Computer Security Symposium 2011
19-21 October 2011

REVIVEZ I ZEWETSHILET
D71 LICREYS Y LD AES BEZEWVWISFiE

o it BP)II #a5L £ A Bt

TNy —% a st Rttt X 27727
107-0052 HAUARHEX AKX 6-6-28 6B 560-0085 KB BT LRI 1-74-1-204
takehisa@datacom.co. jp nogawa@secure-ware.com

*E R R b LA SR
657-8501 FeJf L E X /SH A 1-1

mmorii@kobe-u.ac. jp

AL EeAT %, K~ v (VM) 28T 2V 7 b7 L 20y 7 b2 7ok) HEH
Eh s, UL OMMED, Kiles v (VM) 2R3 28, FIHLTw3 vy vE=
% (VMM) MEFTE 2009 2 BEET 2 FBIZ v, KIS, EEDOH 29— R REEFIL
SAL VMM 28t L, 20 VMM O ETHHED VM 28I 7256, 2—FOEKIL &
WIEHIR SR AL T 2 HREME S D 2. AFCTIZ, VMM IZEWT VM D AES OG5 % i =
EDHRETH B BN, 612, BFHEHDONUEIZOWTIRRS,

Exception Handling Attack against AES-NI on VM
Tatsuya TAKEHISAT Hiroki NOGAWAZ Masakatu MORIT*

tJapan Datacom Co., LTD.
Akasaka, Comfy Homes 6B 6-6-28 Akasaka, Minato-ku, Tokyo 107-0052, Japan
takehisa@datacom.co. jp
ISecureware Inc.
Kamishinden 1-74-1-204, Toyonaka City, Osaka, 560-0085 Japan

nogawa@secure-ware.com

* Graduate School of Engineering, Kobe University

1-1, Rokkodai, Nada-ku, Kobe-shi, 657-8501 Japan

mmorii@kobe-u.ac. jp

Abstract The virtualization technology composes two software parts: one is virtual ma-
chine(VM) management software called Virtual Machine Monitor(VMM), and the other is its
related software. The virtualization technology at present does not provide users methods for
certifying the VMM’s dependability. In this situation, the following case is possible: when
malicious service providers supply tampered VMMs and their users run their VMs on these
VMDMs, the users will suffer unintended information leakage. As one leakage case stated above,
in this paper, we propose a method for snooping AES encryption key on VMM, Also, we state
a countermeasure against this attack.

1 Introduction one computer. In the center of the virtualiza-

tion technology, software called Virtual Ma-
Recently, virtualization technology has emerged chine Monitor(VMM) controls virtual machines
for accommodating multiple function units into that are virtualized computers and the VMM

- 337 -

intercepts virtual machines for system stabil-
ity. The virtual machines encrypt data inside
them for security reason. Among encryption
methods, common key encryption methods are
used for encryption performance. Among many
common key encryption methods, Advanced
Encryption Standard (AES)[1] is used in most
cases, and AES is implemented as software in
some cases, and as hardware in other cases|2].

Against AES, many attack methods have
been proposed[3]. Among these attacks, in
this paper, we focus on methods that attack

vulnerability of software implementation of AES.

Previous papers proposed side-channel attack
against AES. The previously proposed side-
channel attacks are not able to obtain the en-
cryption key itself on a single path, and only
able to get candidates of the encryption keys
more efficiently than brute force attack[4]. Fur-
thermore, some researchers have already sug-
gested side-channels attacks to be far easier in

cloud computing than in separated computers[5].

However, our method enables an attacker to
guess the encryption key itself on a single path
when he intercepts a VM by a modified VMM.
As a result, the attacker is able to decrypt the
secret data and to tamper with it. Our method
consists of three stages as follows:

1) An attacker executes a modified VMM on
a CPU where Intel AES-NI instruction is
not implemented.

2) The attacker intercepts a guest OS with
fake return value of CPUID instruction by
the modified VMM.

3) When the guest OS executes the AES-NI
instruction, the modified VMM generates
invalid Opcode Exception. Then, the at-
tacker is able to estimate the encryption
key stored in CPU registers or memory at
Opcode Exception.

2 Architecture for Key Snoop-
ing

In this section, we briefly state architecture
where our key snooping method is possible.

This section consists of four subsections de-
scribing the following components: 1) AES-NI
that is a hardware implementation of AES, 2)
CPUID instruction that is a basis of our at-
tack method, 3) Method for checking whether
application software can call AES-NI, 4) Intel-
VT for obtaining the timing of the attack.

2.1 Intel AES New Instruction(AES-
NI)

Intel developed AES-NI for rapid processing
(by hardware) of the AES algorithm[7]. AES-
NI contains some AES sub step components
as hardware implementation for rapid process-
ing of AES encryption/decryption. In addi-
tion, implementation of AES-NI instructions
in hardware prevents software side-channel at-
tacks [5].

AES-NI consists of six instructions that pro-
vide complete hardware support for AES. Four
instructions support the AES encryption and
decryption, and the other two instructions sup-
port the AES key expansion. Table 1 shows
details of the six instructions of AES-NI.

2.2 CPUID Instruction

Intel-based CPU contains extended instructions
for rapid processing and function extensions.
When a CPU performs an extended CPU in-
struction in a case where the CPU does not
implement the instruction, interrupt execution
occurs as a general protection error. This is
the reason why OS and application software
have to implement methods for checking the
extended CPU instructions. For checking the
extended CPU instructions, OS and applica-
tion software call the CPUID instruction, the
return value of which are four types of informa-
tion: vender, serial number, enhanced feature
and cache information of CPU.

In addition, CPUID instruction returns pro-
cessor identification and feature information
by means of EAX, EBX, ECX and EDX regis-
ters. The instruction’s output depends on the
contents of the EAX register. Table 2 shows
arguments and return values of the CPUID in-
struction.

- 338 -

VM M

(Guest 0) —| |— (Guest 1)

VM Exit VM Exit

VMX root

VM Entry VM Entry

VMXON —>] VM Monitor(VMM) > VMXOFF

Figure 1: Interaction of a VMM and Guest
OSes (VMs)

2.3 How to Check AES-NI support

The following procedure describes a method
for checking AES-NI support:

1) Check whether the processor supports
SSE/SSE2
(if CPUID.01H:EDX.SSE[bit 25] = 1)

2) Check whether the processor supports
AES-NI
(if CPUID.01H:ECX.AESNI[bit 25] = 1)

3) Check whether the processor supports
PCLMULQDQ
(if CPUID.01H:ECX.PCLMULQDQ|bit 1]

In most cases, only the second procedure
works well.

2.4 Intel VT

Intel released the Intel Virtualization Technol-
ogy (Intel VT) to assist virtualization with
hardware. Intel introduced two new CPU exe-
cution modes into Intel-VT: two VMX modes
as Virtual Machine Extensions (VMX). One is
VMX root mode, and the other is VMX non-
root mode. The VMX root mode is an exclu-
sive mode for VMM to work, and the VMX
non-root mode is a mode to allow users exe-
cute guest OSes. The concept of these VMX
modes is different from conventional privilege
ring (Ring0 - 3) at Intel x86 architecture. Both
these VMX modes are able to use conventional
privilege level so that running the guest OS at
privilege level is possible.

Figure 1 displays interaction of VMM and
guest OSes on the Intel-VT. For executing a

Virtual Machine VM Enter

| Software

VM Exit 0s
(cPuUID)

VMM

CPUID
Handler

Figure 2: How to fake CPUID

guest OS with a VMX mode, at first VMXON
instruction is executed, and then, the VMM
runs in the VMX root mode. Then, VMM
prepares a structure body (VMCS) to store
a state (CPU register, CPU State, etc.) of
each VM. When the VMM switches over to
VMX non-root mode, it executes a VMRE-
SUME instruction, and this state transition
is named as VM Entry. When the guest OS
executes privileged instruction and hardware
access, the guest OS switches from the VMX
non-root mode to the VMX root mode, and
this state transition is named as VM exit. At
this state transition, The VMM checks opera-
tions in the VM exit, and the VMM processes
the operations on behalf of the guest OS. In
this way, VMM runs multiple guest OSes while
it switches between the state of VM Enter and
VM Exit.

3 Key Snooping Method

In this section, we present our method for AES
key snooping. Our attack consists of two parts:
one is to fake the return value of CPUID in-
struction of the VM, and the other is to esti-
mate an AES key by intercepting exceptions of
the VM. Subsection 3.1 describes the first part,
and subsection 3.2 shows the second part.

3.1 Faking the CPUID instruction

Figure 2 depicts how to fake CPUID instruc-
tion. In fig.2, the VMM catches exceptions oc-
curring in the virtual machine (VM). Excep-
tions are read/write access to hardware and
executing privilege instructions. For secure
and robust operation of the VMs, the VMM
mediates each exception called by the VMs.
This mediation is essential for assuring secure

- 339 -

VM Enter

:
3

:

Encoding Operand2 3
(=RoundKey) !
:

:

:

:

Virtual Machine

i
H Emulate AES-NI
j

| Software

VM Exit 0s
(Invalid Opcode
Exception)

VMM

#UD
Handler

(1)If Opcode=AESENC/AESDEC

Figure 3: Exception Handling on VMM

and robust operation of VMs on varying re-
sources of the VMM, as resources of VMM are
not always assured. For example, the VMM
intercepts the execution of the CPUID instruc-
tion to mimic the VM as if is working on a real
In addition, the VMM sometimes
makes the VM not to use some functions of the
CPU while the CPU implements the functions.
When the VMM informs fake information of
CPU instruction extension to the VM, the VM
usually tries to use its instruction extension to
increase processing speed. When the CPU re-
ceives an unimplemented instruction, the CPU
generates an exception called Invalid Opcode
instruction. Our attack method changes re-
turn value of the CPUID instruction so that
AESNI bit (CPUID.01H:ECA.AESIN|bit 25 |)
is on. This change causes the VM to call ex-
ception.

machine.

3.2 Exception handling of AES-NI
instrcution

Figure 3 displays our attack method in view
of exception handling of AES-NT instruction.
Our attack method consists of six steps as fol-
lows, from interception of exception in the VMM
to AES key estimation:

1) When the VM executes AES-NI instruc-
tion, the CPU generates an invalid opcode
exception, which causes VM exit state tran-
sition. Then, the VMM recovers control.

2) The attacker observes VM exit state tran-
sition cause and checks whether invalid
opcode instruction is AESENC or AES-
DEC instruction.

3) If the invalid opcode instruction is AES-
ENC or AESDEC instruction, then the at-

tacker estimates the next operands of the
instruction.

4) The attacker examines the place of stored
key from the estimated operands.

5) The attacker estimates AES key or the rel-
evant plaintext from the result of 4), as the
keys exists in memory or XMM register on
the VM.

6) After estimation of the AES key or the
relevant plaintext, the attacker emulates
AES-NI, not to let the VMM notice failure
of AES-NI procedure.

4 Discussion on AES key Snoop-
ing

In this section, we discuss essential basis of
AES key snooping we have stated, and coun-
termeasures against it. In section 3, we showed
our AES key snooping attack that induces ex-
ception and does snooping of the AES key or
related plaintext when the exception occurs.
Here, we define our attack as Exception Han-
dling Attack (EH Attack).

Let us consider the situation where EH at-
tack is possible. The situation is as follows:
when a CPU vendor adds new cryptographic
instructions and produces new CPUs that im-
plement the new instruction in hardware, a
time lag or gap exists until every server installs
the new CPUs. A malicious attacker takes ad-
vantage of this gap, which means the attacker
enjoys EH attack. When an attacker provides
massive cloud service over the modified VMM,
he obtains every encryption key used in every
VM.

Here, we state countermeasures against the
EH attack, although these countermeasures do
not provide fundamental solutions.

e Suggestion A:(best)
Users should use CPUs which support AES-

'As shown in table 3, the first operand is
“ModRM:reg(r,w)” and the second operand is
“ModRM:r/m(r) ” . The attacker is able to estimate
the place of stored key in memory or XMM register
of the VM from the contents of “ModRM:reg(r,w)” ,
“ModRM:r/m(r) ” [8](Table 2-2)

- 340 -

NI instruction, where exception handling
for AES-NI is impossible.

e Suggestion B:(better)
Users should not use AES-NI instruction
in the OS and an application on VM, where
exception handling for AES-NI does not
occur in the VMM.

e Suggestion C:(s0-s0)
When users execute AES-NI instruction,
users should confirm CPU cycles of the
AES-NI instruction by RDTSC instruc-
tion 2, and should check whether EH at-
tack is not running. 3

5 Conclusion

In this paper, we have stated a new AES key
snooping attack on virtual environment, and
presented countermeasures against this attack.
Our AES key snooping attack is possible when
a virtual machine runs on a CPU, which does
not support AES-NI, and the virtual machine
monitor is modified so that it fakes return value
of CPUID instruction. Our AES key snooping
attack runs when AES-NI executes in a virtual
machine.

Here, we define our attack as Exception Han-
dling Attack (EH Attack). EH attack is exe-
cutable in the following situation: 1) when a
CPU vendor adds new cryptographic instruc-
tions and produces new CPUs that implement
the new instruction in hardware, and 2) vir-
tual machines are running on CPUs that do
not implement the new cryptographic instruc-
tions in hardware. This situation tells that for
avoiding EH attacks, users should avoid utiliz-
ing the new cryptographic instructions until
the new CPUs are available for their virtual
This avoidance is also applicable
when using IaaS (Infrastructure As A Service)
or PaaS (Platform As A Service).

Toward facilitating the development and uti-
lization of cloud services, we strongly believe

machines.

2We assume execution cycles of AES-NI instruction
such as AESENC/AESDEC would be larger in two dig-
its during the EH attack.

3The return value of RDTSC instruction may be set
to a suitable value in a tampered smart VMM.

we have to make research for dependability of
virtual machine monitors on which virtual ma-
chines run.

References

[1] FIPS PUB 197, Advanced Encryption
Standard(AES), National Institute of
Standards and Technology, Nov. 2001,
http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf

2] A. Slobodovd, “Formal verication of hard-
ware support for Advanced Encryption
Standard.” in Proceedings of Formal
Methods in ComputerAided Design. IEEE
Press, 2008, pp. 1—4.

[3] Joan Daemen, Vincent Rijmen, ”The
First 10 Years of Advanced Encryp-
tion,” TEEE Security and Privacy, vol.
8, no. 6, pp. 72-74, Nov./Dec. 2010,
doi:10.1109/MSP.2010.193

[4] Nate Lawson, ”Side-Channel At-
tacks on Cryptographic Software,”
IEEE Security and Privacy, vol. 7,
no. 6, pp. 65-68, Nov./Dec. 2009,
doi:10.1109/MSP.2009.165

[5] Eran Tromer, Dag Arne Osvik, Adi
Shamir, “Efficient Cache Attacks on AES,
and Countermeasures, ~ Journal of Cryp-
tology, vol. 23 no. 1, 37-71, Springer, 2010.

[6] Securing the Enterprice with Intel
AES-NI, Intel Corporation, Sept. 2010,
http://www.intel.com/Assets/en_US/
PDF/whitepaper/323587.pdf

[7] Intel Advanced Encryption Standard
(AES) Instructions Set - Rev 3, Jan. 2010,
http://software.intel.com/file/
24917

[8] Intel 64 and TA-32 Architectures Software
Developer ~ s Manual Volume 2 (2A&2B):
Instruction Set Reference, A-Z, Intel Cor-
poration, May 2011, http://www.intel.
com/Assets/PDF/manual/325383.pdf

-341 -

AES-NI Instruction

Description

AESENC Perform One Round of an AES Encryption Flow
AESENCLAST Perform Last Round of an AES Encryption Flow
AESDEC Perform One Round of an AES Decryption Flow
AESDECLAST Perform Last Round of an AES Decryption Flow
AESIMC Perform the AES InvMixColumn Transformation
AESKEYGENASSIST | AES Round Key Generation Assist
Table 1: AES-NI Instructions
Argument(EAX) [Return values
0 EAX=Maximum Input Value for Basic CPUID Information
EBX,ECX,EDX=Vendor ID
1 EAX=Version Information
EBX,ECX,EDX=Processor Signature and Feature Bits
2 EAX,EBX,ECX ,EDX=Cache and TLB Information
3 EAX EBX=Reserved
ECX,EDX=Processor Serial Number
Table 2: Argument and return value of CPUID
’ Instruction ‘ Opecode ‘ Operand 1 ‘ Operand 2 ‘ Operand 3
AESENC 0x66,0x0F,0x38,0xDC | ModRM:reg(r,w) | ModRM:r/m(r) | none
AESENDLAST 0x66,0x0F,0x38,0xDD | ModRM:reg(r,w) | ModRM:r/m(r) | none
AESDEC 0x66,0x0F,0x38,0xDE | ModRM:reg(r,w) | ModRM:r/m(r) | none
AESDECLAST 0x66,0x0F,0x38,0xDF | ModRM:reg(r,w) | ModRM:r/m(r) | none
AESIMC 0x66,0x0F,0x38,0xDB | ModRM:reg(w) | ModRM:r/m(r) | none
AESKEYGENASSIST | 0x66,0x0F,0x3A,0xDF | ModRM:reg(w) | ModRM:r/m(r) | imm8

Table 3: AES-NI Instruction, Opecode, Operand

-342-

