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Abstract—To ensure backward compatibility while adding new
features to CPUs, CPU vendors enable a limited CPU configura-
tion via so-called model-specific registers (MSRs). These MSRs
have been introduced for various features, such as debugging,
performance monitoring, or security. While many MSRs are
documented, there is still a plethora of undocumented or sparsely
documented MSRs in modern CPUs. Furthermore, with multiple
hundred MSRs, each providing up to 64 configuration bits, it is
tedious to find specific configuration options.

In this paper, we show that MSRs and their configuration
bits can be detected automatically on Intel and AMD CPUs. We
introduce MSRevelio, a framework to automatically detect bits
that influence the behavior of instructions and semi-automatically
find bits controlled by BIOS settings. We show that previously
overlooked bits can harden systems against microarchitectural at-
tacks such as Medusa, CrossTalk, and software-prefetch attacks.
Additionally, we show that an undocumented lock bit allows
disabling AES-NI at runtime, forcing mbedTLS to fall back to
an AES implementation vulnerable to cache attacks. Exploiting
this fallback inside an SGX enclave, we fully recover the AES
key used by the enclave. With our detection approach, we show
that security features retrofitted with microcode updates can
be easily detected, even before the public documentation of the
underlying vulnerability. In our analysis of the Xen hypervisor,
we show that Xen’s handling of MSRs was flawed for a long
time, allowing guests to access undocumented and unhandled
MSRs and fingerprint specific Xen versions. Using automated
correlation analysis between documented and undocumented
MSRs, we discover a previously undocumented MSR correlating
with the CPU’s timestamp counter. This MSR is also accessible
from Xen guests, and we demonstrate a Foreshadow attack
when all other timers are unavailable or artificially deteriorated.
Our results highlight that transparency is crucial for features
interacting closely with CPU internals.

I. INTRODUCTION

With nearly every new CPU generation, CPU vendors add
new features to their CPUs. While some of these features are
architectural, such as new instruction-set extensions [20], [31],
often features are more related to the microarchitecture, such
as mitigation options for transient-execution attacks [35], [37].
Such microarchitectural features can often even be retrofitted
to existing CPUs using microcode updates [20]. The non-
architectural features typically require some form of interac-
tion with the CPU. Typically, these CPU features are exposed
via model-specific registers (MSRs). MSRs are special regis-
ters that can be read from and written to by privileged code,
i.e., the operating system (OS). Every MSR has a unique 32-
bit address and a size of 64 bits. Generally, MSRs are used

for interaction with the CPU, such as enabling and disabling
CPU features, debugging, and performance monitoring.

While CPU vendors publicly document many MSRs, there
are also undocumented MSRs or bits inside documented MSRs
that are not documented. These MSRs might only be used
internally to debug or reveal information that CPU vendors
do not want to disclose [28], [24]. Undocumented MSRs
have been shown to undermine CPU security. The AMD K8
CPU provided an MSR that enabled a debug mode [21].
Similarly, Domas [24] found an MSR on the VIA C3 CPU
that allows enabling a so-called “god mode”. When enabling
this mode, unprivileged applications can execute special CISC
instructions that circumvent all privilege checks of the CPU.
Some of these undocumented MSRs are mentioned in patents,
but there is no clear description of what they do or how they
can be used. Moreover, even for documented MSRs, not all
bits are fully documented, i.e., reserved bits that have effects.

MSRs can also be used to add security features to CPUs.
For example, mitigations for Spectre [49], Foreshadow [72],
ZombieLoad [70], RIDL [75], or CrossTalk [64] have been
implemented using MSRs [37]. These MSRs control the spec-
ulation behavior and provide the possibility to clear several
caches and buffers. All of them have been introduced with
microcode updates to retrofit mitigations to older CPUs. In
the case of OS support, it can query this functionality via the
cpuid instruction or the IA32 ARCH CAPABILITIES MSR
and then use the features via the corresponding MSRs [37].

In this paper, we introduce MSRevelio1, a framework that
automatically detects available MSRs, regardless of whether
they are documented or not. Our approach generates a list of
readable and writable MSRs for a specific CPU. We compare
the list of detected MSRs with the documented MSRs on Intel
and AMD CPUs and classify the MSRs into documented,
partly documented, and undocumented. This analysis reveals
that all tested CPUs have a large number of undocumented
MSRs. On the evaluated AMD CPUs, the number of un-
documented MSRs even exceeds the number of documented
MSRs. In addition to scanning MSRs, we also automatically
analyze the detected undocumented MSRs. We sample the
values of both documented and undocumented MSRs. Based
on these samples, we automatically correlate undocumented
with documented MSRs for a probabilistic classification of

1Find MSRevelio’s source code at https://github.com/IAIK/msrevelio

https://github.com/IAIK/msrevelio


undocumented MSRs. Our approach is more robust than the
timing-based approach suggested by Domas [24] that assumes
similar MSRs expose similar access times.

We also use MSRevelio (Section III) for a semi-automated
analysis of different BIOS versions (Section IV). In this use
case, we search for BIOS settings influencing the value of
such (partly) undocumented MSRs, and indicating the MSR’s
purpose. Using MSRevelio, we scan for changes in undocu-
mented MSR bits when modifying BIOS settings and measure
potential impacts on instructions. By grouping instructions and
collecting performance-counter readings, we identify possible
effects of MSR bits on the group’s instructions. This approach
can also be used to search for all MSR configuration bits
that impact a specific instruction. Based on these results, we
present six security-relevant case studies.

We demonstrate that MSR bits influencing instruction be-
havior can mitigate but also introduce new security issues.
While these bits could also be found in a manual analysis,
MSRevelio alleviates the analysis substantially. We discover
an MSR bit converting software-prefetch instructions to no-
operations, mitigating software-prefetch attacks on AMD [27],
[51]. Additionally, our approach finds a bit to trap cpuid,
reducing the attack surface for CrossTalk [64]. Moreover,
by templating BIOS features, we detect that fast-string sup-
port can be disabled at runtime, reducing the impact of
Medusa [61]. By unsetting the undocumented AES-NI lock
bit, we can disable AES-NI at an arbitrary time within the
SGX threat model, leading to a time-of-check-to-time-of-use
vulnerability forcing mbedTLS [8] to fall back to a vulnerable
AES implementation exploitable by a side-channel attack. We
show the feasibility of this attack by recovering the full AES
key from a single memory-access trace.

We use the found MSRs as a template for tracking the
change of MSRs over different CPU microcode versions.
Microcode cannot only modify but also add entirely new
MSRs. We automatically detect which MSRs have been added
in specific microcode versions and whether the MSR was, later
on, removed again with a microcode update. Based on our
analysis, we can clearly detect which microcode version added
mitigations for transient-execution attacks. We even discover
CPUs for which such MSRs have been introduced months
before the vulnerability was publicly disclosed and the MSR
was documented. We cross-check all detected MSRs with
official documentations to discover that all added MSRs are
related to security features, showing that this approach can leak
information about potential embargoed security vulnerabilities.

We also show that the Xen hypervisor just recently pre-
vented the guest OS from accessing undocumented MSRs [17],
[62]. Instead of using an allow list for MSRs that should be
accessible to a guest, Xen relied on a block list to allow access
to all MSRs except a few. With our automated approach,
we show how this blocklist evolved over different versions
of Xen. This allows fingerprinting of the Xen version even
if the hypervisor prevents access to that information or if
anti-VM detection methods are applied [48]. In the final case
study, we show that the blocklist-based approach allows guests

on older Xen versions to potentially access security-relevant
MSRs of the host system. Our correlation analysis reveals
a previously unknown MSR available to Xen guests that
correlates with known timers. Leveraging this MSR yields a
high-resolution timer, even if other timers are unavailable, e.g.,
because the hypervisor uses Fuzzy time [30], [76] or restricts
parallel execution, preventing counting threads. To verify that
the discovered MSR can act as a timer, we demonstrate a
Foreshadow attack [72] using this MSR.

Our results show that MSRs directly impact the system’s
security. Access to certain MSRs can have negative conse-
quences in the cloud, as they might re-enable attacks that were
thought mitigated. Other MSRs, however, can also be used to
mitigate attacks for which only costly software workarounds
are available, such as prefetch-based attacks [27], [51]. As we
found these MSRs on all systems affected by the correspond-
ing vulnerability, they can be used as a short-term solution
until the vulnerability is fixed in hardware.

To summarize, we make the following contributions:
1) We demonstrate an automated approach to detect undoc-

umented MSRs and MSR bits on Intel and AMD CPUs
and their impact on instructions and system functionality.

2) We show how our detected MSRs harden systems against
microarchitectural attacks but also enable new attacks.

3) We show that the block-list approach used in the Xen
hypervisor poses a risk to the system security by allowing
guest access to undocumented MSRs, demonstrating a new
timing primitive for side-channel attacks.

4) We analyze the evolution of MSRs over microcode ver-
sions, showing silent additions of security-related MSRs.

Responsible Disclosure: We responsibly disclosed our
findings to Intel on August 3rd, 2021. Intel acknowledged our
findings.

Outline: Section II provides background. Section III in-
troduces MSRevelio, a framework to automatically find and
classify MSRs. Section IV extends MSRevelio with “BIOS
templating” to pinpoint features in MSRs. Section V demon-
strates security implications of MSRs in six case studies.
Section VI discusses limitations. Section VII concludes.

II. BACKGROUND

In this section, we provide background about MSRs, Intel
SGX, microcode, and transient-execution attacks.

A. Model Specific Register (MSR)

MSRs are special CPU registers, allowing interaction
with low-level CPU features and advanced configuration of
the CPU’s behavior. Modern x86 CPUs have hundreds of
MSRs [40], [5]. However, there is usually only sparse public
documentation [24], i.e., many MSRs are not publicly docu-
mented, and for many MSRs, the function of specific bits is not
mentioned or not precisely defined. MSRs are accessed using
the two privileged instructions rdmsr and wrmsr for reading
and writing the 64-bit MSRs. Each register is addressed using
a unique 32-bit address. Hypervisors restrict MSRs to prevent
the guest systems from taking over control of the host. As



MSRs are typically implemented in microcode, they can be
removed or added, and their behavior can be updated via CPU
microcode updates. For instance, recently, MSRs have been
used to add security mitigations against Spectre [49], Fore-
shadow [72], ZombieLoad [70], and CrossTalk [64] attacks.

B. Intel SGX

Intel SGX (Software Guard Extensions) is an instruction
set extension providing a trusted-execution environment (TEE)
for Intel CPUs. The SGX threat model, similar to other TEEs,
assumes that even privileged software such as the OS, admin-
istrative users, and peripheral hardware may be compromised
and behave maliciously. The trusted code is separated from
the untrusted code into a so-called enclave. Enclaves operate
within an encrypted and isolated memory region so that even
the OS or a physical attacker cannot access the unencrypted
memory contents. However, Intel considers vulnerabilities in
enclaves the responsibility of the enclave developer, including
software side channels [11], [69], and software bugs like race
conditions [80], [68]. Enclaves are launched within a regular
application and can be interrupted by the OS at any point.

C. Micro-op Performance Profiling

With the rising complexity of out-of-order execution CPUs,
profiling the performance of actual executed code is non-
trivial. To get insight into the resources allocated and events
triggered inside a CPU, vendors introduced Performance Mon-
itoring Counters (PMCs). With these counters, a user can
monitor the execution of instructions more precisely. However,
mapping the observed events to a given instruction is complex,
as the CPU splits instructions into smaller micro-ops.

NanoBench [2] is a framework designed to measure the
exact PMCs of single instructions. The framework compiles
measurement code from a given assembly snippet which
allows minimizing the external measurement noise. In addition
to the automatic measurement code generations, the frame-
work also handles filling the CPU pipeline with a known state
to allow for the same base conditions for all measurements.

D. Transient-execution Attacks

With out-of-order and speculative execution, a CPU can
lazily handle exceptions and predict the outcome of computa-
tions, e.g., the target of an indirect jump, to reduce pipeline
stalls. When the CPU has to handle an exception or mispredict
a computation, the pipeline’s state is rolled back to the
instruction causing the exception or misprediction. As rolled
back instructions are never committed to the architecture, they
are referred to as transiently executed [16], [44].

Spectre [49] and Meltdown [54] showed that attackers can
abuse transiently-executed instructions to leak data, i.e., so-
called transient-execution attacks [16]. An attacker encodes
the results of a transient computation into a microarchitectural
element that is not rolled back, e.g., the CPU cache. After
discovering transient-execution attacks, multiple such attacks
have been published [29], [16], [56], [61], [70], [75], [14],
[72], [81], [64], [73]. Microarchitectural data sampling (MDS)
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Fig. 1: The general structure of MSRevelio’s analysis steps.

attacks [70], [75], [14], [61], [64] are a subclass of transient-
execution attacks leaking values from internal components
of the CPU, e.g., the line fill buffer. In these attacks, an
attacker brings the CPU into a state where transiently executed
instructions compute with stale or incorrect values of internal
buffers or caches. Leaking the values of these components
allows leaking data across all security boundaries.

E. Microcode

Modern CPUs frequently receive updates to react to security
concerns or bugs. Hence, manufacturers need a mechanism to
update the behavior of CPU instructions or components. The
microcode is an additional layer of abstraction between the
actual hardware and the Instruction Set Architecture (ISA),
which allows altering the internal behavior of CPU instruction
to a certain extent [50]. Furthermore, some complex instruc-
tions require so-called microcode assists, which then execute
a sequence of micro-ops read from the microcode [20], [70].

III. MSREVELIO

This section describes MSRevelio, a framework to automati-
cally find, classify, and analyze MSRs. MSRevelio aims to find
undocumented features of MSRs that ultimately impact the
security of the system. The overview of the steps of MSRevelio
is shown in Figure 1. First, MSRevelio scans the potential
MSR address space (cf. Section III-A). This scan obtains a list
of available MSRs that are automatically classified into read-
only, write-only, and read-writable MSRs. This list is filtered
based on the official documentation of the CPU, resulting in
documented, undocumented, or partly documented, i.e., some
bits are undocumented, MSRs. The MSRs that are not or
only partly documented are recorded to classify them into two
groups. Dynamic MSRs that change over time are correlated
with documented MSRs to find similarities (Section III-B), or
even aliased MSRs. For static, unchanging MSRs, MSRevelio
analyzes the bits to determine whether toggling the bit impacts
the behavior of instructions (Section III-C). In such a case, we
can manually investigate whether such a change is security-
relevant. Finally, we extend MSRevelio to find the influence
of certain BIOS configurations on MSRs (Section IV) to gain
additional information on undocumented MSR bits.

A. Detecting Undocumented MSRs

The MSR range of modern CPUs is continuously extended
to provide additional functionality or adapt to new security
flaws. Due to the large 32-bit address space, most of the



addresses are either not used and do not provide any func-
tionality or are reserved for future extensions. However, there
are more MSRs available than officially documented. To find
these undocumented MSRs, MSRevelio uses both the rdmsr
and wrmsr instruction. Both instructions raise a General
Protection Fault (GP fault) if the CPU does not physically back
the MSR address. The reason that we use both instructions is
that there are 4 different MSR types: read- and writable, read-
only, write-only, and non-present MSRs. By combining reads
and writes to these MSRs, MSRevelio can detect all types of
MSRs over the entire 32-bit address space of the MSRs.

1) Design: Detecting the presence of an MSR is not
influenced by the MSR scope or the current privilege level. The
rdmsr and wrmsr instructions already require OS privileges,
and each core has the same set of accessible MSRs [39].
Our approach cannot access certain restricted MSRs that are
only readable in SMM mode, e.g., MSR 0x9e. However, as
not even a ring-0 attacker can use them, we do not consider
this a huge limitation. As every CPU core exposes the same
MSRs, MSRevelio can search the MSR address space in
parallel, significantly decreasing the execution time of the
profiling. The framework first tries to read an MSR and catches
any generated GP faults. The second test is a write to the
MSR, again catching generated GP faults. Based on occurred
faults, MSRevelio distinguishes between read-only, read- and
writable, write-only, and non-existing MSRs. The framework
stores the addresses of existing MSRs for later analysis.

To compare the discovered list of available MSRs to the
official documented MSRs, MSRevelio additionally imple-
ments a PDF parser for the PDF-only documentation. As
the structure of the MSR tables in both the Intel and AMD
documentation is consistent, we can automatically find and
extract the information from these tables. In addition to all
documented MSRs, the parser extracts undocumented and
reserved bits of documented MSRs. MSRevelio compares the
discovered MSRs with the parsed documentation to determine
undocumented or only partly documented MSRs.

2) Implementation: MSRevelio is implemented as a Linux
kernel module with an additional user-space library. It uses the
rdmsrl_safe and wrmsrl_safe kernel functions to catch
GP faults when reading and writing MSRs. MSRevelio tries
not to alter the content of the MSRs by writing the value that
was read before. Only for write-only MSRs, this is not possible
and MSRevelio conservatively tries to write ‘0’ to such MSRs.
For most of the writeable MSRs, the documentation [41], [5]
states that when writing to the MSR, undocumented bits must
be ‘0’ to prevent a GP fault. This behavior is also necessary,
as MSRs can only be overwritten with a 64-bit value and not
bitwise. A complete scan when using multiple cores on our
AMD Ryzen Threadripper 1920x with 5244 accessible MSRs
takes 5.74min (σx̄ = 0.0005, n = 10).

B. Classifying MSRs

The classification functionality of MSRevelio is divided into
two parts, namely the detection of static and dynamic MSRs
and the further analysis of undocumented dynamic MSRs
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Fig. 2: Normalized values of the undocumented MSR(0x637)
and the highly-correlating MSRs MSR(0xe7) (MPERF),
MSR(0xe8) (APERF), and MSR(0x10) (TSC) (all mono-
tonic counters) over 10 s.

based on the correlation with other documented dynamic
MSRs. Note that for this analysis, we can only use MSRs that
are readable. We define static MSR as an MSR with a fixed
value that only changes if the MSR is actively written to, e.g.,
MSRs containing configuration bits. A dynamic MSR is an
MSR that is continuously updated by the CPU, e.g., counters
or sensor values. To distinguish static from dynamic MSRs,
MSRevelio samples the values of the respective MSRs for a
certain amount of time to detect if the value changes at some
point. While an MSR classified as a dynamic MSR is always
a dynamic MSR, MSRevelio might classify some dynamic
MSRs as static MSRs if the value updates only with a very low
frequency. However, for analyzing the impact on instruction
behavior (cf. Section III-C), we are only interested in static
MSRs as well as all write-only MSRs, as they are static in its
nature, i.e., they do not change their value. Hence, as static
MSRs are always classified as static MSRs, this only results
in some additionally tested MSRs, but no missed MSRs.

We further classify the found undocumented dynamic MSRs
by cross-correlating them with all documented dynamic MSRs.
For the correlation, we continuously sample all, i.e., doc-
umented and undocumented, dynamic MSRs for 10 s while
executing a CPU stress test in parallel. The stress test triggers
spikes in electricity and temperature sensor readings and trig-
gers changes in the power states. As a result, undocumented
MSRs exposing such states are easier to correlate with existing
documented MSRs, as they contain more features for the
correlation. Each resulting sample set of every undocumented
dynamic MSR is then correlated with every documented
dynamic MSR using the Spearman and the Pearson coefficient.
For every undocumented MSR, MSRevelio generates a list of
documented MSRs, sorted by the correlation coefficient, and a
plot of all the sampled values. Figure 2 illustrates such a result,
showing the undocumented MSR(0x637) and the documented
MSR(0xe7) (IA32 MPERF), MSR(0xe8) (IA32 APERF)
and MSR(0x10) (IA32 TIME STAMP COUNTER). While
there are more computationally expensive methods to compare
time series [10], [65], we do not require such complex
algorithms, as the recorded data points are aligned. Hence,
a simple correlation analysis is sufficient. The correlation
analysis results in a list of similar MSRs, allowing to judge the
likely information source of the MSR, e.g., whether it contains
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thermal readings or a counter. In Section III-D, we show that
this approach can find undocumented MSRs and detect the
type of values exposed by the found MSR.

C. Impact on Instruction Behavior

To further analyze static MSRs, MSRevelio analyzes the
impact of MSR bits on instructions. The goal of this scan
is to find undocumented or reserved bits that influence the
behavior of instructions. The framework performs the scan on
the static MSRs (cf. Section III-B), as fluctuating MSR bits
are usually not used as feature-control bits.

1) Design: To automatically detect changes in instruction
behavior, MSRevelio uses performance counters for templat-
ing. To ensure that MSRevelio not only finds effects triggered
by single bit flips but instead also finds effects that result
from enum MSR fields, i.e., groups of bits inside an MSR
that belong to the same configuration option, we rely on
optimized flipping masks. The masks tests all possible values
of all possible enum fields with size ≤ W within an MSR
by only performing 2

W writes to the MSR. For each observed
effect the MSR is further analysed to find the exact enum field.
Figure 3 shows the general concept of MSRevelio’s bit scan. In
the first step, a ground truth is recorded: MSRevelio executes a
set of instructions on the CPU and records instruction-related
performance counters. If for a set of instructions there is a
change in the performance-counter values, it is an indication
that one of the altered MSR bits affect the instruction. An
alternative design could iterate over all possible bit values of
an MSR instead of only considering the bounded enum fields.
We did not choose this approach for two reasons.

First, such a design would require significantly more mea-
surements to be performed. For example, on the tested Intel
Core i5-4570, we found 3612 writable bits spread across
177 undocumented MSRs. In this case, our approach (with
W = 4) only needs to test 2832 MSR values and additionally
496 tests per observed side effect to further find the root
cause of the effect, whereas a full search would require
16 853 × 10

12 tests (the calculations are shown in Appendix
A). Testing the entire search space for the writable reserved
bits of the documented MSRs on this processor would require
only 16 712 × 10

6 tests. One could argue that for the latter
amount of tests, it is feasible to parallelize the tests using a
cloud provider’s resources. However, doing so is costly. At
the time of writing, the cheapest on-demand CPU that AWS
offers for its data center in Frankfurt costs $ 0.0047/hour [6].
As our current implementation takes around 3 seconds per test,
we can run 1200 tests for $ 0.0047 and hence the complete

search space enumeration for the reserved bits would cost
16712⋅10

6

1200
⋅ $ 0.0047 = $ 65 455. Note that these costs are only

for testing a single CPU and abstract away the challenge to
find a cloud provider offering the target CPU.

Second, it is reasonable to assume that flipping additional
bits does not hide the effect of other bits in most cases. It is not
beneficial to have one bit for enabling a feature and another for
disabling it again. Instead, a practical implementation would
use a single bit to toggle the activation of a feature, as the
structure of most documented MSRs shows [41], [5]. An
exception for this are enum MSR fields consisting of multiple
bits to encode more than two values. Thus, we choose flipping
masks to find enum MSR fields of up to W bits. This approach
is not a perfect fit for every possible scenario, e.g., if an enum
field is spread over more than W bits or contains unrelated
bits in the middle. However, our approach acts as a trade-off
between the scenarios we cover and the search space.

2) Implementation: To execute the instruction and record
the performance counters, MSRevelio uses the nanoBench
framework [2]. The nanoBench framework allows recording
performance-counter events of a given assembly code snippet.
The framework takes care of compiling the snippet and repeat-
ing it multiple times without introducing additional overhead.
We test 124 common instructions divided into 16 groups based
on their semantics. We show the groups and link the used
performance-counter config in Appendix B. MSRevelio calls
the nanoBench framework for each group separately. Hence,
MSRevelio knows precisely which category of instructions the
bit flip inside the MSR influenced. To cope with the large
search space of undocumented MSR bits combined with the
nanoBench framework invocation, MSRevelio pre-filters the
undocumented bits in three phases based on their behavior.

Phase 1: Detecting Writable Bits. In the first phase,
MSRevelio iterates over all the undocumented MSRs in
parallel and records the bits inside the MSRs that can be
toggled. This is done by reading the original MSR value
once and then toggling one bit at a time and detecting if
the wrmsr instruction executes successfully. While reserved
or unimplemented bits typically raise a GP fault, some bits
silently ignore the write. Hence, MSRevelio rereads the MSR
value and checks if the bit was toggled. If we can successfully
write to an MSR but reading from the MSR always faults,
we consider the MSR as write-only and the bit as modifiable.
Since setting arbitrary undocumented bits inside an MSRs can
lead to various system freezes and undefined CPU states, the
framework relies on a blocklist of such MSRs. This phase is
also used to filter out bits that cause system freezes to enhance
later execution time. Note that this process can also be fully
automated using a remotely-controllable power switch [24].

Phase 2: Initial Recording of the Changed State. In the
second phase, MSRevelio starts recording possible effects on
the instruction groups. Our implementation tests all possible
combinations of enum MSR fields consisting of up to 4 bits.
We assume that multiple undocumented enum MSR fields are
independent with respect to effects on instructions. With this
assumption, this phase does not test each individual enum



TABLE I: MSRevelio’s results for different microarchitectures, including the number of found and undocumented MSRs and
the categorization of the undocumented MSRs. The number of similar MSRs indicates if an undocumented dynamic MSR can
be correlated with a likeliness of more than 85% to a documented dynamic MSR.

CPU µ-Arch µ-Code # Found (RW, RO, WO) # Undocumented (RW, RO, WO) # Static (RW, RO) # Dynamic (RW, RO) # Similar

AMD Ryzen Threadripper 1920X Zen 0x8001137 5244 (5223, 17, 4) 4876 (4873, 2, 1) 4873 (4871, 2) 2 ( 2, 0) 0
Intel i7-6700k Skylake 0x9e 477 ( 363, 108, 5) 105 ( 68, 35, 2) 99 ( 68, 31) 4 ( 0, 4) 2
Intel i7-8700k Coffee Lake 0xb4 517 ( 388, 122, 7) 126 ( 89, 35, 2) 121 ( 89, 32) 3 ( 0, 3) 3
Intel i9-9900k Coffee Lake 0xde 537 ( 413, 117, 7) 136 ( 99, 35, 2) 132 ( 99, 33) 2 ( 0, 2) 2
Intel Xeon Silver 4208 Cascade Lake 0x5003102 1109 ( 957, 142, 10) 647 ( 591, 52, 4) 601 ( 553, 48) 42 (38, 4) 42

MSR field, but instead alters the undocumented MSR by
toggling different enum fields at the same time. In fact, it
is possible to test all combinations of 4 consecutive bits at an
arbitrary position inside the MSR using only 2

4
= 16 different

MSR values. We use flipping masks containing a 1 in case a
bit has to be flipped at that respective position in the MSR.
We create the 16 masks by flipping the bits at position n after
having generated 2

n mod 4 masks, i.e., we flip bit 0 after every
generated mask, bit 1 every second, bit 2 after every fourth,
and bit 3 after every eight masks, e.g., the second mask has
the following representation: 0x1111111111111111.

Due to this construction, given an arbitrary position of 4
consecutive bits, the 16 bitmasks represent all 16 values of
these 4 consecutive bits (see Appendix C). This optimization
reduces the search time by a factor of 16+60⋅8

16
= 31 compared

with an optimized sliding window, i.e., testing all the enum
values at a given position and then shifting the window by one
while reusing previous results. The results of this phase are
candidate MSRs where at least one of the changed bits affects
the instructions. These MSRs are the basis for the third phase.

Phase 3: Finding the Origin of the Effects. After the
second phase, MSRevelio has a list of MSR candidates that
have observable effects on the instructions groups. In this
phase, MSRevelio iterates over each of these candidates and
sequentially tests all enum MSR fields to pin down the effects
observed in the performance counters to a specific enum field
and its value. This phase’s results contain detailed information
about the MSRs and which bits influence a certain instruction
group. We further analyze the automated results of this scan
in Section III-D and in six case studies in Section V.

D. Results

We conducted an exhaustive search for undocumented
MSRs on a total of 5 CPUs. The overall results of these
CPUs are shown in Table I. We found 5890 undocumented
MSRs on AMD and Intel CPUs, with most of the discovered
MSRs (4876) on AMD CPUs. However, 96.8% of the found
static, read-and-writeable, undocumented MSRs on AMD do
not raise a GP-fault when written but ignore the written
value, restricting further bit behavior analysis. We also ob-
serve similar behavior for 54.1% of the Intel MSRs. We
analyzed all these undocumented MSRs for correlations with
documented MSRs. We found 53 undocumented MSRs that
expose continuously changing values correlating with existing
MSRs. For example, the dynamic MSR(0x637) exposes a
monotonic counter correlating with documented counters, and
we further explore this counter in Section V-F. For the static

MSRs, we conducted the enum field search to find bits that
influence specific instructions. We found 1 undocumented and
6 partially documented bits that affect instructions such as
cpuid and prefetch. The effects of these MSR bits are
analyzed in Section V. To determine the specific functionality
of the MSR, manual analysis is necessary.

IV. DETECTING OS-CONFIGURABLE BIOS FEATURES

In this section, we extend the MSR scanner of MSRevelio to
detect differences in static MSRs that are caused by changes in
BIOS settings. In line with Intel’s documentation [34], BIOS
refers to firmware, regardless if it is an actual BIOS or UEFI.
The BIOS is responsible for configuring multiple CPU settings
on boot, e.g., available features [20] and settings related to the
power management. While some settings can only be changed
by the BIOS at boot time, other features can also be modified
by the OS. Many BIOS versions, e.g., on consumer systems,
expose only a small subset of settings to the user. With this
approach MSRevelio can template BIOS versions to hint the
user on how to reenable unlocked features from the OS.
Additionally, it can be used to analyze whether undocumented
or poorly-described BIOS features impact MSRs.

A. BIOS Templating

Our approach produces a list of MSRs and bits inside these
MSRs configured by the BIOS, including documented and un-
documented bits. For this purpose, we template BIOS features
that modify MSRs by changing a BIOS setting manually and
automatically scanning all MSRs’ values (cf. Section III-A).
As we target features, we are only interested in static MSRs.
After toggling a BIOS setting, we compare the values of all
static MSRs to the values of the initial scan of all MSRs (cf.
Section III-B). If an MSR has a different value, we assume
that the BIOS setting led to the change of this MSR. We
can increase the certainty that this MSR value depends on
the BIOS setting by repeating the process multiple times.

To further focus on undocumented settings, MSRevelio
uses the list of documented MSRs and their bits to check
whether the changed bits are documented (cf. Section III-A).
If either an undocumented MSR or an undocumented bit
change, MSRevelio reports this as an undocumented feature.
This undocumented feature is analyzed for impacts on the
instruction behavior in the same way as MSRs obtained
from a full MSR scan (cf. Section III-C). Again, to reduce
the likelihood of uncorrelated changes, repeating the process
multiple times increases the probability that the reported MSR
bit is indeed related to the BIOS feature.



B. Setup

We evaluate 5 systems with BIOSes exposing a rich set
of features. The tested CPUs are a Celeron J4005, Core i7-
6700K, Core i7-8565U, and Core i7-10510U, with an Intel
JYGKLCPX.86A.0053.2019.1015.1510, AMI 2.17.1246, HP
R93 01.01.06, and an AMI 2.21.1277 BIOS, respectively.
These BIOSes include options that are not documented in
the BIOS manual and for which we did not even find any
unofficial documentation, e.g., “Strong Weak Leaker” or “K1
off”. We initially set all the BIOS values to their defaults and
use MSRevelio to get the difference in the MSR availability
and the MSR values after changing specific settings.

C. Results

Our scans reveal several BIOS options that directly affect
MSRs. While several MSRs are locked after the BIOS initial-
ization, some of them can be modified by the OS to emulate
these BIOS settings. We also discovered BIOS settings that
affect undocumented MSRs or MSR bits.

1) Documented Settings: Some of the changed MSRs are
documented and simply expose the read-only status of the
BIOS setting. Most settings, including VTx/VTd, turbo boost,
fast-string support, or execute disable, are reflected in the
MSR(0x1a0), documented as IA32 FEATURE CONTROL.
While the BIOS locks the configuration bits for VTx/VTd,
the fast-string support and turbo boost can be changed by
the OS. The execute-disable feature can theoretically also be
modified by the OS. However, this only led to OS crashes on
our machines. To point out the impact of the unlocked bits, we
show in Section V-D that the OS can harden a system against
Medusa [61] using the feature bit for fast-string support.

Another documented setting is the enabling and
disabling of hardware prefetch features. For this
setting, the BIOS simply modifies MSR(0x1a4)
(MSR MISC FEATURE CONTROL), which is also
writable by the OS [77]. However, our tested BIOS versions
only disabled the L2 prefetcher and not the L1 prefetcher
when setting “Hardware Prefetcher” to “disable”. While we
consider this at least misleading, if not a bug, we do not see
any security problem in that behavior.

2) Unofficial or Undocumented Settings: Our approach
detected MSRs that are either entirely undocumented,
not officially documented, or not documented for
the microarchitecture on which we found the MSR.
Such MSRs include MSR(0x621), MSR(0x35)
(MSR CORE THREAD COUNT), MSR(0x7a), and
MSR(0xe2) (MSR PKG CST CONFIG CONTROL).
MSR(0x35) provides information on the state of
hyperthreading on Intel Xeon CPUs. However, while it is not
documented for Intel Core CPUs, it also works on our Intel
Core machines. MSR(0x621) is not publicly documented,
but mentioned as MSR UNCORE PERF STATUS in a book
by Gough et al. [26] for Xeon E3/E5 CPUs without further
details. Based on the description of the BIOS setting that
modified bit 0 of this MSR, we learn that it is the state of Intel
SpeedStep. We discovered another potential bug in one of our

BIOS versions concerning bit 0 of MSR(0x7a). The BIOS
provides an option “MachineCheck” which toggles exactly
this bit. While we did not find any official documentation, the
CoreBoot source [19] and a Linux kernel patch [66] suggest
that this bit enables Intel SGX, which is also supported on our
machine. A “Timed MWAIT” feature in our BIOS enables bit
31 in MSR(0xe2), which is officially reserved. We assume
that this enables an mwait extension to continue execution
after a specified number of CPU cycles have elapsed, similar
to AMD’s mwaitx instruction [4]. We leave it as future
work to reverse engineer how this feature can be leveraged
and its impact. When enabling and disabling AES-NI via
the BIOS, it changes bit 1 in MSR(0x13c). For this MSR
(MSR FEATURE CONFIG), the documentation states that 2
bits are used to represent the AES-NI state, without providing
a detailed description. On all analyzed machines, bit 0 was
always set to ‘1’. To showcase the security impact of this
finding, Section V-A shows that bit 0 is actually a lock bit
that can be exploited to attack SGX enclaves by disabling
AES-NI at runtime.

V. CASE STUDIES

This section presents six case studies demonstrating the
security impact of previously overlooked MSR bits. We show
that undocumented MSRs can prevent existing attacks and re-
enable mitigated attacks in certain scenarios. We also detect
security-relevant MSRs in microcode distributed before the
vulnerability is disclosed. Finally, we show that specific hy-
pervisors version expose distinguishable MSR fingerprints and
provide access to security-relevant undocumented MSRs.

A. Exploiting the AES-NI Lock Bit

MSRevelio’s BIOS templating (cf. Section IV) revealed that
MSR(0x13c) (MSR FEATURE CONFIG)’s lowest two bits,
which enable AES-NI, either contain the value ‘1‘ or ‘3‘. The
Intel SDM [41] documents that if these bits are ‘3‘, the AES
instructions are not available until the next reset, otherwise,
they are available. Also, the SDM notes that if the bits are not
equal to ‘1‘, the instructions can be misconfigured. However,
the individual behavior of these bits is not documented.

We observe that the MSR value cannot be changed via the
wrmsr instruction from within the OS. This indicates that the
BIOS locks the MSR after finishing the initialization. As bit
0 is always set on all tested machines, we assume that this
bit is the lock bit of the MSR, set by the BIOS to restrict
further changes. We verify this assumption by modifying the
BIOS to not set the bit in this MSR, which is in line with the
threat model of SGX [20]. With the unlocked MSR, we show
that an attacker can modify the feature-detection mechanism
of a securely-designed SGX enclave using mbedTLS to fall
back to an insecure cryptographic-algorithm implementation,
allowing the full extraction of the AES key via Prime+Probe.

1) Threat Model: Where available, the AES-NI instruc-
tions are used in cryptographic libraries to implement the AES
algorithm securely and efficiently [31], [8]. These libraries are
often combined with Trusted Execution Environments (TEEs)



to protect the implementation of cryptographic algorithms and
establish secure communication with other parties. Further-
more, the threat model of SGX protects an enclave from a
malicious OS and even malicious BIOS firmware [20]. In this
threat model, an attacker can modify the BIOS [9].

We consider two distinct attack scenarios. First, we consider
a system under complete attacker control. Here, the attacker
tries to extract a secret key used by a targeted enclave. In this
scenario, the attacker modifies the BIOS only on the attacker’s
machine to remove the lock bit. Second, we envision a scenario
where the MSR is not initialized at all, e.g., because the BIOS
developer was not aware of this MSR. While we did not
encounter such a BIOS on any of our tested machines, there
is a chance that such a BIOS exists due to a large number of
BIOS vendors and the wide variety of BIOS versions.

2) BIOS Modification: To verify that the first bit of
MSR(0x13c) is the actual lock bit of the AES-NI instructions,
we patch the BIOS of our test system. For this case, we use
a MINISFORUM X35G mini-PC with an AMI BIOS and an
Intel Core i3-1005G1 CPU. Dumping and flashing the BIOS
is possible via the official AMI Firmware Update tool [7].
Alternatively, an attacker can simply use a low-price SPI
flasher such as a CH341A if no software tool is available or
if such a tool does not allow flashing a modified image. We
extract all 253 binaries of the BIOS image using UefiTool [67]
and disassemble them using Ghidra with the firmware utilities
plugin [46]. In our BIOS, the MSR(0x13c) is initialized in
the silicon init (SiInitFsp) module. Depending on the BIOS
version (cf. Appendix D), the wrmsr is either inlined or
encapsulated in a wrapper function. In both cases, we simply
patch the initialization of the EAX register to not set bit 0. The
patch for multiple BIOS versions is provided in Appendix D.
For the second scenario, we replace the wrmsr (or the call to
the wrapper) with NOP to leave the MSR uninitialized.

3) Behavior Verification: After booting both images, bit
0 of the MSR reads as ‘0’. For both BIOS modifications,
the cpuid instruction still reports that AES-NI is available.
Writes with the wrmsr instruction to the second bit of
MSR(0x13c) are reflected by the rdmsr instruction, verify-
ing that with a bit 0 cleared, bit 1 is not locked. Furthermore,
setting bit 0 using wrmsr prevents any subsequent changes to
the MSR. Hence, the bit 0 is indeed the lock bit of this MSR.
In addition to acting as a lock bit, bit 0 is also the “apply”
bit. Changes to the second bit only take effect after the lock
bit is set. Therefore, the two BIOS modifications behave the
same because the CPU ignores the second bit until the lock
bit is set. If both bits are set, AES-NI is disabled, and the
instructions raises an illegal instruction exception as expected.

4) AES-NI inside Intel SGX: We demonstrate the security
implications of changing the AES-NI availability at runtime
on the mbedTLS library [8]. Due to its small codebase and
side-channel resistant AES-NI implementation, it is often used
inside Intel SGX [8]. In mbedTLS, the CPU feature detection
is performed over the cpuid instruction. Due to the restricted
SGX environment, the cpuid instruction is not available
inside enclaves. Therefore, the SGX-SDK uses an OCALL to

retrieve the CPUID information from outside the enclave [33],
leading to a potential attack vector manipulating the read
CPUID leaf. To enable a robust CPU feature check, enclave
developers can rely on executing a potentially not supported
instruction and configuring an exception handler to catch the
exception [58]. If the instruction executes without raising an
exception, the hardware supports the given CPU instruction,
otherwise, the exception handler is used to continue execution
safely. With this mechanism, the feature detection is encapsu-
lated inside the enclave and does not rely on untrusted data.

Second, a developer might know about the limitations of
mbedTLS’s fallback algorithm and check the availability of
AES-NI with the secure feature-detection in the enclave’s
initialization phase and abort if AES-NI is not enabled. Fur-
thermore, we assume developers do not account for changing
feature bits like the AES-NI-enable bit during runtime, as the
possibility of such behavior is not documented.

5) Proof-of-concept Attack: The attacker enables AES-NI
in the BIOS and leaves it enabled during the initialization
of the enclave. Hence, any feature check for the availability
of AES-NI, be it through an OCALL to cpuid or using
the trusted CPUID library [58], detects the availability of
AES-NI. Even if the presence of AES-NI is enforced through
some kind of attestation, the default enabled AES-NI state
without the lock bit passes this check. However, an attacker
can disable the AES-NI instruction set at any point by simply
interrupting the enclave and modifying the MSR. With precise
execution control of SGX enclaves, e.g., using SGX-Step [74],
an attacker can target a specific instruction after which the
AES-NI instructions are disabled. As a result, this leads to a
time-of-check-to-time-of-use vulnerability for SGX enclaves
that check for AES-NI and later on use it, as is the case
for the mbedTLS library (Version 2.26.0). In case AES-NI
is not available, mbedTLS falls back to a software-based AES
implementation, which is not side-channel resistant [71], as it
uses key-dependent memory accesses (cf. Appendix E).

6) Prime+Probe on SGX: This case study shows that an
attacker can extract secret information via a cache attack from
an SGX enclave. Since the SGX environment ensures flushing
of the L1 cache during an enclave exit, and the SGX attestation
can verify that hyperthreading is disabled, an attack using the
L1-cache is unlikely. Therefore, an attacker needs to perform
Prime+Probe on the last-level cache (LLC). We assume that an
attacker uses precise execution control, e.g., SGX-Step [74],
for Prime+Probe on the LLC [60], [11].

We simulate a Prime+Probe attack on mbedTLS, to show
that a single trace suffices to exploit the AES-NI misconfigura-
tion and leak the secret key. We accurately simulate cache sets,
using the Intel Pin tool [32] to record the memory accesses
and extract the corresponding cache set. As we only consider
virtual addresses, we only extract the lower 6 bits of the cache
set. However, this is already sufficient to recover the key.
Figure 4 shows the cache-set accesses for two AES keys.

MbedTLS’ AES implementation leaks the key in two dif-
ferent functions. First, in the mbedtls_aes_setkey_enc
function responsible for the key schedule. Second, in the
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Fig. 4: Truncated secret-dependent cache-set accesses of
mbedTLS’ AES-128 implementation for two different keys.

mbedtls_aes_encrypt_internal function performing
the T-table-based encryption. We consider two attacks, both
with a single simulated Prime+Probe trace. If the attacker only
records the encryption function, we require a known plaintext
to recover the key. However, if the key schedule is included,
we extend the attack to even recover parts of the plaintext.
Note that we can exchange the encryption and known-plaintext
attack with the decryption counterparts.

We analyze the trace with the Z3 solver [22] over 10 000
simulated Prime+Probe attacks on mbedTLS’ AES-128 imple-
mentation with randomly generated keys and plaintexts. The
solver recovers all keys using a known-plaintext attack, where
each recovery only takes seconds. With unknown plaintext,
the solver needs at most 74.08min (σx̄ = 0.367, n = 1200)
to recover the key and additionally 10 bytes of the plaintext.
The solver can recover even more plaintext bytes, however,
the performance depends on the used key and plaintext. The
performance evaluation used as the known plaintext’s bytes,
the higher bytes 10 to 15. The solver always finds the correct
key without additional candidates. Hence, if an attacker can
disable AES-NI at runtime, they can force mbedTLS to a path
vulnerable to side-channel attacks, and extract the key.

B. Mitigating Software Prefetch Attacks on AMD

In this case study, we present the first software mitiga-
tion on AMD systems against prefetch-based side-channel
attacks [27], [51]. Prefetch-based KASLR breaks exploit the
runtime difference of the prefetch instruction for mapped
and unmapped addresses, effectively derandomizing the kernel
location. The prefetch KASLR break is an important part
in the recent “Spectre in the Wild” exploit [79] to find the
addresses of targeted kernel structures. As this is the only
known full microarchitectural KASLR break on AMD CPUs,
it is desirable to prevent this type of attack. Furthermore,
Lipp et al. [51] exploit prefetch on AMD to break fine-grained
KASLR, monitor kernel activity and to leak kernel memory
using Spectre. With MSRevelio, we search and discover an
MSR that disables the prefetch instructions on AMD systems.
The prefetch-disabling bits can be set by the OS or a privileged
user to prevent all prefetch-based side-channel attacks and,
therefore, remove a building block for sophisticated attacks.

1) Threat Model: We assume a system without software
bugs in the kernel and enabled KASLR. We further assume
an unprivileged attacker with code execution on the system.

TABLE II: The bits of MSR 0xc0011029 were found with the
instruction analysis of MSRevelio.

MSR 0xc0011029 Description Effect

Bit 2 disable PREFETCHNTA -1 LdDispatch
Bit 3 disable PREFETCHT0 -1 LdDispatch
Bit 4 disable PREFETCHT1 -1 LdDispatch
Bit 5 disable PREFETCHT2 -1 LdDispatch
Bit 6 disable PREFETCHW -1 LdDispatch
Bit 7 disable PREFETCH -1 LdDispatch

The system does not expose the kernel offset via system
interfaces, e.g., /proc/kallsysms. Thus, the attacker uses
the prefetch-based KASLR break to mount attacks or extract
data from the kernel, e.g., using a Spectre attack [79], [51].

2) MSR Discovery: With the knowledge that hardware
prefetchers can be disabled [3], we suspect that there might
also be a possibility to disable software prefetchers. Hence,
we leverage MSRevelio to automatically find MSR con-
figuration bits that influence the software-prefetch instruc-
tions (cf. Section III-C). On an AMD Ryzen Threadripper
1920X CPU, MSRevelio discovered the MSR(0xC0011029).
As Table II shows, bits 2 to 7 inside the MSR alter
the behavior of the prefetch instructions as detected by
MSRevelio. MSRevelio found these bits due to the reduced
LsDispatch.LdDispatch performance counter by ex-
actly one load compared to the reference (cf. Section III-C).
This MSR is a “tweak” MSR that is used in errata to circum-
vent CPU bugs [78]. Although this MSR is not documented
for the Zen microarchitecture (family 17h), we find the MSR
in the extensive list of documented MSRs for the Bulldozer
microarchitecture (family 15h) [3] (page 590), where these bits
are documented as disabling the software prefetch instructions.
Hence, by setting these bits, the OS can disable each of the
six variants of the prefetch instructions individually.

3) Mitigate Prefetch Attacks: For our experimental setup,
we use the file-based Linux MSR interface to disable all the
software prefetch instructions. For evaluation, we build a PoC
implementation of a prefetch-based KASLR break. The kernel
is located in one of 512 possible virtual address offsets [15].
The PoC measures the execution time of the prefetch2
instruction for all these possible virtual addresses. For every
address, the KASLR break measures the execution time of
10 000 prefetch invocations executed in a loop. The loop
is repeated 100 times, and the minimum of all the tries is
recorded. If the kernel is mapped at the prefetched location,
the execution time is higher (cf. Figure 5).

We execute the KASLR break on an AMD Ryzen Thread-
ripper 1920x @ 3.8GHz with Ubuntu 20.04 LTS and Linux
5.4.0-74, with prefetch instructions enabled and disabled.
Figure 5 shows the difference between the two invocations
of the KASLR break. We observe that the KASLR break can
precisely locate the kernel (offset 88) in the enabled case and
fails to locate the kernel otherwise. Furthermore, we compare
the execution time of prefetch when disabled with the
execution time of a single byte nop instruction. The nop
instruction takes 0.886 cycles (σx̄ = 0.0092, n = 512 000 000)
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Fig. 5: The prefetch-based KASLR break with enabled (left
axis) and disabled (right axis) prefetch instructions. The yellow
box indicates the kernel’s location at start offset 88.

on average, and the disabled prefetch instruction takes
0.885 cycles (σx̄ = 0.0090, n = 512 000 000) on average. From
this experiment, we conclude that the disabled prefetch
instruction is indeed equivalent to a nop instruction [3]. Thus,
the disabled prefetch instruction stops loading data into the
cache and does not translate the provided virtual address.

We compare the disabling of the prefetch instructions with
the recent FLARE [15] KASLR mitigation, which hardens
the kernel against microarchitectural KASLR breaks. However,
as all other microarchitectural KASLR breaks only apply to
Intel CPUs, disabling the prefetch instructions leads to similar
security and performance guarantees as FLARE without modi-
fying the kernel or additional memory overhead. Furthermore,
a privileged user, such as a system administrator, can directly
activate this mitigation over the MSR interface without any
additional requirements. The runtime overhead is also not
directly visible as most applications do not use prefetch
instructions. On our Ubuntu 20.04 installation, less than 1% of
the installed binaries (300 out of 30 842) contain any software
prefetch instructions. We evaluate the performance impact
of disabling these instructions with the SPEC CPU 2017
benchmark. Table II shows the benchmark results, where the
baseline is with the prefetch instructions enabled. The average
performance overhead is only 0.04%, and thus negligible.

C. Intercepting CPUID to Reduce CrossTalk Leakage

In this case study, we present a software-based mitigation
to reduce CrossTalk [64] leakage. The CrossTalk attack leaks
data from the staging buffer via the line-fill buffer. To get the
data from the staging buffer to the line-fill buffer, CrossTalk
uses cpuid, rdrand, rdseed, and rdmsr as leaking
primitives leaking confidential data such as random numbers.
However, the rdmsr instruction is only available in a privi-
leged attacker model. Ragab et al. [64] assume that the used
instructions cannot be trapped, but that it would hypothetically
also hinder exploitation. We challenge this assumption by
using MSRevelio to search for an MSR bit that can trap
the cpuid instruction. Our evaluation shows that cpuid is
the most reliable unprivileged leakage primitives even without
TSX. Indeed, MSRevelio successfully discovered such a bit,
leading to the first pure software mitigation to practically
mitigate unprivileged CrossTalk attacks. By trapping cpuid,
the OS can ensure that no confidential data, such as random
numbers, are leaked from the staging buffer.

TABLE III: SPEC CPU 2017 benchmark for the performance
overhead when disabling the software prefetch instructions.

Benchmark SPEC Score Overhead
Baseline No Prefetch [%]

600.perlbench s 4.02 4.02 0.00
602.gcc s 7.32 7.34 −0.27
605.mcf s 6.57 6.56 +0.15
620.omnetpp s 2.89 2.88 +0.35
623.xalancbmk s 4.34 4.33 +0.23
625.x264 s 4.79 4.79 0.00
631.deepsjeng s 3.19 3.20 −0.31
641.leela s 3.29 3.28 +0.30
648.exchange2 s 9.10 9.11 −0.11

Average +0.04

1) Threat Model: For the pure software mitigation, we
assume that an attacker can run unprivileged programs on a
CPU affected by CrossTalk. The attacking program controls
on which logical core the code is executed and can invoke
the unprivileged cpuid instruction. The system does not
deploy the microcode patch against CrossTalk [64], e.g., for
performance reasons or because none is available.

2) MSR Discovery: MSRevelio found MSR(0x140) on
an Intel i5-4570 using the instruction-behavior analysis (cf.
Section III-C) that allows trapping the cpuid instruction. On
this microarchitecture, this MSR is undocumented in the Intel
SDM [41]. The only mention of this MSR is on the Xeon
Phi, where it is referred to as MISC_FEATURE_ENABLES.
Still, even on Intel Core, Xeon, and Celeron CPUs, setting
bit 0 results in cpuid raising a GP fault. This feature was
apparently introduced with the Intel Ivy Bridge microarchitec-
ture as it does not exist on our tested Sandy Bridge machine
(i5-2520M). On all our tested machines starting with Ivy
Bridge (i5-3230M) to Ice Lake (i3-1005G1) and Jasper Lake
(N4500), the MSR exists, and setting bit 0 allows trapping
cpuid. Therefore, this allows us to harden systems against
unprivileged CrossTalk attacks. While designing mitigations
on top of undocumented features seems unwise, Intel CPUs
with the 10th generation already contain silicon fixes [42].

3) CrossTalk-Mitigation Implementation: We imple-
mented a proof of concept to show that this attack is indeed
prevented by trapping the cpuid instruction. Our PoC con-
sists of a kernel module and a user-space shared library. The
kernel module provides a single ioctl that is used by the
user-space library to set and clear bit 0 of MSR(0x140), i.e.,
to trap cpuid or allow it. The user-space library sets up
the kernel module and transparently handles the GP faults.
It is simply preloaded for binaries using the LD_PRELOAD
environment variable. Note that this is just for the sake of
simplicity for the proof-of-concept implementation. When im-
plemented for a production system, the entire implementation
would either be in the kernel, or partly in the kernel and partly
in the dynamic linker and loader, such that it is applied to every
binary on the system. The preloaded library installs a signal
handler for GP faults. This signal handler analyzes the memory
location at the faulting instruction pointer. If the address of the



instruction pointer is accessible (can be verified by abusing
the access syscall [59]), the library checks if the opcode of
cpuid (0xA20F) is found. If not, any potential other signal
handler can be called. However, if the cause of the fault is
the cpuid instruction, the library ensures that no sensitive
data can be leaked from the staging buffer. We evaluated two
variants: (1) only executing cpuid once before the application
starts, and returning cached values for all other calls, (2)
first overwriting the staging buffer with other information by
calling rdrand and then executing the cpuid instruction.
In both cases, cpuid does not transfer the targeted sensitive
values from the staging buffer to the line-fill buffer. Moreover,
caching the output of cpuid is not a functional problem, as
the output typically does not change during the runtime.

4) Evaluation: We evaluated both variants’ security and
performance overhead on an Intel Xeon E3-1505M v5 with
Ubuntu 20.04 and Linux 5.4.0-90. To verify that our method
indeed hinders CrossTalk, we implemented the two PoCs from
the paper, leaking the CPU brand string and the last generated
rdrand random number. Both PoCs leak the targeted data
from the staging buffer. We verified that preloading our library
without enabling the trap does not negatively impact the PoC.
With the cpuid trap enabled, we do not observe any leakage
anymore. For the leakage mitigation, we do not observe any
difference in the methods, i.e., whether we use cached cpuid
values or overwrite the staging buffer.

To measure the performance overhead of the cpuid trap,
we used a microbenchmark that simply executes cpuid in
a loop. In the normal case, i.e., without the cpuid trap, the
execution takes 182 cycles (σx̄ = 0.6, n = 100 000). Trapping
the cpuid instruction, overwriting the staging buffer, and re-
executing it takes on average 9932 cycles (σx̄ = 6.1, n =

100 000). Caching the cpuid instruction improves the perfor-
mance slightly, with an average execution time of 8204 cycles
(σx̄ = 5.7, n = 100 000). As cpuid is typically only called
at program startup, e.g., in the libc for feature detection [25],
this overhead is negligible for the overall system performance.
In contrast, the microcode patch for CrossTalk introduces an
overhead of factor 12 for the rdrand instruction [64], which
is usually used more often than the cpuid instruction.

5) Leakage Analysis: We validate that cpuid has the
highest leakage rate of the unprivileged instructions, by ex-
tending the Crosstalk PoC to allow evaluation of the leakage
rates when using either signal handling, TSX, or TAA as
an exception-suppression method. First, we evaluate leaking
rdrand with the cpuid instruction. Second, we exchange
cpuid with rdseed in the attacker and evaluate the leakage
again. Our evaluation found that exchanging rdseed with
rdrand and vice versa did not influence the leakage rates.
Therefore, we focused on leaking the more commonly used
rdrand values. For the evaluation, we use an Intel i7-
6700k with Ubuntu 20.04 and Linux 5.4.0-40 with disabled
mitigations. The victim generates a random number every
187.5ms and repeats this 100 times, generating overall 800B
of random data. We perform each experiment 10 times and

TABLE IV: SPEC CPU 2017 benchmark performance over-
head when disabling the fast-string optimization.

Benchmark SPEC Score Overhead
Baseline No Fast-Strings [%]

600.perlbench s 5.17 5.16 +0.19
602.gcc s 8.76 8.06 +8.06
605.mcf s 6.95 6.91 +0.58
620.omnetpp s 3.61 3.62 −0.28
623.xalancbmk s 4.50 4.51 −0.37
625.x264 s 4.47 4.46 +0.15
631.deepsjeng s 3.92 3.67 +6.37
641.leela s 3.56 3.57 −0.19
648.exchange2 s 9.82 9.82 0.00

Average +1.61

count the correctly-leaked bytes and how often the entire eight-
byte random number is successfully leaked.

For cpuid, we observe a leakage of 711.3B (σx̄ = 4.185B)
with signal handling, 741.3B (σx̄ = 4.770B) with TSX,
and 416.3B (σx̄ = 3.556B) with TAA. With rdseed as
primitive, we observe a leakage of 3.4B (σx̄ = 0.544B)
with signal handling, 2.1B (σx̄ = 0.368B) with TSX, and
553.3B (σx̄ = 18.296B) with TAA. Furthermore, when using
signal handling, cpuid leaks on average 51.8 times the entire
random number whereas rdseed is unable to leak the entire
random number. For the overall byte-wise leakage rate, the
leakage rate of cpuid is 211.4 times higher than rdseed’s
when using signal handling. With recent microcode patches
disabling TSX and, therefore, mitigating TAA, the cpuid
trap is a viable option to further harden systems against
unprivileged CrossTalk attacks.

D. Disabling Fast-String Support to Reduce Medusa Leakage

In this case study, we show a software-based approach to
reduce the leakage of the Medusa attack [61]. Medusa is a
Microarchitectural Data Sampling (MDS) attack, leaking data
from the line-fill buffer on Intel CPUs. Medusa leaks data
from Write Combining (WC) operations or memory operations
backed by WC memory. These write-combining instructions
use a part of the line-fill buffer to combine writes to the same
cache line to reduce requests sent over the memory bus.

The Medusa attack uses implicit WC instructions like non-
temporal moves, rep movs, rep stos instructions, or ex-
plicit WC memory to leak data from the WC buffer. However,
as WC memory requires a special memory type, an attacker
needs privileges to acquire it, which is only realistic when
attacking SGX. We focus on implicit WC operations, available
to an unprivileged attacker. By reducing the likelihood that
sensitive data ends up in the WC buffer, the probability of a
successful Medusa attack is also reduced.

1) Threat Model: We assume an unprivileged attacker is
exploiting implicit WC instructions for the Medusa attack on
an affected CPU. The OS does not mitigate the Medusa attack,
e.g., with the adapted verw instruction to clear the fill buffer
or group scheduling [61]. Therefore, an attacker can be co-
located on the same physical core as the victim program,
sharing the core’s fill buffer with the victim.



2) MSR Discovery: With the BIOS templating approach
(cf. Section IV), MSRevelio automatically detected the doc-
umented fast-string enable bit (bit 0) inside MSR(0x1a0)
(IA32 FEATURE CONTROL). Intel [41] documents this bit
as fast-string enable bit, but the internal effects are only
sparsely documented [38], [40]. Based on the instruction-
behavior analysis of MSRevelio, we see that clearing the
fast-string-enable bit changes the associated instructions to
no longer perform WC memory writes. Therefore, this bit is
suitable to reduce leakage of the unprivileged Medusa attacks.

3) Evaluation: We evaluate the impact of the fast-string
enable bit on the Medusa attack on an Intel Core i7-6700K
CPU that is affected by Medusa with Ubuntu 20.04 LTS and
Linux 5.4.0-40. For the evaluation, we rely on the public
Medusa PoCs [61]. Specifically, we focus on the PoC variants
using fast-string operations that an unprivileged attacker can
use [61]. We run the victim using fast-string operations with
sensible data and test against these attack variants. We fix
the test system’s frequency to 3GHz and pin the attacker and
victim applications to sibling hyperthreads. We first verify that
the PoC successfully leaks the targeted data. When disabling
fast-string operations using MSR(0x1a0), the leakage is en-
tirely gone, successfully preventing these variants of Medusa.
We evaluate the performance overhead when disabling fast-
string operations with the SPEC CPU 2017 benchmark and
observe an average performance overhead of 1.61%. Table IV
shows the benchmark results, where the baseline is with the
optimized fast strings operations enabled.

4) Discussion: Similar to the CrossTalk mitigation (cf.
Section V-C), this is only a short-term solution for affected
CPUs. Newer CPUs, e.g., 10th generation, are not affected
by Medusa anymore, hence this mitigation is only necessary
on older CPUs for which this MSR bit successfully reduces
the leakage. Additionally, CPUs received security updates by
repurposing the verw instruction to clear microarchitectural
buffers on context switches [61]. While verw does not prevent
attacks from a hyperthread, disabling the write combining
instruction mitigates these attacks. Finally, as the leakable data
for an attacker depends on the instructions executed within a
victim application, the only remaining sources for leakage are
non-temporal moves, as well as the upper 128 bit of AVX
stores, which can be disabled via the XCR0 register.

E. Tracing Microcode-introduced MSRs

In this case study, we show that MSRevelio can trace
the evolution of MSRs of a CPU over multiple microcode
versions. Tracing the addition of MSRs allows determining the
microcode version where vendors deployed patches relying on
additional MSRs. Moreover, we can analyze the time between
deployment and documentation of MSRs. We show that all
MSRs retrofitted using microcode on our tested machines
are security-related. Thus, detecting MSRs before they are
documented hints that there is a CPU vulnerability currently
under embargo, as the fixes should, in the best case, already
be deployed when the embargo ends. If a security patch
introduces undocumented MSRs, we assume that the undoc-

umented MSR exposes additional configuration bits for the
mitigation. With this information, an adversary can determine
the effects corresponding to the added MSR and potentially
infer the reason for the security patch. This approach is similar
to patch diffing where an attacker extracts the vulnerability by
inspecting the patches provided to a system or component.

Since the discovery of Spectre [49] and Meltdown [54],
many security patches have included new MSRs to mitigate
vulnerabilities. To help OSs and hypervisors mitigate the
impact of Spectre, a microcode update added MSR(0x49)
(IA32 PRED CMD) and MSR(0x48) (IA32 SPEC CTR).
These MSRs allow configuring the branch predictor and
flushing it’s state [37]. Similarly, due to Foreshadow [72],
the MSR(0x10B) (IA32 FLUSH CMD) was introduced to
flush the L1 cache [35]. Recently, Intel also introduced
MSR(0x123) (IA32 MCU OPT CTRL) with a microcode
update to change the behavior of rdseed and rdrand,
mitigating the CrossTalk attack [64].

1) Threat Model: We assume a sophisticated attacker
is tracking the evolution of MSRs over multiple released
microcode versions for different CPU generations to find
new undocumented MSRs. The attacker uses the classification
approaches shown in Section III-B and Section III-C to deter-
mine the effects of the MSR and potentially the vulnerability’s
source. This leaves the attacker with additional time until the
public disclosure to mount attacks on unpatched systems.

2) Implementation: To trace the evolution of the MSRs
over the microcode version, we use the late-loading mech-
anism of Linux [83]. The late-loading mechanism updates
the CPU microcode to a newer version without rebooting
the system. As a source for the microcodes, we rely on
two GitHub repositories. First, the official Intel microcode
repository [45], containing the microcode versions back to
March 2019. Second, a collection of microcode versions from
Plato Mavropoulos [57] dating back to 1996. A signature from
Intel ensures the integrity of all microcode files. For each
microcode version available for our CPU, MSRevelio extracts
the list of MSRs available after applying the microcode update.
As microcode can only be replaced by microcode with a newer
version, we start at the initial microcode version hardcoded
in the BIOS, and gradually update to newer versions. As
a test system, we chose a CPU with the Sandy Bridge
microarchitecture, which is the oldest second-generation Intel
Core microarchitecture, released in 2011. Additionally, we use
a CPU with the Broadwell microarchitecture (released 2014)
and a CPU with the Coffee Lake microarchitecture (released
2017). For all published transient-execution attacks [42], [16],
at least one of these microarchitectures is affected. With 28
microcode versions, ranging from 2011 to 2021, we found a
large number of different microcodes to test.

3) Results: As expected, MSRevelio detects the intro-
duction of MSR(0x48), MSR(0x49), MSR(0x10B) and
MSR(0x123). Interestingly, there is a significant time dif-
ference between the first occurrence of these MSRs and their
documentation. For the Sandy Bridge machine, MSR(0x48)
and MSR(0x49) were introduced with microcode 0x2d on
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Fig. 6: Cache hits and misses measured with MSR(0x637).

February 7th, 2018, more than a month after the disclosure
of Spectre [49]. In contrast, on Broadwell, these MSRs were
introduced with microcode version 0x28 already on November
17th, 2017, i.e., nearly 7 weeks before the public disclosure.
On the same machine, MSR(0x10B) was introduced with
microcode 0x2b on March 22nd, 2018 nearly 5 months before
the public disclosure of Foreshadow on August 14th, 2018.
The Sandy Bridge machine received this MSR with microcode
0x2e on May 10th, 2018, 3 months before the disclosure.
MSR(0x123) was introduced on the Broadwell with mi-
crocode 0x2f from November 12th, 2019, while the public
disclosure was on June 9th, 2020. Skylake-S and Coffee Lake
received the MSR with the microcode update from January
9th, 2020. We use MSRevelio to analyze the CrossTalk mitiga-
tion’s MSR(0x123) and observe differences for rdrand and
rdseed, directly revealing the affected instructions. These
results show that microcode updates containing new MSRs
are distributed before the MSR is officially documented. None
of our tested microcode updates introduced any non-security-
related MSRs. We assume that new non-security-related MSRs
are only introduced with new microarchitectures. Hence, by
using MSRevelio, it is possible to reveal the existence of CPU
vulnerabilities or errata before they are publicly documented.

F. Exploiting Xen

In this section, we show that MSRevelio is also applicable
in cloud environments to enumerate MSRs accessible to guest
virtual machines. This does not only expose access to MSRs
that can constitute a security threat but also allows fingerprint-
ing the hypervisor. The Xen hypervisor checks the availability
of an MSR inside the guest_rdmsr and guest_wrmsr
functions and decides if access should be simulated, allowed,
or trigger a GP-fault [82]. Until recently, the Xen hypervisor
used a blocklist prohibiting guests from accessing MSRs. Due
to the nature of a blocklist approach, the hypervisor does
not restrict access to undocumented MSRs and, thus, allows
guests to read and write them. With version 4.15 (April 2021),
Xen changed the default behavior from a blocklist to an
allowlist [17], [62], preventing access to undocumented MSRs.

1) Threat Model: We assume a privileged attacker running
in a Xen VM re-enacting a scenario of a low-priced cloud
provider offering single-core virtual machines. We assume that
the attacker’s virtual machine is pinned to a logical core of the
machine sharing the physical core with other guests. Further-
more, we assume that the Xen hypervisor disables access to

TABLE V: Accessible MSRs in different Xen versions.

Xen Version # Accessible # Static # Dynamic

4.7 (IBM cloud) 618 600 18
4.11.4 (Ubuntu) 521 496 25
4.11.4 (Debian) 505 486 19
4.14.1 452 434 18
4.15 203 202 1

MSRs enabling power side-channel attacks [53] and traps calls
to the timestamp counter to reduce its resolution [76], [55].
As the victim machine only runs on a single core, alternative
timing approaches like counting threads [52] are unavailable.

2) Alternative Timer in Xen: With MSRevelio, we discov-
ered the undocumented MSR(0x637) on Intel CPUs that con-
tinuously increments its value and correlates with the times-
tamp counter (cf. Figure 2). While not officially documented
in Intel’s SDM [41], we found a reference to MSR(0x637)
in the coreboot project [18] as MSR COUNTER 24 MHZ.
We exploit this timer to mount a Foreshadow attack [36], [81]
from a Xen virtual machine. We evaluate the attack on an
Intel Core i7-8650U running Ubuntu 20.04.2 LTS with Linux
5.4.0-52 and Xen 4.14.2. The attacker runs in a PVH virtual
machine with Debian 10 and Linux 4.19.0-16 with a single
virtual CPU assigned to a logical core.

In our experiment, the attacker uses the MSR(0x637) as a
timestamp to distinguish cache hits from misses. In contrast
to the cycle-accurate timestamp accessible via rdtsc, this
timestamp has a lower resolution of only 41.67 ns. Thus, when
measuring the access time to cached and uncached memory
using the MSR, there is a slight overlap, as shown in Figure 6.

In our attack, the attacker sets the PFN of one of its EPT
pages to a physical location of a victim page and marks the
page as non-present, triggering an L1 Terminal Fault [36] on
access. As the page is not present, the CPU aborts the page
translation and uses the attacker-controlled PFN to lookup data
in the L1 cache. We use Intel TSX to suppress the fault and
encode the leaked values by caching corresponding addresses
in a look-up table. Using Flush+Reload with the MSR as a
timestamp, we successfully recover the leaked values.

In our attack, we leak a 50-byte string from a victim running
on the sibling hyperthread. Our unoptimized proof-of-concept
implementation has an average runtime of 107.4ms (σx̄ =

1000, n = 1.756) and an average leakage rate of 214 B/s (σx̄ =
1000, n = 4.176). When using rdtsc as the timestamp, we
achieve an average runtime of 0.38ms (σx̄ = 1000, n = 0.003)
and an average leakage rate of 49 147 B/s (σx̄ = 1000, n =
498.66). The difference is mainly caused by the measurement
imprecision caused by the lower resolution and also because
querying the MSR value has a heavy performance impact [1].

3) Fingerprinting Xen Versions: In our analysis of various
Xen versions, we detected that the number of visible MSRs is
different for each Xen version, allowing an attacker to infer the
Xen version if this information is (partly) blocked, as e.g., on
the IBM cloud. We evaluated MSRevelio within different Xen



versions on an Intel i7-8650U CPU running Ubuntu 20.04.2
LTS with Linux 5.40-52 and on the IBM cloud.

For our evaluation, we first fingerprint the hypervisor by
using the MSR detection mechanism of MSRevelio, including
the analysis for static and dynamic MSRs. We show the results
of the detected MSRs for 5 different XEN versions in Ta-
ble V. It is noticeable that with an increasing version number,
the number of exposed MSRs decreases as the blocklist is
extended with additional entries. The implemented allowlist
approach of version 4.15 significantly reduces the number of
MSRs from 452 (version 4.14.1) to 203.

It is worth highlighting that while reporting the same Xen
version (4.11.4), the number of accessible MSRs between the
latest available version on Ubuntu and Debian differs by 16
MSRs. By comparing the detected MSRs, we observed that the
MSRs exploited by the Platypus attack [53] are still accessible
on the Ubuntu installation as the security patches of Xen have
not been applied to Ubuntu. Thus, despite reporting the same
version number, virtual machines can be exposed to different
security risks depending on the patch level.

VI. DISCUSSION AND LIMITATIONS

A. Related Work

One of the first MSR scanners dates back to 2001 [47] using
the file-based Linux MSR interface to search for readable
MSRs. In contrast to MSRevelio, this scanner can only detect
readable MSRs. Furthermore, recent changes to the Linux
kernel restrict accesses to MSRs from userspace [63], making
this approach less reliable.

Domas [24], [23] focused on the execution time of reading
MSRs to identify ones with unique functionality to detect a
potential CPU backdoor. With MSRevelio, we do not focus on
unique MSRs changing the ISA, i.e., introducing new instruc-
tions or changing the architectural functionality of instructions.

Haruspex [12] scans the x86 instruction set with speculative
execution and performance counters. Bölük also applied this
approach to detect undocumented MSRs [13]. While the per-
formance of this approach is unclear, the stated detected MSRs
match our findings, e.g., for MSR(0x2e6) mentioned as
LT_LOCK_MEMORY_MSR in an Intel errata [43]. In addition,
MSRevelio found that one can only write 0 to this MSR.

B. Indirect Effects

There are also MSR bits that affect the system without
directly affecting instructions. Examples are the configuration
of hardware prefetchers or fixes for CPU errata. These bits
only have a measurable effect in corner cases that cannot
be triggered automatically. To detect the effect of such bits,
targeted test cases would be required. If such a targeted test
case exists, e.g., because someone has the intuition that an
undocumented MSR affects a specific feature (e.g., disabling
hardware prefetchers), MSRevelio can also be extended to
analyze MSR bits concerning this particular test.

VII. CONCLUSION

With MSRevelio, we automatically detect undocumented
MSRs and their effects on Intel and AMD CPUs. We demon-
strate that undocumented MSRs can not only hint at the
existence of CPU vulnerabilities but that they can also in-
troduce new attack vectors or re-enable mitigated attacks.
Furthermore, we show that undocumented MSRs can also be
used to mitigate various microarchitectural attacks.

In this paper, we show that undocumented or sparsely
documented MSRs have a non-negligible effect on system
security, not only on native systems but also in the cloud.
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APPENDIX A
NUMBER OF TESTS

Equation (1) shows the number of tests NT with MSRevelio.
For each writable MSR, we first perform 16 tests in phase 2 to
find an MSR with side-effects. To determine the exact position
of the enum within the MSR, we perform the optimized sliding
window search, where we re-use the previous results. For the
case with W = 4, we require 496 tests per observed effect for
phase 3.

NT = ( ∑
writeable

2
W)
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phase 2

+( ∑
observed

(2W + (64 −W )2W−1))
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phase 3
(1)

In comparison, Equation (2) shows the number of tests NT

required for an exhaustive search.

NT = ∑
msr ∈ writeable

2
writableBits(msr) (2)

APPENDIX B
INSTRUCTION GROUPS AND PMC EVENTS

Table VI shows the instructions groups used during the in-
struction behaviour analysis (cf. Section III-C). The full con-
figuration groups including the detailed instructions are avail-
able in MSRevelio’s GitHub repository2. For the performance
counters we use the default configurations of nanoBench [2]
for Intel3 and AMD4 CPUs. These configuration contain all
performance counters for the given microarchitecture. How-
ever, most of the counters are also available on similar Intel
or AMD microarchitectures, and we therefore relied on the
Skylake configuration for all tested Intel CPUs (cf. Table I).

2MSRevelio’s repository: https://github.com/IAIK/msrevelio
3Intel PMC config: https://github.com/andreas-abel/nanoBench/tree/fc038541dfd0de3

428c7521131a548a85e923f7c/configs/cfg Skylake all.txt
4AMD PMC config: https://github.com/andreas-abel/nanoBench/tree/fc038541dfd0d

e3428c7521131a548a85e923f7c/configs/cfg Zen all.txt

TABLE VI: The used instruction groups for the instruction
behavior analysis of the MSR bits (cf. Section III-C).

Group Name # Instructions Group Description

AES 6 AES-NI instructions
CPUID 1 cpuid instruction
FENCES 3 sfecne, mfence, and lfence instructions
FLUSH 1 clflush instruction
FP ARITH 9 x87 floating-point instructions
FP VARITH 7 AVX2 vector floating-point instructions
INT ARITH 12 x86 integer instructions
INT VARITH 11 AVX2 vector integer instructions
LOAD 1 AVX2 vector load instruction
STORE 1 AVX2 vector store instruction
MOVES 35 various memory mov instructions
MISC 11 xchg, bswap and string instructions
PREFETCH 6 prefetch instructions
RANDOM 1 rdrand instruction
STRIDED 17 strided memory loads
TIME 2 rdtsc, rdtscp instructions

Total 124

TABLE VII: Flipping masks for enum fields with length of
up to 4 bits. Selecting 4 consecutive bits within these 16
masks always covers all possible enum bit combinations by
mimicking the rotate operation (cf. Section III-C).

Flipping Mask Enum[3:0] Enum[4:1]

0x0000000000000000 0b...0000 0b..0000.
0x1111111111111111 0b...0001 0b..1000.
0x2222222222222222 0b...0010 0b..0001.
0x3333333333333333 0b...0011 0b..1001.
0x4444444444444444 0b...0100 0b..0010.

⋮ ⋮ ⋮
0xffffffffffffffff 0b...1111 0b..1111.

APPENDIX C
FLIPPING MASKS

Table VII shows the flipping masks for enum fields with a
length of up to 4 bits covering all possible 4 bit combinations,
regardless of the position of the enum field within the 64 bit
long MSR. When shifting the enum field inside the MSR, the
flipping mask mimics the rotate operation.

APPENDIX D
BIOS PATCH

Figure 7 is the patch in the UEFIPatch5 format. We tested it
with two different BIOS images, an AMI Aptio V 2.21.1277
with build date 2020, and an AMI Aptio V 2.18.1263 with
build date 2021. The motherboard of the all-in-one PC is
the BESSTAR TECH IB9. As we chose the pattern-based
patch format, it should also be applicable to other AMI BIOS
versions. The difference in the two patches is that in 2.18.1263,
there is a call to a function wrapping wrmsr, whereas in
2.21.1277, the wrmsr instruction is inlined.

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
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1 # AMI Aptio V BIOS/UEFI 2.21.1277 (Core Version 1.010)
2 299D6F8B-2EC9-4E40-9EC6-DDAA7EBF5FD9 10 P:83C801EB0383C80389442410:83C800EB0383C80289442410
3 299D6F8B-2EC9-4E40-9EC6-DDAA7EBF5FD9 12 P:83C801EB0383C80389442410:83C800EB0383C80289442410
4

5 # AMI Aptio V BIOS/UEFI 2.18.1263 (Core Version 5.12)
6 299D6F8B-2EC9-4E40-9EC6-DDAA7EBF5FD9 10 P:83C801EB0383C8035250683C010000:83C800EB0383C8025250683C010000
7 299D6F8B-2EC9-4E40-9EC6-DDAA7EBF5FD9 12 P:83C801EB0383C8035250683C010000:83C800EB0383C8025250683C010000

Fig. 7: The patch for AMI Aptio V BIOS to disable the AES-NI lock bit. The patch can be applied to a BIOS image using
UEFIPatch.

1 #if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
2 if( mbedtls_aesni_has_support( MBEDTLS_AESNI_AES ) )
3 return( mbedtls_aesni_setkey_enc( (unsigned char *) ctx->rk, key, keybits ) );
4 #endif
5

6 for( i = 0; i < ( keybits >> 5 ); i++ )
7 {
8 GET_UINT32_LE( RK[i], key, i << 2 );
9 }

10

11 switch( ctx->nr )
12 {
13 case 10:
14

15 for( i = 0; i < 10; i++, RK += 4 )
16 {
17 RK[4] = RK[0] ˆ RCON[i] ˆ
18 ( (uint32_t) FSb[ ( RK[3] >> 8 ) & 0xFF ] ) ˆ
19 ( (uint32_t) FSb[ ( RK[3] >> 16 ) & 0xFF ] << 8 ) ˆ
20 ( (uint32_t) FSb[ ( RK[3] >> 24 ) & 0xFF ] << 16 ) ˆ
21 ( (uint32_t) FSb[ ( RK[3] ) & 0xFF ] << 24 );
22

23 RK[5] = RK[1] ˆ RK[4];
24 RK[6] = RK[2] ˆ RK[5];
25 RK[7] = RK[3] ˆ RK[6];
26 }
27 break;
28 /* additional cases for different key lengths */
29 }

Listing 1: An excerpt of the relevant code from the mbedTLS library that is susceptible to cache attacks. If AES-NI is not
available (Line 2), mbedTLS falls back to a T-table implementation with secret-dependent key lookups in the array FSb.

APPENDIX E
MBEDTLS LEAK

Listing 1 shows an excerpt of the relevant code from the
mbedTLS6 library where the implementation falls back to the
T-table implementation if AES-NI is not available.

5UEFIPatch tool: https://github.com/LongSoft/UEFITool/tree/master/UEFIPatch
6MbedTLS’s source code: https://github.com/ARMmbed/mbedtls/blob/dd57b2f240c5

97e4cf6cc2492d5c03d067f234f9/library/aes.c#L587
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