In the
latter the main objective is to optimize the update time of the algorithm, and while the
decisions are allowed to be “revoked” as many times as necessary, it is important nonetheless
to optimize the recourse bound.

The previous works on dynamic matching algorithms under vertex updates were inspired
by the area of online algorithms; e.g., the paper of Bosek et al. [11] is titled “online matching in
offline time”. In particular, as with most papers in the area of online algorithms, all previous
work on dynamic matching algorithms under vertex updates considers either incremental or
decremental updates. Our paper is the first to study dynamic matching algorithms
under fully dynamic vertex updates. We denote by K the total number of edges inserted
and deleted to and from the graph throughout the sequence of vertex updates, and note that
a total runtime of K - ¢, for any ¢, translates into an amortized update time of t.

We first observe that in bipartite graphs where one side is fixed, i.e., consists of n fixed
vertices that we may view as “servers”, and the other side is fully dynamic, i.e., vertices on
that side that we may view as “clients” arrive and depart via vertex updates, hereafter the
BASIC-dynamic setting, there is a trivial MM algorithm with a total runtime of O(K) and
constant worst-case recourse. In fact, this algorithm resembles an online algorithm in that
it never removes an edge from the matching; we refer to such an algorithm as irrevocable.
Throughout the paper, we shall distinguish between two types of edges deleted from the
matching: Those due to the algorithm, which will be referred to as removals (only from the
matching), and those due to the adversary (the entity performing the updates), which will be
referred to as deletions (they get deleted from the graph, but then also from the matching).
Further details are given in Section 2.

We then consider bipartite graphs in which both sides are fully dynamic, hereafter the
MEDIUM-dynamic setting. For this setting we prove that, based on popular conjectures, no
irrevocable algorithm with a total runtime of O(K') may exist.

» Theorem 1. An irrevocable MM algorithm with a total runtime of O(K -n*~"), for any fized
n > 0, would refute the the online matriz-vector multiplication (OMv) conjecture. Moreover,
a runtime of O(K -m"), for some fized n > 0, would refute the Triangle Detection conjecture.

We also extend the hardness result provided by Theorem 1 to the decremental setting, called
MEDIUM-decremental, where the update sequence only contains vertex deletions. In this
setting, we can fix the graph and its initial maximal matching, and the dynamic algorithm
must be able to maintain the maximal matching under vertex deletions. Alternatively, our
results apply to an “almost-decremental” sequence of updates, which starts with a batch of
insertions and proceeds with a batch of deletions. The decremental setting is more restricted
than the fully dynamic setting, which makes our lower bound stronger.

Next, we consider general graphs under vertex updates, hereafter the GENERAL-dynamic
setting. We say that an algorithm is i-revocable, for an integer parameter ¢ > 0, if it may
remove at most i edges per update step in the worst-case. (An irrevocable algorithm is
O-revocable.)

» Theorem 2. For any sequence of updates in the GENERAL-dynamic setting, ome can
maintain an MM via o deterministic 1-revocable algorithm with a total runtime of O(K).
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Any i-revocable MM algorithm may add at most 2i 4+ 1 edges to the matching per step, and
so the algorithm provided by Theorem 2 has a constant worst-case recourse. Theorem 2 and
Theorem 1 establish a strong separation between 1-revocable and irrevocable MM algorithms.
Recall that in the edge update setting, the fastest deterministic update time is /m; see
Question 1.1.

Finally, back to the BASIC-dynamic setting, we prove the following theorem in Section 5.

» Theorem 3. For any sequence of updates in the BASIC-dynamic setting, one can maintain

a (5 )-approxzimation (in expectation) to the MCM with a total runtime of O(K).

To achieve this result, we build on the classic “ranking” online algorithm by Karp et al.
[25]. More specifically, we demonstrate how to efficiently maintain a matching corresponding
to the ranking algorithm under vertex updates. Given any fixed ranking over the servers,
our algorithm performs deterministically within total runtime O(K), but the approximation
factor may approach 2. To get an (%5 )-approximation (in expectation), we use a random
ranking over the servers, which is withheld from the adversary. Thus our algorithm is
randomized and it works against an oblivious adversary. Recall that in the edge update
setting, the fastest update time (including algorithms against an oblivious adversary) is

polynomial in n; see Question 1.2.

1.2.1 Conceptual highlights

Beyond the results reported above, we next discuss the conceptual contribution of this work.

A more refined measure of recourse

We have already discussed the importance of the recourse bound. The number of changes to
the matching is comprised of the number of edge removals and edge insertions. Removing an
edge from the matching is arguably much more problematic or expensive than adding an edge
to the matching, when it comes to real-life applications. Recall that an i-revocable algorithm
may remove at most i edges from the matching per update in the worst-case; we identified
this parameter, which we may refer to as the revocable parameter, as a pivotal measure of
MM algorithms: While there is a 1-revocable MM algorithm with constant amortized update
time (Theorem 2), based on popular conjectures, any irrevocable algorithm must incur a
polynomial update time. For MM algorithms, this parameter provides a more refined measure
than the standard recourse bound, since any i-revocable MM algorithm has a recourse of at
most 3¢ + 1; in particular, both irrevocable and 1-revocable MM algorithms have constant
recourse.

It would be interesting to explore this measure further. For example, what is the
relationship between irrevocable MM algorithms and maximum matching algorithms with
no bound on the revocable parameter? Both problems admit high conditional lower bounds,
but can we reduce one of the problems to the other? What about a (2 + ¢)-approximation
algorithm that does not maintain an MM: Is there an irrevocable (2 + ¢)-approximate MCM
algorithm with constant amortized update time? The hardness result of Theorem 1 exploits
the maximality of the matching but not the approximation guarantee. We note that the

(%7 )-approximation algorithm of Theorem 3 may incur a large revocable parameter. Is it

possible to achieve a similar approximation and update time via a 1-revocable, or even an
irrevocable, algorithm?
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Better-than-2 approximate MCM

As mentioned in Section 1.1.1, whether or not one can maintain a better-than-2 approximate
MCM in sub-polynomial update time under edge updates is a major open problem (see
Question 1.2). On the other hand, Theorem 3 shows that one can maintain a (%5)-
approximate MCM in constant update time under vertex updates. To achieve this result, we
maintained a matching corresponding to the ranking online algorithm of [25]. This draws a

natural connection between the areas of online algorithms and dynamic graph algorithms. We

anticipate that the area of dynamic graph algorithms could benefit significantly by borrowing
more from the area of online algorithms, and it could also contribute to it of course.

Recall that the result of Theorem 3 applies to the BASIC-dynamic setting. It is unclear
if our approach can be extended to the MEDIUM-dynamic setting, let alone to the GENER-
AlL-dynamic setting; each of these settings adds another level of difficulty. Note also that
in the GENERAL-dynamic setting, which concerns general rather than bipartite graphs, the
approximation factor of 1—1/e does no longer apply. However, a generalization of the ranking
, leu)? one can hope to get
this approximation in the GENERAL-dynamic setting. Achieving a better-than-2 approximate-

algorithm [23] gives an approximation of roughly 1.919 (i.e.

MCM in these settings is not only an intriguing question on its own right, but could also be
a stepping stone towards resolving Question 1.2, first in bipartite graphs and ultimately in
general graphs.

2 An irrevocable MM in the BASIC-dynamic setting

In this section, we describe a simple irrevocable maximal matching algorithm for the BA-
SIC-dynamic setting, which works in total runtime of O(K). Recall that we use K to denote
the total number of edges inserted and deleted to and from the graph throughout the entire
update sequence.

In what follows, we denote by deg;(v) and N;(v) the degree and set of neighbors of a
vertex v in the graph after update step i, respectively; when the update step ¢ is clear from
the context, we omit the subscript. In the BASIC-dynamic setting, vertices on the fixed side
S of the bipartition are often called servers while vertices on the dynamically changing side
C are called clients.

Upon insertion of a client u, we scan its neighborhood and look for a free server in N(u)
to be matched with w. If there is such a server, denoted by v (v is chosen arbitrarily if
there are multiple options), we add edge (u,v) to the maintained matching M; otherwise,
the algorithm “notifies” all the servers in N(u) that w is free: For each server x in S | we
maintain a doubly linked list F(x) of free neighbors, and to notify the neighboring servers
that w is free, the algorithm appends u to their linked lists. Whenever the algorithm appends
some client u to the list F'(z) of a neighbor x € N(u), it stores the pointer to that entry in
F(x) with vertex u; this pointer is later used to erase the corresponding entry (if needed) in
O(1) time. See also the pseudocode of procedure HANDLEINSERTION () in Algorithm 1.

When a client u gets deleted, we remove the occurrences of v from the lists F'(x), for all
servers x € N(u). If the deleted client was matched, we first need to delete (u,v) from the
matching M, where v is the mate of u. This renders server v free, so the algorithm needs
to rematch it with a free client in N(v). To this end the algorithm checks if F(v) is empty,
and if not, the vertex at the front of the list, denoted by w, is removed from F(v), and gets
matched with v. See procedure HANDLEDELETION in Algorithm 1.

Clearly, Algorithm BASICMM is an irrevocable algorithm for maintaining an MM. More-
over, it is readily verified that the total runtime of this algorithm is O(K).
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Algorithm 1 BAsicM M.

1: procedure HANDLEDELETION (u)

2 if mate(u) # 0 then > let v = mate(u)
3 delete (u,v) from M

4 if F(v) # () then

5: take the first entry w from F'(v) and add (v, w) to M

6 NoOTIFY (w, matched)

7

8

9

else
NoOTIFY(u, free)

: procedure HANDLEINSERTION (u)

10: scan the neighbors of u > in O(deg(v)) time
11: if no free neighbor is found then NOTIFY(u, free)

12: else

13: let v be an arbitrary free neighbor of u; add (u,v) to M

14: procedure NOTIFY(u, State) > State € {free, matched}
15: if State = free then

16: for x € N(u) do

17 append u to F(x) > keep the pointer from u to its entry in F'(z)
18: else > State = matched
19: for x € N(u) do

20: remove u from F(z) > in O(1) time, using the pointer stored with u

» Corollary 4. For any sequence of updates in the BASIC-dynamic setting, one can maintain
an MM via a deterministic irrevocable algorithm with a total runtime of O(K).

3 Lower bounds for irrevocable MM in the MEDIUM setting

In this section we prove a strong lower bound of amortized time Q(n'~¢) per edge update for
any constant e < 1, assuming that the OMv conjecture holds (Conjecture 5). This essentially
means that for each vertex update, one cannot do much better than scanning the entire
vertex neighborhood. Our lower bound even holds for MEDIUM-decremental setting; in this
setting, we require that the decremental algorithm is able to handle any update sequence
that consists of vertex deletions applied to any graph G and any maximal matching M of G.

The Online Boolean Matrix-Vector Multiplication (OMv ) conjecture was introduced by
Henzinger et al. [21] for proving conditional hardness of various (dynamic) problems. In the
OMv problem, we are given an n X n Boolean matrix M and a sequence of n Boolean vectors
arriving one by one vy, vy ..., v,. For each vector v; where ¢ € [1,n], we need to output the
Boolean product M - v; before the next vector comes. The OMv conjecture is the following:

» Conjecture 5 (OMv Conjecture [21]). For any constant ¢ > 0, there is no algorithm that
solves the OMv problem with an error probability of at most 1/3 and runs in O(n>~¢) time.

The same paper [21] introduced another problem, called the Online Vector-Matrix-Vector
Multiplication (OuMyv ) problem. In this problem, we are given an n x n Boolean matrix M
and a sequence of n pairs of Boolean vectors arriving one by one (u1,v1), (u2,v2) ..., (U, V).
The task is, for each time step ¢ € [1,n], to output the Boolean product uf Mv;, before the
next vector pair arrives. Henzinger et al. [21] showed that if the OMv conjecture holds, there
is no algorithm for OuMv with total running time O(n3~¢) for any fixed € > 0 even if one is
allowed to preprocess M in polynomial time before any vector pair arrives.
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» Theorem 6 (Theorem 2.4 [21]). For any constant € > 0, assuming that the OMv conjecture
holds, there is mo algorithm with a polynomial preprocessing that solves the OuMyv problem
with an error probability of at most 1/3 and runs in O(n3~¢) time.

We first present a lower bound for the fully dynamic setting, as the proof is simpler
and conveys some intuition for the decremental setting. The lower bound proof for the
decremental setting follows the same principle, but we introduce an additional idea. In
particular, we introduce the Stop-OuMv problem (Definition 13), which is a variant of of the
OuMv problem. We show that the Stop-OuMv and OuMv are equivalent under truly subcubic
time reductions. We then prove a lower bound for the decremental setting via a reduction
from the Stop-OuMv problem.

Hardness from triangle detection

We also achieved a weaker lower bound, under the Triangle Detection conjecture:

» Conjecture 7. There is a constant 0 < 9, such that in the Word RAM model with words of
O(logn) bits, any algorithm requires m*T9=°() time in expectation to detect whether an m
edge graph contains a triangle.

Our lower bound holds for the decremental setting as well; due to space constraints, this
lower bound is omitted.

3.1 The fully dynamic setting

Our proof of the lower bound for irrevocable MM in the MEDIUM-dynamic setting is via a
reduction from the OuMv problem. In particular, we show that:

» Theorem 8. If for some fixed € > 0, there is an algorithm that maintains an irrevocable
mazimal matching in the MEDIUM-dynamic setting with error probability at most 1/3 in
O(K -n'=<) time, then the OuMv problem can be solved in O(n>=) time with error probability
of at most 1/3, using O(n?) preprocessing time.

Theorem 8 and Theorem 8 imply that, unless the OMv conjecture fails, there is no
algorithm with running time O(K - n'~¢) time and error probability at most 1/3 that
maintains an irrevocable maximal matching in the MEDIUM-dynamic setting.

Henceforth, we focus on proving Theorem 8. We construct the dynamic graph in 2 phases,
starting from an empty graph. In the first phase, we are given an n X n matrix M. We
construct a bipartite graph G = (V, E) by adding vertices in a specific order such that the
maximal matching maintained by the algorithm is perfect. The running time of the first
phase is O(n?), which we charge to the preprocessing time of the algorithm for solving the
OuMv problem. The second phase has n time steps, and in each time step ¢ when we receive
a pair of vectors (ug,v:), we delete and insert vertices to G = (V, E) such that the total
number of edges incident to the deleted/inserted vertices is O(n). We argue that depending
on the size of the maximal matching, we can determine whether u] Mwv; is 0 or 1. Since the
total number of edges inserted/deleted over n time steps is K = O(n?), an algorithm of
running time O(K - n!~¢) for irrevocable MM implies an algorithm of running time O(n3~¢)
for the OuMv problem with preprocessing time O(n?), as claimed.

We now describe each phase in turn.
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Phase 1

In this phase, given an n x n matrix M, we incrementally construct a bipartite graph
G = (V, E) as follows. The vertex set V' is the union of four vertex sets V = V; UV, UVR UV},
each has n vertices. It follows that |V| = 4n. There is an edge between a vertex pair
(ir,jr) € Vi x Vg if and only if MJir,jg] = 1. For each vertex if, € Vi, there is a
corresponding vertex i € V;* of degree 1 that is connected to ir. That is (ip,}) is the
only edge incident to ¢7. Similarly, for each vertex jr € Vg, there is a corresponding vertex
ji € Vi of degree 1 that is connected to jr. Clearly G is a bipartite graph. We would
like the maximal matching M maintained by the algorithm by the end of phase 1 to be
{(¢5,i1) 1 i € Vi} U{(Jx.Jr) : jr € Vr}. To realize this assumption, we add vertices to
G in the following order. First, we add all vertices of V;* and Vi one by one. We then add
vertices of V7, and finally add vertices of Vi. Observe that, every time a vertex iy, € V,
is added, the algorithm will match it to the corresponding vertex i} € V}*, since it has no
other neighbor. Similarly, when vertex jr € Vg is added, the algorithm will match it to
the corresponding vertex j € V3, since its neighbors in V, are already matched and the
algorithm is not allowed to change the matching. We conclude that:

» Observation 9. The total number of edges of G after Phase 1 is O(n?). Also, the maximal
matching after Phase 1 is {(i},i1) :ir. € VoY U{(j%,Jr) : jr € Vr}, which has size 2n.

Phase 2

This phase has n time steps, and in each time step ¢, a pair of vectors (u;,v;) arrives. First,
for each j € [1,n] such that v[j] = 1, we activate the j-th vertex jr € Vg by deleting its
neighbor jj, in V5. Let y be the number of 1-entries of v;. Then, for each i € [1,n], we
activate the i-th vertex ¢z, € Vg, by deleting its counterpart i3 € Vz, and query the size of the
maximal matching. We call vertices in V;, U Vi whose neighbors are deleted active vertices.
We show in the following lemma that by querying the size of the maximal matching, we can
determine the value of u] Mv;. Let z; be the number of 1-entries of u; whose indices are in
[1,i]. Let M; be the maximal matching following the deletion of i .

» Lemma 10. u] Mv, =1 if and only if there exists i € [n] such that |M;| =2n—y —xz; +1
and for every 1 < i’ < i, |IMy| =2n—y— xy.

Proof. Observe that when the algorithm deletes ¢7,, there are y 4+ x; vertices that have been
deleted from V; UV} in total. Thus, |[M;| > 2n —y — x;. The algorithm may add a new
matching edge between a vertex in V7, and a vertex in Vg after deleting vertices from V7 U V3.
We argue that the number of such edges is at most 1, and that this happens only when
u] Mvy = 1. Recall that u] Mv, =1 is either 0 or 1. Furthermore, u] Mv; = 1 if and only
if there exists a unique pair of indices (i, ) € [n] x [n] such that w[i] = M[i, j] = v¢[j] = 1.
It follows that, before iy, is activated, there is no edge from active vertices in Vy, to active
vertices in Vg. Thus, |[My| =2n —y —z; for every 1 <4’ < i. When i} is deleted, i, is free
and hence, will be matched to jg. Thus, |M;| =2n —y — x; + 1. <

Lemma 10 implies that we are able to decide whether u] Mv; = 1 by querying the size of
the maximal matching, and find the first index ¢ € [n] such that |M;| =2n —y —z; + 1 (we
stop the phase at that 7). If we cannot find such an index 7, then u] Mv; = 0.

Next, we need to “undo” the changes of the maximal matching to prepare for the arrival
of the next vector pair (ug41,ve41). If uf Moy = 0, all we need to do is to insert the deleted
vertices of V' UV back into the graph, and the algorithm will match all of them with their
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counterparts in Vi, UVg. If u] Mv; = 1, let 4 be the first index such that |[M;| = 2n—y—z; +1.

We delete iy, from V7, then insert the deleted vertices of VU V3 back, and finally insert ¢,
back into the graph. Note that i will not be matched to any jr € Vg since each jr was
matched to its counterpart in jj, which was inserted before ;. Thus, i, will be matched to
17, and the algorithm can proceed to the next time step.

» Observation 11. At each time step t € [n], the number of edges deleted and inserted is
O(n).

Proof. Since the algorithm deletes at most n vertices of degree 1 (in V;* U V}) and at most
one vertex in Vg, the number of deleted edges is at most 2n. The number of inserted edges
is exactly the number of of deleted edges. Thus, the observation follows. <

Proof of Theorem 8. By Observation 9, the running time in Phase 1 is O(n?), which we
charge to the preprocessing time of M. Phase 2 has n time steps, and by Lemma 10, we can
correctly decide whether u] Mv; =1 for each time step ¢ by querying the size of the maximal
matching. By Observation 11, the total number of edges over the entire update sequence is
K = O(n?), including the edges updated in Phase 1. It follows that if the running time to
maintain an irrevocable MM is O(Kn'~¢) = O(n37¢), then the total running time to solve
OuMv is O(n®~¢). <

3.2 The decremental setting

Our goal is to show that, such an algorithm with running time O(K - n'=¢) where K is the

total number of edges deleted implies that the OuMv problem can be solved in O(n3~¢) time.

» Theorem 12. If for some ¢ > 0, there is an algorithm that maintains an irrevocable
mazximal matching for any graph G and its mazximal matching in the MEDIUM-decremental
setting with error probability at most 1/3 in O(K -n'*=¢) time, where K is the overall number
of edges being deleted from the graph throughout the entire sequence of updates, then the
OMyv conjecture is false.

Recall that in the lower bound proof in the fully dynamic setting (Theorem 8), in each
time step ¢ € [n] in Phase 2, we use vertex insertions to restore the matching before the next
pair of vectors (u¢41,ve+1) arrives. In particular, we need to insert back vertices of V;* UV}
and a vertex iy, € V.

We would like to use auxiliary vertices to simulate all re-insertions of nodes i} by deletions.

Here is an idea. In our fully dynamic reduction, we removed vertices i} to free up their
matches 77, in the matching. At the end of the phase, we want to re-insert 4} so it can be
matched to iz, again. The idea is that instead of a single i}, we will have a copy i ; for each
j=1,...,n, one for each phase. At the beginning of the ¢-th phase, iy, is matched to some
i} 1; in particular, the initial matching contains (ir, ] ;). During the phase i} ; is deleted to
make i, available, and at the end of the phase we want ij, to get matched to i}, , while
iy 1, stays deleted (rather than being re-inserted). Since we have at most n phases, we would
only need n? total nodes i - To make t7 , ; available to be matched, in the initial graph,
for every j > 1, each i} ; has a single node i} connected only to it, and the edge (zJ* I z;‘*L)
Is in the initial matching for all j > 1. Then to make i} ; available, it suffices to delete 737 .

Doing this, we simulate all re-insertions except those of iy, by deletions at the cost of
having O(n?) vertices; the number of edges stays O(n?). However, it seems difficult to
simulate the re-insertion of i;,. To handle this, we use a different idea.
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Here, we instead exploit the fact that in the fully dynamic construction the cases when
ur Mv; = 0 were easy to handle, and that the difficulties came when we found that u; Mv, = 1.

We introduce a variant of the OuMv problem, which we call the Stop-OuMv problem,
where we can stop the online update sequence of pairs of vectors whenever we encounter the
first time step ¢ such that u] Mv; = 1. Namely, the goal of the Stop-OuMv problem is to
detect the first time step ¢ € [n] where u]Mv, = 1. While Stop-OuMv seems easier than
OuMv | we will show that the two problems are equivalent under truly subcubic reductions.
Thus, it suffices to reduce Stop-OuMv to our decremental MM problem.

We proceed similarly to our fully dynamic reduction. The key idea is that whenever we
detect that u] Mv; = 1, we do not need to worry about the matching at future time steps.
As a result, there is no need to insert i;, back and hence, we can avoid vertex insertion
entirely. The remaining technical challenge is to show that an O(n3~¢)-time algorithm for
the Stop-OuMv problem falsifies the OMv conjecture. (The reduction from Stop-OuMv to
OuMy is trivial.)

We start by giving the formal definition of the Stop-OuMv problem.

» Definition 13 (Stop-OuMv Problem). We are given an n x n Boolean matriz M and a
sequence of n pairs of Boolean vectors arriving one by one (u1,v1), (u2,v2) ..., (Un,vy). At
each time step t € [1,n], we compute the Boolean product u] Muvs, and if u] Mv; = 0, we
proceed to the mext vector pair; otherwise, we stop and return that ungt =1.

Later in the section we prove the following theorem, giving an equivalence between
OMyv and Stop-OuMv .

» Theorem 14. For any constant € > 0, assuming that the OMv conjecture holds, there is
no algorithm with polynomial preprocessing that solves the Stop-OuMv problem with an error
probability of at most 1/3 and runs in O(n>=¢) time.

We are now ready to prove Theorem 12, assuming Theorem 14.

Proof of Theorem 12. We will show that a decremental algorithm as stated in Theorem 12
implies an algorithm with running time O(n3~¢) for the Stop-OuMv problem, thereby falsifying
the OMv conjecture by Theorem 14.

Given a matrix M of the Stop-OuMv problem, we first construct a graph G = (V, E) and
its maximal matching M. Specifically, V' is the union of six vertex sets V = V;*U VUV, U
VR UVZ UVE*. Vi and Vg have n vertices each, and there is an edge between a vertex pair
(ir,jr) € VI x Vg if and only if M|[ir,jr] = 1. For each vertex iy, € V1, we add n vertices
{i1 0, i5 1} to Vi each vertex in this set is connected to iz, by an edge. We apply the
same construction to each vertex jr € Vg; the new neighbors of jr are added to V. Finally,
for each vertex i ; € V[ for t > 1, we add a vertex ;7 in V™ and connect {7, to iy ; by an
edge. We apply the same construction to each vertex in V3, but new vertices are are added
to Vi*. This completes the construction of G. See Figure 1 for an illustration.

The maximal matching M we choose is {(i] r,ir) : iz, € VL}U{(j{ g,Jr) : jr € Vr} plus
all the edges incident to V;* U Vi*, except for those who are matched to vertices in Vi U V.
This can be accomplished by first inserting the edges of M, and then the rest of the edges.

Note by the construction that vertices in V™ U V3* have degree 1 in G and those in
Vi U Vg have degree 2.

» Observation 15. Let m be the number of 1-entries of the matriz M. Then |M| = 2n?,
and G has m + 4n? — 2n edges and 4n? vertices.
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Figure 1 Here we see an example construction of the reduction graph obtained from the 3 x 3
matrix M. The edges in the initial matching M are shown in bold.

Since m = O(n?), by Observation 15, G and M can be constructed in O(n?) time; we charge
this running time to the preprocessing time of the Stop-OuMv problem.

Next, for each time step ¢ € [n], the pair of vectors (ug, v¢) arrives. We will inductively
maintain the following invariant:

Matching Invariant: At the beginning of time step ¢, for every vertex iy, € V,
(jr € VL), there is an edge (iz,%; 1) (resp. (jr,ji z)) in the maximal matching.

Clearly, the Matching Invariant holds when ¢ = 1 by the construction of M. For each
j € [n] such that v[j] = 1, we activate the j-th vertex jr € Vi by deleting its neighbor
Jir € Vi We apply the same operation for each i € [n] such that w[i] = 1. We call
vertices in Vi, UV whose neighbors are deleted active vertices. Let z; be the total number of
l-entries of u; and v;. We call the first time step ¢ where u) Mv, = 1 the critical time step.
Observe that in each time step t < £, we delete exactly z; edges from the initial maximal
matching M. Furthermore, the algorithm will add exactly one edge to M at the critical
time step £ and the matching edge is (ir,jr) where (ir,jr) is the (unique) pair such that
utliz] = Mlip,jr] = v¢[jr] = 1. Thus, we have:

» Observation 16. Let M; be the matching M after time step t. Then |M;| = 2n2—2221 2k
for any t < 0 and |M;| =2n* — Y5 _, 2 + 1 when t = £.

From Observation 16, our idea to detect the critical time step is to maintain Z; = 22:1 2k
after each time step. At time step t, after activating vertices in V, UVg as described above, we
query the size of the maximal matching M; and check it against 2n2 — Z;. If | M;| = 2n? — Z;,
then u] Mv, = 0. Otherwise, |M;| = 2n? — Z; + 1, and it follows that ¢ = ¢. The algorithm
deletes every vertex of G afterward.

To prepare for the arrival of the vector pair in the next time step t + 1, we need to
maintain the Matching Invariant. We do so by deactivating the active vertices in Vi U Vg.
Note that we only need to deactivate vertices when ¢t < ¢, and in this case, there is no edge
between two active vertices since u] Mv, = 0. Specifically, we deactivate an active vertex
ir, € Vi by deleting vertex i;7, ; in V;*. This deletion leaves i}, , | free, and the algorithm
will match iy, to i, ;, . We deactivate an active vertex jr € Vg in the same way. Thus,
Matching Invariant is maintained.

We now bound the total running time of solving the Stop-OuMv problem. Clearly
K = O(n?) by Observation 15. Maintaining {Z;}?_; takes O(n?) time. Thus, the runtime of
the algorithm, by the assumption of Theorem 12, is O(Kn'=¢) + O(n?) = O(n3~¢). <
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Finally, we close this section by proving Theorem 14 by a reduction from OuMv problem.

Reducing OuMv to Stop-OuMv: Proof of Theorem 14.

Suppose that we have an algorithm for solving the Stop-OuMv problem with a polynomial
preprocessing time p(n) and total computation time O(n3~¢) for some fixed € > 0, we will
show that the OuMv can be solved in O(n3~2¢/3) time by using O(n®/3p(n?/3)) preprocessing
time; the error probability of both algorithms is 1/3. Thus, Theorem 14 follows from
Theorem 6.

Given an instance of the OuMv problem with an n X n matrix M, we partition M into
n2(1=9) blocks of size n® x n® for a = 2/3. Then we construct an instance of Stop-OuMv for
each block of M.

Next, for each time step ¢ € [n] where a pair of vectors (u, v;) arrives, we split u; and v,
into blocks of length n®. For each pair (z,y) € [n'7%] x [n'79], we give the z-th block of wuy,
denoted by wu(x), and y-th block of v;, denoted by v:(y), to the Stop-OuMv data structure
for the (x,y)-block of M, denoted by M (z,y). If the Stop-OuMv data structure for M (z,y)
outputs 0, we continue for the next pair. Otherwise, we return that u] Mv; = 1 and initiate
a new Stop-OuMv data structure for block M(x,y). Furthermore, whenever the current
Stop-OuMv data structure for M (z,y) “overflows”, that is, we has given exactly n® vector
pairs to the data structure, we initiate a new Stop-OuMv data structure for M (x,y).

We first bound the preprocessing time. Observe that for each block M (z,y), the total
number of Stop-OuMv data structures needed is at most n. Thus, we can initialize exactly n
Stop-OuMv data structures for each block M (zx,y) before any vector pair arrives. The total
time is O(n't2(=2)p(n®)) = O(n®/3)p(n?/?), which we will charge to the preprocessing time
of OuMv algorithm. We note that the number of Stop-OuMv data structures actually used
by the algorithm for each block M(x,y) could be much smaller than n, and hence, many
copies of the Stop-OuMv data structures for M (x,y) might go unused.

We now bound the online running time. Since the number of vector pairs given to the
Stop-OuMv data structures for each block M(x,y) is n over the entire sequence, we need
at most n'=* Stop-OuMv data structures for M(x,y) to handle overflows. Furthermore,
we need at most n additional Stop-OuMv data structures over all pairs (z,y) due to that

u (z)M (x,y)vi(y) = 1. Thus, the total running time of all Stop-OuMv data structures is:

(n(lfa) . n2(17a) + n) . O(na(Sfe)) = - O(n(2/3)(37e)) — O(n372€/3),

as claimed.

4 A 1l-revocable MM in the GENERAL-dynamic setting

In this section, we present an MM algorithm for the GENERAL-dynamic setting that works in
total time O(K).

We start presenting the algorithms by introducing some notation that shall be used
throughout this section. For each vertex v we maintain an estimated degree deg’(v) = deg}(v):
We set deg’(v) to deg(v) = |N(v)| once v is inserted to the graph (line 8 in Algorithm 2),
and from that point onwards we update v’s estimated degree whenever it differs from its
degree by a factor of 2 (line 15 in Algorithm 2).

We partition the (dynamic) vertex set V =V, into R = R;, S = S;, and O = O;: The sets
of risky, safe, and outlier vertices, respectively. A matched vertex u is designated as risky only
if deg’(u) > 2 - deg’(v), where v = mate(u); otherwise it is designated as safe. Thus, at most
one endpoint (the one of higher estimated degree) of any matched edge may be risky. A free
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vertex can be either risky or an outlier. Upon any change in the estimated degree of a risky
matched vertex, the algorithm designates that vertex as safe (even if deg’(u) > 2 - deg’(v),
where v = mate(u)).

For a vertex u, the sets of its neighbors, risky neighbors, safe neighbors, and outlier
neighbors are denoted by N(u), R(u), S(u), and O(u), respectively. We further partition
R(u) into R<(u) and R (u), which contain the risky neighbors of u with estimated degree
< deg'(u) and > deg'(u), respectively. The algorithm maintains the following invariant.

» Invariant 1. For each vertex v, we maintain a partition of N(u) into S(u), R<(u), R>(u),
and O(u). All vertices in S(u) are matched and all free neighbors of u are in R<(u)UR> (u)U
O(uw). (The set O(u) is the set of outlier neighbors of u; all vertices in O(u) are free.)

The main intuition behind partitioning the neighborhood of each vertex into risky, safe,
and outlier vertices is that for any safe vertex we have “credits” for scanning its entire
neighborhood. This informally means that we do not need to maintain invariants for safe
vertices, and the goal of the invariants is to provide a way to handle the risky vertices without
scanning their neighborhoods.

The following invariant will allow us to argue that the matching maintained by update
algorithm GENERAL-DYNAMICMM is in fact maximal.

» Invariant 2. For each risky vertex, all its free neighbors (if any) belong to R<(u) U O(u).

4.1 The update algorithm

Whenever there is an update, some vertices may switch their states from risky to safe and
vice versa; our algorithm will check and perform these state updates. (See also procedure
HANDLEUPDATE(u) in Algorithm 2.) To keep the presentation of our ideas clean, we ignore
the details of these state changes.

Suppose first that v is safe. In this case we scan its entire neighborhood. If u has
a free neighbor, we match u to its free neighbor of highest estimated degree, denoted w.
If w € O(u), we move w from O(u) to the subset among R<(u), R~ (u), S(u) to which it
should belong, and then update the data structures of w’s neighbors accordingly. (E.g., if
deg’(w) < 2-deg’(u), w becomes safe and moves to S(u).) Similarly, we designate u as either
risky or safe as appropriate, and update the data structures of u’s neighbors accordingly.
In the case that u does not have any free neighbor, we leave u free, and designate u as an
outlier by moving it from S(w) to O(w) for each neighbor w of u. (Note that we only need
to designate u as an outlier for its risky neighbors w such that u ¢ R<(w), so as to maintain
Invariant 2, but we might as well designate u as an outlier with respect to all its neighbors.)

If w is risky and R<(u) U O(u) = 0, we leave u free. In what follows we assume that
w is risky and R<(u) U O(u) # 0. If O(u) # 0, we match u with an arbitrary (free)
vertex w € O(u), move w from O(u) to the subset among R<(u), R>(u), S(u) to which it
should belong. Otherwise we match u with an arbitrary vertex w € R<(u). Finally, if w
was previously matched to w’, we remove edge (w,w’) from the matching, and handle w’
recursively. Since w was a risky vertex, it implies that w’ was previously designated as safe;
thus we handle w’ recursively as a safe verter.

If the estimated degree of some vertex x changes in the current vertex update (line 15 in
Algorithm 2), we designate is as safe and update the matching and invariants using the same
procedure, HANDLEUPDATE(z).

This completes the description of the algorithm. We are ready to prove Theorem 2. We

argue correctness of the algorithm in Lemma 17 and analyze its running time in Lemma 18.

We proceed to argue correctness of the algorithm.
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Algorithm 2 GENERAL-DYNAMICMM.

1: procedure HANDLEDELETION (u)

2: let @ be an empty queue > vertices to be processed by HANDLEUPDATE
3: if mate(u) # () then

4: delete (u, mate(u)) from M and add mate(u) to Q

5: UPDATEDEGREES(u, Q, —1) > decrease the degree of each neighbor by one
6: for x € Q do HANDLEUPDATE(z)

7. procedure HANDLEINSERTION(u)

8: deg’(u) + |N(u)|; deg(u) + deg’(u)

9: NoOTIFY (u, safe)
10: let @ be a list containing vertex u; UPDATEDEGREES(u, @, +1)
11: for z € Q do HANDLEUPDATE(z)
12: procedure UPDATEDEGREES(u, ), sgn)
13: for x € N(u) do
14: deg(z) < deg(z) + sgn
15: if deg(z) < deg’(z)/2 or deg(z) > 2 - deg(z) then
16: deg’ () « deg(z)
17: NOTIFY (z, safe)
18: if mate(z) = 0 then add z to @

19: procedure HANDLEUPDATE(u)
20: if state(u) = safe then
21: choose w € N(u) maximizing deg’(w) among free neighbors of u
22: if u has no free neighbors then NOTIFY (u, outlier)
23: else MATCH(u, w)
24: else if O(u) # () then take an arbitrary w € O(u) and MATCH(u, w) > wu is risky
25: else if R<(u) # () then take an arbitrary w € R<(u) and MATCH(u, w)
26: procedure MATCH(u, w)
27 add (u,w) to M
28: if deg’(u) < 2-deg'(w) then NOTIFY (u, safe) else NOTIFY (u, risky)
29: if deg’(w) < 2-deg’(u) then NOTIFY(w, safe) else NOTIFY (w, risky)
30: if w was matched to w’ then
31: remove (w,w’) from M
32: HANDLEUPDATE(w’)
33: procedure NOTIFY (u, State) > State € {safe, risky, outlier}
34: if state(u) = State then exit > do nothing if state remains the same
35: state(u) < B
36: for € N(u) do move u to appropriate set among S(z), R<(x), and R (x)

» Lemma 17. Algorithm GENERAL-DYNAMICMM maintains an MM in the GENERAL-dy~-
namic setting throughout the entire sequence of updates. Moreover, following any update, the
algorithm removes at most a single edge from the maintained matching M.

Proof. We first argue that the maintained matching is maximal at all times. By the
description of the algorithm, a safe vertex that becomes free is left free if and only if it
does not have any free neighbors. Moreover, a risky vertex u may be left free if and only if
R<(u) UO(u) = 0, while there cannot be any free vertex in R (u) U S(u) by Invariants 1
and 2. It follows that any vertex that is left free throughout the execution of the algorithm
does not lead to a violation of M’s maximality.
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Figure 2 An illustration of an update step of algorithm GENERAL-DYNAMICMM. Solid edges
are in the maintained matching M and solid vertices are risky. (a) Before deletion of vertex v, it
is matched to a risky vertex u. Vertex u has two risky neighbors constituting R(u) and three safe
neighbors constituting S(u). (b) Following deletion of v, vertex u becomes free and the algorithm
tries to rematch it (cf. procedure HANDLEUPDATE(u) in Algorithm 2). Since O(u) is empty, vertex w
is chosen from R<(u) and (u,w) is added to M. (This change might trigger u and/or w to become
safe, which we ignored in this example for simplicity.) At this stage, (w,w’) is removed from M and
w’ becomes free. Since w was risky while matched to (w,w'), this means that w’ has to be safe. (c)
The algorithm tries to rematch w’ (recursively invoking HANDLEUPDATE(w')). Vertex z which is an
outlier is chosen to be matched to w’.

To see that the algorithm is a 1-revocable algorithm, note that the only case in which the
algorithm removes an edge from the matching is when a risky vertex u becomes free due to
the adversary. More specifically, the only case in which the algorithm removes an edge (w, w’)
from the matching is when w is risky, O(u) = 0 and R<(u) # 0, and then an arbitrary vertex
w from the set R<(u) is chosen as a mate for u. Then the algorithm proceeds recursively to
handling w’, the old mate of w, which must be safe, since w was risky. Consequently, the
algorithm will not remove any edge from the matching as part of this recursive call.

It is easy to verify that the algorithm never violates the validity of Invariant 1.

Finally, we argue that Invariant 2 remains valid throughout the execution of the algorithm.

Suppose first that u is safe. If u has a free neighbor, it is matched to its free neighbor of
highest estimated degree, denoted w. If deg’(w) > deg’(u), u remains safe and there cannot
be any violation to the invariant with respect to u. As for w, even if it becomes risky, it does
not have any free neighbors by the maximality of the matching, thus the invariant holds for it
vacuously. Otherwise (deg’(w) < deg’(u)), it is possible that u becomes risky, but there is no
violation to the invariant since all free neighbors 2 of u satisfy deg’(z) < deg/(w) < deg’(u),
hence they all belong to R<(u) U O(u). There is no violation with respect to w either, as it
becomes safe. If u does not have any free neighbor, it becomes free and is designated as an
outlier, which cannot lead to any violation to the invariant.

We henceforth assume that u is risky. If R<(u) U O(u) = 0, u is left free, and it is
immediate that there is no violation to Invariant 2 for all neighbors of u. As for u itself,
there cannot be any free vertex in R~ (u) U S(u) by Invariant 2. Otherwise, u is matched
with an arbitrary (free) vertex w € O(u), and if none exists it is matched to an arbitrary
vertex w € R<(u). In this case, it is immediate that there is no violation to Invariant 2
with respect to u. As for w, even if it becomes risky, either it belonged to O(u), and then it
cannot have any free neighbors by the maximality of the matching, or it belonged to R<(u)

(and was risky), and then all its free neighbors must belong to R<(w) U O(w) by Invariant 2.

If w was matched to w’, w’ becomes free, which could potentially violate the validity of
the matching’s maximality and the invariants. However, the algorithm does not stop at this

stage, but rather proceeds to handling w’ recursively, hence the validity follows by induction.

Finally, upon a change in the estimated degree of any vertex z, the vertex is designated
as safe, which cannot lead to any violation to Invariant 2. |
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» Lemma 18. Algorithm GENERAL-DYNAMICMM has a total runtime of O(K).

Proof. Before going into the details of our running time analysis, we briefly describe the
intuition. For simplicity, we will first explain the intuition without taking into account the
cost of O(deg’(w)) incurred in line 24; later on (in Claims 19 and 20), we address this issue.
Our focus is on the most difficult case where a vertex v is deleted from the graph by the
adversary. We could afford to spend O(deg’(v)) time, since we can charge this time to edges
incident to v; each edge will be charged only O(1) time. If the mate of v, say u, is also a safe
vertex, ignoring the running time of the recursive call, HANDLEUPDATE(u) takes O(deg’(u))
time, which is also O(deg’(v)) since deg’(u) < 2deg’(v) by the definition of safe vertices.
Thus, the running time is within our budget. However, if u is risky, we could not afford to
scan all neighbors of u. Instead, we can show that the running time of HANDLEUPDATE(u),
ignoring the recursive calls, is O(1) if R<(u) = () — in this case, the running time is within our
budget again — or is O(deg’ (w)) where w is the vertex chosen to match u in line 25. However,
deg’(w) could be much larger than deg’(v) and hence, we could not charge the running time
of O(deg’(w)) to the deletion of v. Our key idea to resolve this case is to charge this running
time to the newly created matching edge (u,w). The cost associated with each matching
edge will be paid when the matching edge is deleted either by the adversary or removed by
the algorithm. Note that we can assume that eventually every vertex of the graph is deleted.
This assumption can be enforced by appending to the update sequence the deletions of the
remaining vertices of the graph; the cost of the algorithm is increased by at most a factor
of 2.

We now present the details of our argument. As mentioned above, each matching edge
will be charged some cost arising from handling the updates of vertices. We control the cost
associated with each matched edge by maintaining the following invariant.

» Invariant 3. Fach edge (u,v) € M is charged a cost of at most c - min(deg(u),deg’ (v))
for a sufficiently large constant c.

We now focus on bounding the running time of HANDLEUPDATE(u). We consider two
cases: u is safe and w is risky. The former case will be handled in Claim 19 and the latter
case will be handled in Claim 20.

> Claim 19. If u is safe, then the cost of HANDLEUPDATE(u) is ¢o deg’(u), where cg is a
constant independent of ¢, plus the cost charged to the new matching edge (u,w) (if any)
that satisfies Invariant 3 when ¢ > ¢g.

Proof. Observe that the algorithm spends only O(deg’(u)) time if a free neighbor w € R~ (u)
exists (lines 20-23). In case that no free neighbor has been found, u becomes an outlier
and we assign a credit of O(deg(u)) to it. (We can allow to assign this credit since u is a
safe vertex.) Otherwise, if there is a free vertex w in O(u), we add (u,w) to the matching
and spend O(deg’(w)) time to notify the neighbors of w about it new status. This cost is
charged to the credit assigned to w at the time it switched from being a safe vertex to an
outlier, as described above. The credit is spent only once — at the point when the outlier
becomes a safe/risky vertex. If no match has been found, then w gets matched to w € R<(u)
(if R<(u) # 0, meaning that:

deg’(u) > deg’ (w). (1)

Ignoring the recursive call on the neighbor w’ of w or the possible cost charged to the outlier,
the total running time is co deg’(u).
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We now handle the recursive call HANDLEUPDATE(w') (line 32). Since w is risky,
w’ must be safe. It follows that deg’(w) > 2deg’(w’). Thus, the recursive invocation
of HANDLEUPDATE(w’) is performed on a safe vertex with a degree lower by at least a
factor of two. The cost of HANDLEUPDATE(w') is cgdeg’(w’). Thus, we only need to
charge (i) the cost cydeg’(w’) due to HANDLEUPDATE(w') and (ii) the cost associated
with the matching edge (w,w’) (since it is removed from M) to the new matching edge
(u,w). By Invariant 3, and Equation (1), the total cost charged to (u,w) is at most
co deg’ (w") +cdeg’(w') < emin(deg’(u), deg’ (w)), when ¢ > cp. Invariant 3 now follows. <

> Claim 20. If u is risky, then the cost of HANDLEUPDATE(u) is O(1) plus the cost charged
to the new matching edge (u, w) (if any) that satisfies Invariant 3 when ¢ > 3¢y. Here ¢ is a
sufficiently large constant independent of c.

Proof. If there a free vertex w in O(u) (line 24), then the algorithm spends O(deg’(w)) time
notifying neighbors of w. This cost is charged to the credit assigned to w at the time it
became an outlier. The credit is spent only once — at the point when the outlier becomes
a safe/risky vertex. Otherwise, if R<(u) is not empty, a vertex w € R<(u) is chosen to
be matched to u (line 25). The cost of notifying w’s neighbors of its changed status is
O(deg' (w)) < ¢g deg’ (w). We charge this cost to the new matching edge (u,w).

If w is matched to w’, we need to charge additional costs to (u,w). In particular, we
charge to (u,w) the cost associated with the old matching edge (w,w’), which is at most
cdeg(w') by Invariant 3, and the cost due to HANDLEUPDATE(w’). Since w’ is safe, the cost
of HANDLEUPDATE(w') in line 32 is ¢o deg’(w’) plus the cost charged to the new matching
edge (if any) incident to w’ by Claim 19. We do not need to worry about the cost charged
to the new matching edge incident to w’ since Invariant 3 is satisfied, and hence we only
charge codeg’(w') to edge (u,w). It follows that (u,w) is charged a total cost of at most
codeg’ (w) + codeg’(w') + cdeg’(w') < cmin(deg’(u),deg’ (w)), when ¢ > 3cg. In the last
inequality, we use the fact that w is risky and hence deg’(w) > 2deg(w’). Invariant 3 now
follows. <

We’ll now complete the proof of Lemma 18 by considering each type of update separately.

First, we consider the case when u is inserted into the graph. The cost of notifying its
neighbors in line 9 is O(deg(u)) and the cost of update its neighbor’s degrees in line 10,
excluding the cost to handle status changes of u’s neighbors in lines 16-18, is O(deg(u)). (By
the end of this proof, we will discuss the cost of handling lines 16-18.) Thus, we can charge
the insertion cost to edges incident to u, each is charged O(1) cost.

We analyze the case when u is deleted from the graph. If u is free, we only update
the degree of neighbors of u, and the cost is O(deg(u)) excluding the cost to handle status
changes of u’s neighbors in lines 16—18. Thus, we can charge this cost to the deletion of u;

each edge incident to u is charged O(1) cost. If w is not free, we denote by w the mate of wu.

The algorithm will call HANDLEUPDATE(w) as w is added to @ in line 4. We first charge the
costs associated with matching edge (u,w), which is O(deg’(u)) = O(deg(u)) by Invariant 3,
to edges incident to u, each is charged O(1) cost. Next, if w is safe, the cost of handling w
is O(deg/(w)) = O(deg(w)) = O(deg(u)) by Claim 19. Note that the cost charged to the
matching edge incident to w already satisfies Invariant 3 by Claim 19. Thus, we only need
to charge the cost of handling w to incident edges of w, each is charged a cost of O(1). If w
is risky, by the same argument and Claim 20, we only need to charge the cost of O(1) due
to HANDLEUPDATE(w) to incident edges of w. Summarizing, the total cost charged to each
edge incident to u is O(1).
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It remains to bound the update time in lines 16—18. We observe that the total cost is
O(deg’(x)). This cost consists of the notification cost in line 17 and the cost of HANDLEUP-
DATE(x) (as it is added to the queue @ in line 18) which are both O(deg’(z)) by Claim 19,
since z is a safe vertex. (Here we do not account for the cost charged to the new matching
edge incident to # in HANDLEUPDATE(x).) Thus, we can charge the cost of the update
in lines 16-18 to the edges incident to x being added/inserted which lead to changes in
the estimated degree of z; each edge is charged O(1) cost as the number of such edges is
Q(deg'(z)). <

5 An (.%;)-approximation in the BASIC-dynamic setting

P
In this section, we switch our attention back to the BASIC-dynamic setting, for which
we provide an (% )-approximate algorithm for the MCM problem. This approximation is

achieved by building on the celebrated ranking algorithm by Karp, Vazirani, and Vazirani [25].
Specifically, we demonstrate how to maintain a matching corresponding to the output of the

ranking algorithm in a total runtime of O(K), assuming an oblivious adversary.

We briefly recall the ranking algorithm. The algorithm works in a setting akin to the
BASIC-incremental setting: A set of n servers S is fixed and the clients arrive to C' one after
another, starting from C' = () and ending with |C] = |S| = n. At the outset, the algorithm
samples a random permutation o over all n servers, which assigns a unique rank o(s) to any
server s € S. Upon the arrival of a new client, the algorithm scans its neighborhood and
irrevocably matches it with its free neighboring server of lowest rank, if any; if none exists,
the client is left (forever) free. This completes the description of the ranking algorithm in
the online setting, as given by [25]. For the analysis, we use the following theorem by [25];
several different proofs of this theorem have been proposed (see, e.g., [15, 10]).

» Theorem 21 ([25]). If the mazimum matching size of the final bipartite graph is n, then
the expected size of the matching provided by the ranking algorithm is n(1 —1/e).

In the BASIC-dynamic setting, the vertices in C' may also leave the graph and the algorithm
is not necessarily irrevocable, i.e., the algorithm is allowed to remove some previously matched
edges and add others in their place. We shall use G; = (S U C;, E;) to denote the graph in
this setting right after the ith update step. Following the ranking algorithm, before the first
update, we sample a random permutation o over all n servers, which defines the ranks of
servers. Our algorithm works against an oblivious adversary, which in particular means that
the adversary is not aware of the random bits used for sampling o. For each server x € .5,
we keep a list of neighbors, L(z), to which end the algorithm appends new neighboring
clients. Whenever a new client u arrives, it is appended to the end of the list L(x), for each
of its neighboring servers x € N(u). To ensure that the entry of w in L(z) can be deleted
in constant time (if needed), we implement L(z) as a doubly linked list, and keep with u a
pointer to its entry in L(x) (see lines 2 and 17 of Algorithm 3). Once it updates the lists L(-),
the algorithm scans N(u) to see if there is any free vertex v € N(u) to be matched with w.
Among the free neighbors of u, if any, the one of lowest rank is chosen. This completes the
description of the procedure for handling vertex insertion, which closely follows the ranking
algorithm; the pseudocode of this procedure, HANDLEINSERTION(u), is given in Algorithm 3.

Whenever a client u is deleted, it gets removed from the lists L(x), for each of its neighbors
x € N(u). If u was previously matched, say with server v, the algorithm removes edge (u,v)
from the maintained matching M and tries to rematch vertex v. This is done by sequentially
scanning the list L(v) until an appropriate mate w is found; vertex w is appropriate if it
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is free or it is matched with a vertex of higher rank than that of v. If w is free, we simply
add (v,w) to the matching M. Otherwise, we remove (w, mate(w)) from M, we add (v, w)
to M, and handle the server mate(w) recursively (in the same way as we handled v). The
pseudocode of this procedure, HANDLEDELETION(u), is given in Algorithm 3.

Algorithm 3 BASICAPPROXMCM.

1: procedure HANDLEDELETION(u)

2 for © € N(u) do remove u from L(z)

3 if mate(u) # () then > let v = mate(u)
4 delete (u,v) from M

5: REMATCHSERVER (v)

6: procedure REMATCHSERVER (v)

7 while L(v) # 0 do

8 let w be the first vertex in L(v) > also remove w from L(v)
9: if w is free then

10: add (v, w) to M

11: break > exit the loop
12: else if o(v) < o(mate(w)) then

13: remove (w, mate(w)) from M; add (v, w) to M

14: REMATCHSERVER (mate(w))

15: break

16: procedure HANDLEINSERTION ()
17: for w € N(u) do add u to L(w)

18: look for a free vertex v € N(u) of lowest rank; if v is found, add (u,v) to M

We next argue, via Lemmas 22 and 23, that algorithm BasicApproxMCM proves Theo-
rem 3: Lemma 22 implies the algorithm’s correctness and Lemma 23 bounds its runtime.

» Lemma 22. Algorithm BASICAPPROXMCM maintains an (%5 )-approzimation (in expec-
tation) to the MCM.

Proof. Recall that we used a random permutation o for the ranks of vertices in S. Following
the ith update step, we let 7; be the permutation of C; representing the arrival order of the
first ¢ arriving clients; that is, m;(u) < m;(v) for u # v,u,v € C; iff u arrives before v. For a
given permutation o, arrival order m;, and graph G; = (SUC;, E;), we let Ranking(G;, o, 7;)
be the matching returned by the ranking algorithm on G; using ranks defined by ¢ and the
arrival order ;. We next assert that for each ¢ > 0, following the ith update, the maintained
matching M; of G; is equal to Ranking(G;, o, m;). By Theorem 21 and using the oblivious
adversary assumption, if the maximum matching size of G; = (S U C;, E;) is p, then the
expected size of the matching provided by our dynamic algorithm is (1 — 1/e). That would
complete the proof of Lemma 22.

The proof of this assertion proceeds in two stages. In the first stage we analyze a variant of
BAsicApPROXMCM, which works in the same way as the original algorithm, except that no
element is deleted from the lists L(-) as part of the execution of procedure REMATCHSERVER
(cf. line 8 of Algorithm 3). In other words, procedure REMATCHSERVER (v) scans all elements

of L(v), namely all the neighboring clients of v in the current graph, in their arrival order.

Denote this procedure by NAIVEAPPROXMCM and the matching it maintains at the ith
step by M’;. One can prove by induction on the update step that M’; = Ranking(G;, o, m;);
the proof is rather straightforward and is omitted due to space constraints.
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In the second stage we prove that M’; = M;. To this end we observe that the following
invariant is maintained by algorithm BASICAPPROXMCM at all times.

» Invariant 4. For any client c, if ¢ is matched to a server v at update step i > 0, then at
any later update step j (j > i), client ¢ is matched to a server of rank no higher than o(v).

To see that Invariant 4 holds, note that the only place where the algorithm may rematch a
client is in line 13 of procedure REMATCHSERVER. If that happens, the client gets matched
to a server of rank lower than that of its previous mate.

Invariant 4 implies that any element that gets discarded from the list L(v) in procedure
REMATCHSERVER(v) without getting matched to v is always matched to a server of rank
lower than v (until it possibly gets deleted from the graph), and thus the algorithm should
never match v to any of the discarded elements. Hence, the executions of the two algorithms
BasicAPPROXMCM and NAIVEAPPROXMCM yield the same outcome, i.e., M'; = M;.

Summarizing, it follows that M; = M’; = Ranking(G;, o, 7;), and we are done. <

» Lemma 23. Algorithm BASICAPPROXMCM has a total runtime of O(K).

Proof. Procedure HANDLEINSERTION(u) takes O(deg(u)) time. Procedure HANDLEDELE-
TION(u) also takes O(deg(u)) time, except for the call to the recursive procedure REMATCH-
SERVER. Next, we analyze the runtime of procedure REMATCHSERVER. Note that the
parameter v of REMATCHSERVER (v) is a server. We argue that the total time spent by
procedure REMATCHSERVER(v) for a fixed vertex v € S is linear in the total number of
inserted edges incident on v. Indeed, each call to procedure REMATCHSERVER involves a
while loop (line 7); each iteration of the while loop takes constant time to examine a single
neighbor w of v and do the required updates, and it also removes w from L(v), so that w
will never be examined again. It follows that the total time spent by REMATCHSERVER, over
all servers, is upper bounded by O(K). <
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