USCDornsife
 Center for Economic
 and Social Research
 Program on Global
 Aging, Health, and Policy

Harmonized LASI-DAD Documentation

Version A, April 2021

Sandy Chien, Codi Young, Erik Meijer, Marco Angrisani, Alden Gross, Pranali Khobragade, Joyita Banerjee, Jennifer A. Smith, Wei Zhao, Miao Yu, Sharon Kardia, A.B. Dey, \& Jinkook Lee

We greatly appreciate support from the National Institute on Aging (R01AG051125, RF1AG055273, U01AG064948, R01AG030153)

Preface

The Harmonized Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) is the first and only nationally representative study on late-life cognition and dementia in India. We have drawn what is currently a cross-sectional sample of 4,096 community-residing older adults 60+ years of age from the larger LASI study (N ~ 70,000). LASI is a prospective, multi-purpose population survey, representative of both the entire country and of each state within India.

We have administered the Harmonized Cognitive Assessment Protocol (HCAP), a common cognitive test battery used by an international network of researchers, enabling new and innovative comparative studies across both low- and high-income countries. The HCAP family of studies includes the Health and Retirement Study - HCAP (HRS-HCAP), the English Longitudinal Study of Ageing - HCAP (ELSA-HCAP), and the Mexican Health and Aging Study's Cognitive Aging Ancillary Study (Mex-Cog), along with others in Chile and China.

The HCAP consists of a pair of in-person interviews, one with the target respondent and one with an informant nominated by the respondent. The respondent interview includes a neuropsychological test battery designed to measure a range of key cognitive domains affected by cognitive aging, such as memory, language, attention, executive function, and visuospatial skills. The HCAP studies share core elements, such as the aforementioned domains, specific cognitive tests, questions for informants, and methods of data collection. However, due to differences in literacy and local contexts, some modifications were made in the selection and administration of specific cognitive tests for LASI-DAD. Hence, when analyzing HCAP data, it is recommended that the user consider these differences when constructing an analysis plan.

One unique feature of LASI-DAD is that a comprehensive geriatric assessment accompanied the interviews and was completed in collaboration with regional geriatric hospitals. Through this geriatric assessment, rich epidemiological data on the health of the respondents are collected and made available for research purposes. More detail information is available on lasi-dad.org.

The University of Southern California Gateway to Global Aging Data team has created this codebook along with Harmonized LASI-DAD data files to facilitate cross-country comparisons across the international family of HCAP studies.

The Harmonized LASI-DAD initiative is part of a larger set of projects that aim to facilitate crosscountry comparisons using data across the HRS-family of HCAP studies. With funding and support from the National Institute on Aging, we have also created Harmonized HRS (USA), Harmonized ELSA (England), Harmonized SHARE (Europe + Israel), Harmonized KLoSA (South Korea), Harmonized JSTAR (Japan), Harmonized CHARLS (China), Harmonized LASI (India), Harmonized MHAS (Mexico), Harmonized TILDA (Ireland), Harmonized CRELES (Costa Rica), and Harmonized MARS (Malaysia) data. Further information about these Harmonized data files with questionnaires and other metadata is available on our searchable website, g2aging.org.

We are grateful for the continuing support of and funding from the National Institute of Aging. In interpreting the LASI-DAD data, we greatly benefited from the help and insights of LASI-DAD staff members, particularly the All India Institute of Medical Sciences (AIIMS), International Institute of Population Sciences (IIPS), and National Institute of Mental Health and Neurosciences (NIMHANS). We have greatly benefited from the discussions with and the suggestions from our colleagues Sara Adar, P. Arokiasamy, David Bloom, Eileen Crimmins, Sharmistha Dey, Mary Ganguli, Peifeng Hu, Urvashi Jain, Arie Kapteyn, Kenneth Langa, Judith Saxton, Arthur Toga, Mathew Varghese, Albert Weerman, and David Weir.

Requested Acknowledgment

We ask all users of the Harmonized LASI-DAD to please inform our team of any written analysis using data from the Harmonized LASI-DAD or information from the Harmonized LASI-DAD Codebook by sending an email to papers@g2aging.org. We also ask users to include the following acknowledgement in their written work: "This analysis uses data or information from the April 2021 Harmonized LASI-DAD dataset and Codebook developed by the Gateway to Global Aging Data (R01 AG030153). The development of the Harmonized LASI-DAD was funded by the National Institute on Aging (R01 AG051125, RF1 AG055273, U01 AG064948). For more information, please refer to g2aging.org."

LASI-DAD Version and Acknowledgment

This document uses Phases 1, 2, and 3 of Wave I of LASI-DAD. LASI-DAD is the result of collaboration between the University of Southern California and the All India Institute of Medical Sciences, New Delhi. Funding for the first wave of LASI-DAD has been provided by the National Institute of Aging (R01 AG051125, RF1 AG055273, U01 AG064948).

Contents

PREFACE 1
LIST OF TABLES 6
LIST OF FIGURES 6

1. INTRODUCTION AND OVERVIEW 7
1.1 Gateway to Global Aging Data 12
1.2 Data File Structure. 13
1.3 Variable Naming Convention 13
1.4 Missing Values, and Nonresponse 14
2. SAMPLE WEIGHTS 16
3. IMPUTATION 19
3.1. Regressors 20
3.2. Block-sequential and chained imputation 27
3.3. Exceptions, special cases, and other details 27
4. HARMONIZED DOMAIN-SPECIFIC COGNITION VARIABLES 29
5. POLYGENIC RISK SCORES (PRSS) 31
5.1. LASI-DAD Genomic Data 31
5.2. PRS Construction 32
5.2.1. Sources for SNP weights 32
5.2.2. Notes about the use of PRSs 32
5.3. PRSs for Alzheimer's disease (AD) 33
5.4. PRSs for General Cognitive Function 36
6. STRUCTURE OF CODEBOOK 39
7. DISTRIBUTION AND TECHNICAL NOTES 41
8. DATA CODEBOOK 42
SECTION A: DEMOGRAPHICS AND IDENTIFIERS 43
SECTION B: COGNITION 59
SECTION C: INFORMANT REPORT 167
SECTION D: HEALTH \& PHYSICAL MEASURES 210
SECTION E: POLYGENIC RISK SCORES (PRSS) 250

REFERENCES .. 257
List of Tables
Table 1. Cognitive tests selected for LASI-DAD 10
Table 2. Missing Codes 14
Table 3. Regressors from the LASI core data and LASI-DAD. 21
Table 4. Cognition items and the level-1 sum scores 24
Table 5. Informant items and the level-1 scores 25
Table 6. Descriptive statistics of polygenic risk scores (PRSs) for Alzheimer's disease 35
Table 7. Descriptive statistics of polygenic risk scores (PRSs) for general cognitive function. 37
List of Figures
Figure 1. Structure of summary scores used as covariates for imputing r1city. 26
Figure 2. Histogram of the "top SNPs" polygenic risk scores (PRS). 35
Figure 3. Histogram of the polygenic risk scores (PRS) 38

1. Introduction and Overview

This codebook documents the Harmonized LASI-DAD data files, a streamlined collection of variables derived from the Longitudinal Aging Study in India, Diagnostic Assessment of Dementia (LASI-DAD). The main goal of LASI-DAD is to provide an interdisciplinary data resource with a focus on cognitive and physical health, and quality of life as people age. LASIDAD derived variables include cognition variables, informant report variables, and physical measure variables. The Harmonized LASI-DAD data file also incorporates various demographic variables from the Harmonized LASI. Harmonized LASI-DAD does not include any data which is not publically released.

The LASI-DAD is a sub-study of the ongoing, nationally representative survey Longitudinal Aging Study in India (LASI). The survey elicits in-depth cognitive tests, geriatric assessments, and informant interviews. The informant interview is completed by a person chosen by the respondent. Venous blood was also drawn and stored for future studies.

The LASI-DAD aims to:

- Collect high-quality data on late-life cognition and dementia
- Obtain clinical consensus diagnosis
- Estimate the prevalence and incidence of dementia and mild cognitive impairment (MCI)
- Investigate the determinants of late-life cognition, dementia, and MCl
- Study the impact of dementia, cognitive impairment, and MCI on families and society
- Disseminate anonymized data to the larger research community

The LASI-DAD's target sample was older adults aged 60 and older. To obtain national representation within budgetary constraints and to maintain quality supervision of fieldwork, we collaborated with 15 regional centers (RCs) for interviewer recruitment and fieldwork management. The All India Institute of Medical Sciences (AIIMS) in New Delhi was the nodal point that coordinated with and provided logistical support to all the other RCs. ${ }^{1}$ We selected the sample from 18 states and 4 metropolitan cities across the country that are within 12 hours of driving distance from participating RCs. The states we draw the LASI-DAD sample from include: Assam, Gujarat, Haryana, Jammu \& Kashmir, Karnataka, Kerala, Maharashtra, Odisha, Rajasthan, Tamil Nadu, Telangana, Uttar Pradesh, Bihar, Madhya Pradesh, Uttarakhand, Punjab, and West Bengal, and the four metropolitan cities are: Chennai, Delhi, Kolkata, and Mumbai.

[^0]As our aim was to study dementia, a simple random sampling of age-eligible LASI respondents would not yield enough cognitively impaired respondents to allow for a sufficiently precise estimation of the relationship between dementia and its correlates. Therefore, we employed a two-stage stratified random sampling approach with oversampling of those at high risk of cognitive impairment to ensure sufficient numbers of respondents with dementia and mild cognitive impairment.

To accomplish this, we first classified respondents into those at high and at low risk of cognitive impairment based on the core LASI study's cognitive tests and on the proxy report for those who did not complete the cognitive tests. Specifically, to determine cognitive impairment risk, we grouped the LASI respondents into four groups based on age (60-69 and 70+) and education (no schooling and some education). We then defined cognitive impairment risk within age/education groups based on their relative performance on memory and non-memory cognitive tests, overall test performance, refusal or inability to participate in the cognitive tests, and proxy interviews in the main LASI. Respondents were classified as high risk if any of the following conditions were met: (1) overall cognitive test performance in the core LASI was in the bottom tertile; (2) memory score was in the bottom $15^{\text {th }}$ percentile; (3) non-memory cognitive scores were below the $15^{\text {th }}$ percentile; (4) the number of missing cognitive tests was above the 85th percentile; or (5) scores from the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE), a widely used screening test for dementia, was 3.9 or higher. We then randomly drew the sample with about an equal number of those at high risk of cognitive impairment and those not at high risk.

As noted earlier, LASI-DAD is one study within a larger international effort to understand dementia risks through longitudinal studies on aging. This effort has been developed as the Harmonized Cognitive Assessment Protocol (HCAP). In order to measure the cognitive ability of the older Indian population, of which many are illiterate and innumerate, the project team carefully evaluated the HCAP protocol and modified it to suit the local context and target population. For example, the Mini Mental State Exam (MMSE) developed by Folstein, Folstein, and McHugh (1975) was replaced by the Hindi version of the MMSE (HMSE) developed by Ganguli et al. (1995). We further considered cognitive and neuropsychological test batteries developed by the National Institute of Mental Health and Neuro Sciences, Bengaluru, India, and consulted with other experts in the field, including geriatricians, community medicine experts, psychiatrists, cognitive psychologists, and members of the HRS-HCAP advisory group. Table 1 presents the tests selected for LASI-DAD, indicating those in common with HCAP and the tests unique to LASI-DAD.

LASI-DAD employs almost the same informant interview protocol that is used in HRS-HCAP, including questions about the informant, particularly his/her relationship with the respondent and his/her own demographic characteristics; the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) (Jorm and Jacomb 1989); Blessed Parts 1 and 2 (Blessed, Tomlinson, and Roth 1968; Morris et al. 1989); questions about respondents' activities; and signs of cognitive impairment drawn from the 10/66 Brief Screener for Dementia (Prince et al.
2007). Some modifications were made to the questions about the respondents' activities to make them more culturally relevant.

Please refer Lee et al. (2019) for a more detailed description of the project protocol.

Table 1. Cognitive tests selected for LASI-DAD
(* indicates same HCAP protocol, \# indicates protocol with minor modifications, + indicates unique in LASI-DAD)

Test Name	Description
HMSE (Ganguli et al. 1995)\#	The HMSE is the Hindi translation and adaptation of the MMSE for screening the Hindi-speaking, illiterate rural elderly population. The HMSE (like the MMSE) assesses general cognitive status with measures of cognitive orientation, language, and memory. This test is often used in clinical and research settings to identify individuals with likely cognitive impairment or dementia.
TICS (Brandt, Spencer, and Folstein 1988)\#	This section includes three questions from the HRS-TICS. This includes questions to identify two words (vocabulary) and naming the Prime Minister of India (replacing the HCAP question about the name of the U.S. President and Vice President). This measure is based on the full TICS.
Word learning and recall (CERAD 1987)\#	This test presents 10 high-imagery words for 2 seconds each. The respondent hears each word and repeats it aloud as it is presented and is then tested on immediate recall ability. The same list of words is presented to the respondent three times in different orders; after each presentation, the respondent is asked to recall as many words as possible. In addition to correct recall responses, the number of intrusions (words not on the list) are also recorded. We do the delayed recall 5 minutes after the first administration.
Digit span forward and backward (Wechsler 1997)*	A list of random numbers is read out loud at the rate of one per second. Subjects listen to the series of single-digit numbers and are asked to repeat them back in the same order they were given. At the end of a sequence, they are asked to recall the items in reverse of the presented order.
Symbol cancellation (Lowery et al. 2004)\#	This test assesses attention and speed, specifically in the illiterate population. Subjects are given a sheet with different symbols. They are then shown a specific symbol, which is present among the different symbols in the sheet, and are asked to scan the sheet as quickly as possible (in a minute) and circle the symbol shown to them. Scores include the number of correctly and incorrectly circled symbols.
Logical memory (Wechsler 2009)\#	This section involves the reading of stories to the respondent and is scored based on the number of story points the respondent can immediately recall after hearing each story. The first story read to the respondent is the Brave Man story, included in many dementia studies around the world. The second story read to the respondent is one of two from the Wechsler Memory Scale (WMS-IV).
Constructional praxis (with delayed recall) (Rosen, Mohs,	The constructional praxis tests the subject's ability to copy four geometric forms of varying difficulty shown on a sheet of paper (circle, overlapping rectangles, diamond, and cube). In the delayed recall test, the subjects are asked to recall these shapes and draw them from memory after some

```
and Davis 1984)* time.
```

Retrieval fluency To assess verbal reasoning and processing speed, respondents are asked (Woodcock, to name as many animals as possible in a minute. This test was adapted McGrew, and by McArdle and Woodcock from the Woodcock Johnson Test III Tests of Mather 2001)* Achievement.

Serial 7s (Folstein, Folstein \& McHugh, 1975)*	In this test, the respondent is asked to subtract seven from 100 in the first step and then asked to continue subtracting seven from the previous result in each subsequent step. Each subtraction is scored separately. This test is also part of the MMSE.
CSI-D (Hall, Hendrie, and Brittain 1993)*	This series of questions derives from the 10/66 and Community Screening Interview for Dementia (CSI-D) surveys to assess cognitive impairment and dementia. The questions evaluate language, knowledge, and the ability to follow directions.
Raven's test (Raven 2000)*	This test evaluates picture-based pattern reasoning of varying difficulty. Each question presents a geometric picture with a small section that appears to have been cut out. The respondent is shown a set of smaller pictures that fit the missing piece and is asked to identify the one that correctly completes the pattern. We follow HRS-HCAP wherein they have selected a subset of 17 questions out of the 60 in the full test, including one practice question.
Go-No Go (Gomez, Ratcliff, and Perea 2007)+	In this test, the respondent is given a task in which stimuli are presented in a continuous stream and participants perform a binary decision on each stimulus. One of the outcomes requires participants to make a motor response (go), whereas the other requires participants to withhold a response (no go). Accuracy is measured for each event.
Hand movement sequencing test (Mattis 1988)+	In this test, the subject is shown hand-sequencing movements and is asked to repeat the action shown. The test is adopted from Hindi handsequencing movements, which were adapted from Mattis dementia rating scales.
Token test (De Renzi and Vignolo 1962)+	The subject is presented with a show card with tokens of different shapes, sizes, and colors. He/she is given verbal commands like touching the different colored tokens, different shapes, one shape or color before the other, etc. The commands start with simple tasks and progresses to more complex ones.
Judgment \& problem solving (Morris, 1993)+	The subject is asked to (1) identify similarities and differences between things and (2) describe what $s /$ he would do if $s / h e$ found a lost child on the road.

1.1 Gateway to Global Aging Data

The Health and Retirement Study (HRS) has achieved remarkable scientific success, as demonstrated by an impressive number of users, research studies, and publications using it. Its success has generated substantial interest in collecting similar data in other regions of the world as population aging progresses.

The result has been a number of surveys designed to be comparable with the HRS: the Mexican Health \& Aging Survey (MHAS), the English Longitudinal Study of Ageing (ELSA), the Survey of Health, Ageing and Retirement in Europe (SHARE), the Korean Longitudinal Study of Aging (KLoSA), the Japanese Study on Aging and Retirement (JSTAR), the Irish Longitudinal Study on Ageing (TILDA), the China Health and Retirement Longitudinal Study (CHARLS), Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa (HAALSI), the Brazilian Longitudinal Study of Ageing (ELSI), Healthy Ageing in Scotland (HAGIS), the Northern Ireland Cohort Longitudinal Study of Ageing (NICOLA), and the Longitudinal Aging Study in India (LASI). The overview of this family of surveys, including their research designs, samples, and key domains can be found in Lee (2019).

As these surveys were designed with harmonization as a goal, they provide remarkable opportunities for cross-country studies. The value of comparative analyses, especially the opportunities they offer for learning from the results of policies adopted elsewhere, is widely recognized. Yet there are only a limited number of empirical studies exploiting such opportunities. This is partly due to the difficulty associated with learning multiple surveys and the policies and institutions of each country.

Identifying comparable questions across surveys is the first step toward cross-country analyses. The Gateway to Global Aging Data (Gateway) helps users understand and use these large-scale population surveys on health and retirement. The Gateway includes several tools to facilitate cross-national health and retirement research. It includes a digital library of survey questions for all participating surveys. Its search engine enables users to find relevant survey questions. The Gateway also includes a concordance with information comparing measures within and across surveys over time. Using these tools, researchers can identify all questions related to particular key words or within a domain. The Gateway also includes population and subpopulation estimates for key harmonized variables and presents them in graphs and tables that can be downloaded.

The Gateway can be accessed at https://g2aging.org/. For more information about using the Gateway visit the Help page.

1.2 Data File Structure

The Harmonized LASI-DAD data are contained in a single file. The data are stored in a "fat format" where each observation represents one respondent. The unit of observation is the individual. Each individual is uniquely identified by the identifier PRIM_KEY. Households are identified by HHID.

1.3 Variable Naming Convention

With a few exceptions, variable names in the Harmonized LASI-DAD Data follow a consistent pattern. The first character indicates whether the variable refers to the reference person ("R") or the household (" H "). ${ }^{2}$ The second character indicates the wave to which the variable pertains: " 1 " or " A ". The " A " indicates "all," i.e., the variable is not specific to any single wave. An example is RABYEAR, the birth year of the respondent. The remaining characters describe the concept that the variable captures. For example:

Variable R1BPCOMPL captures the respondent's compliance during the blood pressure test.

In the text below, we may refer to variables by substituting a " w " in for the specific wave number. For example, consider RwBPCOMPL; this reference points at the group of variables that follow the same pattern as R1BPCOMPL.

Variable labels also follow a consistent pattern. The first characters denote the name of the variable, followed by a colon. Then the wave to which the variable pertains follows (for example, "w1" refers to wave 1). The remainder of the label describes the concept that the variable captures. For example, the variable label of R1BPCOMPL is:

```
rlbpcompl:w1 r compliance during blood pressure test
```

It may seem duplicative to include the name of the variable and the wave in the variable label. However, statistical packages often suppress the variable name and instead use its label in the presentation of results.

[^1]Variable names in the Harmonized LASI-DAD are generally based on the variable name used in the RAND HRS or in the Harmonized LASI for the same measure. Measures that are exactly or near-exactly comparable between the Harmonized LASI-DAD, RAND HRS or Harmonized LASI use the exact same name. For instance, RABYEAR is the variable name for the respondent's birth year in the Harmonized LASI-DAD, as well as in the RAND HRS and Harmonized LASI. If the Harmonized LASI-DAD measure is deemed only somewhat comparable with the RAND HRS or Harmonized LASI version of that measure, the variable name in the Harmonized LASI-DAD will often end in "_D." This variable name suffix indicates some LASI-DAD-specific difference with the RAND HRS or Harmonized LASI version of this measure. Reasons for Harmonized LASI-DADspecific variable names include: differences in survey questions, differences in survey routing, and whether both sets of variables use imputed values. Harmonized LASI-DAD-specific variable names are used to notify the user that (i) there are substantial differences between the Harmonized LASI-DAD measure and the RAND HRS or Harmonized LASI measures and (ii) clean harmonization between these measures is not possible.

Users should always check the "Differences with LASI" section of each measure before comparing any Harmonized LASI-DAD measure to the Harmonized LASI version of the same measures or any other Harmonized Dataset version of the same measure.

1.4 Missing Values, and Nonresponse

Variables may contain missing values for several reasons. SAS, Stata, and SPSS offer the capability to distinguish between multiple types of missing values, and we have attempted to record as much information as possible. Generally, the codes adhere to the classification in Table 2.

Table 2. Missing Codes

Code	Reason for missing
.	Reference person did not respond to this wave
.d	Don't know
.r	Refused
.n	Not Assessed
.m	Missing
.p	Proxy
.h	Not interviewed
.s	Skipped
.c	Cannot count
.l	Cannot read or write

Note: The special missing code .n, not assessed, was marked only if the respondent has some physical disability that prevented him or her from performing the test. As examples, . n is assigned if the respondent is blind and hence could not complete the task that involved seeing figures, if he/she is paralyzed and hence could not draw or write in the given task, or if he/she
has a hearing disability and the test in question involves spoken directions. The missing code .n is not assigned if the main reason for not performing a cognition test is a physical disability that is unrelated to the respondent's cognition ability. Consult the Data Codebook for details on individual variables.

2. Sample Weights

LASI-DAD sample weights are meant to account for differential selection probabilities produced by the adopted sampling strategy, and to adjust for differential non-response across sampled individuals. They align the LASI-DAD sample distributions of basic demographics (gender, age, literacy, and urbanicity) to the corresponding distributions in the Indian population age 60 and older. LASI-DAD sample weights are constructed following the steps below.

In order to be included in the study, LASI-DAD participants must have answered the first wave of the main LASI. We therefore start from the LASI base weight, which accounts for differential probabilities of selection into LASI, adjusted by individual-level nonresponse. Let i indicate an individual and base_adj $j_{i}^{L A S I}$ denote such weight for individual i.

LASI-DAD participants were selected among LASI respondents age 60 and older, sampling with equal probability individuals with low and high risk of cognitive impairment. The risk of cognitive impairment was assessed using the complete battery of cognitive test scores in the first wave of the main LASI. Using the sample of first-wave main LASI respondents age 60 and older, we estimate a probability of selection into LASI via Logit. We perform this estimation separately for individuals without and with a proxy interview.

For individuals without a proxy interview, the set of explanatory variables includes:

- demographics
(gender, marital status, education, parent's education, literacy status, binary indicators for state of residence, rural area, caste, household income and wealth quintiles)
- health variables
(overall self-reported health status, binary indicators for high blood pressure, diabetes, heart disease, stroke, Alzheimer's disease, number of functional limitations, ADLs, and IADLs)
- cognitive test scores
(orientation to place, orientation to time, object naming, verbal fluency, computation, executive function, immediate and delayed word recall, picture/clock drawing, serial 7's, backward counting, read and follow command, sentence writing)

For individuals with a proxy interview, the set of explanatory variables includes:

- demographics
(gender, marital status, education, parent's education, literacy status, binary indicators for state of residence, rural area, caste, household income and wealth quintiles)
- health variables
(overall self-reported health status, binary indicators for high blood pressure, diabetes, heart disease, stroke, Alzheimer's disease, number of functional limitations, ADLs, and IADLs)
- JORM IQCODE score

Indicating with $\hat{p}_{i, \text { selc }}$ the Logit predicted probability of selection into LASI-DAD, we define the LASI-DAD base weight, base_weight ${ }_{i}^{D A D}$, as follows:

$$
\text { base_weight }_{i}^{D A D}=\text { base_adj }_{i}^{L A S I} \times\left(1 / \hat{p}_{i, s e l c}\right)
$$

This base weight accounts for both the probability of being a LASI respondent and the differential probability of selection of LASI respondents with into LASI-DAD.

In a second step, post-stratification weights are generated by means of a raking algorithm starting from the LASI-DAD base weights described above. The goal of this procedure is to align the weighted distributions of specific socio-demographic variables in the LASI-DAD survey sample to their population counterparts. Specifically, the set of socio-demographic variables used as raking factors includes: gender (Male/Female) \times age (60-69/70+), gender \times literacy (Literate/Illiterate), and location (Rural/Urban). Hence, the resulting post-stratification weights allow the sample distributions of age and literacy, overall and separately for men and women, and the distribution of rural versus urban residency to match exactly their population benchmarks and, therefore, to correct for differential non-response along such dimensions. Benchmark distributions are taken from the Indian Census 2011 and refer to the population of individuals aged 60 and above in India. ${ }^{3}$

In order to limit variability and improve efficiency of estimators, we trim extreme weights. We follow the general weight trimming and redistribution procedure described by Valliant, Dever and Kreuter (2013). Specifically, we compute relative weights by dividing weights by the sample mean, set the lower and upper bound on relative weights to the $5^{\text {th }}$ and $95^{\text {th }}$ percentile respectively, and trim all weights that exceeds these bounds (Battaglia et al., 2009). We compute the amount of weight lost by trimming and distribute it equally among the respondents whose weights are not trimmed. If all these new relative weights are within bounds, no further adjustment is performed. If any of these new weights are out of bounds, the trimming procedure is repeated iteratively until all weights are within bounds, or until the maximum number of 10 iterations is reached.

While raking weights can match population distributions of selected variables, trimmed weights typically do not. We therefore iterate the raking algorithm and the trimming procedure until post-stratification relative weights are within bounds and align sample and population distributions of selected variables. This procedure stops after 10 iterations if an exact alignment respecting the weight bounds cannot be achieved. In this case, the raked weights will ensure an exact match of (weighted) survey relative frequencies to their population counterparts, but some of them may be out of bounds.

[^2]Let final_weight $i_{i}^{D A D}$ be the post-stratification weight for respondent i, obtained by applying the raking/trimming algorithm to the base weights as described above. LASI-DAD final poststratification weights, final_weight $i_{i}^{D A D}$, are expressed relative to their sample mean. Thus, they sum to the LASI-DAD sample size and average to 1 .

Weights for the Sub-Sample with Lab Data

Lab data are available for 70% of the original LASI-DAD sample. The sub-samples with and without lab data exhibit statistical significant differences as far as gender, literacy and residence in rural areas are concerned. Because of these observed differences in demographic characteristics, we implement the weighting/trimming procedure described above separately for the sub-sample of LASI-DAD respondents with lab data.

The resulting weights, final_weight ${ }_{i}^{D A D}$ Lab , are expressed relative to their sample mean and align the sub-sample with lab data to the reference population in terms of gender, age, literacy and urbanicity. These weights sum to the size of the LASI-DAD sub-sample with lab data and average to 1 .

3. Imputation

When test items or informant report items are missing, this poses a problem. A single missing item makes all summary scores that depend on it also missing, so even a small fraction of missings in each item can lead to a large fraction of observations that are missing summary scores, which would arguably be of primary interest to most researchers. Therefore, as is common in survey data, we impute most missing observations. The goal of imputation is to replace the missing values with random draws from a conditional distribution such that the estimated joint distribution from the completed (imputed) data is an unbiased estimator of the true joint distribution of these variables (e.g., Little \& Rubin, 2002, sec. 10.2.1; Lee et al., 2015, sec. 2).

We imputed the cognitive test variables and the informant reports about the individuals' cognitive decline. Some tests were only administered to specific sub-samples: only those surveyed in phases 2 and 3 of the data collection, only literate respondents, or only illiterate respondents. We have not imputed these for the samples that the variables were not administered to. Moreover, in some cases, a certain answer on one question led to a skip of a later question, and the imputations follow such skip patterns. For example, if the imputation of the first trial in the 3-word recall test is 3, then the second and third trials logically follow as skips (.s). For the cognitive test items, we have recoded "don't know" (.d) as incorrect (0). There are some indications that other missings, especially "refuse" (.r) may also sometimes indicate that the respondent does not know the correct answer, but because we cannot be sure about this, we have imputed these in the regular way, with the exception of "not assessed" (.n) in the orientation items. The latter is common among interviews in Hindi and should be interpreted as "don't know", so we have set these to zero as well. In the Jorm IQCODE scale, the informant can indicate that the respondent does not do certain things, which is coded as "not applicable" (.n). For example, when asked whether the individual has more problems than before learning how to use new gadgets, this answer would be given if the person has not obtained any new gadgets. We have imputed such cases as well, based on the rationale that these items were intended to measure cognitive decline and that imputing this allows us to compute a summary score of cognitive decline for the Jorm scale as a whole, but if a researcher is interested in the literal meaning of a question like this, then it may be better to not use the imputations of such a question. Analogously, we have imputed the serial 7 s score for individuals who cannot count, even though strictly speaking the individual gave no correct answers and would not be able to do this. This test was intended to measure processing speed and attention, not numerical ability, and a score of 0 for such individuals would not reflect their cognitive status well.

The imputation method we have implemented was inspired by the imputations of cognition variables in the HRS (Fisher et al., 2017). It is also similar to the method used in SHARE (De Luca et al., 2015, although they use a simpler method for variables with few missing values). We specified a regression model for each cognition variable as a function of the other cognition variables and a rich set of background variables: health, demographics, and socio-economic characteristics. The regression model specifies the conditional distribution of the variable that must be imputed as a function of the regressors, and the imputations are pseudo-random
draws from this conditional distribution. Take, for example, a binary variable such as whether the respondent correctly answered the question about what year it is. Let this variable be y and the regressors be collected in the vector \mathbf{x}. We specified a logistic regression model for \boldsymbol{y} as a function of \mathbf{x} :

$$
\operatorname{Pr}\left(y_{i}=1 \mid \mathbf{x}_{i}\right)=p_{i}=\frac{e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}}}
$$

This was estimated on the sample where y_{i} is observed. Then we generated a pseudo-random draw u_{i} from a uniform distribution on the interval $(0,1)$ and for the sample where y_{i} was missing, we computed p_{i} and imputed $y_{i}=1$ if $u_{i} \leq p_{i}$ and $y_{i}=0$ otherwise. For binary variables, we used (binary) logistic regression (i.e., logit) models; for ordinal variables, we used ordered logit; for count variables, we used negative binomial regression; and for unordered categorical variables, we used multinomial logit.

3.1. Regressors

The vector \mathbf{x} consists of (1) demographics, socio-economic variables, health, and cognition variables from the LASI core survey; (2) demographics and socio-economic variables from LASIDAD; (3) health variables from LASI-DAD; and (4) cognitive measures (tests and informant reports) from LASI-DAD. With the exception of the cognition measures, if we had the same variable for both LASI-DAD and LASI core, we only included the LASI-DAD version. The regressors from categories 1-3 are listed in Table 3.

Table 3. Regressors from the LASI core data and LASI-DAD (except the cognition variables from LASI-DAD)

Core demographics	Core socio-economic	Core health	Core cognition ${ }^{a}$
Couple status	Mother's education	Self-reported health	Orientation to place
	Father's education	\#Chronic conditions ${ }^{b}$	and time
	Income quintile	\#Mobility limitations	Word recall (total)
	Wealth quintile	Distant vision	Executive function
		Near vision	Language fluency
	Hearing	Read and write ${ }^{c}$	
		Whether illiterate	
			Drawing score
			Jorm IQCODE

DAD demographics	DAD socio-economic	DAD health
Female	Education (years)	\#Chronic conditions ${ }^{d}$
Whether iw at home	Education (cat.)	\#ADLs
State	Caste	\#IADLs
Rural		Mental health (CESD)
Interview language Age (categories)		Anxiety (BAI)
Jorm IQCODE is informant-reported and only available for proxy interviews; the other items are cognitive test		
items only available for self-interviews.		
${ }^{b}$ Among high blood pressure, heart disease, diabetes, stroke, Alzheimer's/dementia cZero if illiterate ${ }^{d}$ Among stroke, Parkinson, Alzheimer's/dementia, memory problems		

The variables that we imputed are listed in Tables 4 (cognitive test items) and 5 (informant reports). For the imputation of a variable from these lists, the other variables in these lists are also included among the regressors. However, because the large number of variables (more than 200) would create numerical problems, we primarily used aggregate scores instead of individual items. This also likely filters out measurement error and guards against capitalizing on chance. The aggregate scores followed a nested structure based on the model from Gross et al. (2020) for the cognitive test items, theoretical considerations from Gross (2020) for some of the informant reports, and empirical analyses of correlations (principal components analysis).

Figure 1 illustrates the nested structure, and how items are combined into summary scores to be used as regressors, illustrated for the imputation of r1city (whether the respondent correctly names the city they are currently in). This item is part of a short battery for orientation to place. The other four items in this battery are included as regressors. The five items of the orientation to time battery are not included separately. Instead, their sum (0-5) is included as a regressor. This is an example of a level-1 sum score. There are about 30 such level-1 sum scores, which are all simple sums, with one exception, every day activities. Empirical analysis showed that these items could not be satisfactorily summarized by one simple sum score, but that three principal components would represent these items well, so we computed those. The level-1 sum scores
are further grouped into narrow domains of cognitive functioning (e.g., language fluency), and some of these are further grouped into broad domains (memory, executive function). Note that the hierarchy is not complete: sometimes, levels are skipped (absent). The narrow domain scores are sums of the level-1 scores (and sometimes single items) that are nested below them. However, because the level-1 scores have different scales, we first standardized them before aggregating them into narrow domain scores. We found that the resulting sums of standardized scores correlated very highly (typically 0.98 or higher) with the first principal component of these level-1 scores. Because this imputation procedure was very computationally demanding, we preferred using these narrow domain scores as it is much faster than computing the principal components. Analogously, the two broad domain scores were computed as sums of the related standardized narrow domain scores. The rules for including items, level-1 sum scores, narrow domain scores, and broad domain scores were as follows:

1. A broad domain score was used (and none of the scores and items nested below it) if the item to be imputed was not a component of the broad domain score. In Figure 1, this means both broad domain scores were included in the model for r1city, because r1city is not a Memory or Executive Function item.
2. A narrow domain score was used (and none of the scores and items nested below it) if (i) the narrow domain score was not a component of a broad domain score included, and (ii) the item to be imputed was not a component of the narrow domain score. For example, Language Fluency is included, because it is not a component of Memory or Executive Function and r1city is not a component of Language Fluency. But Orientation is not included, because r1city is an Orientation item.
3. A level-1 sum score was used (and none of the items nested below it) if (i) the level-1 score was not a component of a broad or narrow domain score that was already included, and (ii) the item to be imputed was not a component of the level-1 score. For example, because the Orientation narrow domain was not included and Orientation to Time does not contain r1city, Orientation to Time was included in the model for r1city.
4. A single item was used if (i) it was not a component of any higher-level score already included, and (ii) it is not the variable y_{i} itself. For r1city, these are the other four Orientation to Place items, plus five items (mix-ups, recognizing words that were not part of the word recall list, and similar items) that are not part of any higher-level score.

Figure 1 illustrates these rules: the items and scores shaded blue are used as regressors in the imputation model for r1city (which is shaded yellow). Tables 4 and 5 give more details about the nesting structure.

The reason the Phase 2-3 tests (hand sequencing, token test, judgment, and problem solving) are not included is that they were not administered in Phase 1 and not imputed for Phase 1 either, so they remain systematically missing, whereas r1city was administered in all three phases. These Phase 2-3 tests are only included in the imputation models for items that were only administered in Phases 2 and 3. Analogously, the Blessed Part 1 scale (for the informant) was skipped for most observations in Phase 1 and not imputed, and therefore not included in the model for r1city.

In some cases, the items that were used as covariates were transformed versions of the raw items; for example, animal naming was censored at a maximum of 35 when used as a covariate. Also, because of (partial) mechanical dependencies, some variables were excluded from some models; for example, trials 2 and 3 of the 3 -word recall were skipped if trial 1 resulted in all three correct, so for the imputation of trial 1 , we did not include trials 2 and 3 as covariates. Note that the imputations themselves also respect such dependencies, for example, if trial 1 was imputed as 3 , trials 2 and 3 were set to .s (skipped), and analogously if a Blessed Part 1 item was imputed as 1 (no loss), the corresponding Part 1a item was set to .s. Also, if r1mo (whether individual knows the current month) was imputed as 0 , r1date (day of the month) was also set to 0 , which respects the pattern in the nonmissing data.
Table 4. Cognition items and the level-1 sum scores and narrow and broad domain scores they are part of.

Items	\#items Description	Level-1	Narrow	Broad
r1date, r1dw, r1mo, r1season, r1yr	5 Time orientation	rlorient5t	Orientation	
rladdress, rlcity, rlfloor, rl name, rlstate	5 Place orientation	r1orient5p	Orientation	
rlprime	1 Prime minister		Orientation	
rltrial*	3 3-Word recall (imm)	r1recall3	Memory (imm)	Memory
rlword*	3 10-Word recall (imm)	r1recall 10	Memory (imm)	Memory
r1bm_s*	10 Brave man (imm)	r1braveman	Memory (imm)	Memory
r1lmb_s*	25 Robbery (imm)	r1robbery	Memory (imm)	Memory
r1dlrc $\overline{3}$, r1word_d	2 Word recall (del)		Memory (del)	Memory
r1bm_rs*	10 Brave man (del)	r1bravemanr	Memory (del)	Memory
r1lmb_rs*	25 Robbery (del)	r1robberyr	Memory (del)	Memory
r1cpr_*	4 Constr praxis (del)	r1conpraxdel	Memory (del)	Memory
r1wre_org, r1log_reco	2 Recognition		Memory (recog)	Memory
r1go_score*	2 Go-no-go	r1gonogo	Abstract reas.	Exec.function
rldr_clock3, rlrv_score	2 Other abstract reas.		Abstract reas.	Exec.function
r1ds_back, r1ds_for	2 Digit span	r1digitspan	Attn/speed	Exec.function
r1backward6, r1ser7, r1sc_anw	3 Other attn/speed		Attn/speed	Exec.function
r1coconut, r1scis	2 TICS items	r1tics2	Language fluency	
rlobject*	2 Object naming	rlobject	Language fluency	
rlelbow, rlhammer, rlpoint, r1store	4 CSID	r1csid	Language fluency	
rlexecu, rl repeat, rlverbal	3 Other language fluency		Language fluency	
r1draw2	1 Draw overl. rectangles		Visuospatial	
rlcp_*	4 Constr praxis (imm)	rlconpraximm	Visuospatial	
r1ef_*	3 Hand sequence	r1handseq	Phase 2-3 tests	
r1tt_*	7 Token test	r1token	Phase 2-3 tests	
r1jp_fndkid, rljp_rupee*	3 Problem solving	rlprsolv	Phase 2-3 tests	
rljp_* (others)	4 Similarities-differences	r1simdiff	Phase 2-3 tests	
r1readfol, r1write	2 Read-follow; write sentence	r1litt		
r1copyfol, r1say	2 Copy-follow; say sentence	r1illitt		
rlog_rcmix, rlog_wron, r1sc_wr	3 Incorrect answers			
$\underline{\text { rlverbal inc, rlwre foil }}$	2 Incorrect answers			

Table 5. Informant items and the level-1 scores and narrow domain scores they are part of

Items	\#items Description	Level-1	Narrow
rliqscore* (1-7)	7 Jorm IQCODE (memory)	rljorm_mem	Difficulties (informant)
rliqscore* (8-16)	9 Jorm IQCODE (non-memory)	rljorm_nonmem	Difficulties (informant)
rlcsi* (2-6, 11-13)	8 CSI (memory)	rlcsi_mem	Difficulties (informant)
r1csi* (1, 7-10, 14-15)	7 CSI (non-memory)	r1csi_nonmem	Difficulties (informant)
r1ten*	5 10/66	rlten	Difficulties (informant)
rlbl1_*	8 Blessed Pt. 1	rlbll, rlbllment, rlbllphys	
rlbll_*a	8 Blessed Pt. 1 mental-physical	rlbllment, rlbl1phys	
rlbl2 ${ }^{*} \mathrm{r}$	3 Blessed Pt. 2	rlbl2	
r1feel*	6 Pos.feelings (+neg.reversed)	r1feelpos	
rlact*	13 Activities	rlact pc* (1-3)	

Figure 1. Structure of summary scores used as covariates for imputing r1city.

3.2. Block-sequential and chained imputation

One or more of the regressors in \mathbf{x} could themselves be missing and thus these needed to be imputed as well. Following the HRS (Fisher et al., 2017), we imputed variables in a sequence of blocks, corresponding with the classification in Tables 3, 4, and 5: (1) LASI core variables; (2) LASI-DAD demographics and socio-economic variables; (3) LASI-DAD health variables; (4) LASIDAD cognitive tests and informant reports. The imputation of the LASI core variables itself uses a similar (though generally slightly simpler) approach as the one for the LASI-DAD variables. See the documentation of the Harmonized LASI data for details. The only variable from the LASIDAD demographics and socio-economic variables that had any missings was caste, and for this, we copied the corresponding value from the LASI core data. For the health variables, we used a similar chained imputation method as for the cognition variables described below, except that we added corresponding health variables from the LASI core data as regressors (and did not have the LASI-DAD cognition variables as regressors) and that there was only one level of summary scores (as listed in Table 3) above the single items. Because very few individuals were reported to have been diagnosed with Alzheimer's or dementia and this caused numerical problems with its imputation, we imputed this one first, with only the state as covariate (diagnosis is strongly related to state, perhaps because of differences in the health and insurance institutions).

Like HRS and SHARE, we used chained imputation (also known as fully conditional specification; Raghunathan et al., 2001; Van Buuren et al., 2006) for the cognition variables (and for the health variables, as mentioned above). This cycles over the cognition variables, in which each of them is imputed in turn, with the other cognition variables and background variables as regressors, and then repeats this cycle multiple times. We used one cycle to initialize the chain and up to 10 cycles (iterations) to update the imputations, although imputations sometimes converged with fewer iterations.

With each imputed variable, the dataset also includes an imputation flag, which has the same code as the nonimputed variable if the latter was missing, and 1 if the nonimputed variable was not missing. Hence, users who do not want to use our imputations, or who wish to perform nonresponse analyses, can reconstruct the nonimputed variables from these.

3.3. Exceptions, special cases, and other details

Because of the differential availability of regressors, we imputed the cognition variables in four stages, with each stage consisting of a chain as described in the previous section. The first two stages were for individuals who delivered a self-interview in the core data, whereas the last two stages were for individuals for whom we only have a proxy interview in the core data. The reason for treating proxy interviews differently is that the cognitive tests were not administered for them in the core data, and these are likely key predictors when available, so we want to use them when available. Conversely, the Jorm IQCODE variable from the core data was only available for the proxy interviews. Stages 1 and 3 imputed all cognition variables for most observations, the exception being the Blessed Part 1 items in Phase 1. In Phase 1, these items
were only administered if the average of the reported Jorm IQCODE items was less than 3 . In Phases 2 and 3, the Blessed Part 1 items were administered to all informants. For the imputation, this implies that in Stages 1 and 3, the Blessed Part 1 items were imputed for Phases 2 and 3, with the other Phase 2 and 3 variables (hand sequence, token test, judgment, and problem solving) included among the regressors. In Stages 2 and 4, the Blessed Part 1 items were imputed for Phase 1, with the estimation and imputation samples only consisting of individuals with an average reported Jorm IQCODE score of less than 3.

The imputation models did not always converge, due to a high degree of collinearity among some of the regressors. Hence, we defined a sequence of increasingly parsimonious fallback options that were used to impute the variables, in case such problems occur. The most common problematic variables were language (which is strongly related to state) and education as a categorical variable (which is strongly related to education in years). So the first fallback specification dropped these two variables. A second fallback, used for four variables, dropped the state indicator in addition to the ones from the first fallback. For some of the Blessed Part 1 items (Part 1 proper and Part 1a follow up items), there were further fallbacks, up to Fallback 5, which only uses three aggregates of other Blessed Part 1 items (sum of the other Blessed Part 1 items, number of times physical problems were mentioned in the other Blessed Part 1a items, number of times mental problems were mentioned in the other Blessed Part 1a items). Because of the strong relations among the Blessed Part 1 items, these were still very predictive. Overall, Fallback 1 was very commonly used, but Fallbacks 2-5 were used for only a few variables each.

There are more implementation details that are not discussed here. We will provide these upon request. The Stata code used is included with the distributed data.

4. Harmonized Domain-Specific Cognition Variables

The cognitive test battery in LASI-DAD was adapted from tests in the HCAP. The HCAP battery was designed to assess Mild Cognitive Impairment (MCI) and dementia in the US HRS and has been successfully adapted in the US, England, Mexico, China, and South Africa (Lee et al., 2019). For LASI-DAD, some culturally and logically appropriate modifications were made to the HCAP, including identification of tests less dependent on schooling and literacy.

We organized tests into broad domains (orientation, executive functioning, language/fluency, memory, and visuospatial) and further into narrow subdomains to be consistent with the CHC theory of human cognitive abilities. The orientation domain contained 5 questions about orientation to time (e.g., name the current month, year, season), 5 questions about orientation to place (e.g., state, city), and the question to name the Prime Minister. The language/fluency domain was represented by animal naming, writing or saying a sentence, phrase repetition, naming of common objects by sight (watch, pencil), naming of common objects by description (elbow, hammer, scissors, coconut, window), following a read or acted command to close one's eyes, and completing a 3-stage task. Memory tests included immediate, delayed, and recognition recall of a 10-word list; immediate, delayed, and recognition recall of the Logical Memory test, immediate and delayed recall of the Brave Man story learning test, and a three word recall task. Additionally, delayed recall of the constructional praxis test was used to measure delayed memory. Visuospatial function was measured by constructional praxis (drawing a circle, rectangle, cube, and diamond), and interlocking pentagons. Abstract reasoning, a narrow domain of executive functioning, was represented by the Ravens progressive matrices task, clock drawing, and two trials of the Go-No-Go test. Attention/speed, a second narrow domain of executive functioning, was represented by a numeracy task, backwards day counting, symbol cancellation, and the Digit Span forwards and backwards tasks.

We first estimated a series of unidimensional factor analysis models for each narrow and broad cognitive domain. Factor scores from these models are provided in the data, scaled to have a mean of 0 and variance of 1 . Once adequate fit was obtained for each model, we combined all the domains into a hierarchical multiple domain factor analysis that included a general factor. Factor scores for the general factor are provided in the data. Model fit was evaluated based on a set of a priori cutoffs for the Comparative Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA), and the Standardized Root Mean Squared Residual (SRMR) (Hu \& Bentler, 1999). We characterized model fit as perfect if the CFI=1 and RMSEA=0 and SRMR=0, good if CFI>=0.95 and RMSEA<=0.05 and SRMR<=0.05, adequate if CFI>=0.90 and RMSEA $<=0.08$ and $S R M R<=0.08$, and poor if either $\mathrm{CFI}<0.9$ or $\mathrm{RMSEA}>0.08$ or $S R M R>0.08$. We chose this combination of fit statistics because each statistic has advantages and disadvantages. While low SRMR implies low model residuals, it does not incorporate model complexity and may be partial to overly complex models. The RMSEA provides an index of model discrepancy per degree of freedom (which accounts for model complexity), however it tends to improve with larger sample size. The CFI compares an estimated model to a hypothetical null baseline model which may itself be incorrect. Together, these three statistics considered in conjunction minimize risk of choosing a bad model (Kenny, Kaniskan, \& McCoach, 2015).

See Gross et al. (2020) for further details of factor structure of cognitive tests in LASI-DAD.

5. Polygenic Risk Scores (PRSs)

Health outcomes and traits are often highly polygenic, reflecting the aggregate effect of many different genes so the use of single genetic variants or candidate genes may not capture the dynamic nature of more complex phenotypes. A polygenic risk score (PRS) aggregates individual loci across the genome and weights them by effect sizes derived from a genome-wide association study (GWAS) as an estimate of the strength of their association to produce a single quantitative measure of genetic risk and to increase power in genetic analysis.

PRSs were constructed for Alzheimer's Disease and general cognitive function for consenting LASI-DAD respondents who provided whole blood DNA in 2018. These scores will help harmonize research across studies among LASI-DAD data users. PRSs for each phenotype are based on a single, replicated GWAS and will be updated as sufficiently large GWAS are published for new phenotypes or as new meta-analyses for existing phenotypes emerge.

5.1. LASI-DAD Genomic Data

The DNA samples were genotyped at MedGenome. A total of 1008 study subjects and controls were genotyped on the Illumina Infinium Global Screening Array-24 v2.0 BeadChip, which measures ~600,000 SNPs. All versions of the array are designed to Human Genome Build 37. The total 1008 scans derived from 993 unique subjects (including 960 LASI-DAD subjects and 33 1000G control subjects). Individuals with missing call rates > 2\%, SNPs with call rates < 98\%, HWE p-value < 0.0001, chromosomal anomalies, and kinship coefficient > 0.088 in the LASI-DAD were removed. Principal component (PC) analysis (Price et al., 2006) was performed to identify population group outliers and to provide sample eigenvectors as covariates in the statistical model used for association testing to adjust for possible population stratification. SNPs used for PC analysis were selected by linkage disequilibrium (LD) pruning from an initial pool consisting of all autosomal SNPs with a missing call rate $<5 \%$ and minor allele frequency (MAF) > 5\%, and excluding any SNPs with a discordance between 1000G pedigree controls genotyped along with the study samples and those in the external 1000G (phase 3 version 5) data set. In addition, the $2 q 21$ (LCT), HLA, 8p23, and 17q21.31 regions were excluded from the initial pool. The final sample set consisted of 932 unrelated study samples after quality control. For more information on the genotype data and quality control process see the LASI-DAD genotype data QC Report.

Imputation to the 1000G Genomes Project reference panel phase 3 version 5 (initial release on May 2013, haplotypes released Oct 2014) was performed by the University of Michigan using Minimac4 (http://genome.sph.umich.edu/wiki/Minimac4), with phasing performed using Eagle2.4. Overall, ~ 49 million SNPs were imputed from the original 533,348 SNPs that were genotyped and passed quality control. Masking of genotyped SNPs to assess the accuracy of imputation was performed to estimate the median concordance between actual and imputed genotypes (median concordance>0.91 for common variants), and additional quality control
metrics indicate high quality imputation. Please refer to the LASI-DAD Imputation report using the 1000 Genomes Project Phase 3 reference panel for more details.

5.2. PRS Construction

To best capture the most significant SNPs from the published GWAS meta-analysis studies, we construct PRSs for genome-wide significant SNPs only ($P<5 \times 10^{-8}$), noted as a "top SNPs" PRS. In addition, for some traits, we also generated PRSs for all independent SNPs with ($P<1 \times 10^{-4}$) after clumping ($r^{2}<0.25$ within a 250 kb window) using the LD structure in South Asian ancestry from 1000 Genome Reference Panel, indicated as an "all SNPs" PRS. In either case, only SNPs with high imputation quality ($R^{2}>0.8$) in LASI-DAD were included.

Weighted sums were chosen to calculate the PRSs. Weights were defined by the odds ratio or beta estimate from the GWAS meta-analysis files corresponding to the phenotype of interest. If the beta value from the GWAS meta-analysis was negative (or the odds ratio $(O R)<1$), the beta/OR measures were converted to positive values ($O R>1$) and the reference allele flipped to represent phenotype-increasing PRSs. PRSs are calculated using the following formula:

$$
\mathrm{PRS}_{\mathrm{i}}=\sum \mathrm{W}_{\mathrm{j}} \mathrm{G}_{\mathrm{ij}} / 2 \mathrm{~J}
$$

where i is individual $\mathrm{i}(\mathrm{i}=1$ to N$), \mathrm{j}$ is $\mathrm{SNP} \mathrm{j}(\mathrm{j}=1$ to J$), \mathrm{W}_{\mathrm{j}}$ is the meta-analysis effect size for SNP j , G_{ij} is the genotype, or the number of reference alleles (zero, one, or two), for individual i at SNP j , and J is the total number of SNPs. The "all SNPs" PRSs were constructed using PRScie-2 (Choi \& O'Reilly, 2019) and the "top SNPs" PRSs" were constructed in PLINK (Purcell et al., 2007).

5.2.1. Sources for SNP weights

To incorporate externally valid SNP weights from replicated GWAS, we performed a search of the most recent literature to identify large GWAS meta-analysis studies related to the selected phenotype. SNP weights were downloaded from consortium webpages, requested from consortium authors, or obtained from published supplemental material. All base SNP files from GWAS meta-analyses were converted to NCBI build 37 annotation for compatibility with LASIDAD SNP data.

5.2.2. Notes about the use of PRSs

PRSs are released for current LASI-DAD samples ($\mathrm{N}=932$). However, it should be noted that the majority of GWAS used to inform the SNP weights come from GWAS on European ancestry groups and, as a result, PRSs for LASI-DAD samples from South Asian ancestry may not have the same predictive capacity (Martin et al., 2017; Smith et al., 2020).

Standardized versions of ancestry specific PCs 1-10 are included in the LASI-DAD PRS data release. To protect identifiable information, PCs 1-5 and PCs 6-10 were scrambled. To control for confounding from population stratification, or to account for any ancestry differences in genetic structures within populations that could bias estimates, we highly recommend that users perform analyses adjusted for PCs 1-10. The PCs control for any genetic aspects of
common ancestry that could be spuriously correlated with the PRS and the outcome of interest (Price et al., 2006).

5.3. PRSs for Alzheimer's disease (AD)

The three "top SNP" PRSs for Alzheimer's disease (AD) were created using results from three large-scale GWAS meta-analyses: 1) a 2013 GWAS conducted by the International Genomics of Alzheimer's Project (IGAP) (Lambert et al., 2013); 2) a 2019 GWAS meta-analysis using samples from the International Genomics of Alzheimer's Project (IGAP) (Kunkle et al., 2019); 3) a 2019 GWAS meta-analysis using cohorts from the Alzheimer's disease working group of Psychiatric Genomics Consortium (PGC-ALZ), the International Genomics of Alzheimer's Project (IGAP), the Alzheimer's Disease Sequencing Project (ADSP), and UKBiobank (Jansen et al., 2019).

Please note that all three GWAS are conducted using individuals of European ancestry. See Section 5.2.2.: "Notes about the use of PRSs" for more information on the use of PRSs in other ancestry groups.

Three PRSs were constructed using all the identified genome-wide significant AD risk SNPs from each AD GWAS separately. Note that there is overlap in some of the SNPs that comprise these three scores. Since key SNPs in the APOE gene have a strong association with AD, we excluded variants in the APOE region from the three PRSs, but also released rs7412 and rs429358 (the two SNPs that define the APOE $\varepsilon 2, \varepsilon 3$, and $\varepsilon 4$ alleles) as independent units. The effect size of each SNP was calculated as the $\ln (O R)$ reported in the corresponding GWAS. The predictive performance of the three "top SNPs" PRSs on memory scores in LASI-DAD have been reported in Smith et al. (2020).

1) A GWAS meta-analysis (Lambert et al., 2013) of AD was conducted across 20 independent studies using data from four international consortia: Alzheimer's Disease Genetic Consortium (ADGC), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, the European Alzheimer's Disease Initiative (EADI), and the Genetic and Environmental Risk in Alzheimer's Disease (GERAD) Consortium. The stage 1 meta-analysis included 54,162 participants ($\mathrm{N}_{\text {cases }}=17,008$ and $\mathrm{N}_{\text {controls }}$ $=37,154$) of European decent with a total of $7,055,881$ SNPs imputed to 1000 Genomes (2010 release). The stage 2 replication sample included 19,884 participants of European ancestry ($\mathrm{N}_{\text {cases }}=8,572$ and $\mathrm{N}_{\text {controls }}=11,312$) with a total of 11,632 genotyped SNPs. In addition to the APOE locus (encoding apolipoprotein E), the two-stage combined discovery and replication GWAS identified 19 SNPs with genome-wide significant associations with AD. Please refer to Table S1 in Smith et al. (2020) for the list of 19 SNPs. Adjustment covariates within each contributing cohort included age, sex, and genetic principal components.

The released PRSs in LASI-DAD contains all 19 SNPs. The descriptive statistics and the distribution of the PRS are presented in Table 1 and Figure 1. The posted PRS have been standardized to a standard normal curve (mean=0, standard deviation=1).
2) Another GWAS meta-analysis (Kunkle et al., 2019) was conducted by the same group in (1) by using a larger Stage 1 discovery sample of 63,926 participants from 46 datasets ($\mathrm{N}_{\text {cases }}=21,982, \mathrm{~N}_{\text {controls }}=41,944$) of non-Hispanic Whites (NHW) with a total of 36,648,992 SNPs imputed to 1000 Genomes (phase 1 integrated release 3, March 2012). After quality control, $9,456,058$ common variants and $2,024,574$ rare variants were selected for analysis. Stage 1 meta-analysis was first followed by Stage 2, using the Iselect chip previously developed in Lambert et al. (2013) and finally Stage 3A ($n=$ 11,666) or Stage 3B ($n=30,511$) (for variants in regions not well captured in the I-select chip). The final sample was 35,274 clinical and autopsy-documented Alzheimer's disease cases and 59,163 controls. Meta-analysis of Stages 1 and 2 produced 24 genome-widesignificant associations with AD. Please refer to Table S1 in Smith et al. (2020) for the list of 24 SNPs.

The released PRS in LASI-DAD contains 20 SNPs that overlap between the LASI-DAD genetic data and the genome-wide significant SNPs from the GWAS meta-analysis. The descriptive statistics and the distribution of the PRS are presented in Table 6 and Figure 2. The posted PRS have been standardized to a standard normal curve (mean=0, standard deviation=1).
3) A large genome-wide association study of clinically diagnosed AD and AD-by-proxy was performed using a total sample of 455,258 participants ($\mathrm{N}_{\text {cases }}=71,880, \mathrm{~N}_{\text {controls }}$ $=383,378$) (Jansen et al., 2019). Phase 1 involved a genome-wide meta-analysis for clinically diagnosed AD case-control status using cohorts collected by 3 independent consortia (Alzheimer's disease working group of the Psychiatric Genomics Consortium (PGC-ALZ), the International Genomics of Alzheimer's Project (IGAP), and the Alzheimer's Disease Sequencing Project (ADSP)), totaling 79,145 of European ancestry and $9,862,738$ genetic variants passing quality control. In phase 2 they performed a GWAS of AD-by-proxy using 376,113 individuals of European ancestry from UKB. They defined proxy cases as individuals with one or two parents with AD (giving higher weight to cases with two parents). The proxy controls include individuals whose parents had no AD (giving higher weights to individuals with older parents as younger parents may still have a chance to develop AD). Given the high genetic overlap, in phase 3 they conducted a meta-analysis of the clinical AD GWASs and the AD-by-proxy GWAS. The meta-analysis in phase 3 identified 28 genome-wide significant loci associated with AD. Please refer to Table S1 in Smith et al. (2020) for the list of 28 SNPs.

The released PRSs in LASI-DAD contain 19 SNPs that overlap between the LASI-DAD genetic data and the genome-wide significant SNPs from the GWAS meta-analysis. The descriptive statistics and the distribution of the PRS are presented in Table 6 and Figure 1. The posted PRS have been standardized to a standard normal curve (mean=0, standard deviation=1).

Table 6. Descriptive statistics of polygenic risk scores (PRSs) for Alzheimer's disease

	Unstandardized PRS (original scale)				Standardized PRS					
Study	Min	Max	Median	Mean	SD	Min	Max	Median	Mean	SD
Lambert et al. 2013	0.0375	0.0889	0.0659	0.0654	0.0082	-3.4038	2.8821	0.0593	0.0000	1.0000
Kunkle et al. 2019	0.0297	0.0798	0.0523	0.0522	0.0075	-3.5223	2.7530	0.0170	0.0000	1.0000
Jansen et al. 2019	0.0046	0.0119	0.0087	0.0087	0.0012	-2.9886	3.6543	0.0065	0.0000	1.0000

The PRSs were constructed using the genome-wide significant SNPs reported from three independent genomewide association studies (GWAS) of Alzheimer's disease (AD).

Figure 2. Histogram of the "top SNPs" polygenic risk scores (PRS) constructed using the genome-wide significant SNPs reported from genome-wide association studies (GWAS) of Alzheimer's disease (AD): (A) Lambert et al., 2013; (B) Kunkle et al., 2019; (C) Jansen et al., 2019.
A.

B.

C.

5.4. PRSs for General Cognitive Function

The PRSs for general cognition were created using results from a 2018 GWAS (Davies et al., 2018) conducted using genetic data from the CHARGE and COGENT consortia, and UK Biobank (total $N=300,486$; ages 16-102). A total of 300,486 participants undertook multiple, diverse cognitive tests from which a general cognitive function phenotype was created within each cohort by principal component analysis. In some instances, a single test that captures multiple cognitive functions was used as a proxy for general cognitive ability (e.g. the Moray House Test of Verbal and Numerical Reasoning). A total of 178 genome-wide significant independent lead SNPs from 148 loci were identified for association with general cognitive function. Adjustments for age, sex and population stratification were include in study-specific GWAS association analyses. Cohort-specific covariates such as site or familial relationships were also included as required.

The summary results for all variants with z-score statistics were downloaded from the website "https://www.ccace.ed.ac.uk/node/335". The formula below was used to further obtain the beta estimates for all the variants. Here, " p " was the minor allele frequency (MAF) of the European samples from the 1000 G reference panel (phase 3 version 5).

$$
\text { Beta }=\frac{z}{\sqrt{2 p(1-p)\left(n+z^{2}\right)}}
$$

We constructed two versions of the PRSs for general cognitive function: "top SNPs" and "all SNPs" PRSs. The "top SNPs" PRS included 130 lead SNPs out of the 178 reported lead SNPs from the 148 loci that overlap between the LASI-DAD genetic data and the GWAS meta-analysis. The "all SNPs" PRS included all independent lead SNPs with ($p<1 \times 10^{-4}$). Clumping was used to obtain SNPs in linkage disequilibrium with $r^{2}<0.25$ within a 250 kb window. The LD was hard to obtain in the MHC region on chromosome $6(26-33 \mathrm{MB})$ due to long-range LD structure, thus
this region was omitted from "all SNPs" PRS. The final "all SNPs" PRS contains 1,938 SNPs that overlap between the LASI-DAD genetic data and the GWAS meta-analysis. The descriptive statistics and the histogram of the PRSs are presented in Table 7 and Figure 3. The posted PRSs have been standardized within the study sample (mean $=0$, standard deviation $=1$).

Please note the GWAS was conducted using individuals of European ancestry. See Section 5.2.2.: "Notes about the use of PRSs" for more information on the use of PRSs in other ancestry groups.

Table 7. Descriptive statistics of polygenic risk scores (PRSs) for general cognitive function

	Unstandardized PRS (original scale)				Standardized PRS					
	Min	Max	Median	Mean	SD	Min	Max	Median	Mean	SD
"top SNPs" PRS $^{\text {a }}$	0.0081	0.0109	0.0093	0.0093	0.0005	-3.4305	3.6653	-0.0172	0.0000	1.0000
"all SNPs" PRS	0.0092	0.0100	0.0096	0.0096	0.0001	-2.5715	3.4787	-0.0251	0.0000	1.0000

a. The "top SNPs" PRS was constructed using the genome-wide significant SNPs reported from the genomewide association study (GWAS) of general cognitive function (Davies et al., 2018).
b. The "all SNPs" PRS was constructed using independent SNPs ($\mathrm{p}<10 \mathrm{E}-04$) reported from the genome-wide association study (GWAS) of general cognitive function (Davies et al., 2018). Independent SNPs were selected using a clumping approach ($r^{2}<0.25$, window size 250 kb) with LD estimated in South Asian ancestry from 1000 Genomes Reference Panel.

Figure 3. Histogram of the polygenic risk scores (PRS) constructed using (A) genome-wide significant SNPs or (B) independent SNPs at p<10E-4 reported from the genome-wide association study (GWAS) of general cognitive function (Davies et al., 2018).

B.

6. Structure of Codebook

The Data Codebook contains the codebook documenting all variables in the Harmonized LASIDAD Data. This section explains how to interpret the codebook entries. The figure below shows a typical codebook page; the numbers in circles correspond to comments below.

Descriptive Statistics

R1BPCOMPL	4041	1.01	0.14	1.00

(6) \rightarrow Categorical Variable Code

Value-----------------------------------	R1BPCOMPL	
.d:DK	2	
.h:Not interviewed	12	
.m:Missing	27	
.S:Skipped	14	
1.Fully compliant	400	
2. Prevented from being fully compliant	20	
3.Not fully compliant		16

7) How Constructed

RwBPCOMPL indicates how compliant the respondent was for the blood pressure tests. RwBPCOMPL is coded as follows: 1.Fully compliant, 2.Prevented from fully complying due to illness, pain, or other symptoms or discomfort, and 3.Not fully compliant. Special missing (.s) is employed if the questions were skipped because the respondent did not understand the directions, was unwilling to participate in the blood pressure measurement, or had a rash, a cast, edema, open sores or wounds, or a significant bruise where the blood pressure cuff would be placed. Don't know and other missing responses are assigned special missing codes (.d) and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.
8 Cross-Wave Differences in DAD
No differences known.
$9 \rightarrow$ Differences with LASI
No differences known.
$10 \longrightarrow$ DAD Variables Used
GA122 HOW COMPLIANT DURING TEST

1 Title: The variables are documented in groups according to the concept that
they measure. For example, the variables related to compliance during the blood pressure test corresponds to one wave and to the respondent. The title is often followed by a short description of the concept that is captured.
(2) Variable Names: This entry shows the waves of variables in the group. Not all waves are present for all variables.
(3) Variable Labels: This entry shows the Stata variable labels. As discussed above, the labels typically include the name of the variable, the file on which it is present, and a description of its contents.
(4) Variable Type: This entry indicates the type of variable. It may be continuous (Cont), categorical (Categ), or character (Char).

5 Descriptive Statistics: This entry shows descriptive statistics on each variable. They include the number of nonmissing values, the mean, standard deviation, minimum value, and maximum value.

Categorical Value Codes: This entry shows the value label codes. These are only relevant for categorical variables. The first character(s) of the value labels indicate the value to which each label has been assigned. For example, value " 1 " is mapped into " 1 . fully compliant" (not just "fully compliant"). The entry also indicates which labels are assigned to which variables, and shows frequency tabulations for all categorical variables.

7 How Constructed: This entry provides background on the manner in which variables were constructed.

8 Cross-Wave Differences in DAD: This entry briefly describes differences in question wording or contents between interview waves.

9 Differences with LASI: This entry describes any differences between the LASI version of the variable and the LASI-DAD version of the variable. It is imperative these differences are understood when using harmonized measures. DAD variables that were used to construct the new variables.

7. Distribution and Technical Notes

The Harmonized LASI-DAD Data file is distributed on the Gateway to Global Aging Data (https://g2aging.org/) website along with the original LASI-DAD data. The Harmonized LASI-DAD Data file is made available free of charge but only to users who register with the Gateway to Global Aging Data and agree to the standard conditions. For more information on obtaining access to the LASI-DAD data visit: https://g2aging.org/.

The Harmonized LASI-DAD Data file is distributed in Stata, SAS, SPSS, and tab delimited dataset formats.

This is Release Version \boldsymbol{A} of the Harmonized LASI-DAD Data.

A copy of the Harmonized LASI-DAD dataset and a copy of this Harmonized LASI-DAD Codebook can be obtained on the Gateway to Global Aging Data (https://g2aging.org/) under the Download tab.

8. Data Codebook

Section A: Demographics and Identifiers

Phase I, II, and III

Wave Variable	Label	Type
1	R1PHASE	r1phase: DAD phase

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1PHASE	4096	1.82	0.75	1.00	3.00

Categorical Variable Codes

Value------------------------------------	R1PHASE
1.Phase 1	1592
2. Phase 2	1652
3. Phase 3	852

How Constructed

```
RwPHASE indicates whether the respondent is in phase I, phase II, or phase III of that wave's data collection. This variable is relevant since there were some questions added or dropped between the waves.
```


Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

Interview Status

Wave Variable	Label	Type
1	R1IWSTAT_D	rliwstat_d:w1 Interview status

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1IWSTAT_D	4096	1.01	0.11	1.00	2.00

Categorical Variable Codes

Value	R1IWSTAT_D
1. Both cog and inf	4047
2.Cognitive tests only	49

How Constructed

RwIWSTAT_D indicates the interview status for the types of tests conducted in the current wave of data collection. 1 indicates that both the cognitive tests and informant report were completed. 2 indicates that only the cognitive tests were completed (the respondent does not have an informant interview).

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

RwIWSTAT in the Harmonized LASI indicates the response status of the respondent at each wave (whether the respondent participated in the current wave). In the DAD, RwINSTAT_D indicates the interview status for each type of test: whether only the cognitive tests were completed, only the informant reports were completed, or both the cognitive tests and informant reports were completed.

Interview Date: Year and Month

Wave Variable	Label	Type
1	R1IWY_D	rliwy_d:w1 r year of DAD interview
1	R1IWM_D	rliwm_d:w1 r month of DAD interview
1	R1LASIDY	rllasidy:w1 r \# days between LASI and DAD interview

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1IWY_D	4096	2018.50	0.78	2017.00	2020.00
R1IWM_D	4096	5.48	4.18	1.00	12.00
R1LASIDY	4096	326.37	274.86	16.00	1084.00

How Constructed

```
RWIWY_D and RWIWM_D indicate the respondent's DAD interview year and month, respectively. RwIWY_D and
RwIWM_D are assigned plain missing (.) if the respondent did not participate in the current wave.
RwLASIDY indicates the number of days between the DAD interview and the LASI interview. RwLASIDY is
assigned plain missing (.) if the respondent did not participate in the current wave.
```


Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

Wave 1 Cog:

BEGINTIME TIMESTAMP START

Birth Date: Year and Month

Wave Variable	Label	
1	RABYEAR	rabyear: r birth year
1	RABMONTH	rabmonth \boldsymbol{r} rirth month

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
RABYEAR	4096	1948.47	7.61	1913.00	1959.00
RABMONTH	3569	4.58	3.30	1.00	12.00

How Constructed

```
RABYEAR and RABMONTH are taken from Harmonized LASI.
RABYEAR is the respondent's reported birth year. RABMONTH is the respondent's reported birth month.
RABYEAR and RABMONTH are derived through the face-to-face computer-assisted personal interview (CAPI),
and if missing, RABYEAR is calculated by subtracting the respondent's age from their interview year.
Don't know, refused, and other missing responses to RABYEAR and RABMONTH are assigned special missing .d,
.r, and .m, respectively. RABYEAR and RABMONTH are set to plain missing (.) if the respondent did not
respond to any wave.
```


Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

Age at Interview

Wave Variable	Label
1 R1AGEY	rlagey:w1 rage (years) at LASI-DAD ivw

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1AGEY	4096	69.72	7.60	60.00	105.00

How Constructed

RwAGEY is the respondent's age in years at the time of the LASI-DAD interview. RwAGEY is derived from the LASI-DAD interview month and year and the respondent's birth month and year.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

Gender

Wave Variable	Label	
1	Type	
1	RAGENDER	ragender: r Gender

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
RAGENDER	4096	1.54	0.50	1.00	2.00

Categorical Variable Codes

Value--------------------------------------	RAGENDER
1.Male	1889
2.Female	2207

How Constructed

RAGENDER indicates the respondent's gender. RAGENDER is coded as follows: 1.Male and $2 . F e m a l e$.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

```
No differences known.
```

DAD Variables Used

Education: Categorical Summary

Wave Variable	Label	
1	RAEDUC_L	raeduc_l: r highest level of education

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
RAEDUC_L	4096	1.49	1.98	0.00	9.00
RAEDUCL	4096	1.29	0.53	1.00	3.00
RAEDYRS	4096	3.84	4.67	0.00	21.00
R1ILLITERATE	4096	0.57	0.50	0.00	1.00

Categorical Variable Codes

Valu	RAEDUC L
0:never attended school	$20 \overline{0} 9$
1.less than primary school(standard 1-4)\|	549
2.primary school (standard 5-7)	527
3.middle school (standard 8-9)	314
4.secondary school (standard 10-11)	381
5.higher secondary (standard 12)	124
6.diploma and certificate	27
7.graduate degree (ba,bs)	102
8.post-graduate degree(ma,ms,phd)	40
9.professional course/degree(mbbs,md,mba\|	23
Value-	RAEDUCL
1.less than lower secondary	3085
2.upper secondary \& vocational training	846
3.tertiary	165
Value------------------------------------ ${ }^{\text {R1ILILITERATE }}$	
	1777
1.cannot read or write	2319

How Constructed

RAEDUC_L, RAEDUCL and RAEDYRS are taken from Harmonized LASI.
RAEDUC_L identifies the highest level of education that the respondent has attained. RAEDUC_L is defined using the following codes: 0.Never attended school, 1.Less than primary school (Standard 1-4), 2. Primary school completed (Standard 5-7), 3.Middle school completed (Standard 8-9), 4.Secondary school/matriculation completed, 5.Higher secondary/Intermediate/Senior secondary school completed, 6. Diploma and certificate holders, 7.Graduate degree (B.A., B.Sc., B.Com.) completed, 8.Post-graduate degree (M.A., M.Sc., M.Com.) or above (M.Phil, Ph.D., Post-Doc) completed, 9.Professional course/degree (B.Ed, BE, B.Tech, MBBS, BHMS, BAMS, B. Pharm, BCS, BCA, BBA, LLB, BVSc., B.Arch, M.Ed, ME, M.Tech, MD, M. Pharm, MCS, MCA, MBA, LLM, MVSc., M.Arch, MS, CA, CS, CWA) completed. Don't know, refused, and other missing responses are coded as special missing .d, .r, and .m, respectively. RAEDUC_L is set to plain missing (.) if the respondent did not participate in any wave.

RAEDUCL identifies the level of education completed according to a three-tier harmonized scale which we developed to compare education levels across countries. This harmonized education scale is a simplified version of the 1997 International Standard Classification of Education (ISCED-97) codes. For more information on ISCED codes, see www.uis.unesco.org and the OECD document entitled "Classifying Educational Programmes: Manual for ISCED-97 Implementation in OECD Countries, 1999 Edition". RAEDUCL is coded as follows: 1.Less than lower secondary education, 2. Upper secondary \& vocational training, and 3. Tertiary education. Respondents are assigned a code of 1 if the respondent completed no education, or reported their highest education level as "Less than primary school" or "Primary school completed". Respondents are assigned a code of 2 if the respondent reported their highest education level as "Middle school completed", "Secondary school/matriculation completed", "Higher secondary/Intermediate/Senior secondary completed" or "Diploma and certificate holders". Respondents are assigned a code of 3 if the respondent reported their highest education level as "Graduate degree completed", "Post-graduate degree or above completed", or "Professional course/degree completed". Don't know, refused, and other missing responses are coded as special missing .d, .r, and .m, respectively. RAEDUCL is set to plain missing (.) if the respondent did not participate in any wave.

RAEDYRS indicates the number of years of education that the respondent completed. Don't know, refused, or other missing responses of RAEDYRS are assigned special missing codes .d, .r, .m respectively. RAEDYRS is set to plain missing (.) for respondents who did not respond to any wave.

RwILLITERATE indicates whether the respondent is illiterate. A 1 is assigned if the respondent reported that s/he can not read and writhe from question mmse117. A 0 is assigned if the respondent reported that s/he can read and write.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

Live in Urban or Rural Area

| Wave Variable | Label |
| :---: | :--- | Type

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
H1RURAL	4096	0.62	0.49	0.00	1.00

Categorical Variable Codes

Value-----------------------------------	H1RURAL
0. urban community	1561
1.rural village	2535

How Constructed

```
HwRURAL is taken from Harmonized LASI.
HwRURAL indicates the respondent's living region. This variable is based on the information recorded in
census data. A code of 0 indicates that the respondent is located in an urban region, and a code of 1
indicates that the respondent is located in a rural region. Don't know, refused, or other missing
responses to HwRURAL are assigned special missing codes.d, .r, and .m, respectively. HwRURAL is set to
plain missing (.) for respondents who did not respond to the current wave.
```


Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

Interview Language

Wave Variable	Label	
1	R1LANG_D	rllang_d:w1 r language of interview

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1LANG_D	4096	7.87	6.23	1.00	19.00

Categorical Variable Codes

Value	R1LANG D
1.English	10
2.Hindi	1393
3. Kannada	245
5. Malayalam	349
6.Gujarati	288
7.Tamil	301
8.Punjabi	159
11. Urdu	152
15.Bengali	309
16.Assamese	199
17.Odiya	252
18.Marathi	250
19.Telugu	189

How Constructed

RwLANG_D indicates the language that the respondent used for the interview. RwLANG_D is coded as follows: 1.English, 2.Hindi, 3.Kannada, 4.Konkani, 5.Malayalam, 6.Gujarati, 7.Tamil, 8. Punjabi, 9.Manipuri, 10.Mizo, 11.Urdu, 12.Nepali, 13.Garo, 14.khasi, 15.Bengali, 16.Assamese, 17.Odiya, 18.Marathi, 19.Telugu. Don't know, refused, or other missing responses of RwLANG_D are set to .d, .r and .m, respectively. RwLANG_D is set to plain missing (.) if the respondent did not participate in the current wave.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

LANGUAGE_IW

Cognitive Impairment Risk

| Wave Variable | Label |
| :--- | :--- |\quad Type

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1RISK	4096	0.48	0.50	0.00	1.00

Categorical Variable Codes

Value-------------------------------------	R1RISK
0. No	2115
1. Yes	1981

How Constructed

```
RwRISK is created using LASI main data.
RwRISK indicates whether the respondent was considered at high risk for cognitive impairment based on the
core LASI interview.
A O is coded if the respondent is low risk (mid tertile) or very low risk (top tertile) based on the
total cognition score without number series, in the upper 85% on word recall, in the upper 85% for the
cognition score without number series and without word recall, in the bottom 85% for the missing number
of cognition tests, or if the respondent's Jorm IQ code is less than 3.9.
A 1 is coded is the respondent is high risk (bottom tertile) based on the total cognition score without
number series, in the bottom 15% on word recall, in the bottom 15% for the cognition score without number
series and without word recall, in the upper 15% for the missing number of cognition tests, or if the
respondent's Jorm IQ code is 3.9 or higher.
Note: The cognition score used in determining risk is calculated as follows: rowtotal(rldy rlmo rlyr rldw
rlplace rlcity rlstreet rldist rlimrc rldlrc r1verbf rlobject1 rlobject2 r1bwc20 r1bwc100 r1ser7 rlcompu1
rlcompu2 r1task r1write rlaction r1draw1 r1draw2).
```


Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

Location

Wave Variable	Label	Type
1 R1LOCATION	rllocation:w1 r location of interview	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1LOCATION	4096	1.92	0.27	1.00	2.00

Categorical Variable Codes

Value-------------------------------------	R1LOCATION
1.Hospital	323
2. Home visit	3773

How Constructed

RwLOCATION indicates whether the interview was conducted at a hospital or at the home of the respondent. 1 indicates that the interview was conducted at a hospital. 2 indicates that the interview was a home visit. Special missing .r is assigned if the respondent refused to be interviewed.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

	Weights
Wave Variable	Label
1 R1WTRESP	r1wtresp:w1 r post-stratification weight

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1WTRESP	4096	1.00	0.72	0.07	2.77

How Constructed

RwWTRESP is the person-level cross-sectional weight. The weight is provided to make the data a nationally representative sample.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

[^3]
Interviewer Observation

Wave Variable	Label	Type
1	R1OBSNOISE	rlobsnoise:w1 Interviewer observation - noise in R home
1	R1OBSODOR	rlobsodor:w1 Interviewer observation - odor in R home
1	R1OBSAIR	rlobsair:w1 Interviewer observation - air pollution in R hom Categ
1	R1OBSHOUSE	rlobshouse:w1 Interviewer observation - upkeep house in R ho Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1OBSNOISE	800	2.18	1.02	1.00	5.00
R1OBSODOR	800	2.00	0.97	1.00	5.00
R1OBSAIR	800	1.73	0.85	1.00	5.00
R1OBSHOUSE	800	2.47	1.13	1.00	5.00

Categorical Variable Codes

Value	R1OBSNOISE
.m:Missing	16
.r:Refuse	38
.x:Not in phase/wave	3242
1. Quiet	223
2.2	314
3.3	184
4.4	53
5.Noisy	26
Value-	R1OBSODOR
.m:Missing	16
.r:Refuse	38
.x:Not in phase/wave	3242
1. No smell	286
2.2	297
3.3	172
4.4	23
5.Strong smell	22
Value-	R1OBSAIR
.m:Missing	16
.r:Refuse	38
. x Not in phase/wave	3242
1.No air pollution	395
2.2	254
3.3	126
4.4	23
5.Strong air pollution	2
Value-	R1OBSHOUSE
.m:Missing	16
.r:Refuse	38
.x:Not in phase/wave	3242
1.Very well kept	191
2.2	225
3.3	239
4.4	108

How Constructed

Variables in this section refer to the interviewer's observations about various issues within the respondent's inside home environment. These questions were asked starting in phase 3 of data collection.

RwOBSNOISE indicates the interviewer's ranking of the noise level in the respondent's inside home environment, and ranges from 1 to 5. A 1 indicates that the noise level is quiet and a 5 indicates that the noise level is noisy.

RwOBSODOR indicates the interviewer's ranking of the odor in the respondent's inside home environment, and ranges from 1 to 5. A 1 indicates that there is no smell inside the respondent's home environment and a 5 indicates that there is a strong smell inside the home.

RwOBSAIR indicates the interviewer's ranking of the air pollution in the respondent's inside home environment, and ranges from 1 to 5. A 1 indicates that there is no air pollution and a 5 indicates that there is strong air pollution in the respondent's inside home environment.

RwOBSHOUSE indicates the interviewer's ranking of how well kept the respondent's inside home environment is in, and ranges from 1 to 5. A 1 indicates that the respondent's inside home environment is very well kept and a 5 indicates that the inside home environment is very poorly kept and needs major repairs.

Refused or missing responses are coded as special missing (.r) or (.m), respectively. Responses coded as special missing (.x) indicate that the respondents from phase 1 and phase 2 of data collection were not asked these questions.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

These questions are not asked in the Harmonized LASI.

DAD Variables Used

iwer observation noise
iwer observation odor
iwer observation odor
iwer observation upkeep house

Section B: Cognition

Date Naming

Wave	Variable	Label	Type
1	R1MO	r1mo:w1 R cognition date naming-month(0-1)	Categ
1	R1FMO	rlfmo:impflag w1 r whether imputed value	Categ
1	R1YR	rlyr:w1 R cognition date naming-year(0-1)	Categ
1	R1FYR	rlfyr:impflag w1 r whether imputed value	Categ
1	R1DW	r1dw:w1 R cognition date naming-day of week(0-1)	Categ
1	R1FDW	rlfdw:impflag w1 r whether imputed value	Categ
1	R1SEASON	rlseason:w1 R cognition date naming-season(0-1)	Categ
1	R1FSEASON	rlfseason:impflag w1 r whether imputed value	Categ
1	R1DATE	rldate:w1 R cognition date naming-date(0-1)	Categ
1	R1FDATE	rlfdate:impflag w1 r whether imputed value	Categ
1	R1ORIENT_T5	rlorient_t5:w1 R orientation to time (0-5)	Categ
1	R1ORIENT_T4	rlorient_t4:w1 R orientation to time (0-4)- comparable w LASI	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1mo	4096	0.81	0.39	0.00	1.00
R1FMO	4096	0.19	0.63	0.00	4.00
R1YR	4096	0.44	0.50	0.00	1.00
R1FYR	4096	0.57	0.99	0.00	4.00
R1DW	4096	0.81	0.39	0.00	1.00
R1FDW	4096	0.16	0.64	0.00	4.00
R1SEASON	4096	0.83	0.37	0.00	1.00
R1FSEASON	4096	0.13	0.52	0.00	4.00
R1DATE	4096	0.61	0.49	0.00	1.00
R1FDATE	4096	0.34	0.80	0.00	4.00
R1ORIENT_T5	4096	3.51	1.46	0.00	5.00
R1ORIENT_T4	4096	2.67	1.30	0.00	4.00

Categorical Variable Codes

| Value------------------------------------- \| | R1MO |
| :--- | :--- | ---: |
| 0.Incorrect | 784 |

1.Correct	\|	3312
Value		R1FMO
0. Not imputed		3628
1. Dont know	\|	325
2.Missing	,	6
3. Not Assessed	\|	110
4.Refused	\|	27
Value		R1YR
0 . Incorrect		2275
1. Correct	\|	1821
Value		R1FYR
0. Not imputed	\|	2750
1. Dont know	\|	867
2.Missing	\|	6
3. Not Assessed	\|	440
4.Refused	\|	33
Value		R1DW
0. Incorrect		777
1. Correct	\|	3319
Value-		R1FDW
0. Not imputed	\|	3779
1. Dont know	\|	150
2.Missing	\|	6
3. Not Assessed	\|	135
4.Refused	\|	26
Value		R1SEASON
0. Incorrect	I	682
1.Correct	\|	3414
Value		R1FSEASON
0. Not imputed	I	3767
1. Dont know	\|	235
2.Missing	\|	6
3. Not Assessed	\|	68
4.Refused	\|	20
Value		R1DATE
0. Incorrect	\|	1598
1. Correct	\|	2498
Value		R1FDATE
0. Not imputed	I	3247
1. Dont know	\|	589
2.Missing	\|	6
3.Not Assessed	\|	226
4.Refused	\|	28
Value		ORIENT_T5
0	\|	148
1	\|	332
2	\|	552
3	\|	736
4	\|	920
5	\|	1408
Value		ORIENT_T4
0	\|	323
1	\|	544
2	\|	769
3	।	972
4	\|	1488

How Constructed

The following variables indicate whether the respondent was able to report today's date correctly.
RwMO indicates whether a respondent was able to report the month correctly. RwYR indicates whether a respondent was able to report the year correctly. RwDW indicates whether a respondent was able to report the day of the week correctly. RwSEASON indicates whether a respondent was able to report the season of the year correctly. RwDATE indicates whether a respondent was able to report the date correctly.

RwMO, RwYR, RwDW, RwSEASON, and RwDATE are coded as 1 if the respondent correctly reports the value. RwMO, RwYR, RwDW, RwSEASON, and RwDATE are coded as 0 if the respondent incorrectly reports the value. Don't know responses are coded as special missing (.d). Refused responses are coded as special missing codes (.r). Other missing is assigned special missing (.m). "Not Assessed" responses are coded as special missing (.n). "Not assessed" is assigned when the test was not administered due to a respondent's physical disability or technical issues.

RwORIENT T5 is the summary measure for RwYR, RwSEASON, RwDATE, RwDW, and RwMO ranging from 0 to 5. 5 indicates all correct answers. If RwYR, RwSEASON, RwDATE, RwDW, and RwMO are assigned special missing (.d), (.n), (.r), or (.m), RwORIENT_T5 is assigned special missing (.d), (.n), (.r), or (.m), respectively.

RwORIENT T4 is the summary measure for RwYR, RwDATE, RwDW, and RwMO ranging from 0 to 4.4 indicates all correct answers. This measure is comparable with the measures from the main LASI study. If RwYR, RwDATE, RwDW, and RwMO are assigned special missing (.d), (.n), (.r), or (.m), RwORIENT_T4 is assigned special missing (.d), (.n), (.r), or (.m), respectively.

RwFMO, RwFYR, RwFDW, RwFSEASON, and RwFDATE are flag variables, indicating whether the corresponding variable was assigned an imputed value. The flag variables are coded as follows: 0.Not imputed, $1 . D o n ' t$ know, 2.Missing, 3.Not Assessed, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

No differences known.

Differences with Harmonized LASI

In the Harmonized LASI, only 4 questions were asked: day of month, month, year, and day of week (RwDW, RwMO, RwYR, and RwDW). In DAD, there are 5 questions: day of month, month, year, date, and season (RwDW, RwMO, RwYR, RwDATE, and RwSEASON).

DAD Variables Used

```
Wave 1 Cog:
```

 MMSE102_YEAR CORRECT YEAR
 MMSE103_SEASON CURRENT SEASON OF THE YEAR--CORRECT
 MMSE104_DATE DATE CORRECT
 MMSE105_DAY CURRENT DAY OF THE WEEK--CORRECT
 MMSE106_MONTH CURRENT MONTH--CORRECT

Location Naming

Wave	Variable	Label	Type
1	R1STATE	r1state:w1 R cognition place naming-state(0-1)	Categ
1	R1FSTATE	rlfstate:impflag wl r whether imputed value	Categ
1	R1CITY	rlcity:w1 R cognition place naming-city(0-1)	Categ
1	R1FCITY	rlfcity:impflag w1 r whether imputed value	Categ
1	R1FLOOR	rlfloor:w1 R cognition place naming-floor(0-1)	Categ
1	R1FFLOOR	rlffloor:impflag w1 r whether imputed value	Categ
1	R1NAME	rlname:w1 R cognition place naming-name of place/hospital(0-	Categ
1	R1FNAME	rlfname:impflag w1 r whether imputed value	Categ
1	R1ADDRESS	rladdress:w1 R cognition place naming-address(0-1)	Categ
1	R1FADDRESS	rlfaddress:impflag w1 r whether imputed value	Categ
1	R1ORIENT_P5	rlorient_p5:w1 R orientation to place(0-5)	Categ
1	R1ORIENT_P4	rlorient_p4:w1 R orientation to place(0-4)-comparable w LASI	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1STATE	4096	0.59	0.49	0.00	1.00
R1FSTATE	4096	0.34	0.80	0.00	4.00
R1CITY	4096	0.94	0.23	0.00	1.00
R1FCITY	4096	0.08	0.46	0.00	4.00
R1FLOOR	4096	0.90	0.30	0.00	1.00
R1FFLOOR	4096	0.10	0.50	0.00	4.00
R1NAME	4096	0.77	0.42	0.00	1.00
R1FNAME	4096	0.20	0.63	0.00	4.00
R1ADDRESS	4096	0.86	0.34	0.00	1.00
R1FADDRESS	4096	0.16	0.62	0.00	4.00
R1ORIENT_P5	4096	4.07	1.15	0.00	5.00
R1ORIENT_P4	4096	3.17	1.03	0.00	4.00

Categorical Variable Codes

Value	R1STATE
0. Incorrect	1671

How Constructed

The following variables indicate whether the respondent was able to correctly report his/her current location.

RwSTATE indicates whether a respondent was able to report the state he/she were in when interviewed. RwCITY indicates whether a respondent was able to report the city or village he/she were in at the time of the interview. RwFLOOR indicates whether a respondent was able to report which building floor he/she were on when interviewed. For interviews conducted at the respondent's home, RwFLOOR indicates whether the respondent was able to answer the question "What is this place used for?". RwNAME indicates whether a respondent was able to report the name of the hospital he/she were in during the interview. For interviews conducted at the respondent's home, RwNAME indicates whether a respondent was able to report the name of his/her district. RwADDRESS indicates whether a respondent was able to report his/her home address. If the respondent did not answer or did not know, he/she were asked for the name of the area of town/village, house number, or any landmark. If the respondent correctly identified the street name, this was coded as 1 for correct; the full address was not required.

RwSTATE, RwCITY, RwFLOOR, RwNAME, and RwADDRESS are coded as 1 if the respondent answered correctly and as 0 if the respondent answered incorrectly. Don't know responses are coded as special missing (.d). Refused responses are coded as special missing codes (.r). Other missing is coded as special missing (.m). "Not Assessed" responses are coded as special missing (.n). "Not assessed" is assigned when the test was not administered because of a respondent's physical disability or technical issues.

RwORIENT_P5 is the summary measure for RwSTATE, RwCITY, RwFLOOR, RwNAME, and RwADDRESS, ranging from 0 to 5. 5 indīcates that all answers were correct. If RwSTATE, RwCITY, RwFLOOR, RwNAME, and RwADDRESS are coded as (.d) or (.n), RwORIENT_P5 is coded as (.d) or (.n), respectively. If RwSTATE, RwCITY, RwFLOOR, RwNAME, and RwADDRESS are coded as (.r), RwORIENT_P5 is assigned (.r).

RwORIENT_P4 is the summary measure for RwSTATE, RwCITY, RwNAME, and RwADDRESS, ranging from 0 to 4.4 indicates that all answers were correct. This measure is comparable with the measures from the main LASI study. If RwSTATE, RwCITY, RwNAME, and RwADDRESS are coded as (.d) or (.n), RwORIENT_P4 is coded as (.d) or (.n), respectively. If RwSTATE, RwCITY, RwNAME, and RwADDRESS are coded as (.r), RwORIENT_P4A is assigned (.r).

RwFSTATE, RwFCITY, RwFFLOOR, Rw1FNAME, and RwFADDRESS are flag variables, indicating whether the corresponding variable has an imputed value assigned. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In HRS HCAP, 5 questions were asked: state, county, city/town, floor of the building and address of the place. In DAD, similar questions were asked: state, city/village, floor of the building, name of the hospital or home address. As DAD study interviews were conducted in hospitals or in respondents' homes, either the name of the hospital or home address was asked.

Differences with Harmonized LASI

In the Harmonized LASI interview, only 4 questions were asked: current place, city, street and district where the respondent lives (RwPLACE, RwCITY, RwSTREET, and RwDIST). In the DAD, 5 questions were asked: current place, city, state, district/town/village, and floor (RwNAME, RwCITY, RwSTATE, RwADDRESS, and RwFLOOR).

DAD Variables Used

MMSE107_STATE
MMSE108 ${ }^{-}$CITY
MMSE109-FLOOR
MMSE109_ELOOR_HOME
MMSE110_NAME

CURRENT STATE R IN IS--CORRECT
CURRENT CITY/VILLAGE--CORRECT
CURRENT FLOOR OF BLDG R IS ON
CURRENT FLOOR--CORRECT -- CHANGED TO WHAT IS
CURRENT ADDRESS--CORRECT -- CHANGED TO DISTRI

```
MMSE110_NAME_HOME CURRENT ADDRESS--CORRECT -- CHANGED TO DISTRI
MMSE111_ADDRESS
HOME ADDRESS
```


3-Word Recall

Wave	Variable	Label	Type
1	R1TRIAL1	r1triall:w1 R 3-word recall trial 1(0-3)	Cont
1	R1FTRIAL1	rlftriall:impflag w1 r whether imputed value	Categ
1	R1TRIAL2	r1trial2:w1 R 3-word recall trial 2(0-3)	Cont
1	R1FTRIAL2	r1ftrial2:impflag w1 r whether imputed value	Categ
1	R1TRIAL3	r1trial3:w1 R 3-word recall trial 3(0-3)	Cont
1	R1FTRIAL3	rlftrial3:impflag w1 r whether imputed value	Categ
1	R1IMRC3	rlimrc3:w1 R immediate word recall(0-3)	Categ
1	R1FIMRC3	rlfimrc3:impflag w1 r whether imputed value	Categ
1	R1DLRC3	r1dlrc3:w1 R delayed word recall (0-3)	Cont
1	R1FDLRC3	r1fdlrc3:impflag w1 r whether imputed value	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1TRIAL1	4096	2.74	0.61	0.00	3.00
R1FTRIAL1	4096	0.05	0.44	0.00	4.00
R1TRIAL2	752	2.41	0.93	0.00	3.00
R1FTRIAL2	4096	8.97	4.22	0.00	11.00
R1TRIAL3	273	4096	10.23	1.15	2.72
R1FTRIAL3	4096	4096	0.05	0.61	0.00
R1IMRC3	1.96	0.04	0.00	3.00	
R1FIMRC3	0.09	0.50	0.00	11.00	
R1DLRC3	4096		0.00	3.00	
R1FDLRC3	4096				

Categorical Variable Codes

Value	R1FTRIAL1
0. Not imputed	4021
1. Dont know	22
2.Missing	6
4.Refused	47
Value	R1FTRIAL2
O. Not imputed	695
1. Dont know	28
2.Missing	6
4.Refused	49

11.Skipped	I	3318
Value	\|	R1FTRIAL3
0. Not imputed	\|	219
1. Dont know	\|	33
2.Missing	I	6
4.Refused	\|	51
11.Skipped	\|	3787
Value	\|	R1IMRC3
0	I	80
1	I	136
2	I	536
3	I	3344
Value	\|	R1FIMRC3
0. Not imputed	\|	4021
1. Dont know	\|	22
2.Missing	I	6
4.Refused	\|	47
Value-	I	R1FDLRC3
0. Not imputed	\|	3903
1. Dont know	I	129
2.Missing	I	6
3. Not Assessed	I	3
4.Refused	\|	55

How Constructed

RwTRIAL1, RwTRIAL2, and RwTRIAL3 indicate a series of consecutive trials that ask the respondent to repeat back three objects named by the interviewer.

RwTRIAL1 is the first trial in which interviewers name three objects and ask the respondent to repeat each object back to them. The respondents are asked to remember what the objects are because they will be asked to name them again in a few minutes. The three objects are "Mango", "Chair", and "Coin". Interviewers record the number of correct words repeated with values ranging from 0-3 for correct words recalled.

RwTRIAL2 and RwTRIAL3 indicate the second and third trial in which interviewers name the same three objects as in trial 1. If the respondent correctly names all three objects in the first trial, trial 2 is skipped. If the respondent correctly names all three objects in the first or second trial, trial 3 is skipped. Otherwise, RwTRIAL2 and RwTRIAL3 follow the same procedure as RwTRIAL1.

RwTRIAL1, RwTRIAL2, and RwTRIAL3 range from 0-3, indicating the number of correct responses. Don't know responses are coded as special missing (.d). Refused responses are coded as special missing codes (.r). If the question is skipped in RwTRIAL2 or RwTRIAL3 because the respondent correctly answered all words in the previous trial, special missing (.s) is assigned. Other missing is assigned as (.m).

RwIMRC3 provides a summary measure for immediate word recall. The first word recall trial, RwTRIAL1, is used for this variable. Interviewers record the number of correct words repeated with values ranging from 0-3 for correct words recalled. Don't know responses are coded as special missing (.d). Refused responses are coded as special missing codes (.r). Other missing is as (.m).

RwDLRC3 provides a measure for delayed word recall. RwDLRC3 is the number of words from the 3-word immediate recall list that were recalled correctly after a delay, in which other survey questions were asked and answered. Specifically, respondents were asked for the three objects they were asked to remember previously. Interviewers record the number of correct words repeated after the delay. Don't know responses are coded as special missing (.d). Refused is coded as special missing codes (.r). Other missing is assigned special missing (.m). "Not assessed" responses are coded as special missing (.n). "Not assessed" is assigned when the test was not administered because of the respondent's physical disability or technical issues.

RwFTRIAL1, RwFTRIAL2, RwFTRIAL3, RwFIMRC3 and RwFDLRC3 are flag variables, indicating whether the corresponding variable has an imputed value assigned. RwFTRIAL1 is coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, and 4.Refused. RwFTRIAL2 and RwFTRIAL3 are coded as follows: The flag variables

```
are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 4.Refused, and 11.Skipped. RwFIMRC3 is
```

coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, and 4. Refused. RwFDLRC3 is coded as follows:
0. Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, and 4.Refused. The original missing value is
otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In DAD, we used the HMSE word recall list "Mango, Chair, Coin" instead of HRS HCAP word recall list "Apple, Table, Penny". In the HRS HCAP, the interviewer also records the number of trials as H1RMSE11T.

Differences with Harmonized LASI

In the LASI study, the MMSE three word recall test is not administered.

DAD Variables Used

```
MMSE112 TRIAL1
MMSE112_TRIAL2
MMSE112_TRIAL3
MMSE114_DELAYED
```

TRIAL 1
TRIAL 2
TRIAL 3
MMSE114 Delayed

Serial 7's

Wave Variable	Label	Type
1	R1SER7	rlser7:w1 R serial $7 \mathrm{~s}(0-5)$
Categ		
1	R1FSER7	rlfser7:impflag w1 r whether imputed value

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1SER7	2713	2.30	1.80	0.00	5.00
R1FSER7	4096	2.31	2.80	0.00	6.00

Categorical Variable Codes

Value	R1SER7
.c:Cannot Count	1383
0	575
1	560
2	389
3	368
4	315
5	506
Value	R1FSER7
0. Not imputed	2289
1. Dont know	155
2.Missing	24
4.Refused	245
6. Cannot Count	1383

How Constructed

RwSER7 provides the number of correct subtractions in the serial 7's test. This test asks the individual to subtract 7 from the prior result, beginning with 100 , for five trials. Correct subtractions are based on the prior number given, so that even if one subtraction is incorrect, subsequent trials are evaluated on the given (perhaps wrong) answer. Valid scores are 0-5. If the respondent cannot count, special missing (.c) is assigned. Don't know responses are coded as (.d). Refused responses are assigned special missing code (.r). Other missing is assigned special missing (.m).

RwFSER7 is a flag variable, indicating whether the corresponding variable has an imputed value. The flag variable is coded as follows: 0. Not imputed, 1.Don't know, 2.Missing, 4.Refused, and 6.Cannot Count. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

This test in DAD was not conducted in the HRS HCAP. Instead, the HRS HCAP uses a Number Series test. Although the Number Series was included in the main LASI, a large portion of respondents refused to answer the questions; hence we decided to drop the Number Series from DAD and use the Serial 7 's test instead.

Differences with Harmonized LASI

No differences known.
DAD Variables Used

SS_1	subtraction from 100
SS_1NUMBER	7 Subtracted from 100
SS_2	2nd time subtraction
SS_3	3rd time subtraction
SS_4	4th time subtraction
SS_5	5th time subtraction

Backward Day Naming

Wave Variable	Label	Type
1	R1BACKWARD_D	r1backward_d:w1 R backward day naming (0-5)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1BACKWARD_D	4096	3.30	2.15	0.00	5.00
R1FBACKWAR_D	4096	0.23	0.81	0.00	4.00

Categorical Variable Codes

Value	\| R1BACKWARD_D
0	$9 \overline{7} 6$
1	248
2	173
3	152
4	288
5	2259
Value----------------------------------\|R1FBACKWAR_D	
0. Not imputed	3684
1. Dont know	200
2.Missing	60
4.Refused	152

How Constructed

RwBACKWARD_D indicates the number of days of the week the respondent was able to correctly list in backwards order, starting from Sunday. While there are 6 possible answers, RwBACKWARD_D recodes 6 as 5 and thus, ranges from 0-5. Each day in the sequence was given one point if correctly reported. If the respondent gave the wrong response for the first day but a logically correct sequence, one point was deducted from the total score.

Don't know responses are coded as special missing (.d). Refused responses are coded as special missing (.r). Other missing responses are coded as (.m).

RwFBACKWAR_D is a flag variable, indicating whether the corresponding variable has an assigned imputed value. The flag variable is coded as follows: 0.Not imputed, 1.Don't Know, 2.Missing, and $4 . R e f u s e d . ~ T h e ~$ original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In DAD, given the illiteracy in the older population, we asked respondents to say days of the week backwards staring from Sunday. In HRS HCAP, respondents were given the word "WORLD" and were asked to spell it backwards.

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

S_1	LIST Backwards
MMSE113 CORRBACKWARDS 2	LIST Backwards
MMSE113 CORRBACKWARDS 3	LIST Backwards
MMSE113_CORRBACKWARDS_4	LIST Backwards
MMSE113_CORRBACKWARDS	LIST Backwards
MMSE113 CORRBACKWARDS	LIST Backwards
MMSE113 CORRBACKWARDS	LIST Backwards

Object Naming

Wave Variable	Label		Type
1	R1OBJECT1	rlobject1:w1 R naming lst object correct-watch(0-1)	Categ
1	R1FOBJECT1	rlfobject1:impflag w1 r whether imputed value	Categ
1	R1OBJECT2	rlobject2:w1 R naming 2 nd object correct-pencil(0-1)	Categ
1	R1FOBJECT2	rlfobject2:impflag w1 r whether imputed value	Categ
1	R1OBJECT	rlobject:w1 R total object naming (0-2)	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1OBJECT1	4096	0.98	0.15	0.00	1.00
R1FOBJECT1	4096	0.06	0.45	0.00	4.00
R1OBJECT2	4096	0.84	0.36	0.00	1.00
R1FOBJECT2	4096	0.06	0.45	0.00	4.00
R1OBJECT	4096	1.82	0.42	0.00	2.00

Categorical Variable Codes

Value-------------------------------------	R1OBJECT1
0. Incorrect	99
1. Correct	3997

Value	R1FOBJECT1
0. Not imputed	4007
1. Dont know	21
2.Missing	6
3. Not Assessed	29
4.Refused	33

Value--	R1OBJECT2
0. Incorrect	647
1. Correct	3449

Value----------------------------------	R1FOBJECT2
0. Not imputed	4010
1. Dont know	17
2. Missing	6
3. Not Assessed	29
4. Refused	34

		R10BJECT
0		56
1		634
2		3406

How Constructed

RwOBJECT1 indicates whether the respondent properly identified a watch. For this task, interviewers are instructed to point to their watch (not dial) and ask what the watch is called. RwOBJECT2 indicates whether the respondent properly identified a pencil. For this task, interviewers are instructed to show the respondent their pencil and ask what the pencil is called. Don't know responses are coded as special

```
missing (.d). Refused responses are assigned special missing code (.r). Other missing is coded as special
missing (.m). "Not Assessed" responses are coded as special missing (.n). "Not assessed" is assigned when
the test was not administered because of the respondent's physical disability or technical issues.
RwOBJECT indicates the number of correct responses between RwOBJECT1 and RwOBJECT2. RwOBJECT ranges from
0-2. If RwOBJECT1 or RwOBJECT2 is assigned special missing (.d) or (.n), RwOBJECT is coded as special
missing (.d) or (.n). Refused responses are assigned special missing code (.r). Other missing is coded as
special missing (.m).
RwFOBJECT1 and RwFOBJECT2 are flag variables, indicating whether the corresponding variable was assigned an imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, and 4.Refused. The original missing value is otherwise included.
```


Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

No differences known.

Differences with Harmonized LASI

In DAD, the respondent is asked to identify two specific objects (watch and pencil). Unlike DAD, LASI asks the respondent to name two random objects that the interviewer points to.

DAD Variables Used

```
MMSE115 PENCIL PENCIL IDENTIFICATION--CORRECT
MMSE115_WATCH WATCH ID--CORRECT
```


Whether able to repeat a phrase

Wave Variable	Label	Type
1	R1REPEAT	r1repeat:w1 R able to repeat a phrase(0-1)
1	R1FREPEAT	r1frepeat:impflag w1 r whether imputed value

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1REPEAT	4096	0.88	0.33	0.00	1.00
R1FREPEAT	4096	0.11	0.59	0.00	4.00

Categorical Variable Codes

Value	R1REPEAT
0. Incorrect	498
1. Correct	3598
Value	R1FREPEAT
0. Not imputed	3933
1. Dont know	40
2.Missing	6
3. Not Assessed	66
4.Refused	51

How Constructed

RwREPEAT indicates whether the respondent is able to repeat a phrase back to the interviewer. This phrase is "Neither this nor that". The respondent is allowed only one attempt to repeat the phrase. The interviewer cannot repeat the phrase if the respondent has already attempted the phrase. If the respondent struggles to hear the phrase, the interviewer can repeat the phrase up to five times. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing code (.r). Other missing is assigned special missing (.m). "Not Assessed" responses are coded as special missing (.n). "Not assessed" is assigned when the test was not administered because of the respondent's physical disability or technical issues.

RwFREPEAT is a flag variable, indicating whether the corresponding variable has an imputed value assigned. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In DAD, we used the HMSE phrase "Neither this nor that" instead of HRS HCAP's MMSE phrase "No if's, and's, or buts".

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

Whether able to Follow Command

Wave	Variable	Label	Type
1	R1COPYFOL	rlcopyfol:w1 R able to follow example and close eyes (0-1)	Categ
1	R1FCOPYFOL	rlfcopyfol:impflag w1 r whether imputed value	Categ
1	R1READFOL	rlreadfol:w1 R able to read command and close eyes (0-1)	Categ
1	R1FREADFOL	rlfreadfol:impflag w1 r whether imputed value	Categ
1	R1COMBFOL	rlcombfol:w1 R able to read/follow and close eyes(0-1)	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1COPYFOL	2355	0.82	0.38	0.00	1.00
R1FCOPYFOL	4096	4.73	5.40	0.00	11.00
R1READFOL	1741	0.42	0.49	0.00	1.00
R1FREADFOL	4096	7.96	6.91	0.48	0.00

Categorical Variable Codes

Value	R1COPYFOL
.s:Skipped	1741
0. Incorrect	421
1. Correct	1934
Value-	R1FCOPYFOL
0. Not imputed	2270
1. Dont know	24
2.Missing	6
4.Refused	60
11.Skipped	1736
Value	R1READFOL
.l:Cannot read and write	2355
0. Incorrect	1003
1. Correct	738
Value-	R1FREADFOL
0. Not imputed	1721
1. Dont know	1
2.Missing	41
3. Not Assessed	8
4.Refused	6
14.Cannot read/write	2319
Value--	R1COMBFOL
$0 . I n c o r r e c t$	1424
1.Correct	2672

How Constructed

The following variables indicate whether the respondent can follow an instruction. The respondent's ability to follow an instruction was assessed in two ways depending on literacy. The original MMSE asks the respondent to read. For illiterate respondents, the HHSE replaces this task with a copying task.

RwCOPYFOL indicates whether the respondent is able to perform a task that is given to them by gestures. This task is only given to respondents who report that they cannot read and write. If the respondent cannot read and write, the respondent is asked to mimic the interviewer's gesture. The interviewer closes his/her eyes for 3 seconds. If the respondent does not close his/her eyes, a 0 is coded for incorrect. If the respondent closes his/her eyes, a 1 is coded for correct. Special missing (.s) is assigned if this task is skipped because the respondent reported that he/she can read and write. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing code (.r). Other missing is assigned special missing (.m). "Not Assessed" responses are coded as special missing (.n). "Not Assessed" option was marked only if the respondent has some physical disability that prevents him/her from performing the test, e.g. if the respondent is blind.

RwREADFOL indicates whether the respondent is able to perform a task that is given to them through text. This task is only given to respondents who report that they can read and write. If respondents can read and write, they are asked to read the words on a page and do as it says. The page says, "Close your eyes". If the respondents do not close their eyes, a 0 is coded for incorrect. If the respondents close their eyes, a 1 is coded for correct. Special missing (.l) is assigned if this task was skipped because the respondent reported they cannot read and write. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing code (.r). Other missing is assigned special missing (.m). "Not Assessed" responses are coded as special missing (.n). "Not assessed" is assigned when the test was not administered because of the respondent's physical disability or technical issues.

RwCOMBFOL indicates whether the respondent is able to perform a task that is given to them by text or gesture. RwCOMBFOL is derived from RwCOPYFOL and RwREADFOL. If respondents can read and write, they are asked to read the words on a page and do as it says. The page says, "Close your eyes". If the respondents cannot read and write, they are asked asked to mimic the interviewer's gesture. The interviewer closes his/her eyes for 3 seconds. If the respondents do not close their eyes after reading the text or observing the gesture, $a \operatorname{is~coded~for~incorrect.~If~the~respondent~closed~their~eyes,~a~} 1$ is coded for correct. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing code (.r). Other missing is assigned special missing (.m). "Not Assessed" responses are coded as special missing (.n). "Not assessed" is assigned when the test was not administered because of the respondent's physical disability or technical issues.

RwFCOPYFOL and RwFREADFOL are flag variables, indicating whether the corresponding variable has an assigned imputed value. RwFCOPYFOL is coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 4.Refused, and 11.Skipped. RwFREADFOL is coded as follows: 0.Not imputed, 1.Don't know, $2 . \mathrm{Missing}$, $3 . \mathrm{Not}$ Assessed, 4. Refused, and 14.Cannot read/write. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In HRS HCAP, respondents were only asked to read and follow the instructions, while DAD first asked the respondent if he/she can read and write and had an alternate test for illiterates to see and copy the actions.

Differences with Harmonized LASI

In the Harmonized LASI, respondents were asked to read a sentence on the paper and act out the action. If the respondents were illiterate, the question was skipped. In the DAD, illiterate respondents were asked to copy the action that the interviewer performed. If respondents could read or write, the question was asked the same way in both studies.

DAD Variables Used

MMSE117
MMSE117_COPY
can respondent Read and Write COPY

Executive Functioning

Wave Variable	Label	Type
1	R1EXECU	rlexecu:w1 R cognition executive function-able to do 3-stage Categ
1	R1FEXECU	rlfexecu:impflag w1 r whether imputed value

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1EXECU	4096	2.58	0.72	0.00	3.00
R1FEXECU	4096	0.07	0.50	0.00	4.00

Categorical Variable Codes

How Constructed

RwEXECU counts the number of correct actions the respondent follows regarding folding a piece of paper. The respondent is asked to do the following three actions: (1) take the paper in his/her right hand, (2) fold the paper in half with both hands, and (3) give the paper back to the interviewer. The interviewer can read the instructions only once. The interviewer can repeat the instructions only if the respondent did not hear the instructions.

RwEXECU ranges from 0-3, with 3 indicating that all 3 tasks were completed. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing code (.r). Other missing is assigned special missing (.m). "Not Assessed" responses are assigned special missing (.n). "Not Assessed" option was marked only if the respondent has some physical disability that prevents him/her from performing the test, e.g. if the respondent has hemiplegia.

RwFEXECU is a flag variable, indicating whether the corresponding variable has an imputed value assigned. The flag variable is coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In HRS HCAP, interviewer asked respondents to "take the paper in your right hand, fold the paper in half with both hands, and put the paper down on your lap". In the DAD study, we asked respondents to "take the paper in your right hand, fold the paper in half with both hands" and give the paper back to the interviewer.

Differences with Harmonized LASI

In the Harmonized LASI study, the interviewer asks the respondent to "turn it over, fold it in half, and give it back."

DAD Variables Used

MMSE118_BACK	GIVES PAPER BACK
MMSE118_FOLDS	FOLDS PAPER
MMSE118_HAND	HANDEDNESS

Writing or Saying Sentence

Wave Variable	Label	Type
1	R1SAY	rlsay:w1 R able to say a sentence (0-1)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1SAY	2355	0.82	0.38	0.00	1.00
R1FSAY	4096	4.72	5.41	0.00	11.00
R1WRITE	1741	0.92	0.26	0.00	1.00
R1FWRITE	4096	7.99	0.88	0.00	14.00
R1SENTEN	4096	0.34	0.00	1.00	

Categorical Variable Codes

Value	R1SAY
.s:Skipped	1741
0. Incorrect	417
1. Correct	1938
Value-	R1FSAY
0. Not imputed	2260
1. Dont know	55
2.Missing	6
4.Refused	39
11.Skipped	1736
Value-	R1WRITE
.l:Cannot read and write	2355
0. Incorrect	132
1. Correct	1609
Value-	R1FWRITE
0. Not imputed	1678
1. Dont know	11
2.Missing	41
3. Not Assessed	22
4. Refused	25
14.Cannot read/write	2319
Value-	R1SENTEN
0. Incorrect	549
1. Correct	3547

How Constructed

RwSAY indicates whether a respondent can tell the interviewer something about his/her house. This is only asked if the respondent reports that he/she cannot read and write. A coded value of 1 indicates that the
respondent was able to say one full sentence about his/her house. A coded value of 0 indicates that the respondent could not say one full sentence about his/her house. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). If this task was skipped because the respondent reports being able to read and write, the special missing (.s) is assigned. Other missing is assigned as special missing (.m).

RwWRITE indicates whether the respondent can write a complete sentence on a piece of paper. This is only asked if the respondent reports that he/she can read and write. A coded value of 1 indicates that the respondent was able to write a complete sentence or his/her full name. A coded value of 0 indicates that the respondent could not write a sentence. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). If this task was skipped because the respondent reported that he/she cannot read and write, special missing (.l) is assigned. Other missing is assigned special missing (.m). "Not Assessed" responses are coded as special missing (.n). "Not assessed" is assigned when the test was not administered because of the respondent's physical disability or technical issues.

RwSENTEN indicates whether a respondent is able to write or say a complete sentence. RwSENTEN uses RwWRITE and RwSAY to determine if either is successfully completed. A coded value of 1 indicates that the respondent was either able to write a complete sentence or his/her full name or was able to say one full sentence about his/her house. A coded value of 0 indicates that the respondent could not write a sentence or could not say one full sentence about his/her house. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m). "Not Assessed" responses are assigned special missing (.n). "Not Assessed" option was marked only if the respondent has some physical disability that prevents him/her from performing the test.

RwFSAY and RwFWRITE are flag variables, indicating whether the corresponding variable has an assigned imputed value. RwFSAY is coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 4.Refused, and 11.Skipped. RwFWRITE is coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, 4.Refused, and 14.Cannot read/write. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

HRS HCAP asked respondents to write any complete sentence on a piece of paper whereas DAD incorporates an alternate test for those who are illiterate, namely, to tell interviewers "something about your house" if respondents can't read and write. The outcomes of the test used in DAD is captured by the variable RwSAY.

Differences with Harmonized LASI

In the Harmonized LASI, the respondent was asked to write a sentence about how he/she is feeling today and question was skipped if respondent is illiterate. In DAD, the respondent was asked to write a sentence or his/her full name if the respondent reports that he/she can read and write. If the respondent cannot read or write, he/she was asked to tell the interviewer something about his/her house.

DAD Variables Used

MMSE117
MMSE119_SAY
MMSE119_WRITE
can respondent Read and Write
Respondent says the sentance
WRITE COMPLETE SENTENCE

Drawing Pentagon

Wave Variable	Label	
1	R1DRAW	r1draw:w1 R cognition able to draw assign picture (0-1)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1DRAW	4096	0.23	0.42	0.00	1.00
R1FDRAW	4096	0.27	0.93	0.00	8.00
R1DRAW2	4096	0.51	0.84	0.00	2.00
R1FDRAW2	4096	0.27	0.93	0.00	8.00

Categorical Variable Codes

Value	R1DRAW
0 . Incorrect	3147
1. Correct	949
Value-	R1FDRAW
0. Not imputed	3723
1. Dont know	18
2.Missing	157
3. Not Assessed	49
4.Refused	141
8. Bad image	8
Value-	R1DRAW2
0	2963
1	184
2	949
Value	R1FDRAW2
0. Not imputed	3723
1. Dont know	18
2.Missing	157
3. Not Assessed	49
4.Refused	141
8.Bad image	8

How Constructed

RwDRAW indicates whether the respondent was able to draw an assigned picture: two overlapping pentagons. The respondent is assigned 1 as correct if the drawing met both requirements: (1) the drawing consists of two five-sided figures that intersect to form a four-sided figure and (2) all angles in the five-sided figures are preserved.

If the respondent's drawing doesn't meet both requirements, a 0 score is assigned. That is, the drawing has two five-sided figures that intersect to form a four-sided figure but not all angles in the fivesided figures are preserved, the respondent did not draw the two five-sided figures that intersect to form a four-sided figure, or the respondent did not draw the figure.

RwDRAW2 indicates a score ranging from 0-2 based on the respondent's ability to draw an assigned picture: two overlapping pentagons. The picture is scored on two features. 2 is coded if the drawing has two fivesided figures that intersect to form a four-sided figure and all angles in the five-sided figure are preserved. 1 is coded if either the drawing has two five-sided figures that intersect to form a foursided figure or all angles in the five-sided figure are preserved. 0 is coded if the respondent did not draw two five-sided figures that intersect to form a four-sided figure.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing codes (.r). Cases where the respondent's uploaded images were blurry and not yet scored were assigned special missing (.b). If the figure has not been scored yet, special missing (.z) is assigned. Other missing is assigned special missing (.m). "Not Assessed" responses are assigned special missing (.n). "Not Assessed" option was marked only if the respondent has some physical disability that prevented him/her from performing the test.

RwFDRAW and RwFDRAW2 are flag variables, indicating whether the corresponding variable was assigned an imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, 4.Refused, and 8.Bad image. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

HRS HCAP provides a 1-point detailed score while DAD provides a MMSE-comparable 1-point score and a 2point detailed score.

Differences with Harmonized LASI

In the Harmonized LASI, the answer yes or no was used to indicate whether the respondent was able to draw an assigned picture. In the DAD, a 2-point detailed score was provided based on the respondent's ability to draw an assigned picture.

DAD Variables Used

MMSE120_DRAW

COPY DRAWING

HMSE Summary Score

Wave Variable	Label	

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1HMSE_SCORE	4096	22.59	5.52	0.00	30.00
R1LASI_SCORE	4096	11.98	2.85	0.00	16.00

How Constructed

RwHMSE_SCORE sums the total value between RwORIENT_T4, RwORIENT_P4, RwIMRC3, RwBACKWARD5, RwDLRC3, RwOBJECT, RwREPEAT, RwCOMBFOL, Rw3TASK, RwSENTEN, and RwDRAW, with missing values. If any of the variables contain a missing value, RwHMSE_SCORE is missing.

If Rworient_t4, Rworient_p4, RwimRC3, RwBACkwARD5, RwDLRC3, RwOBJECT, RwREPEAT, RwCOMBFOL, Rw3TASk, RwSENTEN, and RwDRAW are assigned (.d) or (.n), RwHMSE_SCORE is coded as (.d) or (.n), respectively. Refused responses are assigned special missing codes (.r). Cases in which the respondents' images were blurry and not yet scored were assigned special missing (.b). Other missing is assigned special missing (.m).

RwLASI_SCORE sums the total value between RwORIENT_T4, RwORIENT_P4, RwOBJECT, RwCOMBFOL, Rw3TASK, RwSENTEN, and RwDRAW, with missing values. If any of the variables contain a missing value, RwLASI_SCORE is missing.

If RwORIENT_T4, RwORIENT_P4, RwOBJECT, RwCOMBFOL, Rw3TASK, RwSENTEN, and RwDRAW are assigned (.d) or (.n), RwLAS \bar{I} _SCORE is cō̄ed as (.d) or (.n), respectively. Refused responses are assigned special missing codes (.r). Cases in which the respondents' images were blurry and not yet scored were assigned special missing (.b). Other missing is assigned special missing (.m).

For further information on the component variables used in this section, please refer to their respective sections above.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

The HRS HCAP uses the Mini-Mental State Examination (MMSE) and LASI-DAD uses the Hindi Mental State Examination (HMSE). The HMSE score in the DAD is largely similar to the HRS HCAP's MMSE score except that the DAD uses backward day naming instead of the backward spelling task used in the HRS HCAP.

Differences with Harmonized LASI

In the DAD, the summary score counts the total value between RwORIENT_T4 (4 points), RwORIENT_P4 (4 points), RwIMRC3 (3 points), RwDLRC3 (3 points), RwOBJECT (2 points), ${ }^{-}$RwBACKWARD5 (5 points), ${ }^{-}$RwREPEAT (1 point), RwCOMBFOL (1 point), Rw3TASK (3 points), RwSENTEN (1 pooint), and RwDRAW (1 point).

In the Harmonized LASI, the summary score counts the total value between RwORIENT (4 points), RwORIENTP (4 points), RwOBJECT (2 points), RwTASK (1 point), RwACTION (3 points), RwWRITE (1 point), and RwDRAW (1 point).

DAD Variables Used

```
MMSE118 BACK
MMSE118_FOLDS
MMSE118 HAND
MMSE119-SAY
MMSE119_WRITE
MMSE120 DRAW
GIVES PAPER BACK
MMSE118 FOLDS
MMSE118 HAND
FOLDS PAPER
HANDEDNESS
Respondent says the sentance
WRITE COMPLETE SENTENCE
COPY DRAWING
```


10-Word List Learning

Wave	Variable	Label	Type
1	R1WORD1	r1wordl:w1 R word list learning trial 1(0-10)	Categ
1	R1FWORD1	rlfwordl:impflag wl r whether imputed value	Categ
1	R1WORD2	r1word2:w1 R word list learning trial 2(0-10)	Categ
1	R1FWORD2	r1fword2:impflag w1 r whether imputed value	Categ
1	R1WORD3	r1word3:w1 R word list learning trial 3(0-10)	Categ
1	R1FWORD3	r1fword3:impflag w1 r whether imputed value	Categ
1	R1WORD_TOTAL	r1word_total:w1 R word list learning total(0-30)	Cont
1	R1WORD_D	r1word_d:w1 R word list learning recall(0-10)	Categ
1	R1FWORD_D	rlfword_d:impflag w1 r whether imputed value	Categ
1	R1WORD_INT	r1word_int:w1 R word list any interruption(0-1)	Categ
1	R1WORD_PROB	r1word_prob:w1 R word list had hearing problem(0-1)	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1WORD1	4096	2.73	1.64	0.00	9.00
R1FWORD1	4096	0.09	0.56	0.00	4.00
R1WORD2	4096	4.07	1.96	0.00	10.00
R1FWORD2	4096	0.10	0.60	0.00	4.00
R1WORD3	4096	4.69	2.18	0.00	10.00
R1FWORD3	4096	0.12	0.67	0.00	4.00
R1WORD_TOTAL	4096	11.49	5.11	0.00	28.00
R1WORD_D	4096	0.08	0.32	0.00	10.00
R1FWORD_D	4096	0.05	0.21	0.00	4.00
R1WORD_INT	4035	0.05	0.21	0.00	1.00
R1WORD_PROB	4035				1.00

Categorical Variable Codes

Value-------------------------------------	R1WORD1
0	531
1	330
2	892
3	
4	1070
5	746

6	\|	140
7	I	36
8	\|	12
9	\|	2
Value-	\|	R1FWORD1
O. Not imputed	\|	3992
1. Dont know	I	17
2.Missing	I	6
4.Refused	\|	81
Value-	\|	R1WORD2
0	I	350
1	I	101
2	\|	289
3	\|	656
4	\|	911
5	I	868
6	\|	548
7	\|	257
8	I	92
9	I	22
10	\|	2
Value	\|	R1FWORD2
O. Not imputed	I	3983
1. Dont know	\|	15
2.Missing	\|	7
4.Refused	\|	91
Value	\|	R1WORD3
0	I	327
1	\|	63
2	\|	168
3	\|	455
4	\|	714
5	I	916
6	\|	660
7	I	432
8	\|	249
9	I	92
10	\|	20
Value	I	R1FWORD3
O. Not imputed	\|	3959
1. Dont know	\|	14
2.Missing	\|	7
4.Refused	\|	116
Value	\|	R1WORD_D
0	\|	961
1	\|	215
2	\|	420
3	\|	676
4	\|	675
5	\|	529
6	\|	322
7	\|	178
8	\|	79
9	\|	35
10	I	6
Value-	\|	R1FWORD_D
O. Not imputed	\|	3965
1. Dont know	\|	25
2.Missing	I	9
4.Refused	I	97
Value	-	R1WORD_INT
. d: DK	\|	4
.m:Missing	\|	13

.r:Refuse	44
$0 . \mathrm{No}$	3847
1.Yes	188
Value	R1WORD_PROB
.d:DK	4
.m:Missing	13
.r:Refuse	44
$0 . \mathrm{No}$	3851
1.Yes	184

How Constructed

RWWORD1, RWWORD2, RWWORD3 are a set of consecutive tasks asking the respondent to repeat a set of 10 words back to the interviewer. Each task consists of the same words but in a different order each time.

RwWORD1 indicates the total number of correct words recalled in the first task. For this task, the interviewer reads a set of 10 words and asks the respondent to recall as many as he/she can. The interviewer states that the set of words is purposely made long so that it will be difficult for anyone to recall all the words and that most people recall just a few. The interviewer cannot repeat the words. The respondent can repeat back the set of words in any order and is given up to about 2 minutes. Once the respondent understands the task, the interviewer reads the items at a slow, steady rate, allowing the respondent to repeat the word before moving on to the next word on the list. The set of 10 words, in order, is Butter, Arm, Corner, Letter, Queen, Book, Stick, Ticket, Grass, and Stone.

RwWORD2 and RwWORD3 indicate the total number of correct words recalled in the second and third tasks. For the second and third task, the interviewer reads the same list of words as the first task but in a different order. Once the interviewer has read the list of words, the respondent is asked to say aloud the words from the list. The order for the second set of 10 words is: Ticket, Book, Butter, Corner, Stone, Arm, Queen, Letter, Stick, and Grass. The order for the third set of 10 words is: Queen, Grass, Arm, Book, Stick, Corner, Butter, Stone, Ticket, and Letter.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwWORD TOTAL counts the total number of correct words between RwWORD1, RwWORD2, and RwWORD3. RwWORD TOTAL is coded as don't know (.d) or refused (.r) if all RwWORD1, RwWORD2, and RwWORD3 are coded as don't know, or refused. Other missing is assigned special missing (.m).

RwWORD_D indicates the total number of correct words recalled from a 10 -word list after a delay where other survey questions were asked and answered. Respondents were given up to 2 minutes to recall as many of the 10 words they could remember.

RwWORD_INT indicates whether there were any interruptions in the administration of any of the three word lists. A code of 0 indicates that there were no interruptions. A code of 1 indicates that there was an interruption.

RwWORD_PROB indicates whether there were any interruptions in the administration of the word lists due to the respondent having difficulty hearing the words. A code of 0 indicates there were no issues with the respondent hearing the words. A code of 1 indicates there was an issue with the respondent hearing the words.

RwFWORD1, RwFWORD2, RwFWORD3, and RwFWORD_D are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, $1 . D o n ' t$ know, 2.Missing, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In HRS HCAP, the word list is, "Butter, Arm, Shore, Letter, Queen, Cabin, Pole, Ticket, Grass, Engine".

In the DAD study, we have changed some words that are culturally different for Indian population, so the resulting word list is "Butter, Arm, Corner, Letter, Queen, Book, Stick, Ticket, Grass, Stone".

Differences with Harmonized LASI

In DAD, respondents were asked to perform 3 trials of word recalls. The respondent repeats each word after the Interviewer. Each trial consists of the same words but in a different order each time. In the main LASI, there is only one trial for the word recall and the Respondents don't repeat the words after the Interviewer. The word list used in the main LASI is different from the word lists used in DAD.

DAD Variables Used

DR100S1
DR100S10
DR100S2
DR100S3
DR100S4
DR100S5
DR100S6
DR100S7
DR100S8
DR100S9
WR102AS1
WR102AS10
WR102AS2
WR102AS3
WR102AS 4
WR102AS5
WR102AS6
WR102AS 7
WR102AS 8
WR102AS9
WR102AS 97
WR103AS1
WR103AS10
WR103AS2
WR103AS 3
WR103AS 4
WR103AS5
WR103AS6
WR103AS 7
WR103AS 8
WR103AS9
WR103AS 97
WR104AS1
WR104AS10
WR104AS2
WR104AS 3
WR104AS 4
WR104AS5
WR104AS 6
WR104AS 7
WR104AS8
WR104AS 9
WR104AS 97
WR105S1
WR105S2
WR105S3
WR105S4

```
DELAYED RECALL 1 Butter
DELAYED RECALL 10 Stone
DELAYED RECALL 2 Arm
DELAYED RECALL 3 Corner
DELAYED RECALL 4 Letter
DELAYED RECALL 5 Queen
DELAYED RECALL 6 Book
DELAYED RECALL 7 Stick
DELAYED RECALL 8 Ticket
DELAYED RECALL 9 Grass
WORD RECALL 1 1 Butter
WORD RECALL 1 10 Stone
WORD RECALL 1 2 Arm
WORD RECALL 1 3 Corner
WORD RECALL 1 4 Letter
WORD RECALL 1 5 Queen
WORD RECALL 1 6 Book
WORD RECALL 1 }7\mathrm{ Stick
WORD RECALL 1 }8\mathrm{ Ticket
WORD RECALL 1 9 Grass
WORD RECALL 1 }97\mathrm{ No words remembered
Trial List 2 Recall 1 Butter
Trial List 2 Recall 10 Stone
Trial List 2 Recall 2 Arm
Trial List 2 Recall 3 Corner
Trial List 2 Recall 4 Letter
Trial List 2 Recall 5 Queen
Trial List 2 Recall 6 Book
Trial List 2 Recall }7\mathrm{ Stick
Trial List 2 Recall 8 Ticket
Trial List 2 Recall 9 Grass
Trial List 2 Recall }97\mathrm{ No words remembered
Trial List 3 Recall 1 Butter
Trial List 3 Recall }10\mathrm{ Stone
Trial List 3 Recall 2 Arm
Trial List 3 Recall 3 Corner
Trial List 3 Recall 4 Letter
Trial List 3 Recall }5\mathrm{ Queen
Trial List 3 Recall 6 Book
Trial List 3 Recall }7\mathrm{ Stick
Trial List 3 Recall 8 Ticket
Trial List 3 Recall 9 Grass
Trial List 3 Recall }97\mathrm{ No words remembered
WR ADMINISTRATION ISSUES 1 An interruption Oc
WR ADMINISTRATION ISSUES 2 An interruption Oc
WR ADMINISTRATION ISSUES 3 An interruption Oc
WR ADMINISTRATION ISSUES 4 Respondent had dif
```


Word List Recognition

Wave Variable	Label	Type
1	R1WRE_ORG	rlwre_org:w1 R word list recognition: original(0-10)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1WRE_ORG	4096	8.15	2.34	0.00	10.00
R1FWRE_ORG	4096	0.17	0.77	0.00	4.00
R1WRE_FOIL	4096	7.85	2.79	0.00	10.00
R1FWRE_FOIL	4096	0.17	0.77	0.00	4.00
R1WRE_SCORE	4096	16.00	3.57	0.00	20.00

Categorical Variable Codes

How Constructed

Respondents are presented with a list of 20 words, half of which were previously presented to the respondent in an earlier part of the interview, and RwWRE ORG counts the number of words that are correctly identified as repeated words. The repeated words include Butter, Arm, Corner, Letter, Queen, Book, Stick, Ticket, Grass, and Stone. RwWRE_FOIL counts the number of words correctly identified as new words, ones not previously seen in an earlier section of questionnaire. From a list of 20 words, 10 of the words were new words. These words include Temple, Tea, Key, Five, Hotel, Mountain, Slipper, Village, String, and Troops. The interviewer states that some of the words are from the list of words they read to the respondent earlier and some of the words have not been read to them before. As the interviewer reads aloud the list of 20 words, the respondent is asked to say "Yes" after a word if he/she heard it earlier. The respondent is asked to say "No" if a word was not heard earlier.

RwWRE_SCORE is the sum of RwWRE_ORG and RwWRE_FOIL, indicating the total number of correct responses given by the respondent.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwFWRE ORG and RwFWRE FOIL are flag variables, indicating whether the corresponding variable was assigned an imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2 . Missing, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In the HRS HCAP, the interviewer showed respondents a set of words printed on cards while in DAD, the interviewer read respondents a list of words. In the HRS HCAP, the words are "Church, Coffee, Dollar, Arm, Shore, Five, Letter, Hotel, Mountain, Queen, Cabin, Slipper, Pole, Village, String, Ticket, Troops, Grass, Engine" while in DAD, the words are "Temple, Tea, Key, Arm, Corner, Five, Letter, Hotel, Mountain, Queen, Book, Book, Slipper, Stick, Village, String, Ticket, Troops, Grass, Stone".

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

WRE_100	Temple
WRE_101	Tea
WRE_102	Butter
WRE_103	Key
WRE_104	Arm
WRE_105	Corner
WRE_106	Five
WRE_107	Letter
WRE_108	Hotel
WRE_109	Mountain
WRE_110	Queen
WRE_111	Book
WRE_112	Slipper
WRE_113	Stick
WRE_114	Village
WRE_115	String
WRE_116	Ticket
WRE_117	Troops
WRE_118	Grass
WRE_119	Stone

Logical Memory: Brave Man Story

Wave	Variable	Label		Type
1	R1BM_S1	r1bm_s1:w1 R Brave man immediate: story point 1(0-2)		Categ
1	R1FBM_S1	rlfbm_s1:impflag w1 r whether imputed value		Categ
1	R1BM_S2	r1bm_s2:w1 R Brave man immediate: story point $2(0-2)$		Categ
1	R1FBM_S2	rlfbm_s2:impflag w1 r whether imputed value		Categ
1	R1BM_S3	r1bm_s3:w1 R Brave man immediate: story point 3(0-2)		Categ
1	R1FBM_S3	rlfbm_s3:impflag w1 r whether imputed value		Categ
1	R1BM_S 4	r1bm_s4:w1 R Brave man immediate: story point 4(0-2)		Categ
1	R1FBM_S 4	rlfbm_s4:impflag w1 r whether imputed value		Categ
1	R1BM_S5	r1bm_s5:w1 R Brave man immediate: story point 5(0-2)		Categ
1	R1FBM_S5	rlfbm_s5:impflag w1 r whether imputed value		Categ
1	R1BM_S6	r1bm_s6:w1 R Brave man immediate: story point 6(0-2)		Categ
1	R1FBM_S6	rlfbm_s6:impflag w1 r whether imputed value		Categ
1	R1BM_S 7	r1bm_s7:w1 R Brave man immediate: story point 7(0-2)		Categ
1	R1FBM_S 7	rlfbm_s7:impflag w1 r whether imputed value		Categ
1	R1BM_S8	r1bm_s8:w1 R Brave man immediate: story point 8(0-2)		Categ
1	R1FBM_S8	r1fbm_s8:impflag w1 r whether imputed value		Categ
1	R1BM_S 9	r1bm_s9:w1 R Brave man immediate: story point 9(0-2)		Categ
1	R1FBM_S 9	rlfbm_s9:impflag w1 r whether imputed value		Categ
1	R1BM_S10	r1bm_s10:w1 R Brave man immediate: story point $10(0-2)$		Categ
1	R1FBM_S10	r1fbm_s10:impflag w1 r whether imputed value		Categ
1	R1BMEX_S1	r1bmex_s1:w1 R Brave man immediate: story point $1(0-1)$	exact	Categ
1	R1BMEX_S2	r1bmex_s2:w1 R Brave man immediate: story point $2(0-1)$	exact	Categ
1	R1BMEX_S3	r1bmex_s3:w1 R Brave man immediate: story point 3(0-1)	exact	Categ
1	R1BMEX_S4	r1bmex_s 4 :w1 R Brave man immediate: story point 4(0-1)	exact	Categ
1	R1BMEX_S5	r1bmex_s5:w1 R Brave man immediate: story point 5(0-1)	exact	Categ
1	R1BMEX_S6	r1bmex_s6:w1 R Brave man immediate: story point 6(0-1)	exact	Categ
1	R1BMEX_S7	r1bmex_s7:w1 R Brave man immediate: story point 7(0-1)	exact	Categ
1	R1BMEX_S8	r1bmex_s8:w1 R Brave man immediate: story point 8(0-1)	exact	Categ
1	R1BMEX_S9	r1bmex_s9:w1 R Brave man immediate: story point 9(0-1)	exact	Categ

1 R1BMEX_S10
1 R1BM_RS1
1 R1FBM_RS1
R1BM_RS2
R1FBM_RS2
R1BM_RS3
R1FBM_RS3
R1BM_RS4
R1FBM_RS4
R1BM_RS5
R1FBM_RS5
R1BM_RS 6
R1FBM_RS6
R1BM_RS 7
R1FBM_RS7
R1BM_RS8
R1FBM_RS8
R1BM_RS 9
R1FBM_RS9
1 R1BM_RS10
1 R1FBM_RS10

1 R1BMEX_RS1
1 R1BMEX_RS2
1 R1BMEX_RS3
1 R1BMEX_RS 4
1 R1BMEX_RS5
1 R1BMEX_RS6
1 R1BMEX_RS 7
1 R1BMEX_RS 8
1 R1BMEX_RS 9
1 R1BMEX_RS10
r1bmex_s10:w1 R Brave man immediate: story point $10(0-1)$ exa r1bm_rs1:w1 R Brave man recall: story point $1(0-2)$ rlfbm_rsi:impflag w1 r whether imputed value r1bm_rs2:w1 R Brave man recall: story point 2(0-2)
r1fbm_rs2:impflag w1 r whether imputed value r1bm_rs3:w1 R Brave man recall: story point 3(0-2) r1fbm_rs3:impflag w1 r whether imputed value r1bm_rs4:w1 R Brave man recall: story point 4(0-2)
rlfbm_rs4:impflag w1 r whether imputed value r1bm_rs5:w1 R Brave man recall: story point 5(0-2) r1fbm_rs5:impflag w1 r whether imputed value r1bm_rs6:w1 R Brave man recall: story point 6(0-2)
rlfbm_rs6:impflag w1 r whether imputed value r1bm_rs7:w1 R Brave man recall: story point 7(0-2) rlfbm_rs7:impflag w1 r whether imputed value r1bm_rs8:w1 R Brave man recall: story point 8(0-2) rlfbm_rs8:impflag w1 r whether imputed value r1bm_rs9:w1 R Brave man recall: story point 9(0-2) rlfbm_rs9:impflag w1 r whether imputed value r1bm_rs10:w1 R Brave man recall: story point 10(0-2) r1fbm_rs10:impflag w1 r whether imputed value rlbmex_rs1:w1 R Brave man recall: story point $1(0-1)$ exact r1bmex_rs2:w1 R Brave man recall: story point $2(0-1)$ exact r1bmex_rs3:w1 R Brave man recall: story point 3(0-1) exact r1bmex_rs4:w1 R Brave man recall: story point 4(0-1) exact r1bmex_rs5:w1 R Brave man recall: story point 5(0-1) exact r1bmex_rs6:w1 R Brave man recall: story point 6(0-1) exact r1bmex_rs7:w1 R Brave man recall: story point 7(0-1) exact r1bmex_rs8:w1 R Brave man recall: story point 8(0-1) exact r1bmex_rs9:w1 R Brave man recall: story point 9(0-1) exact r1bmex_rs10:w1 R Brave man recall: story point $10(0-1)$ exact

Categ Categ Categ Categ Categ Categ Categ

Categ
Categ
Categ

Categ
Categ
Categ
Categ

Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ
Categ

1 R1BM_IMM r1bm_imm:w1 R Brave man immediate: summary score, HRS compar Cont
1 R1BM_IMM_D r1bm_imm_d:w1 R Brave man immediate: summary score 2pts-exac Cont
1 R1BM_IMMEX rlbm_immex:w1 R Brave man immediate: summary score exact(0-6 Cont
1 R1BM_RECL rlbm_recl:w1 R Brave man recall: summary score, HRS comparabl Cont
1 R1BM_RECL_D r1bm_recl_d:w1 R Brave man recall: summary score 2pts-exact, Cont
1 R1BM_RECLEX rlbm_reclex:w1 R Brave man recall: summary score exact (0-6) Cont

Descriptive Statistics

| Variable | N | Mean | Std Dev | Minimum |
| :--- | :---: | :---: | :---: | ---: | Maximum

R1BMEX_S5	4096	0.16	0.37	0.00	1.00
R1BMEX_S6	4096	0.25	0.44	0.00	1.00
R1BMEX_S 7	4096	0.26	0.44	0.00	1.00
R1BMEX_S8	4096	0.21	0.41	0.00	1.00
R1BMEX_S9	4096	0.18	0.38	0.00	1.00
R1BMEX_S10	4096	0.14	0.35	0.00	1.00
R1BM_RS1	4096	0.80	0.93	0.00	2.00
R1FBM_RS1	4096	0.24	0.92	0.00	4.00
R1BM_RS2	4096	0.36	0.69	0.00	2.00
R1FBM_RS2	4096	0.24	0.92	0.00	4.00
R1BM_RS3	4096	0.75	0.91	0.00	2.00
R1FBM_RS3	4096	0.24	0.92	0.00	4.00
R1BM_RS4	4096	0.44	0.70	0.00	2.00
R1FBM_RS4	4096	0.24	0.92	0.00	4.00
R1BM_RS5	4096	0.22	0.59	0.00	2.00
R1FBM_RS5	4096	0.24	0.92	0.00	4.00
R1BM_RS6	4096	0.39	0.73	0.00	2.00
R1FBM_RS6	4096	0.24	0.92	0.00	4.00
R1BM_RS 7	4096	0.46	0.75	0.00	2.00
R1FBM_RS 7	4096	0.24	0.92	0.00	4.00
R1BM_RS8	4096	0.29	0.67	0.00	2.00
R1FBM_RS8	4096	0.24	0.92	0.00	4.00
R1BM_RS 9	4096	0.19	0.57	0.00	2.00
R1FBM_RS9	4096	0.24	0.92	0.00	4.00
R1BM_RS10	4096	0.21	0.57	0.00	2.00
R1FBM_RS10	4096	0.24	0.92	0.00	4.00
R1BMEX_RS1	4096	0.36	0.48	0.00	1.00
R1BMEX_RS2	4096	0.13	0.33	0.00	1.00
R1BMEX_RS3	4096	0.32	0.47	0.00	1.00
R1BMEX_RS4	4096	0.13	0.33	0.00	1.00
R1BMEX_RS5	4096	0.09	0.28	0.00	1.00

R1BMEX_RS6	4096	0.15	0.35	0.00	1.00
R1BMEX_RS7	4096	0.16	0.36	0.00	1.00
R1BMEX_RS8	4096	0.12	0.32	0.00	1.00
R1BMEX_RS9	4096	0.09	0.28	0.00	1.00
R1BMEX_RS10	4096	0.08	0.27	0.00	1.00
R1BM_IMM	4096	5.30	3.09	0.00	12.00
R1BM_IMM_D	4096	2.08	1.62	0.00	20.00
R1BM_IMMEX	4096	4096	4.95	3.47	0.00
R1BM_RECL	1.19	1.61	0.00	6.00	
R1BM_RECL_D	4096	4096			0.00

Categorical Variable Codes

,	R1BM_S1
0 . Not correct, not mentioned	886
1.Approximate answer	603
2.Exact answer	2607
Value-	R1FBM S1
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188
Value-	R1BM_S2
0 . Not correct, not mentioned	2215
1.Approximate answer	1068
2.Exact answer	813
Value-	R1FBM_S2
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188
Value-	R1BM_S3
0. Not correct, not mentioned	974
1.Approximate answer	894
2.Exact answer	2228
Value-	R1FBM_S3
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188
Value--	R1BM_S4
0 . Not correct, not mentioned	1732
1.Approximate answer	1539
2.Exact answer	825
Value-	R1FBM_S4
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188

Val	R1BM_S5
0 . Not correct, not mentioned	2966
1.Approximate answer	457
2.Exact answer	673
Value	R1FBM S5
0. Not imputed	$3 \overline{8} 52$
1. Dont know	29
2.Missing	27
4.Refused	188
Value-	R1BM_S6
0 . Not correct, not mentioned	2233
1.Approximate answer	825
2.Exact answer	1038
Value-	R1FBM_S6
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188
Value-	R1BM_S 7
O. Not correct, not mentioned	1809
1.Approximate answer	1239
2.Exact answer	1048
Value	R1FBM_S7
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188
Value-	R1BM_S8
0 . Not correct, not mentioned	2712
1.Approximate answer	509
2.Exact answer	875
Value-	R1FBM S8
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188
Value-	R1BM S9
0 . Not correct, not mentioned	$3 \overline{2} 06$
1.Approximate answer	157
2.Exact answer	733
Value--	R1FBM_S9
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188
Value--	R1BM_S10
0. Not correct, not mentioned	3085
1.Approximate answer	427
2.Exact answer	584
Value-	R1FBM_S10
0. Not imputed	3852
1. Dont know	29
2.Missing	27
4.Refused	188
Value----	R1BMEX_S1
O.Not correct/Not exact answe	1489
1.Exact answer	2607

Value	R1BMEX_S2
0.Not correct/Not exact answers	$3 \overline{2} 83$
1.Exact answer	813
Value-	R1BMEX_S3
O.Not correct/Not exact answers	1868
1.Exact answer	2228
Value-	R1BMEX_S4
0.Not correct/Not exact answers	3271
1.Exact answer	825
Value-	R1BMEX_S5
0.Not correct/Not exact answers	3423
1.Exact answer	673
Value-	R1BMEX_S6
0.Not correct/Not exact answers	3058
1.Exact answer	1038
Value-	R1BMEX_S7
$0 . N$ Not correct/Not exact answers	3048
1.Exact answer	1048
Value-	R1BMEX_S8
0.Not correct/Not exact answers	$3 \overline{2} 21$
1.Exact answer	875
Value-	R1BMEX_S9
O.Not correct/Not exact answers	$3 \overline{3} 63$
1.Exact answer	733
Value-	R1BMEX_S10
0.Not correct/Not exact answers	3512
1.Exact answer	584
Value-	R1BM RS1
0. Not correct, not mentioned	2275
1.Approximate answer	358
2.Exact answer	1463
Value-	R1FBM_RS1
0. Not imputed	3790
1. Dont know	68
2.Missing	11
4.Refused	227
Value	R1BM_RS2
0 . Not correct, not mentioned	3125
1.Approximate answer	456
2.Exact answer	515
Value	R1FBM_RS2
0. Not imputed	3790
1. Dont know	68
2.Missing	11
4.Refused	227
Value-	R1BM_RS3
0. Not correct, not mentioned	2343
1.Approximate answer	445
2.Exact answer	1308
Value-	R1FBM_RS3
0. Not imputed	3790
1. Dont know	68
2.Missing	11
4.Refused	227
Value--	R1BM_RS4
0 . Not correct, not mentioned	2817

1. Dont know	68
2.Missing	11
4.Refused	227
Value	R1BMEX_RS1
$0 . N o t$ correct/Not exact answers	2633
1.Exact answer	1463
Value	R1BMEX_RS2
O.Not correct/Not exact answers	3581
1.Exact answer	515
Value	R1BMEX RS3
O.Not correct/Not exact answers	2788
1.Exact answer	1308
Value	R1BMEX_RS4
0. Not correct/Not exact answers	3583
1.Exact answer	513
Value	R1BMEX_RS5
$0 . N o t$ correct/Not exact answers	3744
1.Exact answer	352
Value	R1BMEX_RS6
0. Not correct/Not exact answers	3493
1.Exact answer	603
Value	R1BMEX_RS7
$0 . N o t$ correct/Not exact answers	3455
1.Exact answer	641
Value	R1BMEX_RS8
$0 . N o t$ correct/Not exact answers	3612
1.Exact answer	484
Value	R1BMEX_RS9
O.Not correct/Not exact answers	3744
1.Exact answer	352
Value	R1BMEX_RS10
O.Not correct/Not exact answers	3771
1.Exact answer	325

How Constructed

In this section, respondents were tested on their immediate and delayed recollection of a brave man story that was read aloud to them.

RwBM_S1 - RwBM_S10 indicate how well respondents remembered the story's points immediately after it was read to them. They are coded as follows: 0. Not correct, not mentioned, 1.Approximate answer, and 2. Exact answer.

RwBMEX S1 - RwBMEX S10 indicate how well respondents remembered the exact story points immediately after it was read to them. One point was given if respondents recalled the exact story point and no points were given if respondents either did not remember the story point or could only recall the general gist of the story point.

RwBM IMM, RwBM_IMM_D, and RwBM IMMEX are summary scores for the respondents' immediate recollection of the brave man story. RwBM_IMM \bar{i} s the summary score based on the 6-point system that the HRS HCAP uses, with the summary scores ranging from 0 to 12. RwBM_IMM_D follows the 10-point score used in LASI-DAD and is calculated as the total score of RwBM_S1 - RwBM_S10, with scores ranging from 0 to 20 . RwBM IMMEX is the summary score of exact story point responses añ is based upon the total score of RwBMEX_S RwBMEX_S10, after converting to the 6-point score used in the HRS HCAP. RwBM_IMMEX has scores ranging from 0 to 6.

RwBM RS1 - RwBM RS10 indicate how well respondents remembered the story points after some time had passed and they had answered some unrelated interview questions. They are coded as follows: 0.Not correct, not mentioned, 1.Approximate answer, and 2.Exact answer.

RwBMEX_RS1 - RwBMEX_RS10 indicate how well respondents remembered the exact story points after a delay where the respondent was asked other survey questions. One point was given if respondents recalled the exact story point and no points were given if respondents either did not remember the story point or could only recall the general gist of the story point.

RwBM RECL, RwBM RECL_D, and RwBM RECLEX are summary scores for the respondents' delayed recollection of the brave man story. RwBM_RECL is the summary score based on the 6-point system that the HRS HCAP uses, with the summary scores ranging from 0 to 12. RwBM RECL D is calculated as the total score of RwBM RS1 RwBM_RS10, with scores ranging from 0 to 20. RwBM_RECLEX is the summary score of exact story point responses and is based upon the total score of RwBMEX_RS1 - RwBMEX_RS10, after converting to the 6-point score used in the HRS HCAP. RwBM RECLEX has scores ranging from 0 to 6.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing code (.r). Other missing is assigned special missing (.m).

RwFBM S1 - RwFBM S10 and RwFBM RS1 - RwFBM RS10 are flag variables, indicating whether the corresponding variā̄le has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, $1 . \mathrm{D}_{\mathrm{b}}$ 't know, 2.Missing, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

Both HRS HCAP and LASI-DAD used the same story. However, HRS HCAP uses a 6-point scale while LASI-DAD uses a 10-point scale. To facilitate comparison across studies, the LASI-DAD's 10-point scores have also been converted to the 6 -point scores used in the HRS HCAP. Both HRS HCAP and DAD give scores for exact words and approximate answers.

Differences with Harmonized LASI

This question was not asked in Harmonized LASI.

DAD Variables Used

BM_1S1
$\mathrm{BM}^{-1} 1 \mathrm{~S} 10$
BM 1S101
BM 1S103
BM_1S104
BM_1S105
BM_1S106
BM 1S107
BM_1S108
BM_1S109
BM_1S110
BM 1S3
BM 1S4
BM_1S5
BM_1S6
BM_1S7
BM 1S8
BM_1S9
LM2B_1B_S1
LM2B_1B_S10
LM2B_1B_S101
LM2B 1B S103

BM1 - Recall of Story Points 1 Three children
BM1 - Recall of Story Points 10 all were well
BM1 - Recall of Story Points 101 Three childr
BM1 - Recall of Story Points 103 House caught
BM1 - Recall of Story Points 104 Brave man
BM1 - Recall of Story Points 105 Climbed
BM1 - Recall of Story Points 106 back window
BM1 - Recall of Story Points 107 carry to saf
BM1 - Recall of Story Points 108 Minor cuts
BM1 - Recall of Story Points 109 bruises
BM1 - Recall of Story Points 110 all were wel
BM1 - Recall of Story Points 3 House caught o
BM1 - Recall of Story Points 4 Brave man
BM1 - Recall of Story Points 5 Climbed
BM1 - Recall of Story Points 6 back window
BM1 - Recall of Story Points 7 carry to safet
BM1 - Recall of Story Points 8 Minor cuts
BM1 - Recall of Story Points 9 bruises
Recall of Story 1 Points 1 Three children
Recall of Story 1 Points 10 all were well
Recall of Story 1 Points 101 Three children
Recall of Story 1 Points 103 House caught on

LM2B_1B_S104
LM2B-1B_S105
LM2B_1B_S106
LM2B_1B_S107
LM2B_1B_S108
LM2B_1B_S109
LM2B_1B_S110
LM2B 1B S3
LM2B_1B_S4
LM2B_1B_S5
LM2B_1B_S6
LM2B_1B_S7
LM2B 1B S8
LM2B 1B S9

```
Recall of Story 1 Points 104 Brave man
Recall of Story 1 Points 105 Climbed
Recall of Story 1 Points }106\mathrm{ back window
Recall of Story 1 Points }107\mathrm{ carry to safety
Recall of Story 1 Points }108\mathrm{ Minor cuts
Recall of Story 1 Points 109 bruises
Recall of Story 1 Points 110 all were well
Recall of Story 1 Points 3 House caught on fi
Recall of Story 1 Points 4 Brave man
Recall of Story 1 Points 5 Climbed
Recall of Story 1 Points 6 back window
Recall of Story 1 Points }7\mathrm{ carry to safety
Recall of Story 1 Points 8 Minor cuts
Recall of Story 1 Points 9 bruises
```


Logical Memory: Robbery Story

Wave	Variable	Label		Type
1	R1LMB_S1	r1lmb_s1:w1 R Robbery story immediate:	story point $1(0-2)$	Categ
1	R1FLMB_S1	rlflmb_s1:impflag w1 r whether imputed	value	Categ
1	R1LMB_S2	rllmb_s2:w1 R Robbery story immediate:	story point $2(0-2)$	Categ
1	R1FLMB_S2	rlflmb_s2:impflag w1 r whether imputed	value	Categ
1	R1LMB_S3	r1lmb_s3:w1 R Robbery story immediate:	story point 3(0-2)	Categ
1	R1FLMB_S3	rlflmb_s3:impflag w1 r whether imputed	value	Categ
1	R1LMB_S 4	rllmb_s4:w1 R Robbery story immediate:	story point 4(0-2)	Categ
1	R1FLMB_S4	rlflmb_s4:impflag w1 r whether imputed	value	Categ
1	R1LMB_S5	r1lmb_s5:w1 R Robbery story immediate:	story point 5(0-2)	Categ
1	R1FLMB_S5	rlflmb_s5:impflag w1 r whether imputed	value	Categ
1	R1LMB_S 6	r11mb_s6:w1 R Robbery story immediate:	story point 6(0-2)	Categ
1	R1FLMB_S6	rlflmb_s6:impflag w1 r whether imputed	value	Categ
1	R1LMB_S 7	rllmb_s7:w1 R Robbery story immediate:	story point 7(0-2)	Categ
1	R1FLMB_S7	rlflmb_s7:impflag w1 r whether imputed	value	Categ
1	R1LMB_S8	r1lmb_s8:w1 R Robbery story immediate:	story point 8(0-2)	Categ
1	R1FLMB_S8	rlflmb_s8:impflag w1 r whether imputed	value	Categ
1	R1LMB_S 9	rllmb_s9:w1 R Robbery story immediate:	story point 9(0-2)	Categ
1	R1FLMB_S9	rlflmb_s9:impflag w1 r whether imputed	value	Categ
1	R1LMB_S10	rllmb_s10:w1 R Robbery story immediate:	story point $10(0-2)$	Categ
1	R1FLMB_S10	r1flmb_s10:impflag w1 r whether imputed	value	Categ
1	R1LMB_S11	rllmb_s11:w1 R Robbery story immediate:	story point $11(0-2)$	Categ
1	R1FLMB_S11	rlflmb_s11:impflag w1 r whether imputed	value	Categ
1	R1LMB_S12	rllmb_s12:w1 R Robbery story immediate:	story point $12(0-2)$	Categ
1	R1FLMB_S12	rlflmb_s12:impflag w1 r whether imputed	value	Categ
1	R1LMB_S13	r1lmb_s13:w1 R Robbery story immediate:	story point $13(0-2)$	Categ
1	R1FLMB_S13	r1flmb_s13:impflag w1 r whether imputed	value	Categ
1	R1LMB_S14	rllmb_s14:w1 R Robbery story immediate:	story point 14(0-2)	Categ
1	R1FLMB_S14	r1flmb_s14:impflag w1 r whether imputed	value	Categ
1	R1LMB_S15	r1lmb_s15:w1 R Robbery story immediate:	story point $15(0-2)$	Categ

1	R1FLMB_S15	r1flmb_s15:impflag w1 r whether imputed value	Categ
1	R1LMB_S16	r1lmb_s16:w1 R Robbery story immediate: story point 16(0-2)	Categ
1	R1FLMB_S16	r1flmb_s16:impflag w1 r whether imputed value	Categ
1	R1LMB_S17	r1lmb_s17:w1 R Robbery story immediate: story point 17(0-2)	Categ
1	R1FLMB_S17	r1flmb_s17:impflag w1 r whether imputed value	Categ
1	R1LMB_S18	r1lmb_s18:w1 R Robbery story immediate: story point 18(0-2)	Categ
1	R1FLMB_S18	rlflmb_s18:impflag w1 r whether imputed value	Categ
1	R1LMB_S19	r1lmb_s19:w1 R Robbery story immediate: story point 19(0-2)	Categ
1	R1FLMB_S19	r1flmb_s19:impflag w1 r whether imputed value	Categ
1	R1LMB_S20	r1lmb_s20:w1 R Robbery story immediate: story point 20(0-2)	Categ
1	R1FLMB_S20	r1flmb_s20:impflag w1 r whether imputed value	Categ
1	R1LMB_S21	r1lmb_s21:w1 R Robbery story immediate: story point 21(0-2)	Categ
1	R1FLMB_S21	r1flmb_s21:impflag w1 r whether imputed value	Categ
1	R1LMB_S22	r1lmb_s22:w1 R Robbery story immediate: story point 22(0-2)	Categ
1	R1FLMB_S22	r1flmb_s22:impflag w1 r whether imputed value	Categ
1	R1LMB_S23	r1lmb_s23:w1 R Robbery story immediate: story point 23(0-2)	Categ
1	R1FLMB_S23	r1flmb_s23:impflag w1 r whether imputed value	Categ
1	R1LMB_S24	r1lmb_s24:w1 R Robbery story immediate: story point 24(0-2)	Categ
1	R1FLMB_S24	r1flmb_s24:impflag w1 r whether imputed value	Categ
1	R1LMB_S25	r1lmb_s25:w1 R Robbery story immediate: story point 25(0-2)	Categ
1	R1FLMB_S25	r1flmb_s25:impflag w1 r whether imputed value	Categ
1	R1LMB_RS1	rllmb_rsl:w1 R Robbery story recall: story point $1(0-2)$	Categ
1	R1FLMB_RS1	rlflmb_rsl:impflag w1 r whether imputed value	Categ
1	R1LMB_RS2	r1lmb_rs2:w1 R Robbery story recall: story point $2(0-2)$	Categ
1	R1FLMB_RS2	r1flmb_rs2:impflag w1 r whether imputed value	Categ
1	R1LMB_RS3	r1lmb_rs3:w1 R Robbery story recall: story point 3(0-2)	Categ
1	R1FLMB_RS3	rlflmb_rs3:impflag w1 r whether imputed value	Categ
1	R1LMB_RS4	rllmb_rs4:w1 R Robbery story recall: story point 4(0-2)	Categ
1	R1FLMB_RS 4	rlflmb_rs4:impflag w1 r whether imputed value	Categ
1	R1LMB_RS5	r1lmb_rs5:w1 R Robbery story recall: story point 5(0-2)	Categ
1	R1FLMB_RS5	rlflmb_rs5:impflag w1 r whether imputed value	Categ

1 R1LMB RS6

1 R1FLMB_RS 6
1 R1LMB_RS7
1 R1FLMB_RS 7
1 R1LMB_RS8

1 R1FLMB_RS8
1 R1LMB_RS9
1 R1FLMB_RS 9

1 R1LMB_RS10

1 R1FLMB_RS10
1 R1LMB_RS11
1 R1FLMB_RS11
1 R1LMB_RS12

1 R1FLMB_RS12
1 R1LMB_RS13
1 R1FLMB_RS13

R1LMB_RS1
R1FLMB_RS1
R1LMB_RS15
R1FLMB RS15

R1LMB_RS16
1 R1FLMB_RS16
1 R1LMB_RS17

1 R1FLMB RS1

1 R1LMB_RS18
1 R1FLMB_RSI
1 R1LMB_RS19

1 R1FLMB_RS19
1 R1LMB_RS20
1 R1FLMB_RS20
1 R1LMB_RS21

1 R1FLMB_RS21
r1lmb_rs6:w1 R Robbery story recall: story point 6(0-2)
rlflmb_rs6:impflag w1 r whether imputed value r1lmb_rs7:w1 R Robbery story recall: story point 7(0-2)
rlflmb_rs7:impflag w1 r whether imputed value r1lmb_rs8:w1 R Robbery story recall: story point 8(0-2)
rlflmb_rs8:impflag w1 r whether imputed value r1lmb_rs9:w1 R Robbery story recall: story point $9(0-2)$ r1flmb rs9:impflag w1 r whether imputed value r1lmb_rs10:w1 R Robbery story recall: story point $10(0-2)$ r1flmb_rs10:impflag w1 r whether imputed value r1lmb_rs11:w1 R Robbery story recall: story point $11(0-2)$ rlflmb_rs11:impflag w1 r whether imputed value r1lmb_rs12:w1 R Robbery story recall: story point $12(0-2)$ r1flmb_rs12:impflag w1 r whether imputed value r1lmb_rs13:w1 R Robbery story recall: story point 13(0-2) r1flmb_rs13:impflag w1 r whether imputed value r1lmb_rs14:w1 R Robbery story recall: story point 14(0-2) r1flmb_rs14:impflag w1 r whether imputed value rllmb_rs15:w1 R Robbery story recall: story point $15(0-2)$ r1flmb_rs15:impflag w1 r whether imputed value r1lmb_rs16:w1 R Robbery story recall: story point 16(0-2) r1flmb_rs16:impflag w1 r whether imputed value rllmb_rs17:w1 R Robbery story recall: story point $17(0-2)$ rlflmb_rs17:impflag w1 r whether imputed value rllmb_rs18:w1 R Robbery story recall: story point 18(0-2) r1flmb_rs18:impflag w1 r whether imputed value r1lmb_rs19:w1 R Robbery story recall: story point 19(0-2) rlflmb_rs19:impflag w1 r whether imputed value r1lmb_rs20:w1 R Robbery story recall: story point 20(0-2)
r1flmb_rs20:impflag w1 r whether imputed value r1lmb_rs21:w1 R Robbery story recall: story point $21(0-2)$ r1flmb_rs21:impflag w1 r whether imputed value

Categ

Categ

Categ
Categ

Categ

Categ
Categ
Categ

Categ

Categ
Categ
Categ

Categ

Categ
Categ
Categ

Categ
Categ
Categ
Categ

Categ
Categ
Categ

Categ
Categ
Categ
Categ

Categ
Categ
Categ
Categ

Categ

1	R1LMB_RS22	rllmb_rs22:w1 R Robbery story recall: story point 22(0-2)	Categ
1	R1FLMB_RS22	r1flmb_rs22:impflag w1 r whether imputed value	Categ
1	R1LMB_RS23	r1lmb_rs23:w1 R Robbery story recall: story point 23(0-2)	Categ
1	R1FLMB_RS23	rlflmb_rs23:impflag w1 r whether imputed value	Categ
1	R1LMB_RS24	rllmb_rs24:w1 R Robbery story recall: story point 24(0-2)	Categ
1	R1FLMB_RS24	r1flmb_rs24:impflag w1 r whether imputed value	Categ
1	R1LMB_RS25	rllmb_rs25:w1 R Robbery story recall: story point 25(0-2)	Categ
1	R1FLMB_RS25	r1flmb_rs25:impflag w1 r whether imputed value	Categ
1	R1LMB_IMM	rllmb_imm:w1 R Robbery story immediate:summaryscore, exact wo	Cont
1	R1LMB_IMM_D	rllmb_imm_d:w1 R Robbery story immediate:summary score, with	Cont
1	R1LMB_RECL	rllmb_recl:w1 R Robbery story recall: summary score, exact wo	Cont
1	R1LMB_RECL_D	rllmb_recl_d:w1 R Robbery story recall: summary score,with g	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1LMB_S1	4096	0.42	0.77	0.00	2.00
R1FLMB S1	4096	0.19	0.71	0.00	4.00
R1LMB_S2	4096	0.54	0.86	0.00	2.00
R1FLMB_S2	4096	0.19	0.71	0.00	4.00
R1LMB_S3	4096	0.27	0.68	0.00	2.00
R1FLMB_S3	4096	0.19	0.71	0.00	4.00
R1LMB_S 4	4096	0.59	0.90	0.00	2.00
R1FLMB_S4	4096	0.19	0.71	0.00	4.00
R1LMB_S5	4096	0.34	0.71	0.00	2.00
R1FLMB_S5	4096	0.19	0.71	0.00	4.00
R1LMB_S6	4096	0.40	0.77	0.00	2.00
R1FLMB_S6	4096	0.19	0.71	0.00	4.00
R1LMB_S 7	4096	0.21	0.60	0.00	2.00
R1FLMB_S 7	4096	0.19	0.71	0.00	4.00
R1LMB_S8	4096	0.18	0.56	0.00	2.00
R1FLMB_S8	4096	0.19	0.71	0.00	4.00
R1LMB_S 9	4096	0.34	0.73	0.00	2.00

R1FLMB_S9	4096	0.19	0.71	0.00	4.00
R1LMB_S10	4096	0.53	0.87	0.00	2.00
R1FLMB_S10	4096	0.19	0.71	0.00	4.00
R1LMB_S11	4096	0.32	0.73	0.00	2.00
R1FLMB_S11	4096	0.19	0.71	0.00	4.00
R1LMB_S12	4096	0.07	0.33	0.00	2.00
R1FLMB_S12	4096	0.19	0.71	0.00	4.00
R1LMB_S13	4096	0.10	0.39	0.00	2.00
R1FLMB_S13	4096	0.19	0.71	0.00	4.00
R1LMB_S14	4096	0.03	0.22	0.00	2.00
R1FLMB_S14	4096	0.19	0.71	0.00	4.00
R1LMB_S15	4096	0.53	0.83	0.00	2.00
R1FLMB_S15	4096	0.19	0.71	0.00	4.00
R1LMB_S16	4096	0.50	0.81	0.00	2.00
R1FLMB_S16	4096	0.19	0.71	0.00	4.00
R1LMB_S17	4096	0.43	0.77	0.00	2.00
R1FLMB_S17	4096	0.19	0.71	0.00	4.00
R1LMB_S18	4096	0.58	0.84	0.00	2.00
R1FLMB_S18	4096	0.19	0.71	0.00	4.00
R1LMB_S19	4096	0.14	0.48	0.00	2.00
R1FLMB_S19	4096	0.19	0.71	0.00	4.00
R1LMB_S20	4096	0.27	0.63	0.00	2.00
R1FLMB_S20	4096	0.19	0.71	0.00	4.00
R1LMB_S21	4096	0.09	0.40	0.00	2.00
R1FLMB_S21	4096	0.19	0.71	0.00	4.00
R1LMB_S22	4096	0.67	0.94	0.00	2.00
R1FLMB_S22	4096	0.19	0.71	0.00	4.00
R1LMB_S23	4096	0.33	0.71	0.00	2.00
R1FLMB_S23	4096	0.19	0.71	0.00	4.00
R1LMB_S24	4096	0.59	0.86	0.00	2.00
R1FLMB_S24	4096	0.19	0.71	0.00	4.00
R1LMB_S25	4096	0.34	0.73	0.00	2.00

R1FLMB_S25	4096	0.19	0.71	0.00	4.00
R1LMB_RS1	4096	0.30	0.69	0.00	2.00
R1FLMB_RS1	4096	0.38	1.12	0.00	4.00
R1LMB_RS2	4096	0.34	0.74	0.00	2.00
R1FLMB_RS2	4096	0.38	1.12	0.00	4.00
R1LMB_RS3	4096	0.17	0.55	0.00	2.00
R1FLMB_RS3	4096	0.38	1.12	0.00	4.00
R1LMB_RS4	4096	0.41	0.80	0.00	2.00
R1FLMB_RS4	4096	0.38	1.12	0.00	4.00
R1LMB_RS5	4096	0.24	0.62	0.00	2.00
R1FLMB_RS5	4096	0.38	1.12	0.00	4.00
R1LMB_RS6	4096	0.27	0.67	0.00	2.00
R1FLMB_RS6	4096	0.38	1.12	0.00	4.00
R1LMB_RS 7	4096	0.14	0.49	0.00	2.00
R1FLMB_RS7	4096	0.38	1.12	0.00	4.00
R1LMB_RS8	4096	0.15	0.51	0.00	2.00
R1FLMB_RS8	4096	0.38	1.12	0.00	4.00
R1LMB_RS9	4096	0.27	0.67	0.00	2.00
R1FLMB_RS9	4096	0.38	1.12	0.00	4.00
R1LMB_RS10	4096	0.38	0.77	0.00	2.00
R1FLMB_RS10	4096	0.38	1.12	0.00	4.00
R1LMB_RS11	4096	0.24	0.65	0.00	2.00
R1FLMB_RS11	4096	0.38	1.12	0.00	4.00
R1LMB_RS12	4096	0.05	0.30	0.00	2.00
R1FLMB_RS12	4096	0.38	1.12	0.00	4.00
R1LMB_RS13	4096	0.07	0.32	0.00	2.00
R1FLMB_RS13	4096	0.38	1.12	0.00	4.00
R1LMB_RS14	4096	0.03	0.24	0.00	2.00
R1FLMB_RS14	4096	0.38	1.12	0.00	4.00
R1LMB_RS15	4096	0.36	0.74	0.00	2.00
R1FLMB_RS15	4096	0.38	1.12	0.00	4.00

R1LMB_RS16	4096	0.40	0.76	0.00	2.00
R1FLMB_RS16	4096	0.38	1.12	0.00	4.00
R1LMB_RS17	4096	0.30	0.67	0.00	2.00
R1FLMB_RS17	4096	0.38	1.12	0.00	4.00
R1LMB_RS18	4096	0.37	0.73	0.00	2.00
R1FLMB_RS18	4096	0.38	1.12	0.00	4.00
R1LMB_RS19	4096	0.10	0.41	0.00	2.00
R1FLMB_RS19	4096	0.38	1.12	0.00	4.00
R1LMB_RS20	4096	0.17	0.52	0.00	2.00
R1FLMB_RS20	4096	0.38	1.12	0.00	4.00
R1LMB_RS21	4096	0.07	0.35	0.00	2.00
R1FLMB_RS21	4096	0.38	1.12	0.00	4.00
R1LMB_RS22	4096	0.49	0.85	0.00	2.00
R1FLMB_RS22	4096	0.38	1.12	0.00	4.00
R1LMB_RS23	4096	0.25	0.62	0.00	2.00
R1FLMB_RS23	4096	0.38	1.12	0.00	4.00
R1LMB_RS24	4096	0.42	0.77	0.00	2.00
R1FLMB_RS24	4096	0.38	1.12	0.00	4.00
R1LMB_RS25	4096	0.25	0.64	0.00	2.00
R1FLMB_RS25	4096	0.38	1.12	0.00	4.00
R1LMB_IMM	4096	3.86	4.02	0.00	24.00
R1LMB_IMM_D	4096	4.57	4.27	0.00	25.00
R1LMB_RECL	4096	2.76	3.98	0.00	25.00
R1LMB_RECL_D	4096	3.21	4.27	0.00	25.00

Categorical Variable Codes

Value	R1LMB S1
0 . Not correct, not mentioned	3098
1.Approximate answer	275
2.Exact answer	723
Value-	R1FLMB_S1
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S2
0. Not correct, not mentioned	2897

1.Approximate answer	183
2.Exact answer	1016
Value	R1FLMB S2
0. Not imputed	$3 \overline{766}$
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S3
0 . Not correct, not mentioned	3514
1.Approximate answer	52
2.Exact answer	530
Value-	R1FLMB_S3
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S 4
0 . Not correct, not mentioned	2870
1.Approximate answer	49
2.Exact answer	1177
Value-	R1FLMB_S4
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S5
0 . Not correct, not mentioned	3276
1.Approximate answer	249
2.Exact answer	571
Value	R1FLMB_S5
0. Not imputed	$3 \overline{766}$
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S6
0 . Not correct, not mentioned	3170
1.Approximate answer	210
2.Exact answer	716
Value-	R1FLMB_S6
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S7
0 . Not correct, not mentioned	$3 \overline{6} 30$
1.Approximate answer	73
2.Exact answer	393
Value-	R1FLMB_S7
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S8
0. Not correct, not mentioned	3668
1.Approximate answer	99
2.Exact answer	329
Value---	R1FLMB S8
0. Not imputed	3766

1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S9
0 . Not correct, not mentioned	$3 \overline{313}$
1.Approximate answer	157
2.Exact answer	626
Value-	R1FLMB_S9
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S10
0. Not correct, not mentioned	2949
1.Approximate answer	116
2.Exact answer	1031
Value	R1FLMB_S10
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB S11
0 . Not correct, not mentioned	3413
1.Approximate answer	36
2.Exact answer	647
Value	R1FLMB S11
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S12
0 . Not correct, not mentioned	$\overline{3} 929$
1.Approximate answer	65
2.Exact answer	102
Value	R1FLMB_S12
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S13
0. Not correct, not mentioned	3802
1.Approximate answer	168
2.Exact answer	126
Value	R1FLMB_S13
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S14
0 . Not correct, not mentioned	4028
1.Approximate answer	24
2.Exact answer	44
Value-	R1FLMB_S14
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value	R1LMB_S15

0. Not correct, not mentioned	2838
1.Approximate answer	346
2.Exact answer	912
Value-	R1FLMB_S15
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S16
0 . Not correct, not mentioned	2901
1.Approximate answer	347
2.Exact answer	848
Value-	R1FLMB_S16
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value	R1LMB_S17
0 . Not correct, not mentioned	3044
1.Approximate answer	337
2.Exact answer	715
Value	R1FLMB_S17
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S18
0 . Not correct, not mentioned	2647
1.Approximate answer	513
2.Exact answer	936
Value	R1FLMB_S18
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S19
0 . Not correct, not mentioned	$\overline{3} 751$
1.Approximate answer	115
2.Exact answer	230
Value	R1FLMB S19
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB S20
0 . Not correct, not mentioned	3390
1.Approximate answer	295
2.Exact answer	411
Value-	R1FLMB_S20
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S21
0 . Not correct, not mentioned	$\overline{3} 891$
1.Approximate answer	41
2.Exact answer	164
Value--	R1FLMB_S21

0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S22
O.Not correct, not mentioned	2681
1.Approximate answer	74
2.Exact answer	1341
Value	R1FLMB_S22
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_S23
O. Not correct, not mentioned	3310
1.Approximate answer	212
2.Exact answer	574
Value	R1FLMB S23
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value	R1LMB_S24
0 . Not correct, not mentioned	2681
1.Approximate answer	398
2.Exact answer	1017
Value	R1FLMB_S24
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value	R1LMB_S25
0. Not correct, not mentioned	3334
1.Approximate answer	137
2.Exact answer	625
Value	R1FLMB_S25
0. Not imputed	3766
1. Dont know	35
2.Missing	209
4.Refused	86
Value-	R1LMB_RS1
0. Not correct, not mentioned	3386
1.Approximate answer	176
2.Exact answer	534
Value	R1FLMB_RS1
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB RS2
0. Not correct, not mentioned	$\overline{3} 29$
1.Approximate answer	123
2.Exact answer	644
Value-	R1FLMB_RS2
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349

Value	R1LMB RS3
0. Not correct, not mentioned	3739
1.Approximate answer	22
2.Exact answer	335
Value	R1FLMB RS3
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value	R1LMB_RS 4
0. Not correct, not mentioned	3244
1.Approximate answer	29
2.Exact answer	823
Value	R1FLMB_RS4
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS5
0. Not correct, not mentioned	3535
1.Approximate answer	137
2.Exact answer	424
Value-	R1FLMB_RS5
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS6
0. Not correct, not mentioned	3473
1.Approximate answer	122
2.Exact answer	501
Value	R1FLMB_RS6
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS 7
0. Not correct, not mentioned	3797
1.Approximate answer	43
2.Exact answer	256
Value-	R1FLMB_RS7
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS8
0. Not correct, not mentioned	3755
1.Approximate answer	70
2.Exact answer	271
Value-	R1FLMB_RS8
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS 9
0. Not correct, not mentioned	3494
1.Approximate answer	99
2.Exact answer	503

Valu	R1FLMB_RS9
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS10
0 . Not correct, not mentioned	3280
1.Approximate answer	86
2.Exact answer	730
Value	R1FLMB_RS10
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value	R1LMB RS11
0 . Not correct, not mentioned	3591
1.Approximate answer	14
2.Exact answer	491
Value	R1FLMB_RS11
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS12
0 . Not correct, not mentioned	3974
1.Approximate answer	34
2.Exact answer	88
Value	R1FLMB RS12
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value	R1LMB_RS13
0 . Not correct, not mentioned	3907
1.Approximate answer	108
2.Exact answer	81
Value-	R1FLMB RS13
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value	R1LMB_RS14
0. Not correct, not mentioned	4025
1.Approximate answer	16
2.Exact answer	55
Value	R1FLMB RS14
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS15
0 . Not correct, not mentioned	3237
1.Approximate answer	227
2.Exact answer	632
Value	R1FLMB_RS15
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349

Valu	R1LMB_RS16
0. Not correct, not mentioned	3168
1.Approximate answer	238
2.Exact answer	690
Value-	R1FLMB_RS16
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS17
0 . Not correct, not mentioned	3383
1.Approximate answer	214
2.Exact answer	499
Value	R1FLMB_RS17
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value	R1LMB_RS18
0. Not correct, not mentioned	3183
1.Approximate answer	299
2.Exact answer	614
Value	R1FLMB_RS18
O. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS19
0. Not correct, not mentioned	3863
1.Approximate answer	71
2.Exact answer	162
Value	R1FLMB_RS19
O. Not imputed	3584
1. Dont know	152
2.Missing	11
4. Refused	349
Value	R1LMB_RS20
0. Not correct, not mentioned	3650
1.Approximate answer	192
2.Exact answer	254
Value	R1FLMB RS20
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS21
0 . Not correct, not mentioned	3941
1.Approximate answer	32
2.Exact answer	123
Value	R1FLMB_RS21
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value	R1LMB_RS22
0 . Not correct, not mentioned	3078
1.Approximate answer	33
2.Exact answer	985

Value	R1FLMB_RS22
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS23
0. Not correct, not mentioned	3510
1.Approximate answer	166
2.Exact answer	420
Value-	R1FLMB_RS23
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS24
0. Not correct, not mentioned	3087
1.Approximate answer	286
2.Exact answer	723
Value	R1FLMB_RS24
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349
Value-	R1LMB_RS25
0. Not correct, not mentioned	3539
1.Approximate answer	96
2.Exact answer	461
Value	R1FLMB_RS25
0. Not imputed	3584
1. Dont know	152
2.Missing	11
4.Refused	349

How Constructed

RWLMB_S1 - RwLMB_S25 indicate how well the respondent remembered the robber story's points immediately after hearing it. They are coded as follows: 0.Not correct, not mentioned, 1.Approximate answer, 2. Exact answer.

RwLMB_IMM and RwLMB_IMM_D are scores based on the robbery story that was read aloud to the respondent. After the story was read, the respondent was asked to retell as much of the story that he/she could remember. Before the story was read, the interviewer stated that the respondent should listen carefully as he/she will be asked to retell the story with as many details as the respondent can remember.

RwLMB_IMM indicates the number of exact story points the respondent was able to recall when retelling a story immediately after it was read aloud to him/her. Scores range from 0-24.

RwLMB_IMM_D indicates the total score of exact story points and approximate answers of RwLMB_S1 RwLMB_S25. Exact answer is counted as 1 and approximate answer is counted as 0.5 . Scores range from $0-25$.

RwLMB_RS1 - RwLMB_RS10 indicate how well the respondent remembered the story points when there was a delay between the story and interview questions. They are coded as follows: 0.Not correct, not mentioned, 1.Approximate answer, 2.Exact answer.

RwLMB RECL and RwLMB RECL D provide aggregate measures of how well respondents remembered the robbery story's plot after some time has elapsed. As a prompt for respondents to start recalling the story, the interviewer reminded the respondents that they had been read aloud 2 different stories earlier in the survey, and at that time, they had been asked to retell the stories. The interviewer then asked if the respondents remembered anything from the stories at this later point in time. Respondents are first asked to think back to the first story and then the second story to recall as much as possible.

For the robbery story, RwLMB_RECL indicates the number of exact story points the respondent was able to recall about the robbery story when there was a delay between hearing the story and having to recall it. Scores range from 0-25.

RwLMB_RECL_D indicates the total score of the exact story points and approximate answers given in RwLMB_RS1 - RwLMB_RS25. An exact answer is counted as 1 and an approximate answer is counted as 0.5 . Scores range from 0-25.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing code (.r). Other missing is assigned special missing (.m).

RwFLMB_S1 - RwFLMB_S10 and RwFLMB_RS1 - RwFLMB_RS10 are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In DAD, the stories' character names and places were changed so that the Indian population could relate to them. In addition, a score of 0.5 is assigned in the DAD for approximate answers.

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

LM1B_1S1
LM1B_1S10
LM1B_1S101
LM1B_1S102
LM1B_1S103
LM1B_1S104
LM1B_-1S105
LM1B_1S106
LM1B_1S107
LM1B_1S108
LM1B_1S109
LM1B_1S11
LM1B_-1S110
LM1B_1S111
LM1B_1S112
LM1B_1S113
LM1B_-1S114
LM1B_1S115
LM1B_1S116
LM1B_1S117
LM1B_-1S118
LM1B_1S119
LM1B_-1S12
LM1B_1S120
LM1B_-1S121
LM1B_1S122
LM1B_1S123
LM1B_1S124
LM1B_-1S125
LM1B_1S13
LM1B_1S14
LM1B - Recall of Story Points 1 Manju
LM1B - Recall of Story Points 10 at the polic
LM1B - Recall of Story Points 101 Manju
LM1B - Recall of Story Points 102 Rani
LM1B - Recall of Story Points 103 From East
LM1B - Recall of Story Points 104 Delhi
LM1B - Recall of Story Points 105 employed
LM1B - Recall of Story Points 106 as a cook
LM1B - Recall of Story Points 107 in a school
LM1B - Recall of Story Points 108 canteen
LM1B - Recall of Story Points 109 reported
LM1B - Recall of Story Points 11 station
LM1B - Recall of Story Points 110 at the poli
LM1B - Recall of Story Points 111 station
LM1B - Recall of Story Points 112 that she ha
LM1B - Recall of Story Points 113 at Ramnagar
LM1B - Recall of Story Points 114 the night b
LM1B - Recall of Story Points 115 and robbed
LM1B - Recall of Story Points 116 of two hund
LM1B - Recall of Story Points 117 She had fou
LM1B - Recall of Story Points 118 small child
LM1B - Recall of Story Points 119 the rent wa
LM1B - Recall of Story Points 12 that she had
LM1B - Recall of Story Points 120 and they ha
LM1B - Recall of Story Points 121 for two day
LM1B - Recall of Story Points 122 The police,
LM1B - Recall of Story Points 123 touched by
LM1B - Recall of Story Points 124 took up a c
LM1B - Recall of Story Points 125 for her
LM1B - Recall of Story Points 13 at Ramnagar
LM1B - Recall of Story Points 14 the night be

LM2B_1C_S3
LM2B_1C_S4
LM2B_-1C-S5
LM2B_1C_S6
LM2B_1C-S7
LM2B_1C_S8
LM2B_1C_S

```
Recall of Story 2 Points 3 From East
Recall of Story 2 Points 4 Delhi
Recall of Story 2 Points 5 employed
Recall of Story 2 Points 6 as a cook
Recall of Story 2 Points 7 in a school
Recall of Story 2 Points 8 canteen
Recall of Story 2 Points 9 reported
```


Logical Memory: Recall Problem

Wave Variable	Label	Type	Categ
1	R1LOG_RCMIX	rllog_rcmix:w1 R logical memory recall-mix up	Categ
1	R1FLOG_RCMIX	rlflog_rcmix:impflag w1 r whether imputed value	Categ
1	R1LOG_WRON	rllog_wron:w1 R logical memory recall-wrong story	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1LOG_RCMIX	4096	0.11	0.31	0.00	1.00
R1FLOG_RCMIX	4096	0.38	1.04	0.00	4.00
R1LOG_WRON	4096	0.13	0.34	0.00	1.00
R1FLOG_WRON	4096	0.34	1.02	0.00	4.00

Categorical Variable Codes

How Constructed

RwLOG_RCMIX indicates whether the respondent confused or mixed up story points from story 1 and story 2.
RwLOG_WRON indicates whether the respondent mentioned story points that did not belong to either story.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwFLOG RCMIX and RwFLOG WRON are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, $2 . \mathrm{Missing}$, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

```
No differences known.
```


Differences with HRS HCAP

These questions were not asked in the HRS HCAP.

Differences with Harmonized LASI

These questions were not asked in the Harmonized LASI.

DAD Variables Used

LM2_IWERCKPT1	Iwer Checkpoint 1
LM2_IWERCKPT2	Iwer Checkpoint 2

Logical Memory: Recognition (0-15)

Wave Variable	Label	Type
1	R1LOG_RECO	r1log_reco:w1 R logical memory recognition score(0-15)
1	R1FLOG_RECO	r1flog_reco:impflag w1 r whether imputed value

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1LOG_RECO	4096	7.46	3.14	0.00	15.00
R1FLOG_RECO	4096	0.37	1.06	0.00	4.00

Categorical Variable Codes

Value--------------------------------------	R1FLOG_RECO
0. Not imputed	3532
1. Dont know	180
2. Missing	99
4. Refused	285

How Constructed

RwLOG RECO is a score based on the respondent's number of correct answers when asked a series of questions about the second story that had been read to him/her earlier. The interviewer does not specify which story the second story was. Scores range from 0-15. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwFLOG_RECO is a flag variable, indicating whether the corresponding variable has an assigned imputed value. The flag variable is coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, and $4 . R e f u s e d . ~ T h e ~$ original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

Both HRS HCAP and DAD use 15-point scores, but in DAD, the stories' character names and places are changed so that the Indian population can relate to it.

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

LM2B_10	Report Robbery at Police Station
LM2B_10A	LM2b_10 Score
LM2B_11	Robbed of 450 rupees
LM2B_11A	LM2b_11 Score
LM2B_12	No Food for 4 Days
LM2B_12A	LM2b_12 Score
LM2B_13	Was Rent Due
LM2B_13A	LM2b_13 Score

LM2B_14	Police Catch Thief
LM2B_14A	LM2b_14 Score
LM2B_15	Police Feel Sorry
LM2B_15A	LM2b_15 Score
LM2B_16	Police Take Up Collection
LM2B_16A	LM2b_16 Score
LM2B_2	Womans Name
LM2B_2A	LM2b_2 Score
LM2B_3	Story location
LM2B_3A	LM2b_3 Score
LM2B_4	Cook_
LM2B_4A	LM2b_4 Score
LM2B_5	Work in Restaurant
LM2B_5A	LM2b_5 Score
LM2B_6	Have Four Children
LM2B_6A	LM2b_6 Score
LM2B_7	Children Teens
LM2B_7A	LM2b_7 Score
LM2B_8	Robbery location
LM2B_8A	LM2b_8 Score
LM2B_9	Report Robbery 2 Nights Before
LM2B_9A	LM2b_9 Score

TICS

Wave Variable

1 R1SCIS

1 R1FSCIS
1 R1COCONUT
1 R1FCOCONUT

1 R1PRIME

1 R1FPRIME
1 R1TICS_SCORE

Label
rlscis:w1 R cognition scissors(0-1)
rlfscis:impflag w1 r whether imputed value
rlcoconut:w1 R cognition coconut(0-1)
r1fcoconut:impflag w1 r whether imputed value
rlprime:w1 R cognition Prime Minister(0-1)
rlfprime:impflag w1 r whether imputed value
r1tics_score:w1 R TICS 3-item score(0-3)

Type
Categ

Categ
Categ
Categ

Categ
Categ
Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1SCIS	4096	0.84	0.37	0.00	1.00
R1FSCIS	4096	0.05	0.38	0.00	4.00
R1COCONUT	4096	0.57	0.50	0.00	1.00
R1FCOCONUT	4096	0.12	0.50	0.00	4.00
R1PRIME	4096	0.61	0.49	0.00	1.00
R1FPRIME	4096	0.25	0.58	0.00	4.00
R1TICS_SCORE	4096	2.02	0.90	0.00	3.00

Categorical Variable Codes

Value	R1SCIS
0. Incorrect	658
1. Correct	3438
Value	R1FSCIS
0. Not imputed	3995
1. Dont know	63
2.Missing	7
4.Refused	31
Value	R1COCONUT
0. Incorrect	1774
1. Correct	2322
Value	R1FCOCONUT
O.Not imputed	3737
1. Dont know	304
2.Missing	7
4.Refused	48
Value	R1PRIME
0. Incorrect	1582
1. Correct	2514
Value	R1FPRIME

0. Not imputed	3239
1. Dont know	799
2.Missing	7
4.Refused	51
Value	\|R1TICS_SCORE
0	257
1	861
2	1521
3	1457

How Constructed

RwSCIS indicates whether a respondent can name the item that people usually use to cut paper; the correct answers are scissors or shears.

RwCOCONUT indicates whether a respondent can name the fruit/thing that has a thick brown fibrous cover and water inside, with the correct answer being coconut.

RwPRIME indicates whether a respondent can name the current Prime Minister of India, with the correct answer being Modi.

RwSCIS, RwCOCONUT, and RwPRIME are assigned a 1 if the respondent answers correctly and a if they do not answer correctly. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing codes (.r). Other missing is assigned special missing (.m).

RwTICS SCORE indicates the number of correct responses between RwSCIS, RwCOCONUT, and RwPRIME. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwFSCIS, RwFCOCONUT, and RwFPRIME are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

HRS HCAP asked questions about Scissors or Shears, a cactus, and the President of the United states, while DAD asked questions about Scissors or Shears, a Coconut, and the Prime Minister of India.

Differences with Harmonized LASI

This question was not asked in LASI.

DAD Variables Used

```
HT102_SCISSORS
Cut paper
HT103 COCONUT NAME COCONUT
HT104 PM Current Prime Minister
```


Digit Span

Wave Variable	Label	
1	R1DS_FOR	r1ds_for:w1 R digit span forward (0-1)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1DS_FOR	4096	0.27	0.44	0.00	1.00
R1FDS_FOR	4096	0.18	0.80	0.00	4.00
R1DS_BACK	4096	0.28	0.45	0.00	1.00
R1FDS_BACK	4096	0.22	0.87	0.00	4.00

Categorical Variable Codes

Valu	R1DS_FOR
0. Incorrect	2990
1. Correct	1106
Value	R1FDS_FOR
0. Not imputed	3875
1. Dont know	46
2.Missing	7
4.Refused	168
Value	R1DS_BACK
0. Incorrect	2929
1. Correct	1167
Value	R1FDS_BACK
0. Not imputed	3813
1. Dont know	75
2.Missing	8
4.Refused	200

How Constructed

RwDS_FOR indicates whether the respondent was able to repeat 5 digits correctly in forward order after the digits were read aloud by the interviewer. RwDS BACK indicates whether the respondent was able to repeat 3 digits correctly in backwards order after the digits were read aloud by the interviewer. RwDS_FOR and RwDS_BACK are assigned a 1 if correctly repeated and a 0 if incorrectly repeated.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwFDS_FOR and RwFDS_BACK are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, $1 . D o n ' t ~ k n o w, ~ 2 . M i s s i n g, ~$ and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

These tests are not included in the HRS HCAP.

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

DS001

DS002
Digits repeated in forward order Digits in Backward order

Verbal Fluency

Wave Variable	Label		Type
1	R1VERBAL	rlverbal:w1 R verbal fluency:animal naming-correct	Cont
1	R1FVERBAL	rlfverbal:impflag w1 r whether imputed value	Categ
1	R1VERBAL_INC	rlverbal_inc:w1 R verbal fluency:animal naming-incorrect	Cont
1	R1FVERBAL_IN	r1fverbal_inc:impflag w1 r whether imputed value	Categ
1	R1VERBAL_PRB	r1verbal_prb:w1 R verbal fluency:animal naming-problem	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1VERBAL	4096	11.32	4.57	0.00	32.00
R1FVERBAL	4096	0.10	0.61	0.00	4.00
R1VERBAL_INC	4096	0.14	0.66	0.00	16.00
R1FVERBAL_IN	4096	0.13	0.63	0.00	4.00
R1VERBAL_PRB	4004	0.03	0.16	0.00	1.00

Categorical Variable Codes

How Constructed

RwVERBAL indicates the number of correct animals that the respondent names. The respondent has 60 seconds to name as many and as fast as they can. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m). We exclude some outliers and top-code the value to 32.

RWVERBAL_INC indicates the number of incorrect animals the respondent names in the 60 seconds window. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwVERBAL_PRB indicates whether any problems occurred while the respondent was naming animals. A 1 is assigned if there was an interruption during the 60 second response period, a technical/computer problem,
the respondent did not understand the task, or another issue occurred. A 0 is assigned if there were no issues. Refused responses are assigned special missing (.r).

RwFVERBAL and RwFVERBAL_IN are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, $1 . D o n ' t ~ k n o w, ~ 2 . M i s s i n g, ~$ and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In HRS HCAP, repeated animals are counted as incorrect, while in DAD, the total animals named, the number of incorrect names, and the number of repetitions are recorded separately.

The response period in both the HRS HCAP and LASI-DAD is 60 seconds. However, in the HRS HCAP, RwVERBAL_PRB is assigned a value of 1 if there was an interruption during the 60 second response period, the response period exceeded 60 seconds, a technical/computer problem occurred, the respondent did not understand the task, or another issue occurred. The LASI-DAD does not ask whether the response period exceeded 60 seconds.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

RF103_ANIMALSANSWERS
RF105_ANIMALNUMINCORRECT
RF106_ANIMALPROBLEMSS1
RF106_ANIMALPROBLEMSS3
RF106_ANIMALPROBLEMSS 4
RF106_ANIMALPROBLEMSS5

TOTAL ANIMAL ANSWERS
NUMBER OF INCORRECT ANIMAL NAMES GIVEN
PROBLEMS THAT OCCURRED WHILE NAMING ANIMALS 1 PROBLEMS THAT OCCURRED WHILE NAMING ANIMALS 3 PROBLEMS THAT OCCURRED WHILE NAMING ANIMALS 4 PROBLEMS THAT OCCURRED WHILE NAMING ANIMALS 5

Symbol Cancellation

Wave	Variable	Label	Type
1	R1SC_ANW	r1sc_anw:w1 R symbol cancellations	Cont
1	R1FSC_ANW	rlfsc_anw:impflag w1 r whether imputed value	Categ
1	R1SC_WR	rlsc_wr:w1 R symbol cancellation wrong	Cont
1	R1FSC_WR	rlfsc_wr:impflag w1 r whether imputed value	Categ
1	R1SC_SCORE	r1sc_score:w1 R symbol cancellation score	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1SC_ANW	4096	8.34	8.13	0.00	58.00
R1FSC_ANW	4096	0.14	0.76	0.00	8.00
R1SC_WR	4096	2.17	3.42	0.00	27.00
R1FSC_WR	4096	0.13	0.70	0.00	7.00
R1SC_SCORE	4096	6.89	8.32	0.00	57.00

Categorical Variable Codes

,	R1FSC ANW
0. Not imputed	$\overline{3} 937$
1. Dont know	24
2.Missing	27
4.Refused	93
7.No score	9
8.Bad image	6
Value	R1FSC_WR
0. Not imputed	3939
1. Dont know	30
2.Missing	26
4.Refused	92
7.No score	9

How Constructed

RwSC_ANW, RwSC_WR, and RwSC_SCORE pertain to a task in which respondents are asked to find figures that
 can and draw a circle around each matching figure. The interviewer demonstrates to the respondent how the circle should be drawn in the middle of the page. The respondent is instructed to start from the top left corner of the page, go line by line, and work as fast as he/she can until the interviewer says to stop. The interviewer starts counting when the respondent circles the first figure and stops the respondent after 60 seconds. Circling at random is not allowed; if this starts to happen, the respondents are reminded to go from left to right, line by line.

RwSC_ANW indicates the number of symbol cancellations. RwSC_WR indicates the number of incorrect symbol cancellations. RwSC SCORE indicates the difference between the number of correct and incorrect cancelations; it is coded so that it is never less than 0 . Cases where the respondent's uploaded images are blurry and unreadable are assigned special missing (.b). If the respondent's score is not yet

```
available, special missing (.z) is assigned. Don't know responses are assigned special missing (.d).
Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).
RwFSC ANW and RwFSC WR are flag variables, indicating whether the corresponding variable has an assigned
imputed value. RwFSC_ANW is coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 4.Refused, 7.No
Score, and 8.Bad image. RwFSC WR is coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 4.Refused,
and 7.No score. The original missing value is otherwise included.
```


Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

HRS HCAP uses a Digit Symbol test. As most of the age 60 and above population in India is illiterate, DAD replaced the Digit Symbol test with the Symbol Cancellation test, an assessment that does not rely on literacy. The Symbol Cancellation test was taken from the "Mexican Health and Aging Study (MHAS)".

Differences with Harmonized LASI

This question was not asked in LASI.

DAD Variables Used

```
SC001 Phase 1
SC002 Phase 1 wrong
SC1_CORRECT
SC1_INCORRECT
Phase 1
correctly circled
incorrectly circled
```


Constructional Praxis

Wave	Variable	Label	Type
1	R1CP_CIRCLE	r1cp_circle:w1 R circle drawing score(0-2)	Categ
1	R1FCP_CIRCLE	rlfcp_circle:impflag w1 r whether imputed value	Categ
1	R1CP_RECTAN	rlcp_rectan:w1 R drew a rectangle(0-2)	Categ
1	R1FCP_RECTAN	rlfcp_rectan:impflag w1 r whether imputed value	Categ
1	R1CP_CUBE	r1cp_cube:w1 R drew a cube (0-4)	Categ
1	R1FCP_CUBE	rlfcp_cube:impflag w1 r whether imputed value	Categ
1	R1CP_DIAMON	r1cp_diamon:w1 R drew a diamond(0-3)	Categ
1	R1FCP_DIAMON	rlfcp_diamon:impflag w1 r whether imputed value	Categ
1	R1CP_SCORE	rlcp_score:w1 R Constructional Praxis score(0-11)	Categ
1	R1CPR_CIRCLE	rlcpr_circle:w1 R drew a circle-recall(0-2)	Categ
1	R1FCPR_CIRCL	rlfcpr_circle:impflag w1 r whether imputed value	Categ
1	R1CPR_RECTAN	rlcpr_rectan:w1 R drew a rectangle-recall(0-2)	Categ
1	R1FCPR_RECTA	rlfcpr_rectan:impflag w1 r whether imputed value	Categ
1	R1CPR_CUBE	rlcpr_cube:w1 R drew a cube-recall(0-4)	Categ
1	R1FCPR_CUBE	rlfcpr_cube:impflag w1 r whether imputed value	Categ
1	R1CPR_DIAMON	rlcpr_diamon:w1 R drew a diamond-recall(0-3)	Categ
1	R1FCPR_DIAMO	rlfcpr_diamon:impflag w1 r whether imputed value	Categ
1	R1CPR_SCORE	rlcpr_score:w1 R Constructional Praxis score-recall(0-11)	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1CP_CIRCLE	4096	1.85	0.52	0.00	2.00
R1FCP_CIRCLE	4096	0.31	0.97	0.00	8.00
R1CP_RECTAN	4096	1.28	0.91	0.00	2.00
R1FCP_RECTAN	4096	0.34	1.02	0.00	8.00
R1CP_CUBE	4096	0.84	1.45	0.00	4.00
R1FCP_CUBE	4096	0.38	1.07	0.00	8.00
R1CP_DIAMON	4096	0.33	1.36	0.00	3.00
R1FCP_DIAMON	4096	5.59	3.25	0.00	8.00
R1CP_SCORE	4096			11.00	

R1CPR_CIRCLE	4096	1.06	1.00	0.00	2.00
R1FCPR_CIRCL	4096	0.47	1.24	0.00	8.00
R1CPR_RECTAN	4096	0.63	0.89	0.00	2.00
R1FCPR_RECTA	4096	0.50	1.27	0.00	8.00
R1CPR_CUBE	4096	0.23	0.84	0.00	4.00
R1FCPR_CUBE	4096	0.58	1.34	0.00	8.00
R1CPR_DIAMON	4096	0.73	1.23	0.00	3.00
R1FCPR_DIAMO	4096	2.64	2.68	0.00	8.00
R1CPR_SCORE	4096			11.00	

Categorical Variable Codes

Valu	R1CP_CIRCLE
0	298
1	28
2	3770
Value	R1FCP_CIRCLE
O. Not imputed	3666
1. Dont know	10
2.Missing	154
3. Not Assessed	129
4.Refused	131
8. Bad image	6
Value	R1CP_RECTAN
0	1275
1	398
2	2423
Value	R1FCP RECTAN
0. Not imputed	3634
1. Dont know	15
2.Missing	151
3.Not Assessed	137
4.Refused	152
8.Bad image	7
Value	R1CP_CUBE
0	2959
1	90
2	251
3	323
4	473
Value	R1FCP_CUBE
O. Not imputed	3584
1. Dont know	19
2.Missing	145
3. Not Assessed	162
4.Refused	181
8. Bad image	5
Value	R1CP_DIAMON
0	1606
1	69
2	708
3	1713

Value	R1FCP_DIAMON
O.Not imputed	3650
1. Dont know	11
2.Missing	152
3. Not Assessed	140
4.Refused	136
8. Bad image	7
Value	R1CP_SCORE
0	278
1	22
2	746
3	148
4	524
5	200
6	446
7	682
8	143
9	225
10	286
11	396
Value	\|R1CPR_CIRCLE
0	1927
1	7
2	2162
Value-	\|R1FCPR_CIRCL
0. Not imputed	3466
1. Dont know	76
2.Missing	135
3. Not Assessed	215
4.Refused	176
8. Bad image	28
Value	\|R1CPR_RECTAN
0	2669
1	278
2	1149
Value	\| R1FCPR_RECTA
O.Not imputed	3439
1. Dont know	83
2.Missing	105
3. Not Assessed	249
4.Refused	193
8. Bad image	27
Value	R1CPR CUBE
0	3779
1	29
2	80
3	84
4	124
Value	\| R1FCPR_CUBE
0. Not imputed	3336
1. Dont know	94
2.Missing	74
3. Not Assessed	320
4.Refused	248
8.Bad image	24
Value	\|R1CPR_DIAMON
0	2996
1	26
2	265
3	809

0. Not imputed	3424
1. Dont know	88
2.Missing	136
3. Not Assessed	262
4.Refused	157
8.Bad image	29
Value	R1CPR_SCORE
0	1412
1	73
2	1018
3	190
4	464
5	281
6	181
7	290
8	53
9	45
10	37
11	52

How Constructed

The following variables pertain to a series of questions asking the respondent to draw a shape. The respondent is asked to draw a circle, overlapping rectangles, a cube, and a diamond. Respondents are presented with each shape and asked to draw that shape freehand. The respondent is given one or two minutes to draw the figure with a pencil to allow for erasing errors. The interviewer is allowed to repeat the instructions once if the respondent does not understand the first time. If the respondent cannot draw the figure in the allotted time, the interviewer is instructed to reassure the respondent and select "Respondent Cannot Draw". Multiple self-starts were allowed but repeated attempts were not encouraged.

RwCP_CIRCLE indicates whether a respondent successfully drew a circle. RwCP CIRCLE ranges from 0-2. If the respondent drew a circular shape and drew a closed circle (within 1/8'r), 2 is coded. If the respondent drew a circular shape but did not draw a closed circle (within 1/8'r), 1 is coded. If the respondent did not draw a circular shape, 0 is coded.

RwCP_RECTANGLE indicates whether a respondent successfully drew two overlapping rectangles. RwCP_RECTANGLE ranges from 0-2. If the respondent drew two 4-sided, overlapping figures that resembled the original picture, a 2 is coded. If the respondent drew two 4 -sided figures but the overlapping sections did not resemble the original picture, a 1 is coded. If the respondent did not draw two 4-sided figures, a 0 is coded.

RwCP CUBE indicates whether a respondent successfully drew a cube. RwCP CUBE ranges from 0-4. If the respōndent drew a 3 -dimensional figure, drew the frontal face correctly oriented (either left or right), drew the internal lines correctly, and drew the opposite sides parallel with each other (within 10 degrees), a 4 is coded. If the respondent drew a 3-dimensional figure, drew the frontal face correctly oriented (either left or right), and drew the internal lines correctly, a 3 is coded. If the respondent drew a 3-dimensional figure and drew the frontal face correctly oriented (either left or right), a 2 is coded. If the respondent drew a 3 -dimensional figure, a 1 is coded. If the respondent did not draw a $3-$ dimensional figure, a 0 is coded.

RwCP_DIAMOND indicates whether a respondent successfully drew a diamond. RwCP_DIAMOND ranges from 0-3. If
 approximately equal length, $a 3$ is assigned. If the respondent drew four sides, closed all 4 angles of the figure (within $1 / 8^{\prime \prime}$), but did not draw sides of approximately equal length, a 2 is assigned. If the respondent drew four sides but did not close all 4 angles of the figure (within 1/8'r), a 1 is assigned. If the respondent did not draw a 4 -sided figure, a 0 is assigned.

RwCP_SCORE provides the total score between RwCP_CIRCLE, RwCP_RECTANGLE, RwCP_CUBE, and RwCP_DIAMOND.
Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Cases where the uploaded respondent's images were blurry were assigned special missing (.b). Cases where scores are not yet available are assigned special missing (.z). If the respondent cannot draw, special missing (.n) is assigned as "Not Assessed". "Not Assessed" option was marked only if the
respondent has some physical disability that prevented him/her from performing the test. Other missing is assigned as special missing (.m).

The following variables pertain to a series of questions asking the respondent to draw from memory the same figures that he/she previously drew in the interview: a circle, two overlapping rectangles, a cube, and a diamond. The respondent is given a sheet of paper to draw the shapes and allowed up to 8 minutes to draw all 4 shapes.

The results of this second batch of drawings are stored in the variables RwCPR CIRCLE, RwCPR RECTANGLE, RwCPR_CUBE, and RwCPR_DIAMOND, with the same scoring rules applied as in the first set of drawings. RwCPR_SCORE provides the total score between RwCPR_CIRCLE, RwCPR_RECTANGLE, RwCPR_CUBE, and RwCPR_DIAMOND.

RwFCP_CIRCLE, RwFCP_RECTAN, RwFCP_CUBE, RwFCP_DIAMON, RwFCPR_CIRCLE, RwFCPR_RECTAN, RwFCPR_CUBE, and RWFCPR_DIAMON are f \bar{l} ag variables, ${ }^{-}$indicating $\bar{w} h e t h e r ~ t h e ~ c o r \bar{r} e s p o n d i n g ~ v a r i \overline{a b l e ~ h a s ~ a n ~ a s s i g n e d ~ i m p u t e d ~}$ value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, 4.Refused, and 8.Bad image. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In addition to HRS HCAP comparable scores, we also have more detailed scores for overlapping Rectangles and Cube.

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

CEOO1
CE002
CEOO3
CEOO 4
DC001
DC002
DD001
DD002
DD003
DR001
DR002
RCE0 01
RCE002
RCE0 03
RCE004
RDC001
RDC002
RDD001
RDD002
RDD003
RDR001
RDR002

```
CP - Cube 3D - Respondent
CP - Cube face correct oriented - Respondent
CP - Cube internal lines - Respondent
CP - Cube parallel sides - Respondent
CP - Circular shape - Respondent
CP - Closed circle - Respondent
CP - Diamond draw 4 sides - Respondent
CP - Diamond close 4 angles - Respondent
CP - Diamond sides equal length - Respondent
CP - Rectangle Both 4-Sided - Respondent
CP - Rectangle overlaps - Respondent
CPR - Cube 3D - Respondent
CPR - Cube face correct oriented - Respondent
CPR - Cube internal lines - Respondent
CPR - Cube parallel sides - Respondent
CPR - Circular shape - Respondent
CPR - Closed circle - Respondent
CPR - Diamond draw 4 sides - Respondent
CPR- Diamond close 4 angles - Respondent
CPR - Diamond sides equal length - Respondent
CPR - Rectangle both 4-Sided - Respondent
CPR - Rectangle overlaps - Respondent
```


Drawing: Clocks

Wave Variable	Label	Type
1	R1DR_CLOCK3	r1dr_clock3:w1 R clock drawing score(0-3)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1DR_CLOCK3	4096	0.98	1.06	0.00	3.00
R1FDR_CLOCK3	4096	0.39	1.28	0.00	8.00

Categorical Variable Codes

How Constructed

RwDR_CLOCK3 is based on 3 components, specifically: 1) whether the respondent drew a closed circle, 2) whether the respondent correctly placed and ordered clock numbers on the circle, and 3) whether the respondent drew two clock hands. Scores range from 0-3. This measure is comparable with the measures from the main LASI study.

Don't know response are assigned special missing (.d). Refused responses are assigned special missing (.r). Cases where the uploaded respondent's images were blurry and unreadable were assigned special missing (.b). Cases where scores are not yet available are assigned special missing (. z). If the respondent cannot draw, special missing (.n) is assigned as "Not Assessed". "Not Assessed" option was marked only if the respondent had some physical disability that prevented him/her from performing the test. Other missing is assigned special missing (.m).

RwFDR_CLOCK3 is a flag variable, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.NotAssessed, 4. Refused, and 8. Bad image. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

Differences with Harmonized LASI

No differences known.

DAD Variables Used

CKOO1
CK002
CK003
CKOO 4
CK005

```
Clock - Closed circle
Clock - Numbers placed correctly
Clock - Two clock hands
Clock - Correct time
Clock - Hr and min hands diff length
```


CSID

Wave	Variable	Label	Type
1	R1ELBOW	rlelbow:w1 R cognition elbow(0-1)	Categ
1	R1FELBOW	rlfelbow:impflag w1 r whether imputed value	Categ
1	R1HAMMER	r1hammer:w1 R cognition hammer(0-1)	Categ
1	R1FHAMMER	rlfhammer:impflag w1 r whether imputed value	Categ
1	R1STORE	r1store:w1 R cognition store(0-1)	Categ
1	R1FSTORE	rlfstore:impflag w1 r whether imputed value	Categ
1	R1POINT	r1point:w1 R cognition point(0-1)	Categ
1	R1FPOINT	rlfpoint:impflag w1 r whether imputed value	Categ
1	R1CSID_SCORE	rlcsid_score:w1 R CSID 4-item score(0-4)	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1ELBOW	4096	0.94	0.23	0.00	1.00
R1FELBOW	4096	0.09	0.57	0.00	4.00
R1HAMMER	4096	0.70	0.46	0.00	1.00
R1FHAMMER	4096	0.10	0.58	0.00	4.00
R1STORE	4096	4096	0.90	0.31	0.00
R1FSTORE	4096	0.90	0.60	0.00	1.00
R1POINT	4096	3.43	0.63	0.00	4.00
R1FPOINT	0.82	0.00	4.00		
R1CSID_SCORE	4096		0.00		

Categorical Variable Codes

Value	R1ELBOW
0. Incorrect	236
1. Correct	3860
Value	R1FELBOW
0. Not imputed	3968
1. Dont know	28
2.Missing	21
4.Refused	79
Value	R1HAMMER
0. Incorrect	1227
1. Correct	2869
Value	R1FHAMMER
0. Not imputed	3947

1. Dont know	\|	46
2.Missing	\|	21
4.Refused	\|	82
Value----		R1STORE
0. Incorrect	\|	427
1. Correct	\|	3669
Value-		R1FSTORE
0. Not imputed	\|	3931
1. Dont know	\|	62
2.Missing	\|	15
4.Refused	I	88
Value-	\|	R1POINT
0.Incorrect	\|	428
1. Correct	।	3668
Value-	\|	R1FPOINT
0 O. Not imputed	।	3938
1. Dont know	\|	44
2.Missing	\|	16
4.Refused	\|	98
Value	\|	SID_SCORE
0	I	33
1	\|	115
2	\|	345
3	I	1151
4		2452

How Constructed

RwELBOW indicates whether the respondent correctly identified an elbow when pointed at by the interviewer. If the respondent correctly identified the elbow, a 1 is coded. If the respondent incorrectly identified the elbow, a 0 is coded.

RwHAMMER indicates whether the respondent correctly described what one does with a hammer, with "driving a nail into something" as the correct answer. Correct answers are coded as 1 and incorrect answers are coded as 0 .

RwSTORE indicates whether the respondent correctly described where the local market/local store was located. Correct answers can be a specific address or a clear description on how to get to the market/store. Incorrect answers include just repeating the store's name or giving a very confused answer. If the respondent originally provided a vague response, interviewers are instructed to probe for a more specific answer. Correct answers are coded as 1 and incorrect answers are coded as 0 .

RwPOINT indicates whether the respondent correctly points first at a window and then at a door after being instructed to do so. If there is no window available, then the respondent is asked to point first at the ceiling and then at the door. If the respondent correctly follows the interviewer's directions, a 1 is coded. If the respondent does not point at the objects in the correct order, a 0 is coded.

RwCSID SCORE provides a score indicating the total number of correct responses between RwELBOW, RwHAMMER, RwSTORE, and RwPOINT. Scores range from 0 to 4.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwFELBOW, RwFHAMMER, RwFSTORE, and RwFPOINT are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

In HRS HCAP, when respondents were asked to point first to a window and then at the door, if only a window or a door was available (not both), respondents were only asked to point at whichever object was present; a "replacement" object was not used. In DAD, if a window was not available, respondents were asked to point at the ceiling and then at the door. If the door was not available, respondents were asked to point at a window and then at the ceiling.

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

CSID1_ELBOW	CSID1: Elbow
CSID2_HAMMER	CSID2: Hammer
CSID3_STORE	CSID3: Store
CSID4_POINT	CSID4: Point

Raven's Test

Wave Variable	Label	Type
1	R1RV_SCORE	rlrv_score:w1 R Raven's test score (0-17)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1RV_SCORE	4096	7.48	3.32	0.00	17.00
R1FRV_SCORE	4096	0.30	1.02	0.00	4.00

Categorical Variable Codes

Value--	R1FRV_SCORE
0. Not imputed	3723
1. Dont know	92
4. Refused	281

How Constructed

RwRV_SCORE indicates the number of correct answers to a series of questions where respondents were presented with incomplete images and asked to identify the missing piece for each image out of six possible options. The Raven's booklet was used for this task (item Al-B10). For the first image that was presented to respondents, interviewers pointed out that the image had a pattern with a piece cut out of it. Next, the interviewer described why four of the six options for the image's missing pieces could not be correct and stated that only one of the options was correct. The respondent was then instructed to point to the correct answer. If the respondent did not point to the correct piece, the interviewer explained the answer. After working through the first image, the respondent continues with items A2-B10 without any feedback on whether the response is correct or incorrect. Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Other missing is assigned special missing (.m).

RwFRV_SCORE is a flag variable, indicating whether the corresponding variable has an assigned imputed value. The flag variable is coded as follows: 0. Not imputed, 1.Don't know, and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No difference known.

Differences with HRS HCAP

No difference known.

Differences with Harmonized LASI

This question was not asked in LASI.

DAD Variables Used

RV_A1	RAVEN A1
RV_A11	RAVEN A11
RV_A12	RAVEN A12
RV_A2	RAVEN A2

RV_A4	RAVEN A4
RV_A5	RAVEN A5
RV_A6	RAVEN A6
RV_A7	RAVEN A7
RV_A8	RAVEN A8
RV_B1	RAVEN B1
RV_B10	RAVEN B10
RV_B2	RAVEN B2
RV_B3	RAVEN B3
RV_B4	RAVEN B4
RV_B5	RAVEN

Go-no-go Score

Wave	Variable	Label	Type
1	R1GO_SCORE1	r1go_score1:w1 R Go-no-go trial 1 total score(0-10)	Categ
1	R1FGO_SCORE1	r1fgo_score1:impflag w1 r whether imputed value	Categ
1	R1GO_SCORE2	r1go_score2:w1 R Go-no-go trial 2 total score(0-10)	Categ
1	R1FGO_SCORE2	r1fgo_score2:impflag w1 r whether imputed value	Categ
1	R1GO_SCORE	rlgo_score:w1 R Go-no-go total score(0-20)	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1GO_SCORE1	4096	6.44	3.45	0.00	10.00
R1FGO_SCORE1	4096	0.17	4.93	0.79	0.00
R1GO_SCORE2	4096	0.19	3.59	0.00	4.00
R1FGO_SCORE2	4096	11.37	0.83	0.00	10.00
R1GO_SCORE	4096		0.00	4.00	

Categorical Variable Codes

1. Dont know	25
2. Missing	19
4.Refused	

How Constructed

The following variables pertain to the Go-no-go task. This task allows for up to 3 practice trials until the subject can correctly respond (for both part 1 and part 2). This task consists of two parts. For each part, the interviewer scores each response as either correct or incorrect.

The first part goes as follows:
"In this task, when I tap the table once, like this (tap), I want you to tap twice. And when I tap twice (tap tap) I want you to tap once. Let's practice."
"So when I tap once (tap) - you tap...?" (subject taps)
"...and when I tap twice (tap tap) - you tap...?" (subject taps)
If incorrect, the interviewer is instructed to say, "Let's try again: remember when I tap once, you tap twice. And when I tap twice, you tap once - here we go" (examiner repeats above practice trial).

Instructions and practice rounds can be repeated one more time if necessary, making a maximum of three times.

If correct, the interviewer is instructed to say, "OK that's right, remember - I tap once, you tap twice. I tap twice, you tap once. Here we go."

The examiner begins the test by tapping once. If the respondent responds incorrectly, the examiner stops and repeats the instructions. This will be the last time the subject can be reminded of the instructions.

There are 10 trials total. If the respondent has five consecutive incorrect responses, part 1 ends.
The second part goes as follows:
"Now I am going to change the rules. This time when I tap once, you tap twice just like before. But now, when I tap twice, you do nothing - OK? Let us practice. So, when I tap once (tap), you tap...? And when I tap twice (tap tap), you...?"

If an incorrect response is given, the interviewer says, "Let's do that again. Remember, when I tap once, you tap twice, and when I tap twice, you do nothing - let's practice again (examiner taps once, then twice).

If the subject gives another incorrect response, the interviewer repeats the instructions again and allows one more practice round, making three rounds total in all.

When the subject has correctly completed the practice round(s), the interviewer says, "OK that's right. Remember, when I tap once, you tap twice. And when I tap twice, you do nothing - here we go." The examiner always begins the sequence with two taps. If the subject responds incorrectly, the examiner stops and reminds him/her of the instructions again. This is the last time a reminder can be given.

There are 10 trials total. If the respondent has five consecutive incorrect responses, part 2 ends.

RwGO_SCORE1 provides the score indicating the number of correct responses to part one. RwGO_SCORE2 provídes the score indicating the number of correct responses to part two. RwGO SCORE is the sum of RWGO_SCORE1 and RwGO_SCORE2. RWGO_SCORE ranges from 0-20. Don't know responses are assigned special missing (.d). Refuse \bar{d} responses are assigned special missing (.r). Other missing is assigned special missing (.m).

R1FGO SCORE1 and R1FGO SCORE2 are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, $1 . D o n ' t ~ k n o w, ~ 2 . M i s s i n g, ~$ and 4.Refused. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

This test is not included in the HRS HCAP.

Differences with Harmonized LASI

This question was not asked in the Harmonized LASI.

DAD Variables Used

G1_TOTAL
G1 Total Correct
G2_TOTAL
G2_Total Correct

Hand Sequencing Test

Wave	Lariable	Label
1	R1EF_PALM	rlef_palm:w1 R able to repeat palm-up, palm-down test(0-2)
1	R1FEF_PALM	rlfef_palm:impflag w1 r whether imputed value
1	R1EF_CLENCH	rlef_clench:w1 R able to do clenched extended hand movement (
1	R1FEF_CLENCH	rlfef_clench:impflag w1 r whether imputed value
1	R1EF_FIST	rlef_fist:w1 R able to do fist-side-palm test(0-2)
1	R1FEF_FIST	rlfef_fist:impflag w1 r whether imputed value
1	R1EF_SCORE	rlef_score:w1 R Hand Sequencing 3-item score (0-6)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1EF_PALM	2504	1.86	0.40	0.00	2.00
R1FEF_PALM	4096	2.02	2.43	0.00	5.00
R1EF_CLENCH	2504	1.79	0.51	0.00	2.00
R1FEF_CLENCH	4096	2.03	2.43	0.00	5.00
R1EF_FIST	2504	0.90	0.08	2.42	0.00
R1FEF_FIST	4096	4.55	1.25	0.00	2.00
R1EF_SCORE	2504		0.00	5.00	

Categorical Variable Codes

Val	R1EF PALM
.x:Not in phase/wave	1592
0. Incorrect or did not repeat	56
1. Correctly repeated 1-4 movements	231
2.Correctly repeated all 5 movements	2217
Value	R1FEF_PALM
0. Not imputed	2398
1. Dont know	19
2.Missing	8
3. Not Assessed	51
4.Refused	38
5. Not in phase/wave	1592
Value	R1EF CLENCH
.x:Not in phase/wave	1592
0. Incorrect or did not repeat	118
1.Correctly repeated 1-4 movements	287
2.Correctly repeated all 5 movements	2099
Value	\|R1FEF_CLENCH
O. Not imputed	2396
1. Dont know	9
2.Missing	8
3. Not Assessed	49

4.Refused	42
5. Not in phase/wave	1592
Value-	R1EF_FIST
.x:Not in phase/wave	1592
0. Incorrect or did not repeat	881
1. Correctly repeated 1-4 movements	993
2. Correctly repeated all 5 movements	630
Value-	R1FEF FIST
0. Not imputed	2329
1. Dont know	9
2.Missing	8
3. Not Assessed	111
4.Refused	47
5. Not in phase/wave	1592
Value	R1EF_SCORE
.x:Not in phase/wave	1592
0	40
1	33
2	90
3	196
4	710
5	848
6	587

How Constructed

RwEF PALM indicates how the respondent did on the Palm-Up Palm-Down task. For this task, the interviewer instructs the respondent to watch the demonstration of this task three times. Then, the respondent is asked to make the same movement with the interviewer and is then asked to perform it alone for 5 times. RWEF PALM is coded as follows: 0. Incorrect or did not repeat, 1.Correctly repeated $1-4$ movements, and 2. Correctly repeated all 5 movements.

RwEF CLENCH indicates how the respondent performed on the Clenched Extended Hand Movement task. For this task, the interviewer instructs the respondent to watch the demonstration of this task three times. Then, the respondent is asked to make the same movement with the interviewer, and then asked to perform it alone for 5 times. RwEF_CLENCH is coded as follows: 0.Incorrect or did not repeat, $1 . C o r r e c t l y ~ r e p e a t e d ~$ 1-4 movements, and 2 . Correctly repeated all 5 movements.

RwEF_FIST indicates how the respondent did on the Fist-Edge-Palm task. For this task, the interviewer instructs the respondent to watch the demonstration of this task three times. Then, the respondent is asked to make the same movement with the interviewer, and then asked to perform it alone for 5 times. RWEF_FIST is coded as follows: 0.Incorrect or did not repeat, 1.Correctly repeated $1-4$ movements, and 2. Correctly repeated all 5 movements.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Special missing (.x) is assigned if not in phase/wave. If the respondent cannot perform the hand movements, special missing (.n) is assigned as "Not Assessed". "Not Assessed" option was marked only if the respondent has some physical disability, which prevents him/her from performing the test. Other missing is assigned special missing (.m).

RwEF_SCORE indicates a summary score between RwEF_PALM, RwEF_CLENCH, and RwEF_FIST. Scores range from 06.

These questions were asked starting phase 2 data collection.
RwFEF_PALM, RwFEF_CLENCH and RwFEF_FIST are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, 4.Refused, and 5.Not in phase/wave. The original missing value is otherwise included.

Cross Wave Differences in DAD

```
These questions were asked starting phase 2 data collection.
```


Differences with HRS HCAP

These questions were not asked in the HRS HCAP.

Differences with Harmonized LASI

These questions were not asked in the Harmonized LASI.

DAD Variables Used

EF100B	Palm-up Palm-down
EF101B	Clenched Extended Hand movements
EF102B	fist-side-palm

Token Test

Wave	Variable	Label	Type
1	R1TT_CRCL	r1tt_crcl:w1 circle: R able to identify and touch(0-1)	Categ
1	R1FTT_CRCL	rlftt_crcl:impflag w1 r whether imputed value	Categ
1	R1TT_SQR	rltt_sqr:w1 yellow square: R able to identify and touch(0-1)	Categ
1	R1FTT_SQR	rlftt_sqr:impflag w1 r whether imputed value	Categ
1	R1TT_DMND	rltt_dmnd:w1 large diamond: R able to identify and touch(0-1	Categ
1	R1FTT_DMND	r1ftt_dmnd:impflag w1 r whether imputed value	Categ
1	R1TT_BLCKCRL	rltt_blckcrl:w1 black circle,black diamond: R able to identi	Categ
1	R1FTT_BLCKCR	rlftt_blckcrl:impflag w1 r whether imputed value	Categ
1	R1TT_BLSQR	rltt_blsqr:w1 blue square,yellow square: R able to identify	Categ
1	R1FTT_BLSQR	rlftt_blsqr:impflag w1 r whether imputed value	Categ
1	R1TT_YLDMND	rltt_yldmnd:w1 yellow diamond,blue circle: R able to identif	Categ
1	R1FTT_YLDMN	rlftt_yldmnd:impflag w1 r whether imputed value	Categ
1	R1TT_YLSQR	rltt_ylsqr:w1 yellow square, black circle: R able to identify	Categ
1	R1FTT_YLSQR	rlftt_ylsqr:impflag w1 r whether imputed value	Categ
1	R1TT_SCORE	r1tt_score:w1 R Token Test 7-item score (0-7)	Categ

Descriptive Statistics

| Variable | N | Mean | Std Dev | Minimum |
| :--- | :---: | :---: | :---: | :---: | Maximum

R1TT_YLSQR	2504	0.60	0.49	0.00	1.00
R1FTT_YLSQR	4096	2.08	2.42	0.00	5.00
R1TT_SCORE	2504	4.28	1.93	0.00	7.00

Categorical Variable Codes

Val	R1TT_CRCL
.x:Not in phase/wave	1592
$0 . \mathrm{No}$	173
1.Yes	2331
Value-	R1FTT_CRCL
0. Not imputed	2344
1. Dont know	26
2.Missing	8
3. Not Assessed	67
4.Refused	59
5. Not in phase/wave	1592
Value-	R1TT_SQR
.x:Not in phase/wave	1592
0 . No	627
1.Yes	1877
Value-	R1FTT SQR
0. Not imputed	2346
1. Dont know	20
2.Missing	8
3. Not Assessed	69
4.Refused	61
5. Not in phase/wave	1592
Value	R1TT_DMND
.x:Not in phase/wave	1592
0 . No	931
1.Yes	1573
Value	R1FTT_DMND
0. Not imputed	2330
1. Dont know	26
2.Missing	8
3. Not Assessed	77
4.Refused	63
5. Not in phase/wave	1592
Value	R1TT_BLCKCRL
.x:Not in phase/wave	1592
$0 . \mathrm{No}$	1167
1.Yes	1337
Value	R1FTT_BLCKCR
0. Not imputed	2330
1. Dont know	22
2.Missing	8
3. Not Assessed	80
4.Refused	64
5. Not in phase/wave	1592
Value	R1TT_BLSQR
.x:Not in phase/wave	1592
0 . No	1434
1.Yes	1070
Value	R1FTT_BLSQR
0. Not imputed	2331
1. Dont know	23

2.Missing	8
3. Not Assessed	79
4. Refused	63
5. Not in phase/wave	1592
Value	R1TT_YLDMND
.x:Not in phase/wave	1592
0 . No	1488
1.Yes	1016
Value-	R1FTT_YLDMN
0. Not imputed	2334
1. Dont know	22
2.Missing	8
3. Not Assessed	74
4. Refused	66
5. Not in phase/wave	1592
Value	R1TT_YLSQR
.x:Not in phase/wave	1592
$0 . \mathrm{No}$	1001
1.Yes	1503
Value-	R1FTT_YLSQR
0. Not imputed	2327
1. Dont know	20
2.Missing	12
3. Not Assessed	76
4.Refused	69
5. Not in phase/wave	1592
Value	R1TT_SCORE
.x:Not in phase/wave	1592
0	73
1	166
2	233
3	418
4	418
5	420
6	383
7	393

How Constructed

These questions indicate how the respondent did on the Token Test.

RwTT_CRCL indicates whether the respondent is able to identify the circle.
RwTT_SQR indicates whether the respondent is able to identify the yellow square.
RWTT_DMND indicates whether the respondent is able to identify the large diamond.
RwTT_BLCKCRL indicates whether the respondent is able to identify the black circle and then the black diamond.

RWTT_BLSQR indicates whether the respondent is able to identify the blue square and the yellow square.

RwTT_YLDMND indicates whether the respondent is able to tap the yellow diamond and the blue circle.

RwTT_YLSQR indicates whether the respondent is able to tap the black circle instead of tapping the yellow square.

RwTT_CRCL, RwTT_SQR, RwTT_DMND, RwTT_BLCKCRL, RwTT_BLSQR, RwTT_YLDMND, RwTT_YLSQR are coded as follows: 0 . Nō, 1. Yes. Don't know responses āre assigned special missin̄ (.d). Refused responses are assigned special missing (.r). Special missing (.x) is assigned if not in phase/wave. If the respondent cannot perform the requested actions, special missing (.n) is assigned as "Not Assessed". "Not Assessed" option

```
was marked only if the respondent has some physical disability, which prevents him/her from performing
the test. Other missing is assigned special missing (.m).
RwTT SCORE indicates a summary score between RwTT CRCL, RwTT SQR, RwTT DMND, RwTT BLCKCRL, RwTT BLSQR,
RwTT_YLDMND, and RwTT_YLSQR. Scores range from 0-7.
RwFTT_CRCL, RwFTT_SQR, RwFTT DMND, RwFTT_BLCKCR, RwFTT_BLSQR, RwFTT_YLDMN and RwFTT YLSQR are flag
variables, indicating whether the corresponding variable has an assigned imputed value. The flag
variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3.Not Assessed, 4.Refused, and
5.Not in phase/wave. The original missing value is otherwise included.
```


Cross Wave Differences in DAD

These questions were asked starting in phase 2 of the data collection.

Differences with HRS HCAP

These questions were not asked in the HRS HCAP.

Differences with Harmonized LASI

These questions were not asked in the Harmonized LASI.

DAD Variables Used

EF103A	Touch a circle
EF103B	Touch the yellow square
EF103C	Touch the large diamond
EF103D	Touch the black circle then the black diamond
EF103E	Before touching the blue square, touch the ye
EF103F	After tapping the yellow diamond, tap the blu
EF103G	Instead of tapping the yellow square, tap the

Judgement and Problem Solving

Wave	Variable	Label	Type
1	R1JP_ANIML	rljp_animl:w1 similarities: R elephant and monkey	Categ
1	R1FJP_ANIML	rlfjp_animl:impflag w1 r whether imputed value	Categ
1	R1JP_FLWR	rljp_flwr:w1 similarities: R rose and jasmine	Categ
1	R1FJP_FLWR	rlfjp_flwr:impflag w1 r whether imputed value	Categ
1	R1JP_LIE	rljp_lie:w1 differences: R lie and mistake	Categ
1	R1FJP_LIE	rlfjp_lie:impflag w1 r whether imputed value	Categ
1	R1JP_RIVER	rljp_river:w1 differences: R river and pond	Categ
1	R1FJP_RIVER	rlfjp_river:impflag w1 r whether imputed value	Categ
1	R1JP_RUPEE1	r1jp_rupeel:w1 R 25 paise coins for one Rupee	Categ
1	R1FJP_RUPE1	rlfjp_rupee1:impflag w1 r whether imputed value	Categ
1	R1JP_RUPEE2	r1jp_rupee2:w1 R 25 paise coins for six and half rupees	Categ
1	R1FJP_RUPE2	r1fjp_rupee2:impflag w1 r whether imputed value	Categ
1	R1JP_FNDKID	rljp_fndkid:w1 judgement: R find a lost child on road	Categ
1	R1FJP_FNDKI	rlfjp_fndkid:impflag w1 r whether imputed value	Categ
1	R1SIM_SCORE	rlsim_score:w1 R similiarity and difference summary score	Categ
1	R1PRO_SCORE	rlpro_score:w1 R problem solving summary score	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1JP_ANIML	2504	0.38	0.49	0.00	1.00
R1FJP_ANIML	4096	2.05	2.40	0.00	5.00
R1JP_FLWR	2504	0.59	0.49	0.00	1.00
R1FJP_FLWR	4096	2.05	2.41	0.00	5.00
R1JP_LIE	2504	0.18	0.38	0.00	1.00
R1FJP_LIE	4096	2.07	2.40	0.00	5.00
R1JP_RIVER	2504	0.59	0.49	0.00	1.00
R1FJP_RIVER	4096	2.02	2.42	0.00	5.00
R1JP_RUPEE1	2504	0.77	0.42	0.00	1.00
R1FJP_RUPE1	4096	2.06	2.41	0.00	5.00
R1JP_RUPEE2	2504	0.32	0.47	0.00	1.00

R1FJP_RUPE2	4096	2.13	2.38	0.00	5.00
R1JP_FNDKID	2504	0.71	0.45	0.00	1.00
R1FJP_FNDKI	4096	2.00	2.43	0.00	5.00
R1SIM_SCORE	2504	1.75	1.21	0.00	4.00
R1PRO_SCORE	2504	1.79	0.96	0.00	3.00

Categorical Variable Codes

Value	R1JP_ANIML
.x:Not in phase/wave	1592
0. Incorrect	1547
1. Correct	957
Value	R1FJP_ANIML
0. Not imputed	2222
1. Dont know	219
2.Missing	11
4.Refused	52
5. Not in phase/wave	1592
Value	R1JP_FLWR
.x:Not in phase/wave	1592
0. Incorrect	1017
1. Correct	1487
Value	R1FJP_FLWR
0. Not imputed	2242
1. Dont know	197
2.Missing	8
4.Refused	57
5. Not in phase/wave	1592
Value	R1JP_LIE
.x:Not in phase/wave	1592
0. Incorrect	2062
1. Correct	442
Value	R1FJP_LIE
0. Not imputed	2178
1. Dont know	253
2.Missing	10
4.Refused	63
5. Not in phase/wave	1592
Value-	R1JP_RIVER
.x:Not in phase/wave	1592
0. Incorrect	1017
1. Correct	1487
Value	R1FJP_RIVER
0. Not imputed	2359
1. Dont know	85
2.Missing	8
4. Refused	52
5. Not in phase/wave	1592
Value	R1JP_RUPEE1
.x:Not in phase/wave	1592
0. Incorrect	580
1. Correct	1924
Value-	R1FJP RUPE1
0. Not imputed	- 2260

1. Dont know	162
2.Missing	8
4. Refused	74
5. Not in phase/wave	1592
Value	R1JP_RUPEE2
.x:Not in phase/wave	1592
0. Incorrect	1710
1. Correct	794
Value-	R1FJP_RUPE2
0. Not imputed	2053
1. Dont know	343
2.Missing	8
4.Refused	100
5. Not in phase/wave	1592
Value	R1JP_FNDKID
.x:Not in phase/wave	1592
0. Incorrect	728
1. Correct	1776
Value	R1FJP_FNDKI
0. Not imputed	2419
1. Dont know	18
2.Missing	19
4.Refused	48
5. Not in phase/wave	1592
Value	R1SIM_SCORE
.x:Not in phase/wave	1592
0	450
1	667
2	658
3	526
4	203
Value	R1PRO_SCORE
.x:Not in phase/wave	1592
0	265
1	659
2	905
3	675

How Constructed

RwJP_ANIML and RwJP_FLWR ask the respondent to identify similarities between different things. Prior to these graded tasks, the respondent is given the example that pencils and pens are alike because both are writing instruments. RwJP ANIML indicates whether the respondent correctly associated elephants and monkeys. RWJP_FLWR indicates whether the respondent correctly associated roses and jasmine. They are coded as follows: 0. Incorrect, 1. Correct.

RwJP_LIE and RwJP_RIVER ask the respondent to identify differences between different things. Prior to these tasks, the respondent is given the example that dogs and crows are different because one is an animal and the other is a bird. RwJP_LIE indicates whether the respondent correctly distinguishes the difference between a lie and a mistake. RwJP_RIVER indicates whether the respondent correctly distinguishes the difference between a river and a pond. They are coded as follows: 0. Incorrect, 1. Correct.

RwJP_RUPEE1 indicates whether the respondent correctly answers a calculation problem. The respondent is asked how many 25paise coins will be given for one Rupee. It is coded as follows: 0. Incorrect, 1 . Correct.

RwJP_RUPEE2 indicates whether the respondent correctly answers a calculation problem. The respondent is asked how many 25 paise coins they will need to make six and half rupees. It is coded as follows: 0 . Incorrect, 1. Correct.

RwJP FNDKID indicates whether the respondent correctly indicates what he/she would do if he/she found a lost child on the road. It is coded as follows: 0. Incorrect, 1 . Correct.

Don't know responses are assigned special missing (.d). Refused responses are assigned special missing (.r). Special missing (.x) is assigned if not in phase/wave. Other missing is assigned as special missing (.m).

RwSIM_SCORE is a similarities and differences summary score referencing RwJP_ANIML, RwJP_FLWR, RwJP_LIE, and RwJP_RIVER. Scores range from 0-4.

RwPRO_SCORE is a problem-solving summary score referencing RwJP_RUPEE1, RwJP_RUPEE2, and RwJP_FNDKID. Scores range from 0-3.

RwFJP ANIML, RwFJP FLWR, RwFJP LIE, RwFJP RIVER, RwFJP RUPE1, RwFJP RUPE2 and RwFJP FNDKI are flag variā̄les, indicatīng whether $\overline{\text { the }}$ correspōnding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 4.Refused, and 5.Not in phase/wave. The original missing value is otherwise included.

Cross Wave Differences in DAD

These questions were asked starting in phase 2 of data collection.

Differences with HRS HCAP

These questions were not asked in the HRS HCAP.

Differences with Harmonized LASI

These questions were not asked in the Harmonized LASI.

DAD Variables Used

JP100A
JP100B
JP101A
JP101B
JP102A
JP102B
JP103A

```
Elephant - Monkey
Rose - Jasmine
Lie - .Mistake
River - Pond
25paise coins will you give me for one Rupee
    25paise coins will you need to make six and
    find a lost child on road
```


Factor Analysis

Wave	Variable	Label	Type
1	R1BORIENT	r1borient: w1 factor analysis broad domain: orientation	Cont
1	R1BEXEFU	r1bexefu: w1 factor analysis broad domain: executive functio	Cont
1	R1BLANGF	r1blangf: w1 factor analysis broad domain: language/fluency	Cont
1	R1BMEMORY	r1bmemory: w1 factor analysis broad domain: memory	Cont
1	R1BVSP	rlbvsp: w1 factor analysis broad domain: visuospatial	Cont
1	R1NMEMIMM	r1nmemimm: w1 factor analysis narrow domain: memory, imm epi	Cont
1	R1NMEMDEL	r1nmemdel: w1 factor analysis narrow domain: memory, delay e	Cont
1	R1NMEMREC	r1nmemrec: w1 factor analysis narrow domain: memory, recognt	Cont
1	R1NREASON	r1nreason: w1 factor analysis narrow domain: abstract reason	Cont
1	R1NATNSPD	rlnatnspd: w1 factor analysis narrow domain: attention speed	Cont
1	R1SGCP	rlgcp: w1 factor analysis: general cognitive factor	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1BORIENT	4096	-0.05	0.81	-2.49	0.94
R1BEXEFU	4096	-0.01	0.91	-1.93	2.48
R1BLANGF	4096	-0.02	0.81	-3.39	1.96
R1BMEMORY	4096	-0.00	0.96	-2.20	3.73
R1BVSP	4096	0.01	0.83	-1.59	1.58
R1NMEMIMM	4096	-0.00	0.88	-2.13	3.51
R1NMEMDEL	4096	0.00	0.89	-1.39	3.49
R1NMEMREC	4096	0.00	0.67	-2.43	1.23
R1NREASON	4096	0.00	0.89	-1.94	1.93
R1NATNSPD	4096	-0.01	0.83	-1.32	2.21
R1SGCP	4096	-0.01	0.93	-3.04	2.77

How Constructed

RwBORIENT is a summary measure of cognitive tests that are organized into the orientation broad domain. This broad domain is represented by 5 questions about orientation to time (e.g., name the current month, year, season), 5 questions about orientation to place (e.g., state, city), and one question to name the Prime Minister.

RwBEXEFU is a summary measure of cognitive tests that are organized into the executive functioning broad domain. This broad domain consists of two narrow subdomains: attention/speed and abstract reasoning. Further information about the tests used are described in the narrow subdomains of executive functioning.

RwBLANGF is a summary measure of cognitive tests that are organized into the language/fluency broad domain. This domain is represented by animal naming, writing or saying a sentence, phrase repetition, naming of common objects by sight (watch, pencil), naming of common objects by description (elbow, hammer, scissors, coconut, window), following a read or acted command to close one's eyes, and completing a 3-stage task.

RwBMEMORY is a summary measure of cognitive tests that are organized into the memory broad domain. This broad domain consists of 3 narrow subdomains: immediate, delayed, and recognition recall of different cognitive tests used in LASI-DAD. The different cognitive tests used are further described for the memory variables in the narrow domain.

RwBVSP is a summary measure of cognitive tests that are organized into the visuospatial broad domain. This domain is measured by constructional praxis, drawing pentagons, and drawing clocks.

RwNMEMIMM is a summary measure for cognitive tests that are organized into the immediate episodic memory narrow subdomain. This subdomain consists of immediate recall of a 3-word task, a 10-word list, the logical memory test, and the Brave man test.

RwNMEMDEL is a summary measure of cognitive tests that are organized into the delayed episodic memory narrow subdomain. This subdomain consists of delayed recall of a 10 -word list, the logical memory test, the Brave man test, a 3-word task, and the constructional praxis test that was used to measure delayed memory.

RwNMEMREC is a summary measure of cognitive tests that are organized into the recognition memory narrow subdomain. This subdomain consists of a recognition recall of a lo-word list and the logical memory test.

RwNREASON is a summary measure of cognitive tests that are organized into the abstract reasoning narrow subdomain within the executive functioning broad domain. This subdomain consists of the Ravens task, clock drawing, and the Go-No-Go test.

RwNATNSPD is a summary measure of cognitive tests that are organized into the attention/speed narrow subdomain within the executive functioning broad domain. This subdomain consists of a numeracy task, backwards counting, symbol cancellation, and the Digit span forwards and backwards task.

RwSGCP is a general cognitive factor score and can be used as a predictor or outcome in a model. It is the broadest cognitive summary variable, measured by memory, executive functioning, visuospatial, and language domains.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

For the variable RwBORIENT: In HRS HCAP, it contains 5 questions about orientation to time and 5 questions about orientation to place. In LASI-DAD, it also includes a question to name the Prime Minister.

For the variable RwBLANGF: No differences known.

For the variable RwBVSP: In HRS HCAP, only the CERAD constructional praxis was tested. In LASI DAD, additional tests were asked: drawing pentagons and drawing clocks.

For the variable RwBMEMORY: No differences known.
For the variable RwBEXEFU: For the attention/speed narrow subdomain, LASI DAD uses the test "Digits Backward/Forward", which is not used in HRS HCAP. For the abstract reasoning subdomain, HRS HCAP uses TMT, but LASI-DAD substitutes this TMT test for the Go-No-Go task.

```
For the variable RwNMEMIMM: No differences known.
For the variable RwNMEMDEL: No differences known.
For the variable RwNMEMREC: No differences known.
For the variable RwNREASON: In HRS HCAP, the TMT test was used. However, the LASI DAD substitutes the TMT
test with the Go-No-Go task.
For the variable RwNATNSPD: HRS HCAP does not have the Digits Forward and Backward task.
For the variable RwSGCP: No differences known.
```


Differences with Harmonized LASI

Standardized Summary Scores

Wave	Variable	Label	Type
1	R1HMSE_SCORZ	r1hmse_score:w1 R HMSE total score (0-30) (stdized)	Cont
1	R1WORD_TOTAZ	r1word_total:w1 R word list learning total (0-30) (stdized)	Cont
1	R1WORD_DZ	rlword_d:w1 R word list learning recall(0-10) (stdized)	Cont
1	R1WRE_SCOREZ	r1wre_score:w1 R word List Recognition(0-20) (stdized)	Cont
1	R1LOG_RECOZ	r1log_reco:w1 R logical memory recognition score(0-15) (stdi	Cont
1	R1BM_IMMEXZ	rlbm_immex:w1 R Brave man immediate: summary score exact (0-6	Cont
1	R1BM_RECLEXZ	r1bm_reclex:w1 R Brave man recall: summary score exact (0-6)	Cont
1	R1VERBALZ	rlverbal:w1 R verbal fluency: animal naming-correct (stdized)	Cont
1	R1CSID_SCORZ	rlcsid_score:w1 R CSID 4-item score(0-4) (stdized)	Cont
1	R1RV_SCOREZ	rlrv_score:w1 R Raven's test score(0-17) (stdized)	Cont
1	R1COG_TOTALZ	rlcog_total:w1 total cognition score (stdized)	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1HMSE_SCORZ	4096	-0.00	1.00	-4.09	1.34
R1WORD_TOTAZ	4096	-0.00	1.00	-2.25	3.23
R1WORD_DZ	4096	-0.00	1.00	-1.33	2.99
R1WRE_SCOREZ	4096	-0.00	1.00	-4.48	1.12
R1LOG_RECOZ	4096	0.00	1.00	-2.38	2.40
R1BM_IMMEXZ	4096	-0.00	1.00	-1.28	2.42
R1BM_RECLEXZ	4096	-0.00	1.00	-0.74	2.99
R1VERBALZ	4096	0.00	1.00	-2.48	4.52
R1CSID_SCORZ	4096	0.00	1.00	-4.17	0.69
R1RV_SCOREZ	4096	-0.00	1.00	-2.26	2.87
R1COG_TOTALZ	4096	0.00	6.75	-25.45	20.62

How Constructed

The following variables are the standardized cognition summary scores, for the common tests also administered in other HCAP studies.

RwHMSE_SCORZ is the standardized summary score of RwHMSE_SCORE, which is the sum total value of RwORIENT_T5, RwORIENT_P5, RwIMRC3, RwBACKwARD5, RwDLRC3, RwOBJECT, RwREPEAT, RwCOMBFOL, RwEXECU, RwSENTEN ${ }^{-}$and RwDRAW.

RwWORD TOTAZ is the standardized summary score of RwWORD TOTAL, the total number of correct words between RwWORD1, RwWORD2, and RwWORD3.

RwWORD_DZ is the standardized summary score of RwWORD_D, the total numer of words recalled from the $10-$ word list after a delay.

RWWRE SCOREZ is the standardized summary score of RWWRE SCORE, the total number of correct responses given by the respondent for RwWRE_ORG and RwWRE_FOIL.

RwLOG_RECOZ is the standardized summary score of RwLOG_RECO, which test how well respondents remember the specific details of the second story that was read to them.

RwBM_IMMEXZ is the standardized summary score of RwBM_IMMEX, which measures how well respondents remembered the exact story points of a brave man story.

RwBM_RECLEXZ is the standardized summary score of RwBM_RECLEX, which measures how well respondents remembered the exact story points of a brave man story after a delay.

RwVERBALZ is the standardized summary score of RwVERBAL, the number of correct animals that the respondents named.

RwCSID_SCORZ is the standardized summary score of RwCSID_SCORE, the total number of correct responses between RwELBOW, RwHAMMER, RwSTORE, and RwPOINT.

RwRV SCOREZ is the standardized summary score of RwRV SCORE, the number of correct answers to a series of questions where respondents identified the missing piece of each image in a set of images.

RwCOG TOTALZ is the standardized total cognition score, and is calculated by adding RwHMSE SCORZ, RwWORD_TOTAZ, RwWORD_DZ, RwWRE_SCOREZ, RwLOG_RECOZ, RwBM_IMMEXZ, RwBM_RECLEXZ, RwVERBALZ, RWCSID_SCORZ, and RwRV_SCOREZ together.
"Not Assessed" responses are coded as special missing (.n). Cases in which respondents' images were blurry and not yet scored were assigned special missing code (.b). Don't know, refused, or other missing responses are coded as special missing (.d), (.r), or (.m), respectively.

For further information on the variables mentioned in this section, please reference their respective sections above.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

The standardized cognition summary scores are available in the HRS HCAP and LASI-DAD.

Differences with Harmonized LASI

The standardized cognition summary scores were not created in the main Harmonized LASI study.

Section C: Informant Report

Informant Demographics

Wave	Variable	Label	Type
1	R1INF_AGE	rlinf_age:w1 Informant: age	Cont
1	R1INF_GENDR	rlinf_gendr:w1 Informant: gender	Categ
1	R1INF_EDUC	rlinf_educ:w1 Informant: education	Categ
1	R1INF_REL	rlinf_rel:w1 Informant: relation with r	Categ
1	R1INF_FREQ	rlinf_freq:w1 Informant: freq contact with r	Categ
1	R1INF_CARE	rlinf_care:w1 Informant: caregiver for r	Categ
1	R1INF_YRS	r1inf_yrs:w1 Informant: years know r	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1INF_AGE	4026	44.28	16.78	18.00	92.00
R1INF_GENDR	4036	1.64	0.48	1.00	2.00
R1INF_EDUC	4029	3.14	2.46	0.00	9.00
R1INF_REL	4036	4.00	3.37	1.00	15.00
R1INF_FREQ	4024	1.29	0.59	1.00	4.00
R1INF_CARE	4035	0.83	0.38	0.00	1.00
R1INF_YRS	4027	32.04	15.78	1.00	87.00

Categorical Variable Codes

Valu	R1INF_GENDR
.h:Not interviewed \|	49
.m:Missing \|	10
.r:Refuse	1
1. Male	1464
2.Female \|	2572
Value-----------------------------------1	R1INF EDUC
.h:Not interviewed	49
.m:Missing	10
. o:Other	6
.r:Refuse	2
0 . Never attended school	913
1.Less than primary school(standard 1-4)\|	309
2.Primary school completed (standard 5-7\|	482
3. Middle school completed (standard 8-91	495
4.Secondary school completed (standard 1\|	724
5.Higher secondary completed (standard 1\|	450
6.Diploma and certificate holders \|	68
7.Graduate degree completed	419
8.Post-graduate degree	126
9.Professional course/degree \|	43
Value-----------------------------------1	R1INF_REL
.h:Not interviewed	49

.m:Missing	\|	10
.r:Refuse	\|	1
1. Spouse/partner	\|	1204
2.Son	\|	696
3. Daughter	\|	302
4.Son-in-law	\|	27
5. Daughter-in-law	\|	954
6. Grandchild	\|	239
7. Parent	\|	139
8. Parent-in-law	I	119
9.Brother	\|	32
10.Sister	\|	29
11.Grandparent	\|	61
12.Other relative	\|	102
13.Servant	I	1
14.Friend	I	27
15.Other		104
Value		R1INF_FREQ
.h:Not interviewed	,	49
.m:Missing	\|	10
. o:Other	\|	12
.r:Refuse		1
1.Lives with respondent		3057
2. Daily	I	819
3.Once to several times/week	I	81
4.Once a month or less	।	67
Value		R1INF_CARE
.h:Not interviewed	I	49
.m:Missing	\|	11
.r:Refuse	\|	1
$0 . \mathrm{No}$	\|	685
1.Yes	\|	3350

How Constructed

RwINF_AGE indicates the age of the informant. Special missing (.h) is assigned if the respondent does not have an informant interview. Special missing (.d) is assigned for don't know responses. Special missing (.r) is assigned for refused responses. Other missing is assigned as special missing (.m).

RwINF GENDR indicates the gender of the informant. A code of 1 indicates male and a code of 2 indicates female. Special missing (.h) is assigned if the respondent does not have an informant interview. Special missing (.r) is assigned for refused responses. Other missing is assigned as special missing (.m).

RwINF EDUC indicates the highest grade of school or year of college the informant completed. Education levels are assigned as follows: 0. Never attended school, 1. Less than primary school (standard 1-4), 2. Primary school completed (standard 5-7), 3. Middle school completed (standard 8- 9), 4. Secondary school completed (standard $10-11$) 5. Higher Secondary completed (standard 12), 6. Diploma and certificate holders, 7. Graduate degree (B.A., B.Sc., B. Com.) completed, 8. Post-graduate degree or (M.A., M.Sc., M. Com.) above (M.Phil, Ph.D., Post-Doc) completed, and 9. Professional course/degree (B.Ed, BE, B.Tech, MBBS, BHMS, BAMS, B. Pharm, BCS, BCA, BBA, LLB, BVSc., B. Arch, M.Ed, ME, M.Tech, MD, M. Pharm, MCS, MCA, MBA, LLM, MVSc., M. Arch, MS, CA, CS, CWA). Special missing (.o) is assigned if the informant reports 'other'. Special missing (.h) is assigned if the respondent does not have an informant interview. Special missing (.r) is assigned for refused responses. Other missing is as assigned special missing (.m).

RwINF REL indicates the informant's relationship with the respondent. RwINF REL is coded as follows: 1. Spousē/partner, 2. Son, 3. Daughter, 4. Son-in-law, 5. Daughter-in-law, 6. Grandchild, 7. Parent, 8. Parent-in-law, 9. Brother, 10. Sister, 11. Grandparent, 12. Other relative, 13. Servant. 14. Friend, and 15. Other. Special missing (.h) is assigned if the respondent does not have an informant interview. Special missing (.r) is assigned for refused responses. Other missing is as assigned special missing (.m).

RwINF FREQ indicates how often the informant generally saw the respondent in the last year. A code of 1 is assigned if the informant lives with the respondent. A code of 2 is assigned if the informant saw the respondent daily. A code of 3 is assigned if the informant saw the respondent between once a week and several times a week. A code of 4 is assigned if the informant never saw the respondent or saw the
respondent up to once a month. Special missing (.o) is assigned if the informant reports an unspecified other frequency. Special missing (.h) is assigned if the respondent does not have an informant interview. Special missing (.r) is assigned for refused responses. Other missing is assigned as special missing (.m).

RwINF CARE indicates whether the informant is a caregiver for the respondent. A code of 1 is assigned if the informant is a caregiver for the respondent. A code of 0 is assigned if the informant is not a caregiver for the respondent. Special missing (.h) is assigned if the respondent does not have an informant interview. Special missing (.r) is assigned for refused responses. Other missing is assigned as special missing (.m).

RwINF YRS indicates the number of years the informant has known the respondent. If the informant is a child, sibling or parent, RwINF_YRS is coded as either the informant's age or respondent's age, whichever is younger. Special missing (.h) is assigned if the respondent does not have an informant interview. Special missing (.d) is assigned for don't know responses. Special missing (.r) is assigned for refused responses. Other missing is assigned as special missing (.m).

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

No differences known.

DAD Variables Used

Wave 1 Inf:
DM_AGE

DM CARE
Informant Age
Inf Caregiver for Respondent
DM EDUC1
EVER ATTENDED SCHOOL
DM_EDUC2
Informant Ed Level
Informant Freq See Respondent
Informant Gender
Informant Rel To Respondent
Informant Yrs Known Respondent

Diagnosed Health Conditions

| Wave Variable | Label | | Type |
| :--- | :--- | :--- | :--- | :--- |
| 1 | R1INF_STROK | rlinf_strok:w1 Informant: r diagnosed with stroke | Categ |
| 1 | R1INF_PARKN | rlinf_parkn:w1 Informant: r diagnosed with Parkinsons | Categ |
| 1 | R1INF_ALZHE | rlinf_alzhe:w1 Informant: r diagnosed with Alzheimers | Categ |
| 1 | R1INF_MEMRY | r1inf_memry:w1 Informant: r diagnosed with memory problems Categ | |

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1INF_STROK	4015	0.06	0.24	0.00	1.00
R1INF_PARKN	4016	0.04	0.18	0.00	1.00
R1INF_ALZHE	4020	0.04	0.19	0.00	1.00
R1INF_MEMRY	4002	0.12	0.32	0.00	1.00

Categorical Variable Codes

Value	R1INF_STROK
. d : DK	19
.h:Not interviewed	49
.m:Missing	11
.r:Refuse	2
$0 . \mathrm{No}$	3777
1.Yes	238
Value	R1INF_PARKN
. d: DK	18
.h:Not interviewed	49
.m:Missing	11
.r:Refuse	2
$0 . \mathrm{No}$	3874
1.Yes	142
Value	R1INF_ALZHE
. d : DK	14
.h:Not interviewed	49
.m:Missing	11
.r:Refuse	2
$0 . \mathrm{No}$	3877
1.Yes	143
Value	R1INF_MEMRY
. d: DK	32
.h:Not interviewed	49
.m:Missing	11
.r:Refuse	2
$0 . \mathrm{No}$	3536
1.Yes	466

How Constructed

RwINF_STROK indicates whether the informant reported that the respondent has been diagnosed with a stroke.

```
RwINF PARKN indicates whether the informant reported that the respondent has been diagnosed with
Parkinson's disease.
RwINF_ALZHE indicates whether the informant reported that the respondent has been diagnosed with
Alzheimer's disease.
RWINF MEMRY indicates whether the informant reported that the respondent has been diagnosed with memory
problems.
RwINF_STROK, RwINF_PARKN, RwINF_ALZHE, and RwINF_MEMRY are coded as 1 if the informant reports that the
respondent was diagnosed with the corresponding health condition. A code of 0 is assigned if the
informant reports that the respondent has not been diagnosed with the condition. Special missing (.h) is
assigned if the respondent does not have an informant interview. Don't know responses are assigned
special missing (.d). Special missing (.r) is assigned for refused responses. Other missing is assigned
as special missing (.m).
```


Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

No differences known.

DAD Variables Used

DM_AD	Resp Diagnosed Alzheimers
DM_MEM	Resp Diagnosed Memory Probs
DM_PARK	Resp Diagnosed Parkinsons
DM_STROKE	Resp Diagnosed Stroke

JORM IQCODE Test

Wave	Variable	Label	Type
1	R1IQSCORE1	r1iqscore1:w1 JORM family/friend details	Categ
1	R1FIQSCORE1	r1fiqscore1:impflag w1 r whether imputed value	Categ
1	R1IQSCORE2	r1iqscore2:w1 JORM recent events	Categ
1	R1FIQSCORE2	r1fiqscore2:impflag w1 r whether imputed value	Categ
1	R1IQSCORE 3	r1iqscore3:w1 JoRM recent conversations	Categ
1	R1FIQSCORE3	rlfiqscore3:impflag w1 r whether imputed value	Categ
1	R1IQSCORE 4	r1iqscore4:w1 JORM address and telephone number	Categ
1	R1FIQSCORE4	rlfiqscore4:impflag w1 r whether imputed value	Categ
1	R1IQSCORE5	r1iqscore5:w1 JoRM day and month	Categ
1	R1FIQSCORE5	rlfiqscore5:impflag w1 r whether imputed value	Categ
1	R1IQSCORE 6	r1iqscore6:w1 JoRM where things are usually kept	Categ
1	R1FIQSCORE6	rlfiqscore6:impflag w1 r whether imputed value	Categ
1	R1IQSCORE 7	r1iqscore7:w1 JORM where to find things	Categ
1	R1FIQSCORE7	rlfiqscore7:impflag w1 r whether imputed value	Categ
1	R1IQSCORE 8	rliqscore8:w1 JORM work familiar machines	Categ
1	R1FIQSCORE8	rlfiqscore8:impflag w1 r whether imputed value	Categ
1	R1IQSCORE 9	rliqscore9:w1 JORM new gadget or machine	Categ
1	R1FIQSCORE9	rlfiqscore9:impflag w1 r whether imputed value	Categ
1	R1IQSCORE10	r1iqscore10:w1 JoRM new things in general	Categ
1	R1FIQSCORE10	r1fiqscore10:impflag w1 r whether imputed value	Categ
1	R1IQSCORE11	r1iqscore11:w1 JoRM story in a book or on TV	Categ
1	R1FIQSCORE11	rlfiqscore11:impflag w1 r whether imputed value	Categ
1	R1IQSCORE12	r1iqscore12:w1 JoRM making decisions on everyday matters	Categ
1	R1FIQSCORE12	r1fiqscore12:impflag w1 r whether imputed value	Categ
1	R1IQSCORE13	r1iqscore13:w1 JoRM handling money for shopping	Categ
1	R1FIQSCORE13	r1fiqscore13:impflag w1 r whether imputed value	Categ
1	R1IQSCORE14	r1iqscore14:w1 JORM handling financial matters	Categ
1	R1FIQSCORE14	rlfiqscore14:impflag w1 r whether imputed value	Categ
1	R1IQSCORE15	r1iqscore15:w1 JORM handling other everyday arithmetic probl	Categ

| 1 | R1FIQSCORE15 | r1fiqscore15:impflag w1 r whether imputed value | Categ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | R1IQSCORE16 | r1iqscore16:w1 JORM reason things through | Categ |
| 1 | R1FIQSCORE16 | r1fiqscore16:impflag w1 r whether imputed value | Categ |
| 1 | R1JORMSCORE | r1jormscore:w1 JORM average score | Cont |

Descriptive Statistics

| Variable | N | Mean | Std Dev | Minimum |
| :--- | :---: | ---: | ---: | ---: | Maximum

R1FIQSCORE13	4096	0.42	1.54	0.00	12.00
R1IQSCORE14	4096	3.44	0.79	1.00	5.00
R1FIQSCORE14	4096	0.72	1.71	0.00	12.00
R1IQSCORE15	4096	3.41	0.73	1.00	5.00
R1FIQSCORE15	4096	0.41	1.53	0.00	12.00
R1IQSCORE16	4096	3.36	0.70	1.00	5.00
R1FIQSCORE16	4096	0.21	1.37	0.00	12.00
R1JORMSCORE	4096	3.45	0.55	1.00	5.00

Categorical Variable Codes

Value-		R1IQSCORE1
1. Much improved	\|	36
2.A bit improved	।	83
3.Not much changed	।	2322
4.A bit worse	।	1257
5.Much worse	।	398
Value-	\|	R1FIQSCORE1
0. Not imputed	\|	3980
1. Dont know	।	9
2.Missing	।	13
3.Not Assessed	\|	42
4. Refused	\|	3
12.Not interviewed	।	49
Value-	\|	R1IQSCORE2
1. Much improved	\|	34
2.A bit improved	\|	82
3.Not much changed	।	2410
4.A bit worse	।	1231
5.Much worse	।	339
Value-	\|	R1FIQSCORE2
0. Not imputed	\|	4001
1. Dont know	\|	16
2.Missing		13
3. Not Assessed	\|	14
4. Refused		3
12.Not interviewed	\|	49
Value-		R1IQSCORE3
1. Much improved		19
2.A bit improved		75
3. Not much changed		2390
4.A bit worse	\|	1278
5.Much worse	\|	334
Value		R1FIQSCORE3
0. Not imputed		4006
1. Dont know		16
2.Missing	\|	13
3. Not Assessed	\|	7
4. Refused		5
12.Not interviewed	\|	49
Value-		R1IQSCORE4
1. Much improved		22
2.A bit improved		68
3. Not much changed		2518

4.A bit worse	I	1067
5.Much worse	\|	421
Value		R1FIQSCORE4
0. Not imputed	\|	3598
1. Dont know	\|	17
2.Missing	\|	13
3. Not Assessed	\|	415
4.Refused	\|	4
12. Not interviewed	\|	49
Value		R1IQSCORE5
1. Much improved		29
2.A bit improved	\|	75
3. Not much changed	\|	2583
4.A bit worse	\|	1040
5.Much worse	\|	369
Value		R1FIQSCORE5
0. Not imputed	\|	3906
1. Dont know	\|	14
2.Missing	\|	13
3. Not Assessed	I	111
4.Refused	\|	3
12. Not interviewed	\|	49
Value		R1IQSCORE6
1. Much improved	\|	12
2.A bit improved	\|	55
3. Not much changed	\|	2223
4.A bit worse	\|	1421
5. Much worse	\|	385
Value		R1FIQSCORE6
0. Not imputed	\|	3986
1. Dont know	\|	11
2.Missing	\|	13
3. Not Assessed	\|	34
4.Refused	\|	3
12. Not interviewed	\|	49
Value		R1IQSCORE7
1. Much improved	I	15
2.A bit improved	\|	53
3. Not much changed	I	1985
4.A bit worse	I	1592
5. Much worse	\|	451
Value		R1FIQSCORE7
0. Not imputed		3979
1. Dont know	\|	15
2.Missing	\|	13
3. Not Assessed	I	37
4.Refused	\|	3
12. Not interviewed	।	49
Value		R1IQSCORE8
1. Much improved	\|	33
2.A bit improved	\|	92
3. Not much changed	\|	2512
4.A bit worse	\|	1007
5. Much worse	।	452
Value		R1FIQSCORE8
0. Not imputed	\|	3251
1. Dont know	।	29
2.Missing	।	13
3. Not Assessed	\|	751
4.Refused	\|	3
12. Not interviewed	\|	49

Valu	R1IQSCORE9
1. Much improved	48
2.A bit improved	153
3. Not much changed	2061
4.A bit worse	1247
5.Much worse	587
Value	R1FIQSCORE9
0. Not imputed	2825
1. Dont know	35
2.Missing	13
3. Not Assessed	1170
4.Refused	14
12. Not interviewed	49
Value	R1IQSCORE10
1. Much improved	45
2.A bit improved	195
3. Not much changed	1920
4.A bit worse	1306
5.Much worse	630
Value	\|R1FIQSCORE10
0. Not imputed	3479
1. Dont know	32
2.Missing	13
3. Not Assessed	520
4. Refused	3
12. Not interviewed	49
Value-	R1IQSCORE11
1. Much improved	37
2.A bit improved	127
3. Not much changed	2675
4.A bit worse	881
5. Much worse	376
Value	\|R1FIQSCORE11
0. Not imputed	3451
1. Dont know	20
2.Missing	13
3. Not Assessed	559
4.Refused	4
12. Not interviewed	49
Value	R1IQSCORE12
1. Much improved	26
2.A bit improved	95
3. Not much changed	2553
4.A bit worse	977
5. Much worse	445
Value	\|R1FIQSCORE12
0. Not imputed	3745
1. Dont know	15
2.Missing	113
3. Not Assessed	1269
4. Refused	15
12. Not interviewed	149
Value-	\| R1IQSCORE13
1. Much improved	\| 31
2.A bit improved	181
3. Not much changed	12645
4.A bit worse	1863
5. Much worse	1 476
Value	\| R1FIQSCORE13
0. Not imputed	3665
1. Dont know	112
2.Missing	13

3. Not Assessed	352
4. Refused	5
12. Not interviewed	49
Value	R1IQSCORE14
1. Much improved	41
2.A bit improved	110
3. Not much changed	2492
4.A bit worse	909
5.Much worse	544
Value	R1FIQSCORE14
0. Not imputed	3252
1. Dont know	15
2.Missing	14
3. Not Assessed	761
4.Refused	5
12. Not interviewed	49
Value	R1IQSCORE15
1.Much improved	28
2.A bit improved	74
3. Not much changed	2609
4.A bit worse	960
5. Much worse	425
Value	R1FIQSCORE15
0. Not imputed	3672
1. Dont know	20
2.Missing	14
3. Not Assessed	336
4.Refused	5
12. Not interviewed	49
Value	R1IQSCORE16
1. Much improved	32
2.A bit improved	95
3. Not much changed	2681
4.A bit worse	947
5. Much worse	341
Value	R1FIQSCORE16
0. Not imputed	3940
1. Dont know	17
2.Missing	14
3. Not Assessed	72
4. Refused	4
12.Not interviewed	49

How Constructed

The following variables pertain to a series of questions asking the informant whether the respondent has improved, stayed the same, or gotten worse in various situations that require memory or intelligence. The interviewer emphasizes the importance of comparing present performance with past performance. The informant is asked to compare the current year with 10 year ago. If the informant has known the respondent for less than 10 years, they are to compare the current year with the year they first met the respondent.

In RwIQSCORE1, the informant compares the respondent's current ability to remember things about family and friends, such as occupations, birthdays, and addresses, with his/her ability to remember these things in the past

In RwIQSCORE2, the informant compares the respondent's current ability to remember things that have happened recently with his/her ability in the past.

In RwIQSCORE3, the informant compares the respondent's current ability to recall conversations a few days later with his/her ability in the past.

In RwIQSCORE4, the informant compares the respondent's current ability to remember their address and telephone number with his/her ability in the past.

In RwIQSCORE5, the informant compares the respondent's current ability to remember what day and month it is with his/her ability in the past.

In RwIQSCORE6, the informant compares the respondent's current ability to remember where things are usually kept with his/her ability in the past.

In RwIQSCORE7, the informant compares the respondent's current ability to remember where to find things that have been put in a different place from usual with his/her ability in the past.

In RwIQSCORE8, the informant compares the respondent's current ability to know how to work familiar machines around the house with his/her ability in the past.

In RwIQSCORE9, the informant compares the respondent's current ability to learn to use a new gadget or machine around house with his/her ability in the past.

In RwIQSCORE10, the informant compares the respondent's current ability to learn new things in general with his/her ability in the past.

In RwIQSCORE11, the informant compares the respondent's current ability to follow a story in a book or on TV with his/her ability in the past.

In RwIQSCORE12, the informant compares the respondent's current ability to make decisions on everyday matters with his/her ability in the past.

In RwIQSCORE13, the informant compares the respondent's current ability to handle money for shopping with his/her ability in the past.

In RwIQSCORE14, the informant compares the respondent's current ability to handle financial matters with his/her ability in the past. Examples include pension-related decisions or dealing with a bank.

In RwIQSCORE15, the informant compares the respondent's current ability to handle other everyday arithmetic problems, such as knowing how much food to buy and knowing how much time elapsed between visits from family or friends, with his/her ability in the past.

In RwIQSCORE16, the informant compares the respondent's current ability to use his/her intelligence to understand what's going on and to reason things through with his/her ability in the past.

RwIQSCORE1- RwIQSCORE16 are coded as follows: 1. Much improved, 2. A bit improved, 3. Not much changed, 4. A bit worse, and 5. Much worse. If the informant reports that a particular activity does not apply to the respondent, special missing (.n) is assigned. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwJORMSCORE indicates the average value of RwIQSCORE1- RwIQSCORE16. RwJORMSCORE is calculated by taking the sum of values between RwIQSCORE1- RwIQSCORE16 over the number of non-missing values between RwIQSCORE1- RwIQSCORE16. If the informant reports that no activities apply to the respondent, special missing (.n) is assigned. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFIQSCORE1- RwFIQSCORE16 are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 3. Not Assessed, 4.Refused, and 12. Not interviewed. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

HRS HCAP asks respondent the same questions, but the questions are formed by the primary questions (H1IQ1 - H1IQ16) and two kinds of sub-questions: 1. (H1IQ1I - H1IQ16I) Is it much improved or a bit improved? and 2. (H1IQ1W - H1IQ16W) Is it much worse or a bit worse? The primary HRS HCAP questions are coded as follows: 1. Improved, 2. Not much changed, 3. Gotten worse, 4. Does not apply; R doesn't do activity, 8. DK (Don't Know), and 9. RF (Refused). Missing is assigned as (.). H1IQ1I - H1IQ16I are coded as follows: 1. Much improved, 2. A bit improved, 8. DK (Don't Know), and 9. RF (Refused). Missing is assigned as (.). H1IQ1W - H1IQ16W are coded as follows: 1. A bit worse, 2. Much worse, 8. DK (Don't Know), and 9. RF (Refused). Missing is assigned as (.). In DAD, the primary questions and sub-questions are combined together.

In HRS HCAP, both the mean score (1-5) and trimmed mean score (3-5) are calculated while in DAD, only the mean score is calculated.

DAD Variables Used

J10A	Learning New Things
J11A	Following a Story in Book or on TV
J12A	Making Everyday Decisions
J13A	Handling Money for Shopping
J14A	Handling Fin Matters with Bank
J15A	Handling Everyday Math
J16A	Using Intelligence to Reason
J1A	Remembering Family, Friends, Dates
J2A	Remembering Recent Happenings
J3A	Recalling Conversations
J4A	Remembering Address and Telephone
J5A	Remembering Day and Month
J6A	Remembering Where Things Are Kept
J7A	Remembering Where to Find Things
J8A	Knowing How to Work Machines
J9A	Learning to Use a New Gadget

Blessed Test-Part 2

Wave	Variable	Label	Type
1	R1BL2_2R	r1bl2_2r:w1 Blessed Test part 2- eating	Categ
1	R1FBL2_2R	r1fbl2_2r:impflag w1 r whether imputed value	Categ
1	R1BL2_3R	r1bl2_3r:w1 Blessed Test part 2- toilet	Categ
1	R1FBL2_3R	rlfbl2_3r:impflag w1 r whether imputed value	Categ
1	R1BL2_4R	r1bl2_4r:w1 Blessed Test part 2- dressing	Categ
1	R1FBL2_4R	rlfbl2_4r:impflag w1 r whether imputed value	Categ
1	R1BL2SCORE	r1bll2_score:w1 Blessed Test part 2 average score	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1BL2_2R	4096	1.08	0.43	1.00	4.00
R1FBL2_2R	4096	0.15	1.31	0.00	12.00
R1BL2_3R	4096	1.07	0.36	1.00	4.00
R1FBL2_3R	4096	0.16	1.32	0.00	12.00
R1BL2_4R	4096	1.09	0.41	1.00	4.00
R1FBL2_4R	4096	0.15	1.31	0.00	12.00
R1BL2SCORE	4096	1.08	0.32	1.00	4.00

Categorical Variable Codes

Value------------------------------------1	R1BL2_2R
1.Feeds self without assistance \|	$3 \overline{9} 09$
2.Feeds self with minor assistance	88
3. Feeds self with much assistance	38
4.Has to be fed \|	61
Value-------------------------------------1	R1FBL2_2R
0. Not imputed \|	4029
1. Dont know	1
2.Missing	14
4.Refused	3
12.Not interviewed \|	49
Value------------------------------------1	R1BL2_3R
1.Clean, cares for self at toilet \|	3918
2.Occasional incontinence, or needs to bl	96
3.Frequent incontinence, or needs much al	56
4.Little or no control \|	26
Value------------------------------------	R1FBL2_3R
0.Not imputed \|	4024
1. Dont know \|	2
2.Missing \|	14
4.Refused \|	7
12.Not interviewed \|	49

Valu	R1BL2 4R
1. Unaided	$3 \overline{8} 71$
2.Occasionally misplaces buttons, requir\|	142
3. Wrong sequences, forgets items, requir\|	34
4.Unable to dress \|	49
Value------------------------------------1	R1FBL2_4R
O. Not imputed	4028
1. Dont know	1
2.Missing \|	14
4. Refused	4
12.Not interviewed \|	49

How Constructed

The following variables pertain to a series of questions asked to the informant regarding how well the respondent does with different activities.

RwBL2 2R asks the informant how well the respondent feeds himself/herself. A 1 is coded for being able to feed ōneself without assistance. A 2 is coded for being able to feed oneself with minor assistance. A 3 is coded for feeding oneself with much assistance. A 4 is coded for having to be fed. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing are assigned as special missing (.d), (.r), and (.m), respectively.

RwBL2 3R asks the informant how well the respondent can clean and care for himself/herself at a toilet. A 1 indicates that the respondent is able to clean and care for oneself at a toilet. A 2 indicates that the respondent has occasional incontinence or needs to be reminded. A 3 indicates that the respondent has frequent incontinence or needs a lot of assistance. A 4 indicates that the respondent has little or no control over incontinence. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing are assigned as special missing (.d), (.r), and (.m), respectively.

RwBL2_4R asks the informant how well the respondent is able to get dressed unaided. A 1 indicates that the respondent can dress unaided. A 2 indicates that the respondent occasionally misplaces buttons and requires minor help. A 3 indicates that the respondent gets dressed in the wrong sequence, forgets items, and requires much assistance. A 4 indicates that the respondent is unable to dress oneself. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing are assigned as special missing (.d), (.r), and (.m), respectively.

RwBL2SCORE indicates the average value of RwBL2_2R, RwBL2_3R, and RwBL2_4R. RwBL2SCORE is calculated by taking the sum of values between RwBL2_2R, RwBL2_3R, and RwBL2_4R over the number of non-missing values between RwBL2_2R, RwBL2_3R, and RwBL2_4R. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing are assigned as special missing (.d), (.r), and (.m), respectively.

RwFBL2 2R- RwFBL2_4R are flag variables, indicating whether the corresponding variable has an assigned impute \bar{d} value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, $2 . \mathrm{Missing}$, 4.Refused, and 12. Not interviewed. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

No differences known.

DAD Variables Used

BL2_2
Ability to Feed Self
BL2_3 Ability to Use Toilet
BL2-4
Ability to Dress Self

Everyday Activities

Wave	Variable	Label	Type
1	R1ACT_TV	rlact_tv:w1 Activities- watching TV	Categ
1	R1FACT_TV	rlfact_tv:impflag w1 r whether imputed value	Categ
1	R1ACT_READ	rlact_read:w1 Activities- reading	Categ
1	R1FACT_READ	rlfact_read:impflag w1 r whether imputed value	Categ
1	R1ACT_CHOR	rlact_chor:w1 Activities- chores, maintenance, or gardening	Categ
1	R1FACT_CHOR	rlfact_chor:impflag w1 r whether imputed value	Categ
1	R1ACT_COMP	rlact_comp:w1 Activities- computer or the internet	Categ
1	R1FACT_COMP	rlfact_comp:impflag w1 r whether imputed value	Categ
1	R1ACT_NAP	rlact_nap:w1 Activities- taking naps	Categ
1	R1FACT_NAP	rlfact_nap:impflag w1 r whether imputed value	Categ
1	R1ACT_MEAL	rlact_meal:w1 Activities- preparing hot meals	Categ
1	R1FACT_MEAL	rlfact_meal:impflag w1 r whether imputed value	Categ
1	R1ACT_TRAV	rlact_trav:w1 Activities- traveling	Categ
1	R1FACT_TRAV	rlfact_trav:impflag w1 r whether imputed value	Categ
1	R1ACT_PUBT	rlact_pubt:w1 Activities- public transit	Categ
1	R1FACT_PUBT	rlfact_pubt:impflag w1 r whether imputed value	Categ
1	R1ACT_WORK	rlact_work:w1 Activities- work or volunteer	Categ
1	R1FACT_WORK	rlfact_work:impflag w1 r whether imputed value	Categ
1	R1ACT_STOR	rlact_stor:w1 Activities- store or market for food	Categ
1	R1FACT_STOR	rlfact_stor:impflag w1 r whether imputed value	Categ
1	R1ACT_WALK	rlact_walk:w1 Activities- walks	Categ
1	R1FACT_WALK	rlfact_walk:impflag w1 r whether imputed value	Categ
1	R1ACT_SPOR	rlact_spor:w1 Activities- yoga or any other exercise	Categ
1	R1FACT_SPOR	rlfact_spor:impflag w1 r whether imputed value	Categ
1	R1ACT_DAIL	rlact_dail:w1 Activities- daily activities	Categ
1	R1FACT_DAIL	rlfact_dail:impflag w1 r whether imputed value	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1ACT_TV	4096	1.62	1.36	0.00	5.00

R1FACT_TV	4096	0.16	1.32	0.00	12.00
R1ACT_READ	4096	0.55	0.94	0.00	5.00
R1FACT_READ	4096	0.17	1.32	0.00	12.00
R1ACT_CHOR	4096	1.80	1.53	0.00	5.00
R1FACT_CHOR	4096	0.16	1.32	0.00	12.00
R1ACT_COMP	4096	0.07	0.44	0.00	5.00
R1FACT_COMP	4096	0.17	1.33	0.00	12.00
R1ACT_NAP	4096	2.06	1.45	0.00	5.00
R1FACT_NAP	4096	0.16	1.32	0.00	12.00
R1ACT_MEAL	4096	0.40	0.49	0.00	1.00
R1FACT_MEAL	4096	0.16	1.32	0.00	12.00
R1ACT_TRAV	4096	0.61	0.49	0.00	1.00
R1FACT_TRAV	4096	0.16	1.32	0.00	12.00
R1ACT_PUBT	4096	0.62	0.49	0.00	1.00
R1FACT_PUBT	4096	0.16	1.32	0.00	12.00
R1ACT_WORK	4096	4.69	1.87	1.00	6.00
R1FACT_WORK	4096	0.16	1.32	0.00	12.00
R1ACT_STOR	4096	4.00	1.84	1.00	6.00
R1FACT_STOR	4096	0.16	1.32	0.00	12.00
R1ACT_WALK	4096	4.16	2.27	1.00	6.00
R1FACT_WALK	4096	0.16	1.32	0.00	12.00
R1ACT_SPOR	4096	5.59	1.27	1.00	6.00
R1FACT_SPOR	4096	0.16	1.32	0.00	12.00
R1ACT_DAIL	4096	1.79	0.67	1.00	3.00
R1FACT_DAIL	4096	0.16	1.32	0.00	12.00

Categorical Variable Codes

1. Dont know	3
2.Missing	16
4.Refused	6
12. Not interviewed	49
Value-	R1ACT_TRAV
0 . No	1579
1.Yes	2517
Value	R1FACT_TRAV
0. Not imputed	4020
1. Dont know	7
2.Missing	16
4.Refused	4
12. Not interviewed	49
Value	R1ACT_PUBT
0 . No	1572
1.Yes	2524
Value	R1FACT_PUBT
0. Not imputed	4019
1. Dont know	6
2.Missing	16
4.Refused	6
12. Not interviewed	49
Value	R1ACT WORK
1. Daily	587
2.Several times a week	230
3.Once a week	187
4.Once a month	178
5.Rarely	606
6. Never	2308
Value	R1FACT_WORK
0. Not imputed	4008
1. Dont know	16
2.Missing	16
4.Refused	7
12. Not interviewed	49
Value	R1ACT_STOR
1. Daily	503
2.Several times a week	664
3. Once a week	576
4.Once a month	292
5.Rarely	716
6. Never	1345
Value	R1FACT_STOR
0. Not imputed	4012
1. Dont know	10
2.Missing	16
4.Refused	9
12. Not interviewed	49
Value	R1ACT_WALK
1. Daily	1246
2.Several times a week	158
3.Once a week	85
4.Once a month	31
5.Rarely	372
6.Never	2204
Value-	R1FACT_WALK
0. Not imputed	4011
1. Dont know	10
2.Missing	16
4.Refused	10
12. Not interviewed	49

Value	R1ACT_SPOR
1. Daily	246
2. Several times a week	38
3. Once a week	26
4.Once a month	19
5. Rarely	177
6. Never	3590
Value-	R1FACT_SPOR
0. Not imputed	4006
1. Dont know	15
2.Missing	16
4.Refused	10
12. Not interviewed	49
Value-	R1ACT_DAIL
1.No change	1444
2.Slowing down	2085
3.Activities decreased or discontinued	567
Value-	R1FACT_DAIL
0. Not imputed	4012
1. Dont know	11
2.Missing	16
4.Refused	8
12. Not interviewed	49

How Constructed

The following variables pertain to a series of questions regarding the respondent's activity level, according to the informant.

RwACT_TV asks the informant how many hours in an average day the respondent spends watching television. RwACT TV is coded as follows: 0. Never, 1. 30 minutes, 2. One hour, 3. Two to three hours, 4. Four to six hours, and 5. Seven or more hours. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT READ asks the informant how many hours in an average day the respondent spends reading. RwACT READ is coded as follows: 0. Never, 1. 30 minutes, 2. One hour, 3. Two to three hours, 4. Four to six hours, and 5. Seven or more hours. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT CHOR asks the informant how many hours in an average day the respondent spends doing chores, maintenance, or gardening. RwACT_CHOR is coded as follows: 0. Never, 1. 30 minutes, 2. One hour, 3. Two to three hours, 4. Four to six hours, and 5. Seven or more hours. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT_COMP asks the informant how many hours in an average day the respondent spends using a computer or the internet. RwACT COMP is coded as follows: 0. Never, 1. 30 minutes, 2. One hour, 3. Two to three hours, 4. Four to six hours, and 5. Seven or more hours. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT_NAP asks the informant how many hours in an average day the respondent spends taking naps. RwACT NAP is coded as follows: 0. Never, 1. 30 minutes, 2. One hour, 3. Two to three hours, 4. Four to six hours, and 5. Seven or more hours. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT_MEAL asks the informant whether the respondent prepares hot meals. A 1 indicates that the respondent prepares hot meals. A 0 indicates that the respondent does not prepare hot meals or that it is not customary for the respondent to do this. Special missing (.h) is assigned if the respondent does not
have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT TRAV asks the informant whether the respondent is able to travel somewhere by himself/herself. A 1 is coded for yes. A 0 is coded for no. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT PUBT asks the informant whether the respondent can use public transit by himself/herself. A 1 is coded for yes. A 0 is coded for no. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT_WORK asks the informant how often the respondent goes to work or volunteers. RwACT_WORK is coded as follow̄s: 1. Daily, 2. Several times a week, 3. Once a week, 4. Once a month, 5. Rarely, and 6. Never. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT_STOR asks the informant how often the respondent goes to the store or market for food or other things. RwACT STOR is coded as follows: 1. Daily, 2. Several times a week, 3. Once a week, 4. Once a month, 5. Rarely, and 6. Never. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT_WALK asks the informant how often the respondent goes for walks. RwACT_WALK is coded as follows: 1. Daily, 2. Several times a week, 3. Once a week, 4. Once a month, 5. Rarely, \bar{a} nd 6 . Never. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT_SPOR asks the informant how often the respondent does yoga or any other exercise. RwACT_SPOR is coded as follows: 1. Daily, 2. Several times a week, 3. Once a week, 4. Once a month, 5. Rarely, and 6. Never. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwACT_DAIL indicates how much, if any, the informant has seen a change in the respondent's daily activities in the past few years. RwACT_DAIL is coded as follows: 1. No change, 2 . Slowing down, and 3. Activities decreased or discontinued. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFACT_TV - RwFACT_DAIL are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 4.Refused, and 12. Not interviewed. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

Both the LASI-DAD and the HRS HCAP ask the same questions in this section, with some having slight variations.

For the variable RwACT_TRAV, the HRS HCAP asked "Is R able to drive on his/her own?" while DAD asked "Is R able to travel somewhere on his/her own?". For RwACT_SPOR, the HRS HCAP asked "How often does R play sports or exercise?" while DAD asked "How often does R do yoga or any other exercise?".

DAD Variables Used

ACT_1
Hrs Spent Watching TV
ACT_10
Prepares Hot Meals

CT
CT
-_16
$\mathrm{ACT}^{-1} 2$
$\mathrm{ACT}^{-} 22$
$\mathrm{ACT}^{-} 24$
CT_3
CT-5
$\mathrm{ACT}^{-}{ }^{-7}$

```
Able To Travel on Own
Use Public Transit on Own
Freq Go To Work/Volunteer
Freq Go To Store/Market
Hrs Spent Reading
Freq Go for Walk
Freq Play Sports/Exercise
Change In Daily Activities
Hrs Spent Playing Puzzles/GamesHrs Spent Chor
Hrs Spent Using Computer/Internet
Hrs Spent Taking Naps
Other Activities
```


Everyday Feelings

Wave	Variable	Label	Type
1	R1FEEL27	r1feel27:w1 Activities- feelings: happy	Categ
1	R1FFEEL27	r1ffeel27:impflag w1 r whether imputed value	Categ
1	R1FEEL29	r1feel29:w1 Activities- feelings: engaged	Categ
1	R1FFEEL29	r1ffeel29:impflag w1 r whether imputed value	Categ
1	R1FEEL30	r1feel30:w1 Activities- feelings: alert	Categ
1	R1FFEEL30	rlffeel30:impflag w1 r whether imputed value	Categ
1	R1FEEL31	r1feel31:w1 Activities- feelings: interested	Categ
1	R1FFEEL31	rlffeel31:impflag w1 r whether imputed value	Categ
1	R1FEEL36	r1feel36:w1 Activities- feelings: confused	Categ
1	R1FFEEL36	rlffeel36:impflag w1 r whether imputed value	Categ
1	R1FEEL37	r1feel37:w1 Activities- feelings: withdrawn	Categ
1	R1FFEEL37	r1ffeel37:impflag w1 r whether imputed value	Categ
1	R1FEELPOS	r1feelpos:w1 Activities- feelings: mean positive emotions	Cont
1	R1FEELNEG	r1feelneg:w1 Activities- feelings: mean negative emotions	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1FEEL27	4096	3.05	1.16	1.00	5.00
R1FFEEL27	4096	0.17	1.33	0.00	12.00
R1FEEL29	4096	2.79	1.26	1.00	5.00
R1FFEEL29	4096	0.17	1.33	0.00	12.00
R1FEEL30	4096	2.97	1.31	1.00	5.00
R1FFEEL30	4096	0.17	1.33	0.00	12.00
R1FEEL31	4096	2.92	1.30	1.00	5.00
R1FFEEL31	4096	0.31	1.41	0.00	12.00
R1FEEL36	4096	1.94	1.17	1.00	5.00
R1FFEEL36	4096	0.18	1.33	0.00	12.00
R1FEEL37	4096	1.88	1.19	1.00	5.00
R1FFEEL37	4096	0.17	1.33	0.00	12.00
R1FEELPOS	4096	2.93	0.95	1.00	5.00

R1FEELNEG
4096
1.91

Categorical Variable Codes

Value	R1FEEL27
1.Not at all	519
2.A little	629
3. Somewhat	1531
4.Quite a bit	964
5.Very much	453
Value-	R1FFEEL27
0. Not imputed	3972
1. Dont know	49
2.Missing	16
4.Refused	10
12.Not interviewed	49
Value-	R1FEEL29
1.Not at all	904
2.A little	687
3.Somewhat	1265
4.Quite a bit	849
5.Very much	391
Value-	R1FFEEL29
0. Not imputed	3993
1. Dont know	28
2.Missing	16
4.Refused	10
12. Not interviewed	49
Value-	R1FEEL30
1. Not at all	823
2.A little	530
3. Somewhat	1237
4.Quite a bit	946
5.Very much	560
Value	R1FFEEL30
0. Not imputed	3981
1. Dont know	40
2.Missing	16
4.Refused	10
12. Not interviewed	49
Value-	R1FEEL31
1. Not at all	864
2.A little	558
3. Somewhat	1251
4.Quite a bit	907
5.Very much	516
Value-	R1FFEEL31
0. Not imputed	3696
1. Dont know	41
2.Missing	298
4.Refused	12
12. Not interviewed	49
Value	R1FEEL36
1. Not at all	2141
2.A little	719
3. Somewhat	705
4.Quite a bit	406
5.Very much	125
Value--	R1FFEEL36

0. Not imputed		3969
1. Dont know	\|	50
2.Missing	\|	16
4.Refused		12
12.Not interviewed		49
Value		R1FEEL37
1.Not at all		2334
2.A little	\|	586
3.Somewhat	\|	656
4.Quite a bit		355
5.Very much		165
Value		R1FFEEL37
0. Not imputed		3978
1. Dont know		43
2.Missing	I	16
4.Refused	I	10
12.Not interviewed		49

How Constructed

The following variables asks the informant a series of questions regarding the respondent's feelings.

RwFEEL27 indicates how much the informant would say that the respondent felt happy. The informant is instructed to answer this thinking about yesterday or the most recent time the informant observed the respondent for most of the day. RwFEEL27 is coded as follows: 1. Not at all, 2. A little, 3. Somewhat, 4. Quite a bit, and 5. Very much. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFEEL29 indicates how much the informant would say that the respondent felt engaged. The informant is instructed to answer this thinking about yesterday or the most recent time the informant observed the respondent for most of the day. Rwfeel2 29 is coded as follows: 1. Not at all, 2. A little, 3. Somewhat, 4. Quite a bit, and 5. Very much. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFEEL30 indicates how much the informant would say that the respondent felt alert. The informant is instructed to answer this thinking about yesterday or the most recent time the informant observed the respondent for most of the day. RwFEEL30 is coded as follows: 1. Not at all, 2. A little, 3. Somewhat, 4. Quite a bit, and 5. Very much. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFEEL31 indicates how much the informant would say that the respondent felt interested. The informant is instructed to answer this thinking about yesterday or the most recent time the informant observed the respondent for most of the day. RwFEEL31 is coded as follows: 1. Not at all, 2. A little, 3. Somewhat, 4. Quite a bit, and 5. Very much. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively. RwFEEL31 is coded as special missing (.m) if ACT_31 is 0.

RwFEEL36 indicates how much the informant would say that the respondent felt confused. The informant is instructed to answer this thinking about yesterday or the most recent time the informant observed the respondent for most of the day. RwFEEL36 is coded as follows: 1. Not at all, 2. A little, 3. Somewhat, 4. Quite a bit, and 5. Very much. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFEEL37 indicates how much the informant would say that the respondent felt withdrawn. The informant is instructed to answer this thinking about yesterday or the most recent time the informant observed the respondent for most of the day. RwFEEL37 is coded as follows: 1. Not at all, 2. A little, 3. Somewhat, 4. Quite a bit, and 5. Very much. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFEELPOS indicates the mean value for positive emotions. This variable is composed of RwFEEL27, RwFEEL29, RwFEEL30, and RwFEEL31. RwFEELPOS is calculated by taking the sum of RwFEEL27, RwFEEL29, RwFEEL30, and RwFEEL31 over the number of non-missing values between RwFEEL27, RwFEEL29, RwFEEL30, and RwFEEL31. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFEELNEG indicates the mean value for negative emotions. This variable is composed of RwFEEL36 and RwFEEL37. RwFEELNEG is calculated by taking the sum of RwFEEL36 and RwFEEL37 over the number of nonmissing values between RwFEEL36 and RwFEEL37. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RWFFEEL27 - RwFFEEL37 are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing, 4.Refused, and 12.Not interviewed. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

No differences known.

DAD Variables Used

ACT_27	Felt Happy
ACT_29	Felt Engaged
ACT_30	Felt Alert
ACT_31	Felt AlertInterested
ACT_36	Felt Confused
ACT_37 $^{\text {CT }}$	Felt Withdrawn

Wave	Variable	Label	Type
1	R1CSI1	rlcsil:wl CSI- general decline in mental functioning	Categ
1	R1FCSI1	rlfcsil:impflag w1 r whether imputed value	Categ
1	R1CSI2	rlcsi2:w1 CSI- remembering things a serious problems	Categ
1	R1FCSI2	rlfcsi2:impflag w1 r whether imputed value	Categ
1	R1CSI3	rlcsi3:w1 CSI- forget where put things	Categ
1	R1FCSI3	rlfcsi3:impflag w1 r whether imputed value	Categ
1	R1CSI4	rlcsi4:w1 CSI- forget where things are usually kept	Categ
1	R1FCSI4	rlfcsi4:impflag w1 r whether imputed value	Categ
1	R1CSI5	rlcsi5:w1 CSI- forget the names of friends	Categ
1	R1FCSI5	rlfcsi5:impflag w1 r whether imputed value	Categ
1	R1CSI 6	rlcsi6:w1 CSI- forget the names of family members	Categ
1	R1FCSI6	rlfcsi6:impflag w1 r whether imputed value	Categ
1	R1CSI 7	rlcsi7:w1 CSI- forget what r wanted to say in the middle of	Categ
1	R1FCSI7	r1fcsi7:impflag w1 r whether imputed value	Categ
1	R1CSI 8	rlcsi8:w1 CSI- difficulty finding the right words	Categ
1	R1FCSI8	rlfcsi8:impflag w1 r whether imputed value	Categ
1	R1CSI 9	rlcsi9:w1 CSI- use the wrong words	Categ
1	R1FCSI9	rlfcsi9:impflag w1 r whether imputed value	Categ
1	R1CSI10	r1csil0:w1 CSI- tend to talk about what happened long ago	Categ
1	R1FCSI10	rlfcsil0:impflag w1 r whether imputed value	Categ
1	R1CSI11	rlcsill:w1 CSI- forget when last saw informant	Categ
1	R1FCSI11	rlfcsill:impflag w1 r whether imputed value	Categ
1	R1CSI12	r1csil2:w1 CSI- forget what happened the day before	Categ
1	R1FCSI12	rlfcsil2:impflag w1 r whether imputed value	Categ
1	R1CSI13	rlcsil3:w1 CSI- forget where they are	Categ
1	R1FCSI13	rlfcsil3:impflag w1 r whether imputed value	Categ
1	R1CSI14	r1csil4:w1 CSI- get lost in the community	Categ
1	R1FCSI14	rlfcsil4:impflag w1 r whether imputed value	Categ
1	R1CSI15	r1csi15:w1 CSI- get lost in own home	Categ

1 R1FCSI15
r1fcsi15:impflag w1 r whether imputed value
Categ
Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1CSI1	4096	0.29	0.45	0.00	1.00
R1FCSI1	4096	0.17	1.32	0.00	12.00
R1CSI2	4096	0.23	0.42	0.00	1.00
R1FCSI2	4096	0.17	1.33	0.00	12.00
R1CSI3	4096	1.11	0.91	0.00	2.00
R1FCSI3	4096	0.17	1.33	0.00	12.00
R1CSI4	4096	1.08	0.92	0.00	2.00
R1FCSI 4	4096	0.17	1.33	0.00	12.00
R1CSI5	4096	0.41	0.77	0.00	2.00
R1FCSI5	4096	0.17	1.33	0.00	12.00
R1CSI6	4096	0.21	0.59	0.00	2.00
R1FCSI6	4096	0.16	1.32	0.00	12.00
R1CSI7	4096	0.64	0.88	0.00	2.00
R1FCSI 7	4096	0.17	1.33	0.00	12.00
R1CSI8	4096	0.57	0.85	0.00	2.00
R1FCSI 8	4096	0.17	1.33	0.00	12.00
R1CSI9	4096	0.42	0.77	0.00	2.00
R1FCSI9	4096	0.17	1.33	0.00	12.00
R1CSI10	4096	0.84	0.92	0.00	2.00
R1FCSI10	4096	0.17	1.33	0.00	12.00
R1CSI11	4096	0.25	0.62	0.00	2.00
R1FCSI11	4096	0.17	1.33	0.00	12.00
R1CSI12	4096	0.40	0.75	0.00	2.00
R1FCSI12	4096	0.17	1.33	0.00	12.00
R1CSI13	4096	0.18	0.54	0.00	2.00
R1FCSI13	4096	0.17	1.33	0.00	12.00
R1CSI14	4096	0.23	0.59	0.00	2.00
R1FCSI14	4096	0.18	1.34	0.00	12.00

R1CSI15	4096	0.10	0.40	0.00	2.00
R1FCSI15	4096	0.17	1.33	0.00	12.00

Categorical Variable Codes

Value	R1CSI1
$0 . \mathrm{No}$	2917
1.Yes	1179
Value	R1FCSI1
0. Not imputed	4000
1. Dont know	21
2.Missing	16
4.Refused	10
12. Not interviewed	49
Value-	R1CSI2
$0 . \mathrm{No}$	3136
1.Yes	960
Value-	R1FCSI2
0. Not imputed	3999
1. Dont know	21
2.Missing	16
4.Refused	11
12. Not interviewed	49
Value-	R1CSI3
0 . No	1514
1.Yes	623
2.Sometimes	1959
Value-	R1FCSI3
0. Not imputed	3999
1. Dont know	18
2.Missing	16
4.Refused	14
12. Not interviewed	49
Value	R1CSI4
0 . No	1580
1.Yes	624
2.Sometimes	1892
Value	R1FCSI4
0. Not imputed	3994
1. Dont know	25
2.Missing	16
4.Refused	12
12. Not interviewed	49
Value-	R1CSI5
$0 . \mathrm{No}$	3135
1.Yes	249
2. Sometimes	712
Value	R1FCSI5
0. Not imputed	3977
1. Dont know	41
2.Missing	16
4. Refused	13
12. Not interviewed	49
Value	R1CSI6
0 . No	3591
1.Yes	140
2.Sometimes	365

Value	R1FCSI6
0. Not imputed	4009
1. Dont know	12
2.Missing	16
4.Refused	10
12. Not interviewed	49
Value-	R1CSI7
0 . No	2606
1.Yes	362
2.Sometimes	1128
Value-	R1FCSI7
0. Not imputed	3992
1. Dont know	27
2.Missing	16
4.Refused	12
12. Not interviewed	49
Value	R1CSI8
0 . No	2752
1.Yes	370
2.Sometimes	974
Value-	R1FCSI8
0. Not imputed	3995
1. Dont know	23
2.Missing	16
4.Refused	13
12. Not interviewed	49
Value	R1CSI9
0 . No	3102
1.Yes	268
2.Sometimes	726
Value-	R1FCSI9
0. Not imputed	3996
1. Dont know	22
2.Missing	16
4.Refused	13
12. Not interviewed	49
Value-	R1CSI10
$0 . \mathrm{No}$	2091
1.Yes	558
2. Sometimes	1447
Value-	R1FCSI10
0. Not imputed	3983
1. Dont know	32
2.Missing	16
4.Refused	16
12. Not interviewed	49
Value	R1CSI11
$0 . \mathrm{No}$	3477
1.Yes	219
2. Sometimes	400
Value-	R1FCSI11
0. Not imputed	3995
1. Dont know	22
2.Missing	16
4.Refused	14
12. Not interviewed	49
Value	R1CSI12
0 . No	3136
1.Yes	301
2. Sometimes	659

Valu	R1FCSI12
0. Not imputed	3998
1. Dont know	21
2.Missing	16
4.Refused	12
12. Not interviewed	49
Value-	R1CSI13
0 . No	3677
1.Yes	121
2.Sometimes	298
Value-	R1FCSI13
0. Not imputed	4007
1. Dont know	12
2.Missing	16
4.Refused	12
12. Not interviewed	49
Value	R1CSI14
0 . No	3517
1.Yes	225
2. Sometimes	354
Value	R1FCSI14
0. Not imputed	3977
1. Dont know	33
2.Missing	16
4.Refused	21
12.Not interviewed	49
Value	R1CSI15
0 . No	3864
1.Yes	74
2. Sometimes	158
Value	R1FCSI15
0. Not imputed	4001
1. Dont know	14
2.Missing	16
4.Refused	16
12.Not interviewed	49

How Constructed

The following variables pertain to a series of questions that ask the informant about any changes they may have noticed in the respondent.

RwCSI1 indicates whether the informant has noticed a general decline in the respondent's mental functioning.

RwCSI2 indicates whether the informant has noticed that remembering things has been a serious problem for the respondent.

RwCSI3 indicates whether the informant has noticed that the respondent forgets where he/she have put things.

RwCSI4 indicates whether the informant has noticed that the respondent forgets where things are usually kept.

RwCSI5 indicates whether the informant has noticed that the respondent forgets the name of friends.

RwCSI6 indicates whether the informant has noticed that the respondent forgets names of family members.
RWCSI7 indicates whether the informant has noticed that the respondent forgets what he/she wanted to say
in the middle of a conversation.

RwCSI8 indicates whether the informant has noticed that the respondent has difficulty finding the right words.

RwCSI9 indicates whether the informant has noticed that the respondent uses the wrong words.

RwCSI10 indicates whether the informant has noticed that the respondent tends to talk about what happened long ago, rather than the present.

RwCSI11 indicates whether the informant has noticed that the respondent forgets when they last saw the informant.

RwCSI12 indicates whether the informant has noticed that the respondent forgets what happened the day before.

RwCSI13 indicates whether the informant has noticed that the respondent forgets where they are.

RwCSI14 indicates whether the informant has noticed that the respondent gets lost in the community, such as when finding the post office or friends' houses.

RwCSI15 indicates whether the informant has noticed that the respondent gets lost in their own home, such as when finding the toilet.

RwCSI1 and RwCSI2 are coded as follows: 0. No and 1. Yes. RwCSI3 - RwCSI15 are coded as follows: 0. No, 1. Yes, and 2. Sometimes. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwFCSI1 - RwFCSI15 are flag variables, indicating whether the corresponding variable has an assigned imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, $2 . \mathrm{Missing}$, 4.Refused, and 12.Not interviewed. The original missing value is otherwise included.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

No differences known.

DAD Variables Used

```
CSI_COGACT1
Decline in Mental Functioning
CSI_COGACT10 Talks About Past Not Present
CSI_COGACT11
CSI_COGACT12
CSI_COGACT13
CSI-COGACT14
CSI_COGACT15
CSI COGACT2
CSI-COGACT3
CSI_COGACT4
CSI COGACT5
CSI_COGACT6
CSI_COGACT7
CSI_COGACT8
CSI__COGACT9
Forget When Last Saw Inf
Forget What Happened Prior Day
Forget Where He/She Is
Gets Lost in Community
Gets Lost in Own Home
Difficulty Remembering Things
Forget Where Put Things
Forget Where Things Kept
Forget Friends Names
Forget Family Member Names
Forget in Middle Convo
Hard Time Finding Right Words
Uses Wrong Word
```

		$\mathbf{1 0 / 6 6}$
Wave Variable	Label	Type
1	R1TEN1	r1ten1:w1 10-66- household chores

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1TEN1	4096	0.49	0.73	0.00	2.00
R1FTEN1	4096	0.28	1.46	0.00	12.00
R1TEN2	4096	0.35	0.48	0.00	1.00
R1FTEN2	4096	0.23	1.35	0.00	12.00
R1TEN3	4096	0.63	0.82	0.00	2.00
R1FTEN3	4096	4096	0.57	0.19	0.82
R1TEN4	4096	0.29	0.33	0.00	12.00
R1FTEN4	4096	0.21	1.34	0.00	12.00
R1TEN5		0.00	0.00	12.00	
R1FTEN5				0.00	

Categorical Variable Codes

Value	R1TEN1
0 . No	2665
1.Yes	848
2. Sometimes	583
Value	R1FTEN1
0. Not imputed	3871
1. Dont know	42
2.Missing	17
4.Refused	117
12. Not interviewed	49

Value		R1TEN2
0.No	\|	2651
1.Yes	\|	1445
Value		R1FTEN2
O. Not imputed		3758
1. Dont know		253
2.Missing		16
4.Refused		20
12. Not interviewed		49

Value-------------------------------------| R1TEN3

0. No difficulty	2415
1. Cannot handle money	776

2.Some difficulty 905

Value---	R1FTEN3
0. Not imputed	3957
1. Dont know	48
2. Missing	16
4. Refused	26
12. Not interviewed	49

Value-------------------------------------	R1TEN4
0.No	2656
1.Yes	562
2.Sometimes	

Value-----------------------------------	R1FTEN4
0. Not imputed	3961
1. Dont know	58
2.Missing	16
4. Refused	12
12. Not interviewed	49

Value--------------------------------------	R1TEN5
0. No	2913
1. Yes	1183

Value--	R1FTEN5
0. Not imputed	3853
1. Dont know	160
2.Missing	19
4. Refused	15
12. Not interviewed	49

How Constructed

RwTEN1 indicates the informant's perception whether the respondent has difficulty performing household chores that they used to do, such as preparing food or boiling a pot of tea. RwTEN1 is coded as follows: 0. No, 1. Yes, and 2. Sometimes. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwTEN2 asks the informant whether the respondent has lost a special skill or hobby that was previously manageable. RwTEN2 is coded as 0 if no and 1 if yes. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwTEN3 asks the informant whether there has been a change in the respondent's ability to handle money. RwTEN3 is coded as follows: 0. No difficulty, 1. Cannot handle money, and 2. Some difficulty. Special missing (.h) is assigned if the respondent does not have an informant interview. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwTEN4 asks the informant whether the respondent has difficulty in adjusting to change in their daily routine. RwTEN4 is coded as follows: 0. No, 1. Yes, and 2. Sometimes. Special missing (.h) is assigned if

```
the respondent does not have an informant interview. Don't know, refused, or other missing responses are
assigned as special missing (.d), (.r), and (.m), respectively.
RwTEN5 asks the informant whether there has been a change in the respondent's ability to think and
reason. RwTEN5 is coded as 0 if no and l if yes. Special missing (.h) is assigned if the respondent does
not have an informant interview. Don't know, refused, or other missing responses are assigned as special
missing (.d), (.r), and (.m), respectively.
RwFTEN1 - RwFTEN5 are flag variables, indicating whether the corresponding variable has an assigned
imputed value. The flag variables are coded as follows: 0.Not imputed, 1.Don't know, 2.Missing,
4.Refused, and 12.Not interviewed. The original missing value is otherwise included.
```


Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

No differences known.

DAD Variables Used

TEN_1
TEN_-2
TEN_-3
TEN_4
TEN-5

Difficulty HH Chores
Loss of Special Skill or Hobby
Change in Handling Money
Difficulty Daily Routine
Change in Ability to Think/Reason

Blessed Test-Part 1

Wave	Variable	Label	Type
1	R1BL1_1	r1bl1_1:w1 Blessed test part 1- performing household tasks	Categ
1	R1FBL1_1	r1fbl1_1:impflag w1 r whether imputed value	Categ
1	R1BL1_2	rlbl1_2:w1 Blessed test part 1- coping with small sums of mo	Categ
1	R1FBL1_2	rlfbll_2:impflag w1 r whether imputed value	Categ
1	R1BL1_3	r1bll_3:w1 Blessed test part 1- remembering a short list of	Categ
1	R1FBL1_3	rlfbll_3:impflag w1 r whether imputed value	Categ
1	R1BL1_4	r1bl1_4:w1 Blessed test part 1- finding her/his way about in	Categ
1	R1FBL1_4	rlfbll_4:impflag w1 r whether imputed value	Categ
1	R1BL1_5	r1bl1_5:w1 Blessed test part 1- finding his/her way around f	Categ
1	R1FBL1_5	rlfbll_5:impflag w1 r whether imputed value	Categ
1	R1BL1_6	r1bl1_6:w1 Blessed test part 1- grasping situations or expla	Categ
1	R1FBL1_6	rlfbll_6:impflag w1 r whether imputed value	Categ
1	R1BL1_7	r1bl1_7:w1 Blessed test part 1- recalling recent events	Categ
1	R1FBL1_7	rlfbll_7:impflag w1 r whether imputed value	Categ
1	R1BL1_8	r1bl1_8:w1 Blessed test part 1- tending to dwell on the past	Categ
1	R1FBL1_8	rlfbll_8:impflag w1 r whether imputed value	Categ
1	R1BL1_1A	rlbll_la:w1 Blessed test part 1- performing household tasks	Categ
1	R1FBL1_1A	rlfbl1_1a:impflag w1 r whether imputed value	Categ
1	R1BL1_2A	r1bll_2a:wl Blessed test part 1- coping with small sums of m	Categ
1	R1FBL1_2A	r1fbl1_2a:impflag w1 r whether imputed value	Categ
1	R1BL1_3A	r1bl1_3a:w1 Blessed test part 1- remembering a short list of	Categ
1	R1FBL1_3A	rlfbll_3a:impflag w1 r whether imputed value	Categ
1	R1BL1_4A	r1bll_4a:wl Blessed test part 1- finding her/his way about i	Categ
1	R1FBL1_4A	rlfbll_4a:impflag w1 r whether imputed value	Categ
1	R1BL1_5A	r1bl1_5a:w1 Blessed test part 1- finding his/her way around	Categ
1	R1FBL1_5A	rlfbll_5a:impflag w1 r whether imputed value	Categ
1	R1BL1_6A	r1bll_6a:wl Blessed test part 1- grasping situations or expl	Categ
1	R1FBL1_6A	rlfbl1_6a:impflag w1 r whether imputed value	Categ
1	R1BL1_7A	r1bl1_7a:w1 Blessed test part 1- recalling recent events - P	Categ

1	R1FBL1_7A	rlfbl1_7a:impflag w1 r whether imputed value	Categ
1	R1BL1_8A	r1bl1_8a:w1 Blessed test part 1- tending to dwell on the pas	Categ
1	R1FBL1_8A	rlfbl1_8a:impflag w1 r whether imputed value	Categ
1	R1BL1SCORE	rlbl1score:w1 Blessed Test part 1 total score (0-8) Cont	

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1BL1_1	2638	1.72	0.73	1.00	3.00
R1FBL1_1	4096	4.08	5.31	0.00	12.00
R1BL1_2	2638	1.42	0.67	1.00	3.00
R1FBL1_2	4096	4.08	5.31	0.00	12.00
R1BL1_3	2638	1.54	0.70	1.00	3.00
R1FBL1_3	4096	4.09	5.31	0.00	12.00
R1BL1_4	2638	1.24	0.53	1.00	3.00
R1FBL1_4	4096	4.07	5.31	0.00	12.00
R1BL1_5	2638	1.25	0.53	1.00	3.00
R1FBL1_5	4096	4.08	5.31	0.00	12.00
R1BL1_6	2638	1.38	0.61	1.00	3.00
R1FBL1_6	4096	4.07	5.32	0.00	12.00
R1BL1_7	2638	1.41	0.61	1.00	3.00
R1FBL1_7	4096	4.08	5.31	0.00	12.00
R1BL1_8	2638	1.56	0.62	1.00	3.00
R1FBL1_8	4096	4.08	5.31	0.00	12.00
R1BL1_1A	1471	1.88	0.95	1.00	3.00
R1FBL1_1A	4096	7.16	5.25	0.00	12.00
R1BL1_2A	845	2.30	0.84	1.00	3.00
R1FBL1_2A	4096	8.79	4.42	0.00	12.00
R1BL1_3A	1111	2.23	0.83	1.00	3.00
R1FBL1_3A	4096	8.14	4.83	0.00	12.00
R1BL1_4A	496	2.30	0.85	1.00	3.00
R1FBL1_4A	4096	9.70	3.57	0.00	12.00
R1BL1_5A	532	2.29	0.85	1.00	3.00

R1FBL1_5A	4096	9.61	3.67	0.00	12.00
R1BL1_6A	842	2.33	0.81	1.00	3.00
R1FBL1_6A	4096	8.79	4.41	0.00	12.00
R1BL1_7A	909	2.28	0.81	1.00	3.00
R1FBL1_7A	4096	8.62	4.54	0.00	12.00
R1BL1_8A	1292	2.21	0.81	1.00	3.00
R1FBL1_8A	4096	7.68	5.06	0.00	12.00
R1BL1SCORE	2638	1.25	1.71	0.00	8.00

Categorical Variable Codes

0. Not imputed	\|	2563
1. Dont know	I	9
2.Missing	\|	8
4.Refused	\|	9
11.Skipped	\|	1458
12. Not interviewed	I	49
Value	\|	R1BL1_5
.s:Skipped	\|	1458
1.No loss	I	2106
2.Some loss	I	407
3.Severe loss	\|	125
Value-	\|	R1FBL1_5
0. Not imputed	1	2564
1. Dont know	\|	6
2.Missing	I	8
4.Refused	\|	11
11.Skipped	I	1458
12. Not interviewed	\|	49
Value	I	R1BL1_6
.s:Skipped	I	1458
1.No loss	I	1796
2. Some loss	I	671
3.Severe loss	\|	171
Value		R1FBL1_6
0. Not imputed	I	2565
1. Dont know	\|	6
2.Missing	\|	8
4.Refused	\|	10
11.Skipped	\|	1458
12. Not interviewed	\|	49
Value-		R1BL1_7
.s:Skipped	I	1458
1.No loss	\|	1729
2.Some loss	I	734
3.Severe loss	\|	175
Value-	\|	R1FBL1_7
0. Not imputed	\|	$25 \overline{60}$
1. Dont know	I	11
2.Missing	I	8
4.Refused	\|	10
11.Skipped	\|	1458
12. Not interviewed	\|	49
Value-	\|	R1BL1_8
.s:Skipped	I	1458
1. None	\|	1346
2. Sometimes	\|	1106
3.Frequently	\|	186
Value-	-	R1FBL1_8
0. Not imputed	\|	2543
1. Dont know	\|	27
2.Missing	\|	8
4.Refused	\|	11
11.Skipped	\|	1458
12. Not interviewed	I	49
Value	\|	R1BL1_1A
.s:Skipped	I	$2 \overline{6} 25$
1.Physical	\|	758
2. Mental	\|	130
3. Both	I	583
Value-		R1FBL1_1A
0. Not imputed	I	1419

1. Dont know	\|	6
2.Missing	I	11
11.Skipped	I	2611
12. Not interviewed	I	49
Value-	\|	R1BL1_2A
.s:Skipped	I	3251
1.Physical	I	208
2.Mental	I	174
3. Both	\|	463
Value-		R1FBL1_2A
0. Not imputed	I	814
1. Dont know	I	6
2.Missing	I	10
11.Skipped	\|	3217
12.Not interviewed	\|	49
Value	\|	R1BL1_3A
.s:Skipped	I	2985
1.Physical	\|	281
2.Mental	I	291
3. Both	\|	539
Value	I	R1FBL1_3A
0. Not imputed	\|	1051
1. Dont know	\|	12
2.Missing	I	8
11.Skipped	\|	2976
12.Not interviewed	\|	49
Value	\|	R1BL1_4A
.s:Skipped	I	3600
1.Physical	\|	127
2.Mental	\|	93
3. Both	\|	276
Value	\|	R1FBL1_4A
O. Not imputed	\|	481
1. Dont know	\|	2
2.Missing	\|	8
11.Skipped	I	3556
12. Not interviewed	\|	49
Value	\|	R1BL1_5A
.s:Skipped	I	3564
1.Physical	\|	139
2.Mental	\|	101
3. Both	I	292
Value-	\|	R1FBL1_5A
0. Not imputed	\|	514
1. Dont know	I	2
2.Missing	\|	8
11.Skipped	\|	3523
12. Not interviewed	I	49
Value-	\|	R1BL1_6A
.s:Skipped	I	3254
1.Physical	\|	184
2.Mental	\|	200
3. Both	।	458
Value-	\|	R1FBL1_6A
0. Not imputed	\|	811
1. Dont know	\|	9
2.Missing	\|	8
11.Skipped	\|	3219
12. Not interviewed	I	49
Value	- 1	R1BL1_7A

.s:Skipped	\|	3187
1.Physical	\|	204
2.Mental	\|	244
3. Both		461
Value		R1FBL1_7A
0. Not imputed		877
1. Dont know		6
2.Missing		8
4.Refused		1
11.Skipped	I	3155
12.Not interviewed	\|	49
Value		R1BL1_8A
.s:Skipped	I	2804
1.Physical	I	316
2.Mental		385
3. Both		591
Value-		R1FBL1 8A
0. Not imputed		1216
1. Dont know	\|	21
2.Missing	I	8
4.Refused	\|	1
11.Skipped	\|	2801
12.Not interviewed	\|	49

How Constructed

The following variables pertain to a series of questions regarding the informant's perception about how well the respondent does with different activities.

RwBL1_1 indicates whether the informant would say that the respondent has no loss, some loss, or severe loss performing household tasks.

RwBL1_2 indicates whether the informant would say that the respondent has no loss, some loss, or severe loss coping with small sums of money.

RwBL1_3 indicates whether the informant would say that the respondent has no loss, some loss, or severe loss remembering a short list of items such as a shopping list.

RwBL1_4 indicates whether the informant would say that the respondent has no loss, some loss, or severe loss in his/her ability to find his/her way around indoor locations, such as at home or other familiar locations.

RwBL1_5 indicates whether the informant would say that the respondent has no loss, some loss, or severe loss $\bar{f} i n d i n g$ his/her way around familiar streets.

RwBL1 6 indicates whether the informant would say that the respondent has no loss, some loss, or severe loss in his/her ability to grasp situations or explanations.

RwBL1_7 indicates whether the informant would say that the respondent has no loss, some loss, or severe loss in his/her ability to recall recent events.

RwBL1_1- RwBL1_7 are coded as follows: 1. No loss, 2. Some loss, and 3. Severe loss. Special missing (.s) is assigned if the respondent skipped the question. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwBL1_8 indicates whether the informant would say that the respondent tends to dwell on the past: 1 . None (of the time), 2. Sometimes, or 3. Frequently. Special missing (.s) is assigned if the respondent skipped this question. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

R1BL1_1A - RwBL1_8A indicate whether the informant would say that the loss of RwBL1_1 - RwBL1_8 is due to physical reasons, mental reasons, or both. R1BL1_1A - RwBL1_8A are coded as follows: 1.Physical, 2.Mental and 3.Both. Special missing (.s) is assigned if the respondent skipped these questions due to answering
"1. No loss", "don't know", or "refused to answer" in the previous question (respective to RwBL1 1 RwBL1_7) or "1. None (of the time)", "don't know", or "refused to answer" to RwBL1_8. Don't know, refused, or other missing responses are assigned as special missing (.d), (.r), and (.m), respectively.

RwBL1SCORE indicates the total score of RwBL1_1- RwBL1_8. RwBL1SCORE is calculated by taking the sum of values between R RwBL1_1 - RwBL1_8 if the loss is due to mental and/or both physical and mental reasons. Some loss/sometimes is scored as ${ }^{-} 0.5$ and Severe loss/frequently is scored as 1 . Special missing (.s) is assigned if the respondent skipped the questions in this section. Don't know response is assigned special missing (.d). Other missing is assigned as special missing (.m).

RwFBL1_1 - RwFBL1_8 and RwFBL1_1A - RwFBL1_8A are flag variables, indicating whether the corresponding variable has an assigned imputè value. The flag variables are coded as follows: 0.Not imputed, $1 . D o n ' t$ know, 2.Missing, 4.Refused, 11.Skipped, and 12. Not interviewed. The original missing value is otherwise included.

Cross Wave Differences in DAD

Due to a skipped pattern error in the phase 1 data, there are special missing (.s) for phase 1 respondents.

Differences with HRS HCAP

No differences known.

DAD Variables Used

BL1_1
BL1- 2
BL1 ${ }^{-} 2 \mathrm{~A}$
BL1 3
BL1 3A
BL1 4
BL1_4A
BL1-5
BL1 5A
BL1 6
BL1 6A
BL1_7
BL1_7A
BL1 8
BL1 8A

```
Ability to Perform HH Tasks
HH Tasks - Physical/Mental/Both
Ability to Cope with Money
Coping with Money - Physical/Mental/Both
Ability to Remember Lists
Remembering Lists - Physical/Mental/Both
Ability to Find Way in Home
Find Way in Home - Physical/Mental/Both
Ability to Find Way on Streets
Find Way on Streets - Physical/Mental/Both
Ability to Grasp Situation
Grasp Situation - Physical/Mental/Both
Ability to Recall Events
Recall Events - Physical/Mental/Both
Tend to Dwell on Past
Dwell on Past - Physical/Mental/Both
```


Section D: Health \& Physical Measures

Self-rated Abilities

Wave	Variable	Label	Type
1	R1I_HEAR	r1i_hear:w1 R whether any difficulty hearing or seeing(0-3)	Categ
1	R1I_SLEEP	r1i_sleep:w1 R self rated sleep quality, last night(1-5)	Categ
1	R1I_MEMORY	r1i_memory:w1 R self rated memory, present time(1-5)	Categ
1	R1I_COMPMEM	rli_compmem:w1 R self rated memory compared to two years ago	Categ
1	R1I_MENABIL	rli_menabil:w1 R self rated mental abilities(1-5)	Categ
1	R1I_COMPABIL	rli_compabil:w1 R self rated mental abilities to two years a	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1I_HEAR	4081	1.10	1.18	0.00	3.00
R1I_SLEEP	2490	2.69	0.97	1.00	5.00
R1I_MEMORY	2482	2.88	0.89	1.00	5.00
R1I_COMPMEM	2483	2.49	0.57	1.00	3.00
R1I_MENABIL	2231	2.89	0.85	1.00	5.00
R1I_COMPABIL	2478	2.42	0.59	1.00	3.00

Categorical Variable Codes

Value	R1I_HEAR
.d:DK	2
.m:Missing	6
.r:Refuse	7
0.No difficulty	1974
1. Difficulty hearing only	421
2. Difficulty seeing only	1005
3. Difficulty hearing \& seeing	681
Value-	R1I_SLEEP
. d: DK	4
.m:Missing	3
.r:Refuse	7
.x:Not in phase/wave	1592
1.Very good	176
2. Good	1080
3.Average	666
4. Poor	487
5.Very poor	81
Value	R1I_MEMORY
. d : DK	8
.m:Missing	3
.r:Refuse	11
.x:Not in phase/wave	1592
1.Very good	95
2. Good	781
3.Average	1012
4. Poor	515

5.Very poor	79
Value	R1I_COMPMEM
.d:DK	8
.m:Missing	3
.r:Refuse	10
.x:Not in phase/wave	1592
1. Better now	94
2.About the same	1087
3.Worse now than it was then	1302
Value-	R1I_MENABIL
.d:DK	16
.m:Missing	248
.r:Refuse	9
.x:Not in phase/wave	1592
1.Very good	55
2. Good	726
3. Average	919
4.Poor	474
5.Very poor	57
Value	R1I_COMPABIL
. d: DK	13
.m:Missing	3
.r:Refuse	10
.x:Not in phase/wave	1592
1. Better now	130
2.About the same	1182
3.Worse now than it was then	1166

How Constructed

RwI_HEAR indicates whether the respondent has any difficulty in hearing or seeing. RwI_HEAR is coded as follows: 0.No difficulty, 1.Difficulty hearing, 2.Difficulty seeing, and $3 . D i f f i c u l t y ~ h e a r i n g ~ a n d ~ s e e i n g . ~$ This question was asked in all three phases of the data collection.

RwI_SLEEP indicates how the respondent self-reported his/her sleep quality the night before. RwI_SLEEP is coded as follows: 1.Very good, 2.Good, 3.Average, 4.Poor, and 5.Very poor. This question was asked starting in phase 2 of the data collection.

RwI MEMORY indicates how the respondent self-reported his/her memory at the present interview. RwI MEMORY is coded as follows: 1.Very good, 2.Good, 3.Average, 4.Poor, and 5.Very poor. This question was asked starting in phase 2 of the data collection.

RwI_COMPMEM indicates how the respondent would compare his/her memory at the time of the current
interview to two years ago. RwI COMPMEM is coded as follows: 1.Better now, 2 . About the same, and 3 . Worse now than it was then. This question was asked starting in phase 2 of the data collection.

RwI_MENABIL indicates how the respondent self-reported his/her mental abilities, such as thinking clearly and solving problems. RwI_MENABIL is coded as follows: 1.Very good, 2.Good, 3.Average, 4.Poor, and 5.Very poor. This question was asked starting in phase 2 of the data collection.

RwI_COMPABIL indicates how the respondent would compare his/her mental abilities, such as thinking clearly and solving problems, at the time of the current interview to two years ago. RwI_COMPABIL is coded as follows: 1.Better now, 2.About the same, and 3.Worse now than it was then. This question was asked starting in phase 2 of the data collection.

Special missing includes (.r) refused, (.d) don't know, (.x) not in phase/wave, and (.m) other missing.

Cross Wave Differences in DAD

These questions were added starting in phase 2 of the data collection.

Differences with HRS HCAP

```
This series of questions was not asked in HRS HCAP.
```


Differences with Harmonized LASI

```
This series of questions was not asked in LASI.
```


DAD Variables Used

```
Wave 1 Cog:
    COGVAL_101E
    COGVAL 101F
    INTRO \overline{101S1}
    INTRO_101S2
    INTRO_101S3
```

 COGVAL_101B rating sleep quality
 COGVAL_101C rating current memory
 COGVAL_101D Compared to two years ago, memory is
    ```
rating of other mental abilities
Compared to two years ago,other mental abilit
Respondent IW Introduction 1 Yes, difficulty
Respondent IW Introduction 2 Yes, difficulty
Respondent IW Introduction 3 None
```


Blood Pressure Measurements

Descriptive Statistics

| Variable | N | Mean | Std Dev | Minimum | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: |
| R1SYSTO1 | 4017 | 140.49 | 24.39 | 75.00 | 232.00 |
| R1SYSTO2 | 4011 | 137.56 | 23.48 | 72.00 | 232.00 |
| R1SYSTO3 | 4007 | 136.14 | 22.88 | 77.00 | 235.00 |
| R1SYSTO | 4011 | 136.85 | 22.82 | 76.50 | 233.50 |
| R1DIASTO1 | 4016 | 83.56 | 12.82 | 46.00 | 149.00 |
| R1DIASTO2 | 4010 | 82.35 | 12.57 | 43.00 | 162.00 |
| R1DIASTO3 | 4004 | 81.72 | 12.39 | 43.00 | 155.00 |
| R1DIASTO | 4011 | 82.04 | 12.14 | 47.50 | 137.00 |
| R1PULSE1 | 4014 | 80.65 | 13.04 | 39.00 | 136.00 |
| R1PULSE2 | 4010 | 80.05 | 12.97 | 2.00 | 160.00 |

| R1PULSE3 | 3998 | 79.94 | 12.86 | 39.00 | 188.00 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| R1PULSE | 4010 | 80.00 | 12.73 | 28.00 | 160.00 |
| R1BPHIGH | 4011 | 0.45 | 0.50 | 0.00 | 1.00 |
| R1BPEAT | 4061 | 0.16 | 0.37 | 0.00 | 1.00 |
| R1BPARM | 4040 | 1.02 | 0.13 | 1.00 | 2.00 |
| R1BLDPOS | 4040 | 2.01 | 0.07 | 2.00 | 3.00 |
| R1BPCOMPL | 4041 | 1.01 | 0.14 | 1.00 | 3.00 |

Categorical Variable Codes

| | | R1BPHIGH |
| :---: | :---: | :---: |
| . d: DK | I | 5 |
| .h:Not interviewed | \| | 12 |
| .i:Invalid | I | 1 |
| .m:Missing | \| | 11 |
| . q : Did not complete | I | 25 |
| .r:Refuse | \| | 3 |
| .s:Skipped | \| | 28 |
| $0 . \mathrm{No}$ | I | 2190 |
| 1.Yes | I | 1821 |
| Value | \| | R1BPEAT |
| .h:Not interviewed | I | 12 |
| .m:Missing | \| | 22 |
| .r:Refuse | I | 1 |
| 0 . No | I | 3417 |
| 1.Yes | \| | 644 |
| Value | \| | R1BPARM |
| . d : DK | \| | 1 |
| .h:Not interviewed | \| | 12 |
| .m:Missing | I | 27 |
| .r:Refuse | \| | 2 |
| .s:Skipped | I | 14 |
| 1.Left arm | I | 3967 |
| 2.Right arm | \| | 73 |
| Value- | \| | R1BLDPOS |
| . d : DK | I | 1 |
| .h:Not interviewed | \| | 12 |
| .m:Missing | I | 27 |
| .r:Refuse | I | 2 |
| .s:Skipped | \| | 14 |
| 2.Sitting | I | 4019 |
| 3.Lying down | \| | 21 |
| Value- | \| | R1BPCOMPL |
| . d : DK | \| | 2 |
| .h:Not interviewed | I | 12 |
| .m:Missing | I | 27 |
| .s:Skipped | \| | 14 |
| 1.Fully compliant | \| | 4005 |
| 2.Prevented from being fully compliant | \| | 20 |
| 3. Not fully compliant | । | 16 |

How Constructed

RwSYSTOL1, RwSYSTOL2, and RwSYSTOL3 are the respondent's first, second, and third systolic blood pressure readings. RwSYSTOL is the average of the second and third systolic blood pressure readings. If either the second or the third systolic blood pressure reading is missing, but not both, the first systolic blood
pressure reading and the non-missing second or third reading is used to calculate RwSYSTOL. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.q) is assigned if the respondent tried to do the test but was unable to complete it. Special missing (.s) is employed if the questions were skipped because the respondent did not understand the directions, was unwilling to participate in the blood pressure measurement, or had a rash, a cast, edema, open sores or wounds, or a significant bruise where the blood pressure cuff would be placed. Special missing (.i) is assigned for invalid readings. Special missing (.h) is assigned if the respondent was not interviewed.

RwDIASTO1, RwDIASTO2, RwDIASTO3 are the respondent's first, second, and third diastolic blood pressure readings. RwDIASTO is the average of the second and the third diastolic blood pressure readings. If either the second or the third diastolic blood pressure reading is missing, but not both, the first diastolic blood pressure reading and the non-missing second or third reading is used to calculate RwDIASTO. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.q) is assigned if the respondent tried to do the test but was unable to complete it. Special missing (.s) is employed if the questions were skipped because the respondent did not understand the directions, was unwilling to participate in the blood pressure measurement, or had a rash, a cast, edema, open sores or wounds, or a significant bruise where the blood pressure cuff would be placed. Special missing (.i) is assigned for invalid readings. Special missing (.h) is assigned if the respondent was not interviewed.

RwPULSE1, RwPULSE2, and RwPULSE3 are the respondent's first, second, and third pulse readings. RwPULSE is the average of the second and the third pulse readings. If either the second or the third pulse reading is missing, but not both, the first pulse reading and the non-missing second or third reading is used to calculate RwPULSE. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.q) is assigned if the respondent tried to do the test but was unable to complete it. Special missing (.s) is employed if the questions were skipped because the respondent did not understand the directions, was unwilling to participate in the blood pressure measurement, or had a rash, a cast, edema, open sores or wounds, or a significant bruise where the blood pressure cuff would be placed. Special missing (.i) is assigned for invalid readings. Special missing (.h) is assigned if the respondent was not interviewed.

RwBPHIGH indicates whether the respondent has high blood pressure. If RwSYSTO is 140 mmHg or higher or RwDIASTO is 90 mmHg or higher, a 1 is coded. If RwSYSTO is below 140 mmHg and RwDIASTO is below 90 mmHg , a 0 is coded. If RwSYSTO or RwDIASTO have don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.q) is assigned if the respondent tried to do the test but was unable to complete it. Special missing (.s) is employed if the questions were skipped because the respondent did not understand the directions, was unwilling to participate in the blood pressure measurement, or had a rash, a cast, edema, open sores or wounds, or a significant bruise where the blood pressure cuff would be placed. Special missing (.i) is assigned for invalid readings. Special missing (.h) is assigned if the respondent was not interviewed.

RwBPEAT indicates whether the respondent had smoked, exercised, or consumed alcohol or food within 30 minutes prior to the blood pressure test. A code of 1 indicates the respondent had smoked, exercised, or consumed alcohol or food within the 30 minutes prior to the blood pressure test. A code of 0 indicates the respondent had not smoked, exercised, or consumed alcohol or food within the 30 minutes prior to the blood pressure test. Refused and other missing responses are assigned special missing codes (.r) and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

RwBPARM indicates the arm the respondent used for the blood pressure tests. RwBPARM is coded as follows: 1.Left arm and 2.Right arm. Special missing (.s) is employed if the questions were skipped because the respondent did not understand the directions, was unwilling to participate in the blood pressure measurement, or had a rash, a cast, edema, open sores or wounds, or a significant bruise where the blood pressure cuff would be placed. Refused and other missing responses are assigned special missing codes (.r) and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

RwBLDPOS indicates the position the respondent was in for the blood pressure tests. RwBLDPOS is coded as 2 if sitting and 3 if lying down. Special missing (.s) is employed if the questions were skipped because the respondent did not understand the directions, was unwilling to participate in the blood pressure measurement, or had a rash, a cast, edema, open sores or wounds, or a significant bruise where the blood pressure cuff would be placed. Refused and other missing responses are assigned special missing codes (.r) and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

```
RwBPCOMPL indicates how compliant the respondent was for the blood pressure tests. RwBPCOMPL is coded as
follows: 1.Fully compliant, 2.Prevented from fully complying due to illness, pain, or other symptoms or
discomfort, and 3.Not fully compliant. Special missing (.s) is employed if the questions were skipped
because the respondent did not understand the directions, was unwilling to participate in the blood
pressure measurement, or had a rash, a cast, edema, open sores or wounds, or a significant bruise where
the blood pressure cuff would be placed. Don't know and other missing responses are assigned special
missing codes (.d) and (.m), respectively. Special missing (.h) is assigned if the respondent was not
interviewed.
We have left the determination of valid and invalid measurement values to the discretion of the user.
```


Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

```
Wave 1 GA:
```

 GA101
 GA102
 GA103
 GA10 4
 GA10 6
 GA107
 GA10 8
 GA110
 GA111
 GA112
 GA114
 GA115
 GA116
 GA120
 GA121
 GA122
    ```
Blood Pressure
ACTIVITY PRIOR TO BP TEST
INJURY WHERE BP CUFF CONTACTS ARM
INJURY WHERE BP CUFF CONTACTS ARM
SYSTOLIC READING 1
DIASTOLIC READING 1
PULSE READING 1
SYSTOLIC READING 2
DIASTOLIC READING 2
PULSE READING 2
SYSTOLIC READING }
DIASTOLIC READING 3
PULSE READING 3
ARM USED FOR BP MEASUREMENTS
RS POSITION FOR BP TEST
HOW COMPLIANT DURING TEST
```


Height, Weight, and BMI

Wave	Variable	Label	Type
1	R1MHEIGHT	rlmheight:w1 r height measurement in meters	Cont
1	R1MWEIGHT	rlmweight:w1 r weight measurement in kilograms	Cont
1	R1MBMI	r1mbmi:w1 r Body Mass Index=kg/m2	Cont
1	R1BMICAT	r1bmicat:w1 r bmi categorization	Categ
1	R1HT_FLAG	r1ht_flag:w1 Flag: r LASI height measurement in meters	Categ
1	R1WT_FLAG	r1wt_flag:wl Flag: r LASI weight measurement in kilograms	Categ
1	R1MSTAND	r1mstand:w1 r whether able to stand for measurements	Categ
1	R1HTLIMBS	rlhtlimbs:w1 r whether wearing artificial limb/orthosis duri	Categ
1	R1WTLIMBS	rlwtlimbs:w1 r whether wearing artificial limb/orthosis duri	Categ
1	R1HTCOMPL	r1htcompl:w1 r compliance during height measurement	Categ
1	R1WTCOMPL	r1wtcompl:w1 r compliance during weight measurement	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1MHEIGHT	3808	1.54	0.09	1.03	2.05
R1MWEIGHT	3992	53.58	13.30	12.30	111.40
R1MBMI	3775	22.50	5.05	9.53	47.69
R1BMICAT	3775	1.14	0.86	0.00	3.00
R1HT_FLAG	4089	0.63	0.48	0.00	1.00
R1WT_FLAG	4089	0.05	0.22	0.00	1.00
R1MSTAND	4016	0.97	0.18	0.00	1.00
R1HTLIMBS	2524	0.10	0.31	0.00	1.00
R1WTLIMBS	3853	0.00	0.04	0.00	1.00
R1HTCOMPL	2438	1.08	0.35	1.00	3.00
R1WTCOMPL	3846	0.11	1.00	3.00	

Categorical Variable Codes

Value	R1BMICAT
.h:Not interviewed	7
.i:Invalid	36
.m:Missing	118
.r:Refuse	118
.s:Skipped	42
$0 . L$ Less than 18.5 bmi	860

1.18.5-24.99 bmi	1843
2.25.0-29.9 bmi	770
3.30 .0 and greater bmi	302
Value-	R1HT FLAG
.h:Not interviewed	7
0. DAD	1504
1.LASI	2585
Value	R1WT_FLAG
.h:Not interviewed	7
0. DAD	3886
1.LASI	203
Value-	R1MSTAND
. d: DK	3
.h:Not interviewed	12
.m:Missing	4
.r:Refuse	61
$0 . \mathrm{No}$	132
1.Yes	3884
Value	R1HTLIMBS
. d: DK	394
.h:Not interviewed	12
.m:Missing	604
.r:Refuse	430
.s:Skipped	132
0 . No	2261
1.Yes	263
Value-	R1WTLIMBS
. d: DK	29
.h:Not interviewed	12
.m:Missing	68
.r:Refuse	2
.s:Skipped	132
$0 . \mathrm{No}$	3848
1.Yes	5
Value	R1HTCOMPL
. d: DK	483
.h:Not interviewed	12
.m:Missing	604
.r:Refuse	427
.s:Skipped	132
1.Fully compliant	2296
2.Prevented from being fully compliant	86
3. Not fully compliant	56
	R1WTCOMPL
. d: DK	33
.h:Not interviewed	12
.m:Missing	68
.r:Refuse	5
.s:Skipped	132
1.Fully compliant	3824
2.Prevented from being fully compliant	15
3.Not fully compliant	

How Constructed

RwMHEIGHT and RwMWEIGHT indicate the respondent's measured height in meters and measured weight in kilograms, respectively. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.q) is assigned if the respondent tried to be measured but received an error message record. Special missing (.s) is employed if the questions were skipped because the respondent could not stand to complete the test. Special missing (.i) is assigned for invalid readings. Special missing (.h) is assigned if the respondent was not interviewed. RwHT_FLAG and

RwWT_FLAG indicate whether RwMHEIGHT and RwMWEIGHT use DAD or LASI height and weight measurements, respectively. A 0 indicates DAD measurements were used and a 1 indicates LASI measurements were used.

RwMBMI is the respondent's body mass index and it is calculated by dividing the respondent's weight (kg) by the squared value of his/her height (m) . RwBMICAT assigns RwMBMI into four categories. RwBMICAT includes the following BMI ranges: 0. 0-18.49, 1. 18.5-24.99, 2. 25.0-29.99, and 3. 30 and up. Refused or other missing responses are assigned special missing codes (.r) and (.m), respectively. Special missing (.s) is employed if the questions were skipped because the respondent could not stand to complete the test. Special missing (.i) is assigned for invalid readings. Special missing (.h) is assigned if the respondent was not interviewed.

RwMSTAND indicates whether the respondent is able to stand for the height and weight measurements. RwMSTAND is coded as 1 if the respondent was able to stand and is coded as 0 if the respondent was unable to stand. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

RwHTLIMBS indicates whether the respondent was wearing any artificial limbs or orthosis during the height measurements and RwWTLIMBS indicates whether the respondent was wearing any artificial limbs or orthosis during the weight measurements. RwHTLIMBS and RwWTLIMBS are coded as 1 if the respondent was wearing an artificial limb or orthosis during the measurement and coded as 0 if the respondent was not wearing any artificial limb or orthosis. RwHTCOMPL and RwWTCOMPL indicate how compliant the respondent was during the height and weight measurements, respectively. RwHTCOMPL and RwWTCOMPL are coded as follows: 1.Fully compliant, 2.Prevented from fully complying due to illness, pain, or other symptoms or discomforts, and 3.Not fully compliant, but no obvious reason for this. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.s) is employed if the questions were skipped because the respondent could not stand to complete the test. Special missing (.h) is assigned if the respondent was not interviewed.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

GA123

GA123B
GA124
GA125
GA127B
GA128
GA129

CAN RESPONDENT STAND
Measurement height
R WEARING ARTIFICIAL LIMBS OR ORTHOSIS
HOW COMPLIANT DURING TEST
Measurement weight
ARTIFICIAL LIMB
HOW COMPLIANT DURING TEST

Mid Arm Circumference, Calf Circumference and Knee Height

Wave Variable	Label	
1	R1MIDARM	rlmidarm:w1 r mid arm circumference (cm)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1MIDARM	4051	25.17	3.79	11.70	55.80
R1CALF	4049	29.41	4.23	15.20	62.00
R1KNEEHT	3848	49.10	3.54	25.00	61.00

How Constructed

RwMIDARM, RwCALF, and RwKNEEHT indicate the respondent's measured mid arm circumference (cm), measured calf circumference (cm), and measured knee height (cm), respectively. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.i) is assigned for invalid readings. Special missing (.h) is assigned if the respondent was not interviewed.

Cross Wave Differences in DAD
No differences known.

Differences with Harmonized LASI

```
These variables are not included in LASI.
```


DAD Variables Used

GA131	MID ARM CIRCUMFERENCE
GA134	CALF CIRCUMFERENCE
GA137	Knee measurement

Activities of daily living (ADLs): Some difficulty

Wave Variable	Label	Type	
1	R1DRESSA	rldressa:w1 r Some Diff-Dressing	Categ
1	R1WALKRA	rlwalkra:w1 r Some Diff-Walk across room	Categ
1	R1BATHA	rlbatha:w1 r Some Diff-Bathing	Categ
1	R1EATA	rleata:w1 r Some Diff-Eating	Categ
1	R1BEDA	r1beda:w1 r Some Diff-Get in/out bed	Categ
1	R1TOILTA	rltoilta:w1 r Some Diff-Using the toilet	

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1DRESSA	4065	0.16	0.37	0.00	1.00
R1WALKRA	4065	0.26	0.44	0.00	1.00
R1BATHA	4064	0.17	0.38	0.00	1.00
R1EATA	4065	0.15	0.36	0.00	1.00
R1BEDA	4065	0.35	0.48	0.00	1.00
R1TOILTA	4065	0.37	0.48	0.00	1.00

Categorical Variable Codes

Value	R1DRESSA
. d: DK	4
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	10
$0 . \mathrm{No}$	3408
1.Yes	657
Value	R1WALKRA
. d : DK	4
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	10
$0 . \mathrm{No}$	3012
1.Yes	1053
Value	R1BATHA
.d:DK	5
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	10
$0 . \mathrm{No}$	3370
1.Yes	694
Value	R1EATA
.d:DK	4
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	10

$0 . \mathrm{No}$	\|	3447
1.Yes	\|	618
Value		R1BEDA
. d: DK	\|	4
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse		10
0 . No	\|	2662
1.Yes	\|	1403
Value		R1TOILTA
. d: DK		4
.h:Not interviewed	\|	12
.m:Missing	I	5
.r:Refuse		10
0 . No		2562
1.Yes		1503

How Constructed

```
These variables pertain to questions regarding Activities of Daily Living (ADLs) and whether the
respondent experienced any difficulty performing said tasks due to health or memory problems. The ADLs
include dressing (RwDRESSA), walking across a room (RwWALKRA), bathing (RwBATHA), eating (RwEATA),
getting in and out of bed (RwBEDA), and using the toilet (RwTOILTA). The respondent was instructed to
exclude any difficulties they expect to last less than three months.
A code of 0 indicates that the respondent did not report any problems with the activity. A code of 1
indicates that the respondent reported some difficulty with the activity due to health or memory
problems. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r),
and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.
```


Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

GA201
GA2 02
GA203
GA20 4
GA2 05
GA206

```
Dressing, including putting on chappals, shoe
Walking across a room
Bathing
Eating, breaking chapatti, mixing rice
Getting in or out of bed
Using the toilet, including getting up and do
```


ADL Summary: Any difficulty

Wave Variable	Label	Type
1	R1ADLA_D	rladla_d:w1 r Some Diff-ADLs (0-6)
1	R1ADLANY	rladlany:w1 r Any ADL Diff

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1ADLA_D	4065	1.46	1.83	0.00	6.00
R1ADLANY	4065	0.53	0.50	0.00	1.00

Categorical Variable Codes

Value-	\|	R1ADLA_D
. d: DK	\|	4
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	\|	10
0	\|	1927
1	\|	606
2	\|	542
3	\|	333
4	\|	253
5	\|	197
6	\|	207
Value-	\|	R1ADLANY
. d : DK	\|	4
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	\|	10
$0 . \mathrm{No}$	\|	1927
1.Yes	\|	2138

How Constructed

RwADLA D is an Activities of Daily Living (ADL) summary, indicating the number of ADLs that are difficult for the respondents. Specifically, RwADLA_D is constructed as:

RwADLA_D = sum (RwWALKRA, RwBATHA, RwDRESSA, RwEATA, RwBEDA, RwTOILTA)
RwADLANY indicates whether the respondent had any difficulty with one or more ADLs between RwWALKRA,
RwBATHA, RwDRESSA, RwEATA, RwBEDA, and RwTOILTA. A 1 is coded if the respondent reported having difficulty with one or more ADL. A 0 indicates no difficulty with any of the included ADLs.

RwADLM indicates the number of missing values the respondent has between RwWALKRA, RwBATHA, RwDRESSA, RwEATA, RwBEDA, and RwTOILTA. RwADLM ranges from 0 to 6.

Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

Please see "Activities of Daily Living (ADLs): Some difficulty" for a description of how each individual ADL was constructed.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

The harmonized DAD constructs an Activities of Daily Living (ADL) summary measure (RwADLA_D) by taking the sum of RwWALKRA, RwBATHA, RwDRESSA, RwEATA, RwBEDA, and RwTOILTA. The harmonized LASI constructs four Activities of Daily Living (ADL) summary measures. One uses the ADLs proposed by Wallace and Herzog in their paper (Wallace and Herzog, 1995) to define an ADL summary (RwADLWA): bathe, dress, and eat. The second includes the aforementioned ADLs and adds getting in/out of bed and walking across a room. The third includes the three ADLs from the three-item summary and adds getting in/out of bed and using the toilet. The fourth includes all six ADLs asked in the LASI: bathe, dress, eat, getting in/out of bed, walking across a room, and using the toilet.

Instrumental activities of daily living (IADLs): Some difficulty

Wave Variable	Label	Type	
1	R1MEALSA	r1mealsa:w1 r Some Diff-Prepare hot meal	Categ
1	R1SHOPA	r1shopa:w1 r Some Diff-Shop for grocery	Categ
1	R1PHONEA	r1phonea:w1 r Some Diff-Use telephone	Categ
1	R1MEDSA	r1medsa:w1 r Some Diff-Take medications	Categ
1	R1HOUSEWKA	r1housewka:w1 r Some Diff-Doing hhold chores	Categ
1	R1MONEYA	r1moneya:w1 r Some Diff-Managing money	Categ
1	R1GETA	r1geta:w1 r Some Diff-Getting around	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1MEALSA	4033	0.32	0.47	0.00	1.00
R1SHOPA	4042	0.31	0.46	0.00	1.00
R1PHONEA	3961	0.43	0.49	0.00	1.00
R1MEDSA	4056	0.17	0.37	0.00	1.00
R1HOUSEWKA	4044	0.34	0.47	0.00	1.00
R1MONEYA	4017	0.37	0.48	0.00	1.00
R1GETA	4040	0.42	0.49	0.00	1.00

Categorical Variable Codes

. d : DK		12
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	I	11
$0 . \mathrm{No}$	\|	3372
1.Yes		684
Value-		R1HOUSEWKA
. d : DK	\|	19
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	,	16
0 . No	\|	2686
1.Yes	\|	1358
Value-		R1MONEYA
. d: DK		47
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	\|	15
$0 . \mathrm{No}$	\|	2548
1.Yes	\|	1469
Value		R1GETA
. d: DK	\|	24
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	\|	15
$0 . \mathrm{No}$	\|	2335
1.Yes	\|	1705

How Constructed

These variables pertain to questions regarding Instrumental Activities of Daily Living (IADLs) and whether the respondent experienced any difficulty performing said tasks due to health or memory problems. The IADLs included are: preparing a meal (RwMEALSA), shopping for groceries (RwSHOPA), making telephone calls (RwPHONEA), taking medications (RwMEDSA), doing work around the house or garden (RwHOUSEWKA), managing money, such as paying bills and keeping track of expenses (RwMONEYA), and getting around or finding an address in an unfamiliar place (RwGETA). The respondent was instructed to exclude any difficulties they expect to last less than three months.

A code of 0 indicates that the respondent did not report any problems with the activity. A code of 1 indicates that the respondent reported some difficulty with the activity due to health or memory problems. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

GA2 207
GA208
GA209
GA210
GA211
GA212
GA213

Preparing a hot meal
Shopping for groceries
Making telephone calls
Taking medications
Doing work around the house or garden
Money, such as paying bills and keeping track
Getting around or finding address in unfamili

IADL Summary: Any difficulty

Wave	Variable	Label	Type
1	R1IADLTOT1_D	r1iadltot1_d:w1 r Some Diff-IADLs (0-7)	Categ
1	R1IADLTO1A_D	rliadltotla_d:w1 r Any IADL Diff	Categ

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1IADLTOT1_D	4062	2.33	2.30	0.00	7.00
R1IADLTO1A_D	4062	0.68	0.47	0.00	1.00

Categorical Variable Codes

Value	\|R1IADLTOT1_D
. d: DK	6
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	11
0	1285
1	669
2	490
3	407
4	324
5	313
6	299
7	275
Value	\|R1IADLTO1A_D
. d: DK	6
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	11
0 . No	1285
1.Yes	2777

How Constructed

RwIADLTOT1_D is an Instrumental Activities of Daily Living (IADL) summary measure, indicating the number of IADLs that are difficult for the respondent. Each limitation adds one to the summary measure and the variable is constructed as:

RwIADLTOT1_D = sum (RwPHONEA, RwMONEYA, RwMEDSA, RwSHOPA, RwMEALA, RwHOUSEWKA, RwGETA).

RwIADLTO1A D indicates whether the respondent has any difficulty with one or more IADL between RwPHONEA, RwMONEYA, RwMEDSA, RwSHOPA, RwMEALA, RwHOUSEWKA, and RwGETA. A 1 is coded if the respondent reported having difficulty with one or more IADL. A 0 indicates no difficulty with any of the included IADLs.

Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

Please see "Instrumental Activities of Daily Living (IADLs): Some difficulty" for a description of how individual dummy variables were constructed.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

The Harmonized DAD constructs an Instrumental Activities of Daily Living (IADL) summary (RwIADLTOT1 D) by taking the sum of RwPHONEA, RwMONEYA, RwMEDSA, RwSHOPA, RwMEALA, RwHOUSEWKA, and RwGETA. The Harmonized LASI constructs four Instrumental Activities of Daily Living (IADL) summary measures. One summarizes the commonly used IADLs: using the phone, managing money, and taking medications. The second summarizes managing money, taking medications, shopping for groceries, and preparing hot meals. The third includes the three IADLs from the three-item summary and adds shopping for groceries and preparing hot meals. The fourth summarizes all seven IADLs that are asked in the LASI: making telephone calls, managing money, taking medications, shopping for groceries, preparing hot meals, getting around or finding an address in an unfamiliar place, and doing work around the house or garden.

Mental health (CESD score)

Wave	Variable	Label	Type
1	R1MINDTS_D	r1mindts_d:w1 r CESD trouble concentrating	Categ
1	R1DEPRES_D	rldepres_d:w1 r CESD felt depressed	Categ
1	R1FTIRED_D	rlftired_d: w1 r CESD felt tired	Categ
1	R1FEARL_D	rlfearl_d:w1 r CESD afraid	Categ
1	R1ENLIFE_D	rlenlife_d:w1 r CESD enjoyed life	Categ
1	R1FLONE_D	rlflone_d:w1 r CESD lonely	Categ
1	R1B0THER_D	r1bother_d:w1 r CESD bothered by things	Categ
1	R1EFFORT_D	rleffort_d:w1 r CESD everything was an effort	Categ
1	R1FHOPE_D	r1fhope_d:w1 r CESD felt hopeful	Categ
1	R1WHAPPY_D	r1whappy_d:w1 r CESD was happy	Categ
1	R1CESD10	rlcesdl0:w1 r CESD score 10 item(0-30)	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1MINDTS_D	4032	1.66	0.87	1.00	4.00
R1DEPRES_D	4024	1.91	0.96	1.00	4.00
R1FTIRED_D	4035	2.32	1.01	1.00	4.00
R1FEARL_D	4019	1.42	0.74	1.00	4.00
R1ENLIFE_D	4009	2.51	1.14	1.00	4.00
R1FLONE_D	4022	1.66	0.95	1.00	4.00
R1BOTHER_D	4011	1.72	0.90	1.00	4.00
R1EFFORT_D	3992	1.92	0.99	1.00	4.00
R1FHOPE_D	3998	2.42	1.12	1.00	4.00
R1WHAPPY_D	4021	2.60	1.10	1.00	4.00
R1CESD10	3917	9.98	5.39	0.00	30.00

Categorical Variable Codes

alue	R1MINDTS_D
. d: DK	19
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	28
1.Rarely or never (less than 1 day)	2218
2.Sometimes (1 or 2 days)	1186

4.Most or all of the time (5-7 days)	\|	380
Value		R1FHOPE D
. d: DK		43
.h:Not interviewed		12
.m:Missing		5
.r:Refuse		38
1.Rarely or never (less than 1 day)		1069
2.Sometimes (1 or 2 days)		1113
$3 . O f t e n$ (3 or 4 days)		875
4.Most or all of the time (5-7 days)		941
Value		R1WHAPPY_D
. d: DK		17
.h:Not interviewed		12
.m:Missing		5
.r:Refuse		41
1.Rarely or never (less than 1 day)		818
2.Sometimes (1 or 2 days)		1098
3.Often (3 or 4 days)		979
4.Most or all of the time (5-7 days)		1126

How Constructed

The following variables indicate the frequency with which a respondent experienced different feelings in the past week.

RwMINDTS_D indicates how often the respondent had trouble concentrating during the past week.
RwDEPRES_D indicates how often the respondent felt depressed during the past week.

RwFTRIED_D indicates how often the respondent felt tired or low in energy during the past week.
RwFEARL_D indicates how often the respondent was afraid of something during the past week.
RwENLIFE_D indicates how often the respondent felt generally satisfied during the past week.

RwFLONE D indicates how often the respondent felt alone during the past week.

RwBOTHER_D indicates how often the respondent was bothered by things that do not usually bother him/her during the past week.

RwEFFORT_D indicates how often the respondent felt everything he/she did was an effort during the past week.

RwFHOPE_D indicates how often the respondent felt hopeful about the future during the past week.
RwWHAPPY_D indicates how often the respondent felt happy during the past week.
Each variable is coded as follows: 1. Rarely or never (less than 1 day), 2. Sometimes (1 or 2 days), 3. Often (3 or 4 days), and 4. Most or all of the time (5-7 days). Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

RwCESD10 is a summary of RwMINDTS_D, RwDEPRES_D, RwFTRIED_D, RwFEARL_D, RwENLIFE_D, RwFLONE_D, RwBOTHER_D, RwEFFORT_D, RwFHOPE_D, and RwWHAPPY_D. RwENLIFE_D, RwFHOPE_D, and RwWHAPPY_D are reverse coded for RwCESD10. RwCESD10 is the sum of these variables. The higher the score, the more negative the respondent felt in the past week.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

No differences known.

DAD Variables Used

GA402	TROUBLE CONCENTRATING
GA403	FELT DEPRESSED
GA404	FEEL TIRED
GA405	AFRAID OF SOMETHING
GA406	OVERALL SATISFIED
GA407	FEEL ALONE
GA408	BOTHERED BY THINGS
GA409	EVERYTHING WAS AN EFFORT
GA411	HOPEFUL ABOUT FUTURE

Anxiety inventory (BAI)

Wave Variable	Label	Type
1	R1WORST	rlworst:w1 r BAI worst happening

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1WORST	4037	1.54	0.91	1.00	4.00
R1NERV	4032	1.66	0.96	1.00	4.00
R1TREMB	4038	1.68	0.99	1.00	4.00
R1FDYING	4027	1.36	0.78	1.00	4.00
R1FAINT	4031	1.53	0.90	1.00	4.00
R1ANX5	4014	2.75	3.25	0.00	15.00

Categorical Variable Codes

Value		R1WORST
. d: DK	\|	11
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	\|	31
1.Never	\|	2826
2.Hardly ever	\|	415
3.Some of the time		606
4.Most of the time		190
Value		R1NERV
.d:DK		14
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	\|	33
1.Never	\|	2558
2.Hardly ever	\|	514
3. Some of the time	I	745
4.Most of the time	\|	215
Value		R1TREMB
. d: DK		9
.h:Not interviewed		12
.m:Missing	\|	5
.r:Refuse	\|	32
1.Never	\|	2557
2.Hardly ever	\|	489
3.Some of the time	\|	722
4.Most of the time	\|	270

Val	R1FDYING
. d : DK	18
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	34
1. Never	3241
2.Hardly ever	267
3. Some of the time	393
4.Most of the time	126
Value-	R1FAINT
. d: DK	15
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	33
1. Never	2832
2.Hardly ever	418
3.Some of the time	605
4.Most of the time	176

How Constructed

The following variables indicate the frequency that respondents experienced various feelings during the past week. For each variable, a statement about a feeling is read to the respondents and then they are asked how often they felt that way during the past week.

RwWORST indicates how often the respondent feared the worst would happen in the past week. RwNERV indicates how often the respondent felt nervous in the past week. RwTREMB indicates how often the respondent felt his/her hands trembling. RwFDYING indicates how often the respondent had a fear of dying. RwFAINT indicates how often the respondent felt faint. RwWORST, RwNERV, RwTREMB, RwFDYING, and RwFAINT are coded as follows: 1. Never, 2. Hardly ever, 3. Some of the time, and 4. Most of the time. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

RwANX5 is a summary measure based on RwWORST, RwNERV, RwTREMB, RwFDYING, and RwFAINT. RwANX5 is the sum of these variables after their ranges were recoded from $1-4$ to 0-3. The higher the score, the more anxious the respondent felt in the past week.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

These variables are not included in LASI.

DAD Variables Used

GA422	FEAR OF WORST HAPPENING
GA423	NERVOUS
GA424	HANDS TREMBLING
GA425	FEAR OF DYING
GA426	FELT FAINT

Mini Nutritional Assessment (MNA)

Wave	Variable	Label	Type
1	R1MNA_DFOOD	r1mna_dfood:w1 r MNA declined food intake(0-2)	Categ
1	R1MNA_WLOSS	rlmna_wloss:w1 r MNA weight loss(0-3)	Categ
1	R1MNA_MOB	r1mna_mob:w1 r MNA mobility (0-2)	Categ
1	R1MNA_STRESS	r1mna_stress:w1 r MNA stress (0-2)	Categ
1	R1MNA_PSYCHO	rlmna_psycho:w1 r MNA neuropsychological problem(0-2)	Categ
1	R1MNA_LIVE	rlmna_live:w1 r MNA lives independently (0-1)	Categ
1	R1MNA_DRUG	rlmna_drug:w1 r MNA takes 3+ prescription drugs (0-1)	Categ
1	R1MNA_SORES	r1mna_sores:w1 r MNA has pressure sores or skin ulcers (0-1)	Categ
1	R1MNA_MEALS	r1mna_meals:w1 r MNA number of meals (0-2)	Categ
1	R1MNA_PROTN	rlmna_protn:w1 r MNA protein intake(0-1)	Categ
1	R1MNA_PROTN3	r1mna_protn3:w1 r MNA protein intake(0-3)	Categ
1	R1MNA_VEG	r1mna_veg:w1 r MNA vegetables intake(0-1)	Categ
1	R1MNA_FLUID	rlmna_fluid:w1 r MNA fluid intake(0-1)	Categ
1	R1MNA_FEED	rlmna_feed:w1 r MNA mode of feeding (0-2)	Categ
1	R1MNA_NSTAT	rlmna_nstat:w1 r MNA nutritional status(0-2)	Categ
1	R1MNA_HSTAT	r1mna_hstat:w1 r MNA health status(0-2)	Cont
1	R1MNA_MAC	r1mna_mac:w1 r MNA mid-arm circumference(0-1)	Cont
1	R1MNA_CC	rlmna_cc:w1 r MNA calf circumference(0-1)	Cont
1	R1MNA_SCREEN	rlmna_screen:w1 r MNA total score of screening(0-14)	Cont
1	R1MNA_ASSESS	r1mna_assess:w1 r MNA assessment (0-16)	Cont
1	R1MNA_SCALE	rlmna_scale:w1 r MNA assessment scale(0-30)	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1MNA_DFOOD	4044	1.38	0.69	0.00	2.00
R1MNA_WLOSS	4028	1.65	1.00	0.00	3.00
R1MNA_MOB	4061	1.87	0.42	0.00	2.00
R1MNA_STRESS	4039	1.68	0.74	0.00	2.00
R1MNA_PSYCHO	4021	1.89	0.70	0.37	0.00
R1MNA_LIVE	4058		0.00	2.00	

R1MNA_DRUG	4054	0.79	0.41	0.00	1.00
R1MNA_SORES	4053	0.91	0.29	0.00	1.00
R1MNA_MEALS	4060	1.33	0.56	0.00	2.00
R1MNA_PROTN	4096	0.26	0.31	0.00	1.00
R1MNA_PROTN3	4048	1.33	0.87	0.00	3.00
R1MNA_VEG	4052	0.78	0.41	0.00	1.00
R1MNA_FLUID	4049	0.82	0.31	0.00	1.00
R1MNA_FEED	4059	1.76	0.62	0.00	2.00
R1MNA_NSTAT	4024	1.31	0.82	0.00	2.00
R1MNA_HSTAT	4023	0.82	0.64	0.00	2.00
R1MNA_MAC	4051	0.84	0.33	0.00	1.00
R1MNA_CC	4049	0.18	0.24	0.00	0.50
R1MNA_SCREEN	3690	9.66	2.09	3.00	14.00
R1MNA_ASSESS	3950	10.55	2.12	1.50	15.50
R1MNA_SCALE	3623	20.30	3.51	6.00	29.00

Categorical Variable Codes

Value	R1MNA_DFOOD
. d: DK	14
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	21
0	492
1	1534
2	2018
Value	R1MNA_WLOSS
. d: DK	28
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	23
0	357
1	1904
2	564
3	1203
Value	R1MNA_MOB
.d:DK	2
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	16
0	126
1	275
2	3660
Value	R1MNA_STRESS
. d: DK	19
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	21

0	\|	655
2	\|	3384
Value	\| R1MNA_PSYCHO	
. d: DK		37
.h:Not interviewed	I	12
.m:Missing	\|	5
.r:Refuse	,	21
0	\|	89
1		249
2		3683
Value-		R1MNA_LIVE
. d : DK		7
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	\|	14
0		1215
1		2843
Value		R1MNA_DRUG
. d: DK		3
.h:Not interviewed	\|	12
.m:Missing	\|	21
.r:Refuse	\|	6
0		840
1	\|	3214
Value-		R1MNA_SORES
. d: DK		10
.h:Not interviewed		12
.m:Missing	\|	5
.r:Refuse	\|	16
0		367
1	\|	3686
Value-		R1MNA_MEALS
. d: DK		5
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse		14
0	I	195
1	\|	2318
2	\|	1547
Value		R1MNA_PROTN
0		2214
0.5	I	1603
1	\|	279
Value		R1MNA PROTN3
. d: DK		9
.h:Not interviewed		12
.m:Missing	I	5
.r:Refuse	\|	22
0	\|	819
1	\|	1348
2	\|	1602
3	।	279
Value		R1MNA_VEG
. d: DK	\|	6
.h:Not interviewed	\|	12
.m:Missing	\|	5
.r:Refuse	\|	21
0	\|	873
1	\|	3179
Value		R1MNA_FLUID
. d: DK	I	10
.h:Not interviewed	।	12

.m:Missing	5
.r:Refuse	20
0	293
0.5	911
1	2845
Value	R1MNA_FEED
. d: DK	5
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	15
0	408
1	140
2	3511
Value	R1MNA_NSTAT
. d: DK	32
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	23
0	903
1	951
2	2170

How Constructed

The following variables are part of the Mini Nutritional Assessment. These variables pertain to the respondent's appetite and eating habits.

RwMNA_DFOOD indicates the degree to which the respondent's food intake declined over the past 3 months due to a loss of appetite, digestive problems, or chewing or swallowing difficulties. RwMNA DFOOD is coded as follows: 0. Severe decrease in food intake, 1. Moderate decrease in food intake, añ 2 . No decrease in food intake.

RwMNA_WLOSS indicates the degree to which the respondent experienced weight loss during the last 3 months. RwMNA_WLOSS is coded as follows: 0. Weight loss greater than 3 kg (6.6lbs), 1. Does not know, 2 . Weight loss between 1 and $3 \mathrm{~kg}(2.2$ and 6.6 lbs$)$, and 3 . No weight loss.

RwMNA_MOB indicates a self-reported value of mobility given 3 answer options. RwMNA_MOB is coded as follows: 0. Bed or chair bound, 1. Able to get out of bed/chair but does not go out, and 2 . Goes out.

RwMNA_STRESS indicates whether the respondent reports suffering from psychological stress or acute disease in the past 3 months. A 0 is coded if the respondent reports he/she did suffer psychological stress or acute disease in the past 3 months. A 1 is coded if the respondent reports he/she have not experienced this in the past 3 months.

RwMNA_PSYCHO indicates whether the respondent suffered neuropsychological problems. RwMNA_PSYCHO is coded as fol̄lows: 0. Severe neuropsychological problems, 1. Mild neuropsychological problems, añ 2. No neuropsychological problems.

RwMNA_LIVE indicates whether the respondent lives independently, that is not in a nursing home or a hospital. A 0 is coded if the respondent does not live independently. A 1 is coded if the respondent does live independently.

RwMNA_DRUG indicates whether the respondent takes more than 3 prescription drugs per day. A 0 is coded if the respondent does take more than 3 prescription drugs per day. A 1 is coded if the respondent does not take more than 3 prescription drugs per day.

RwMNA SORES indicates whether the respondent has pressure sores or skin ulcers. A 0 is coded if the respondent reports they do have pressure sores or skin ulcers. A 1 is coded if the respondent reports they do not have pressure sores or skin ulcers.

RwMNA_MEALS indicates the number of full meals the respondent eats daily. RwMNA_MEALS is coded as follows: 0. 1 meal, 1. 2 meals, and 2.3 meals.

RwMNA PROTN and RwMNA PROTN3 count the number of protein sources that the respondent incorporates into his/hēr daily diet and are based on three survey questions. The respondent is asked (1) whether he/she eat at least one serving of dairy products (e.g. milk, cheese, and yogurt) per day, (2) whether he/she eat two or more servings of legumes or eggs per week, and (3) whether he/she eat meat, fish or poultry every day. The number of affirmative answers from these three questions are added together for the total protein intake score. RwMNA_PROTN is coded as follows: 0. 0-1 sources of protein; 0.5 . 2 sources of protein; and 1. 3 sources of protein. RwMNA_PROTN3 is coded as follows: 0. 0 sources of protein; 1 . 1 source of protein; 2. 2 sources of protein; and 3. 3 sources of protein.

RwMNA VEG indicates whether the respondent consumes two or more servings of fruit or vegetables per day. A 0 is coded if the respondent does not consume two or more servings of fruit or vegetables per day. A 1 is coded if the respondent does consume two or more servings or fruit or vegetables per day.

RwMNA_FLUID indicates the amount of fluid (e.g. water, juice, coffee, tea, and milk) the respondent drinks per day. RwMNA_FLUID is coded as follows: 0. Less than 3 cups; 0.5 . 3 to 5 cups; and 1 . More than 5 cups.

RwMNA_FEED indicates the degree to which the respondent can eat without assistance. RwMNA_FEED is coded as follows: 0. Unable to eat without assistance; 1. Self-fed with some difficulty; and 2 . Self-fed without any problems.

RwMNA_NSTAT indicates the respondent's perceived nutritional status, given three options. RwMNA_NSTAT is coded as follows: 0. View self as being malnourished; 1. Is uncertain of nutritional state; and 2 . Views self as having no nutritional problem.

RwMNA_HSTAT indicates how the respondent considers his/her health status in comparison with other people of the same age. RwMNA_HSTATUS is coded as follows: 0. Not as good; 0.5. Does not know; 1. As good; and 2. Better.

RwMNA_MAC indicates a score for the respondent's mid arm circumference measurement. RwMNA_MAC is derived using the Harmonized DAD variable RwMIDARM. RwMNA_MAC is coded based on the following ranges of RwMIDARM: $0.0-20.99 ; 0.5 .21-22$; and 1. 22. 01-50.

RwMNA CC indicates a score for the respondent's calf circumference measurement. RwMNA CC is derived using the Harmonized DAD variable RwCALF. RwMNA_CC is coded based on the following ranges of RwCALF: 0. 0-30.99 and 0.5. 31-80.

RwMNA_SCREEN is a summary measure for RwMNA_DFOOD, RwMNA_WLOSS, RwMNA_MOB, RwMNA_STRESS, RwMNA_PSYCHO, and RwBMICAT. RwMNA_SCREEN is the sum of each component variable. RwMNA_SCREEN ranges from 0-1 $\overline{4}$. Please refer to the "Height, Weight, and Other Measurements" section for further information on how RwBMICAT was constructed.

RwMNA_ASSESS is a summary measure for RwMNA_LIVE, RwMNA_DRUG, RwMNA_SORES, RwMNA_MEALS, RwMNA_PROTN, RwMNA_VEG, RwMNA_FLUID, RwMNA_FEED, RwMNA_NSTAT, RwMNA_ $\bar{H} S T A T, ~ R w M N A _M A C, ~ a n d ~ R w M N A _C C, ~ r a n g i n g ~ f r o m ~ 0-16 . ~$ RwMNA_ASSESS is the sum of these variables.

RwMNA SCALE is a summary measure for all the variables comprising RwMNA_SCREEN and RwMNA ASSESS. Specifically, this includes RwMNA_DFOOD, RwMNA_WLOSS, RwMNA_MOB, RwMNA_STRESS, RwMNA_PSYCHO, RwBMICAT, RwMNA_LIVE, RwMNA_DRUG, RwMNA_SORES, RwMNA_MEALS, RwMNA_PROTN, RwMNA_VEG, RwMNA_FLUID, RwMNA_FEED, RwMNA_NSTAT, RwMNA_HSTAT, RwMNA_MAC, and RwMNA_CC. RwMNA_SCALE ranges from 0-30-

Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.i) is assigned for invalid readings. Special missing (.h) is assigned if the respondent was not interviewed.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

DAD Variables Used

GA602
GA603
GA604
GA605
GA606
GA607
GA608
GA609
GA610
GA611
GA612
GA613
GA614
GA615
GA616
GA617
GA618

```
FOOD INTAKE DECLINED
EXPERIENCED WEIGHT LOSS
MOBILITY
PSYCHOLOGICAL STRESS
NEUROPSYCHOLOGICAL PROBLEMS
LIVE INDEPENDENTLY
3 PRESCRIPTION DRUGS
SORES/ULCERS
FULL MEALS DAILY
AT LEAST ONE SERVING OF DAIRY
2 OR MORE LEGUMES/EGGS PER WEEK
EAT MEAT/FISH/POULTRY
TWO OR MORE SERVINGS OF FRUIT/VEGGIES
FLUID PER DAY
MODE OF FEEDING
NUTRITIONAL STATUS
HEALTH STATUS
```


Spice Questions

Wave	Variable	Label	Type
1	R1TURMERF	rlturmerf:w1 r use turmeric daily	Categ
1	R1TURMERQ	rlturmerq:w1 r use turmeric at least half teaspoon	Categ
1	R1SPICE1	r1spice1:w1 r spice-Red Chillies	Categ
1	R1SPICE2	r1spice2:w1 r spice-Cumin Seeds	Categ
1	R1SPICE3	r1spice3:w1 r spice-Coriander Seeds	Categ
1	R1SPICE4	rlspice4:w1 r spice-Mustard Seeds (Rai)	Categ
1	R1SPICE5	r1spice5:w1 r spice-Fenugreek Seeds (Mehthi)	Categ
1	R1SPICE6	rlspice6:w1 r spice-Black Pepper(Kali mirch)	Categ
1	R1SPICE7	r1spice7:w1 r spice-Cloves(Lavang)	Categ
1	R1SPICE8	r1spice8:w1 r spice-Cardamom(Ilaichi)	Categ
1	R1SPICE9	r1spice9:w1 r spice-Cinnamon(Dalchini)	Categ
1	R1SPICE10	r1spice10:w1 r spice-Caraway Seeds(Shahzeera)	Categ
1	R1SPICE11	rlspicell:w1 r spice-Carom seeds (Ajwain)	Categ
1	R1SPICE12	r1spice12:w1 r spice-Nutmeg(Jaiphal)	Categ
1	R1SPICE13	r1spice13:w1 r spice-mace(Japatri)	Categ
1	R1SPICE14	r1spice14:w1 r spice-Fennel (Saunf)	Categ
1	R1SPICE15	r1spice15:w1 r spice-Asafoetida (Hing)	Categ
1	R1SPICE16	r1spice16:w1 r spice-Star Anise(Anasphal)	Categ
1	R1SPICE17	r1spice17:w1 r spice-black cardamom	Categ
1	R1SPICE18	r1spice18:w1 r spice-bay leaf	Categ
1	R1SPICE19	r1spice19:w1 r spice-other	Categ
1	R1SPICE	rlspice:w1 r \# of spices intake (0-18)	Cont

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1TURMERF	4037	0.98	0.15	0.00	1.00
R1TURMERQ	3860	0.73	0.44	0.00	1.00
R1SPICE1	1571	0.83	0.38	0.00	1.00
R1SPICE2	1571	0.70	0.46	0.00	1.00
R1SPICE3	1571	0.80	0.40	0.00	1.00

R1SPICE4	1571	0.39	0.49	0.00	1.00
R1SPICE5	1571	0.39	0.49	0.00	1.00
R1SPICE6	1571	0.37	0.48	0.00	1.00
R1SPICE7	1571	0.15	0.36	0.00	1.00
R1SPICE8	1571	0.09	0.29	0.00	1.00
R1SPICE9	1571	0.07	0.26	0.00	1.00
R1SPICE10	1571	0.01	0.11	0.00	1.00
R1SPICE11	1571	0.02	0.14	0.00	1.00
R1SPICE12	1571	0.01	0.10	0.00	1.00
R1SPICE13	1571	0.01	0.09	0.00	1.00
R1SPICE14	1571	0.01	0.12	0.00	1.00
R1SPICE15	1571	0.09	0.28	0.00	1.00
R1SPICE16	1571	0.01	0.08	0.00	1.00
R1SPICE17	1571	0.02	0.12	0.00	1.00
R1SPICE18	1571	0.02	0.13	0.00	1.00
R1SPICE19	1571	0.16	0.36	0.00	1.00
R1SPICE	1490	4.36	2.32	0.00	16.00

Categorical Variable Codes

Value	R1TURMERE
. d: DK	23
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	19
$0 . \mathrm{No}$	88
1.Yes	3949
Value	R1TURMERQ
. d: DK	170
.h:Not interviewed	12
.m:Missing	53
.r:Refuse	1
$0 . \mathrm{No}$	1032
1.Yes	2828
Value	R1SPICE1
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
$0 . \mathrm{No}$	269
1.Yes	1302
Value-	R1SPICE2
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
0 . No	477

1.Yes	\|	1094
Value		R1SPICE3
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	I	17
$0 . \mathrm{No}$	\|	321
1.Yes	\|	1250
Value-		R1SPICE4
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	\|	17
0 . No	\|	959
1.Yes	\|	612
Value-		R1SPICE5
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	\|	17
0 . No	\|	965
1.Yes	\|	606
Value-		R1SPICE6
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	\|	17
0 . No	\|	990
1.Yes	\|	581
Value-		R1SPICE7
.h:Not interviewed		12
.m:Missing	\|	2496
.r:Refuse	\|	17
0 . No	\|	1330
1.Yes	\|	241
Value		R1SPICE8
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	\|	17
$0 . \mathrm{No}$	\|	1428
1.Yes	\|	143
Value-		R1SPICE9
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	\|	17
$0 . \mathrm{No}$	\|	1457
1.Yes	\|	114
Value		R1SPICE10
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	\|	17
$0 . \mathrm{No}$	\|	1550
1.Yes	\|	21
Value-		R1SPICE11
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	\|	17
$0 . \mathrm{No}$	\|	1540
1.Yes	\|	31
Value-		R1SPICE12
.h:Not interviewed	\|	12
.m:Missing	\|	2496
.r:Refuse	\|	17
$0 . \mathrm{No}$	\|	1554
1.Yes	\|	17

Val	R1SPICE13
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
$0 . \mathrm{No}$	1558
1.Yes	13
Value-	R1SPICE14
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
0 . No	1549
1.Yes	22
Value	R1SPICE15
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
$0 . \mathrm{No}$	1432
1.Yes	139
Value-	R1SPICE16
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
0 . No	1562
1.Yes	9
Value-	R1SPICE17
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
$0 . \mathrm{No}$	1547
1.Yes	24
Value	R1SPICE18
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
$0 . \mathrm{No}$	1545
1.Yes	26
Value-	R1SPICE19
.h:Not interviewed	12
.m:Missing	2496
.r:Refuse	17
$0 . \mathrm{No}$	1327
1.Yes	244

How Constructed

RwTURMERF indicates whether the respondent uses turmeric daily. A 0 is coded if the respondent reports he/she doesn't use turmeric daily. A 1 is coded if the respondent reports he/she uses turmeric daily.

RwTURMERQ indicates whether the respondent uses at least half a teaspoon of turmeric. A 0 is coded if the respondent uses less than half a teaspoon. A 1 is coded if the respondent uses half a teaspoon or more.

The following variables indicate whether the respondent uses a specific spice:

RwSPICE1 indicates whether the respondent uses Red Chilies.

RwSPICE2 indicates whether the respondent uses Cumin Seeds.

RwSPICE3 indicates whether the respondent uses Coriander Seeds.

RwSPICE4 indicates whether the respondent uses Mustard Seeds (Rai)

```
RwSPICE5 indicates whether the respondent uses Fenugreek Seeds (Mehthi).
RwSPICE6 indicates whether the respondent uses Black Pepper(Kali mirch).
RwSPICE7 indicates whether the respondent uses Cloves (Lavang).
RwSPICE8 indicates whether the respondent uses Cardamom (Ilaichi).
RwSPICE9 indicates whether the respondent uses Cinnamon (Dalchini).
RwSPICE10 indicates whether the respondent uses Caraway Seeds (Shahzeera).
RwSPICE11 indicates whether the respondent uses Carom Seeds (Ajwain).
RwSPICE12 indicates whether the respondent uses Nutmeg (Jaiphal).
RwSPICE13 indicates whether the respondent uses Mace (Japatri).
RwSPICE14 indicates whether the respondent uses Fennel (Saunf).
RwSPICE15 indicates whether the respondent uses Asafoetida (Hing).
RwSPICE16 indicates whether the respondent uses Star Anise (Anasphal).
RwSPICE17 indicates whether the respondent uses Black Cardamom.
RwSPICE18 indicates whether the respondent uses Bay Leaf.
RwSPICE19 indicates whether the respondent uses Other spices not listed.
RwSPICE1-RwSPICE19 are coded as 1 if the respondent reports he/she uses any quantity of the spice. This
includes those who report using a quarter of a teaspoon to 3+ teaspoons each time. If the spice is not
used, a 0 is coded.
RwSPICE indicates the number of spices that the respondent uses. RwSPICE is constructed by taking the sum
of RwSPICE1-RwSPICE19. RwSPICE ranges from 0-18.
Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m),
respectively. Special missing (.h) is assigned if the respondent was not interviewed.
```


Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

These variables are not included in LASI.

DAD Variables Used

GA619A	Use of Turmeric
GA619B	Approximate Quantity of it used each time
GA620_0_S1	Other spice used 1 Red chillies (Lal mirch)
GA620_0_S10	Other spice used 10 Caraway seeds (Shahzeera)
GA620_0_S11	Other spice used 11 Carom seeds (Ajwain)
GA620_0_S12	Other spice used 12 Nutmeg (Jaiphal)
GA620_-_S13	OA620_0_S14
GA620_-_S15	Other spice used 13 Mace (Japatri)
GA620_0_S16	Other spice used 14 Fennel (Saunf)
GA620_0_S17	Other spice used 15 Asafoetida (Hing)
GA620_0_S18	Other spice used 16 Star Anise (Anasphal)

Other spice used 19 Other GA620_other
Other spice used 2 Cumin seeds (Zeera)
Other spice used 3 Coriander seeds (Dhania)
Other spice used 4 Mustard seeds (Rai)
Other spice used 5 Fenugreek seeds (Mehthi)
Other spice used 6 Black pepper (Kali mirch)
Other spice used 7 Cloves (Lavang)
Other spice used 8 Cardamom (Ilaichi)
Other spice used 9 Cinnamon (Dalchini)
Frequency-Other spice used 10 Caraway seeds (
Frequency-Other spice used 11 Carom seeds (Aj
Frequency-Other spice used 12 Nutmeg (Jaiphal
Frequency-Other spice used 13 Mace (Japatri)
Frequency-Other spice used 14 Fennel (Saunf)
Frequency-Other spice used 15 Asafoetida (Hin
Frequency-Other spice used 16 Star Anise (Ana
Frequency-Other spice used 17 Black Cardamom
Frequency-Other spice used 18 Bay leaf (tejpa
Frequency-Other spice used 19 Other GA620_oth
Frequency-Other spice used 1 Red chillies (La
Frequency-Other spice used 2 Cumin seeds (Zee
Frequency-Other spice used 3 Coriander seeds
Frequency-Other spice used 4 Mustard seeds (R
Frequency-Other spice used 5 Fenugreek seeds
Frequency-Other spice used 6 Black pepper (Ka
Frequency-Other spice used 7 Cloves (Lavang)
Frequency-Other spice used 8 Cardamom (Ilaich
Frequency-Other spice used 9 Cinnamon (Dalchi

Hearing Tests

Wave Variable	Label	Type	Clhear_r:w1 r hearing test-right ear (0-6)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1HEAR_R	3918	2.83	1.27	0.00	6.00
R1HEAR_L	3919	2.97	1.30	0.00	6.00
R1HEAR_NA	4048	0.03	0.16	0.00	1.00
R1HEAR_AID	3938	0.01	0.16	0.08	0.00

Categorical Variable Codes

Value	R1HEAR_NA
.d:DK	R 6
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	25
$0 . \mathrm{No}$	3940
1.Yes	108
Value	R1HEAR_AID
. d: DK	- 6
.h:Not interviewed	12
.m:Missing	5
.r:Refuse	27
.s:Skipped	108
0 . No	3910
1.Yes	28
Value	R1HEAR_P
.d:DK	6
.h:Not interviewed	12
.r:Refuse	29
.s:Skipped	108
$0 . \mathrm{No}$	3321
1.Yes	620

How Constructed

The following variables pertain to the Hearing Test. For the Hearing Test, a HearCheck device is placed over each of the respondent's ears. The device plays a series of tones. The respondent is asked to raise his/her finger each time he/she hears a sound. The test begins on the words "Ready, begin". The interviewer is instructed to remove any obstructions from the respondent's ears, such as long hair, glasses, and jewelry for this test.

RwHEAR_R and RwHEAR_L indicate the respondent's Hearing Test summary scores based on two tests for the right ear and left ear, respectively. For each tone the respondent correctly hears, 1 is added to the respective ear's summary score (left or right). Each test has 3 tones per ear. RwHEAR_R and RwHEAR_L range from 0-6. Special missing (.s) is assigned if the respondent did not do the Hearing Test because he/she refused, had a cochlear implant, or had an ear infection in either ear. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

RwHEAR_NA indicates whether the respondent was unable to do the Hearing Test. A is coded if the respondent was able to do the Hearing Test. A 1 is coded if the respondent was not able to do the Hearing Test because he/she refused, had a cochlear implant, or had an ear infection in either ear. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed.

RwHEAR_AID indicates whether the respondent wears hearing aids. A 0 is coded if the respondent does not wear hearing aids. A 1 is coded if the respondent does wear hearing aids. Don't know, refused, or other missing responses are assigned special missing codes (.d), (.r), and (.m), respectively. Special missing (.h) is assigned if the respondent was not interviewed. Special missing (.s) is assigned if the respondent did not do the Hearing Test because he/she refused, had a cochlear implant, or had an ear infection in either ear.

RwHEAR P indicates whether there were any interruptions during the Hearing Test. A 0 is coded if there were no interruptions. A 1 is coded if there was background noise that interfered with the hearing test, there were problems with the equipment or supplies, had to restart the test, the respondent removed obstructions (glasses, earrings, etc.), the respondent removed hearing aid, the respondent raised their finger more than three times for a single test, or other not already specified. Don't know, refused responses are assigned special missing codes (.d) and (.r), respectively. Special missing (.h) is assigned if the respondent was not interviewed. Special missing (.s) is assigned if the respondent did not do the Hearing Test because he/she refused, had a cochlear implant, or had an ear infection in either ear.

Cross Wave Differences in DAD

No differences known.

Differences with Harmonized LASI

These variables are not included in LASI.

DAD Variables Used

GA901
GA902
GA904_1
GA904 2
GA 905^{-1}
GA905_2
GA 906

Hearing test introduction
wearing hearing aids
Left ear test 1
Left ear test 2
Right ear test
Right ear test 2
occurred during the hearing test

Section E: Polygenic Risk Scores (PRSs)

Polygenic Risk Scores for Alzheimer's Disease

Wave Variable	Label	
1	R1PRS_TOPLAM	std top SNPs PRS using genome-wide significant SNPs:Lambert Cont
1	R1PRS_TOPKUN	std top SNPs PRS using genome-wide significant SNPs:Kunkle e Cont
1	R1PRS_TOPJAN std top SNPs PRS using genome-wide significant SNPs:Jansen e Cont	

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1PRS_TOPLAM	932	-0.00	1.00	-3.40	2.88
R1PRS_TOPKUN	932	-0.00	1.00	-2.99	3.65
R1PRS_TOPJAN	932	0.00	1.00	-3.52	2.75

How Constructed

The LASI-DAD genotyped respondents who consented to the blood sample collection and provided whole blood DNA. Polygenic risk scores (PRSs) were constructed, which provide a quantitative measure of genetic risk for genetic analyses. PRSs are based on large-scale replicated genome-wide association studies (GWAS) and were constructed using genome-wide significant single nucleotide polymorphisms (SNPs), noted as "top SNPs" PRSs.

For detailed information on the general method of constructing PRSs, please refer to Section 5 "Polygenic Risk Scores (PRSs)" in the Harmonized LASI-DAD data documentation.

The following variables are "top SNPs" PRSs for Alzheimer's disease (AD), each created based on results from one of three large-scale GWAS meta-analyses. All three PRSs have been standardized to a standard normal curve with a mean of 0 and standard deviation of 1 . Please note that all three GWAS meta-analyses were conducted using individuals of European ancestry. As key SNPs in the APOE gene have a strong association with Alzheimer's disease, variants in the $A P O E$ region are excluded from the following three polygenic risk scores.

RwPRS TOPLAM is the polygenic risk score for Alzheimer's disease, using results from a 2013 GWAS conducted by the International Genomics of Alzheimer's Project (IGAP) (Lambert et al., 2013). The 2013 meta-analysis identified 19 SNPs with genome-wide significant associations with AD. RwPRS TOPLAM contains all 19 SNPs that were identified.

RwPRS TOPKUN is the polygenic risk score for Alzheimer's disease, using results from a 2019 GWAS metaanalysis that had samples from the International Genomics of Alzheimer's Project (IGAP) (Kunkle et al., 2019). The 2019 meta-analysis identified 24 genome-wide-significant associations with AD. RwPRS_TOPKUN contains 20 SNPs that overlap between the LASI-DAD genetic data and the genome-wide significant SNPs from the GWAS meta-analysis.

RwPRS TOPJAN is the polygenic risk score for Alzheimer's disease, using results from a 2019 GWAS metaanalysis that had samples from the Alzheimer's disease working group of Psychiatric Genomics Consortium (PGC-ALZ), the International Genomics of Alzheimer's Project (IGAP), the Alzheimer's Disease Sequencing Project (ADSP), and UKBiobank (Jansen et al., 2019). The 2019 meta-analysis identified 28 genome-wide significant loci associated with AD. RwPRS_TOPJAN contains 19 SNPs that overlap between the LASI-DAD genetic data and the genome-wide significant SNPs from the GWAS meta-analysis.

Please refer to Table S1 in Smith et al. (2020) for the list of SNPs included in each PRS.

Cross Wave Differences in DAD

```
No differences known.
```


Differences with HRS HCAP

The HRS HCAP does not provide polygenic risk scores and associated variables.

Differences with Harmonized LASI

The Harmonized LASI does not provide polygenic risk scores and associated variables.

Polygenic Risk Scores for General Cognitive Function

| Wave Variable | Label | |
| :--- | :--- | :--- |\quad Type

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1PRS_TOPCOG	932	0.00	1.00	-2.57	3.48
R1PRS_ALLCOG	932	0.00	1.00	-3.43	3.67

How Constructed

For detailed information on the general method of constructing PRSs, please refer to Section 5 "Polygenic Risk Scores (PRSs)" in the Harmonized LASI-DAD data documentation.

Two versions of the PRSs for general cognitive function were created, which were based on results from a 2018 GWAS conducted using genetic data from the CHARGE and COGENT consortia, and UKBiobank (Davies et al., 2018). The 2018 GWAS identified a total of 178 genome-wide significant independent lead SNPs from 148 loci that were associated with general cognitive function. Please note that this GWAS was conducted using individuals of European ancestry.

The following variables have been standardized within the study sample to have a mean of 0 and standard deviation of 1 .

RwPRS_TOPCOG is the polygenic risk score for general cognitive function, constructed using "top SNPs". RwPRS_TOPCOG includes 130 lead SNPs out of the 178 reported lead SNPs from 148 loci that overlap between the LASI-DAD genetic data and the 2018 GWAS meta-analysis.

RwPRS_ALLCOG is the polygenic risk score for general cognitive function, constructed using "all SNPs", or all independent SNPs with p-value less than 10E-04. RwPRS_ALLCOG contains 1,938 SNPs that overlap between the LASI-DAD genetic data and the 2018 GWAS meta-analysis.

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

The HRS HCAP does not provide polygenic risk scores and associated variables.

Differences with Harmonized LASI

The Harmonized LASI does not provide polygenic risk scores and associated variables.

Genetic Principal Components (PCs)

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1PRS_PC1	932	0.00	1.00	-4.42	1.60
R1PRS_PC2	932	0.00	1.00	-5.08	1.80
R1PRS_PC3	932	-0.00	1.00	-2.82	11.24
R1PRS_PC4	932	0.00	1.00	-2.17	2.46
R1PRS_PC5	932	0.00	1.00	-3.22	3.38
R1PRS_PC6	932	-0.00	1.00	-3.99	15.31
R1PRS_PC7	932	-0.00	1.00	-5.24	13.73
R1PRS_PC8	932	0.00	1.00	-22.63	3.01
R1PRS_PC9	932	-0.00	1.00	-6.47	20.30
R1PRS_PC10	932	0.00	1.00	-4.94	4.63

How Constructed

Principal component (PC) analysis (Price et al., 2006) was performed to identify population group outliers and to provide sample principal components to be used as covariates in the statistical models used for association testing to adjust for possible population stratification.

RwPRS PC1 - RwPRS PC10 are standardized versions of ancestry specific genetic principal components 1 10. PCs 1 - 5 and PCs $6-10$ were scrambled to protect identifiable information.

It is highly recommended that users perform analyses adjusted for RwPRS PC1 - RwPRS PC10 in order to control for confounding from population stratification, or to account for any ancestry differences in genetic structures within populations that could bias estimates. The PCs control for any genetic aspects

```
of common ancestry that could be spuriously correlated with the PRS and the outcome of interest (Price et
al., 2006).
```


Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

The HRS HCAP does not provide polygenic risk scores and associated variables.

Differences with Harmonized LASI

The Harmonized LASI does not provide polygenic risk scores and associated variables.

SNPs in the APOE Gene

Wave Variable	Label	
1	R1RS7412	key SNP in APOE gene: rs7412

Descriptive Statistics

Variable	N	Mean	Std Dev	Minimum	Maximum
R1RS7412	932	0.09	0.30	0.00	2.00
R1RS 429358	932	0.20	0.42	0.00	2.00

How Constructed

Key SNPs in the $A P O E$ gene have a strong association with Alzheimer's disease. Variants in the APOE region were excluded from the three polygenic risk scores for Alzheimer's disease, but two SNPs have been released in the Harmonized LASI-DAD as independent units.
 $2=T T)$. RwRS7412 is one of the two SNPs that define the $A P O E \varepsilon 2$, $\varepsilon 3$, and $\varepsilon 4$ alleles. The imputed version (1000G phase 3 version 5 reference panel) that incorporates imputation uncertainty is provided so that the numbers are not always exactly 0,1 , or 2 . The imputation quality score R^{2} for this SNP is 0.9998 (R^{2} ranges from 0 to 1 , with the larger number indicating better quality).

RwRS 429358 is the number of C alleles of $S N P$ rs 429358 (T/C), which ranges from 0 to 2 (e.g., $0=T T, 1=T C$, $2=C C)$. RwRS 429358 is one of the two SNPs that define the $A P O E \varepsilon 2$, $\varepsilon 3$, and $\varepsilon 4$ alleles. The imputed version (1000G phase 3 version 5 reference panel) that incorporates imputation uncertainty is provided so that the numbers are not always exactly 0, 1, or 2. The imputation quality score R^{2} for this $\mathrm{SNP}^{\text {f }}$ is 0.9979 (R^{2} ranges from 0 to 1, with the larger number indicating better quality).

Cross Wave Differences in DAD

No differences known.

Differences with HRS HCAP

The HRS HCAP does not provide polygenic risk scores and associated variables.

Differences with Harmonized LASI

The Harmonized LASI does not provide polygenic risk scores and associated variables.

References

Battaglia, M.P., Izrael, D., Hoaglin, D.C., \& Frankel, M.R. 2009. "Practical Considerations in Raking Survey Data." Survey Practice, 2009 (June).
http://surveypractice.org/2009/06/29/raking-survey-data/.
Blessed, G., B. E. Tomlinson, and M. Roth. 1968. The Association between Quantitative Measures of Dementia and of Senile Change in the Cerebral Grey Matter of Elderly Subjects. The British Journal of Psychiatry 114(512): 797-811. https://doi.org/10.1192/bjp.114.512.797.

Brandt, J., M. Spencer, and M. Folstein. 1988. The Telephone Interview for Cognitive Status. Neuropsychiatry, Neuropsychology, \& Behavioral Neurology 1(2): 111-17.

CERAD. 1987. Consortium to Establish a Registry for Alzheimer's Disease: Clinical Assessment Packet for Clinical/Neuropsychological Assessment for Alzheimer's Disease. https://sites.duke.edu/centerforaging/cerad/.

Choi, S.W. \& O'Reilly, P.F. 2019. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 8(7) (2019): p.giz082.

Davies, G., Lam, M., Harris, S.E., Trampush, J.W., Luciano, M., Hill, W.D., Hagenaars, S.P., Ritchie, S.J., Marioni, R.E., Fawns-Ritchie, C., \& Liewald, D.C. 2018. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications 9(1): 1-16.

De Luca, G., Celidoni, M., \& Trevisan, E. 2015. Item nonresponse and imputation strategies in SHARE Wave 5. In F. Malter \& A. Börsch-Supan (Eds.), SHARE Wave 5: Innovations \& Methodology (pp. 85-100). Munich: MEA.

De Renzi, E., and L. A. Vignolo. 1962. The Token Test: A Sensitive Test to Detect Receptive Disturbances in Aphasics. Brain 85(4): 665-78. https://doi.org/10.1093/brain/85.4.665.

Fisher, G. G., Hassan, H., Faul, J. D., Rodgers, W. L., \& Weir, D. R. 2017. Health and Retirement Study: Imputation of Cognitive Functioning Measures: 1992-2014 (Final Release Version): Data Description. Ann Arbor, MI: University of Michigan, Survey Research Center.

Folstein, M. F., S. E. Folstein, and P. R. McHugh. 1975. "Mini-Mental State": A Practical Method for Grading the Cognitive State of Patients for the Clinician. Journal of Psychiatric Research 12(3): 189-98. https://doi.org/10.1016/0022-3956(75)90026-6.

Ganguli, M., G. Ratcliff, V. Chandra, S. Sharma, J. Gilby, R. Pandav, S. Belle, et al. 1995. A Hindi Version of the MMSE: The Development of a Cognitive Screening Instrument for a Largely Illiterate Rural Elderly Population in India. International Journal of Geriatric Psychiatry 10(5): 367-77. https://doi.org/10.1002/gps.930100505.

Gomez, P., R. Ratcliff, and M. Perea. 2007. A Model of the Go/No-Go Task. Journal of Experimental Psychology: General 136(3): 389-413. https://doi.org/10.1037/00963445.136.3.389.

Gross, A.L. 2020. MCI Classification in LASI-DAD. Paper presented at the University of Southern California, Los Angeles, CA.

Gross, A.L., Hassenstab, J.J., Johnson, S.C., et al. 2017. A classification algorithm for predicting progression from normal cognition to mild cognitive impairment across five cohorts: the preclinical AD consortium. Alzheimers Dement. 8: 147-155.

Gross, A.L., Khobragade, P.Y., Meijer, E., \& Saxton, J.A. 2020. Measurement and structure of cognition in the Longitudinal Aging Study in India - Diagnostic Assessment of Dementia (LASI-DAD). Journal of the American Geriatrics Society, 68: 511-519.

Hall, K. S., H. C. Hendrie, and H. M. Brittain. 1993. The Development of a Dementia Screening Interview in 2 Distinct Languages. International Journal of Methods in Psychiatric Research 3(1): 1-28.

Hu, L.-t., \& Bentler, P.M. 1999. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1): 1-55. https://psycnet.apa.org/doi/10.1080/10705519909540118.

Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., \& Martin, R.L. 1982. A New Clinical Scale for the Staging of Dementia. The British Journal of Psychiatry 140(6): 566-72. doi:10.1192/bjp.140.6.566

Jansen, I.E., Savage, J.E., Watanabe, K., Bryois, J., Williams, D.M., Steinberg, S., Sealock, J., Karlsson, I.K., Hägg, S., Athanasiu, L., \& Voyle, N. 2019. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. Nature Genetics 51(3): 404-413.

Jorm, A. F., and P. A. Jacomb. 1989. The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Socio-Demographic Correlates, Reliability, Validity and Some Norms. Psychological Medicine 19(4): 1015-22. https://doi.org/10.1017/S0033291700005742.

Kenny, D.A., Kaniskan, B., \& McCoach, D.B. 2015. The performance of RMSEA in models with small degrees of freedom. Sociological Methods \& Research, 44(3): 486-507.

Kunkle, B.W., Grenier-Boley, B., Sims, R., Bis, J.C., Damotte, V., Naj, A.C., Boland, A., Vronskaya, M., Van Der Lee, S.J., Amlie-Wolf, A., \& Bellenguez, C. 2019. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates $A \beta$, tau, immunity and lipid processing. Nature Genetics 51(3): 414-430.

Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., Jun, G., DeStefano, A.L., Bis, J.C., Beecham, G.W., \& Grenier-Boley, B. 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics 45(12): 1452-1458.

Lee, J., Banerjee, J., Khobragade, P.Y., Angrisani, M., \& Dey, A.B. 2019. LASI-DAD study: a protocol for a prospective cohort study of late-life cognition and dementia in India. British Medical Journal Open. doi:10.1136/bmjopen-2019-030300.

Lee, J., Ganguli, M., Weerman, A., Chien, S., Lee, D.Y., Varghese, M., \& Dey, A.B. 2020. Online clinical consensus diagnosis of dementia: Development and validation. Journal of the American Geriatrics Society, 68: 554-559. DOI: 10.1111/jgs.16736.

Lee, J., Meijer, E., \& Phillips, D. 2015. The effect of using different imputation methods for economic variables in aging surveys (Working Paper No. 2015-019). Los Angeles, CA: University of Southern California, Center for Economic and Social Research.

Lee, J., Phillips, D., \& Wilkens, J. 2019. "Gateway to Global Aging Data," In: Gu D., Dupre M. (eds) Encyclopedia of Gerontology and Population Aging. Springer, Cham.

Little, R. J. A., \& Rubin, D. B. 2002. Statistical analysis with missing data (2nd ed.). New York, NY: Wiley.

Lowe, D.A., Balsis, S., Miller, T.M., Benge, J.F., \& Doody, R.S. 2012. Greater precision when measuring dementia severity: establishing item parameters for the Clinical Dementia Rating Scale. Dementia and Geriatric Cognitive Disorders 34(2): 128-134. doi:10.1159/000341731

Lowery, N., D. Ragland, R. C. Gur, R. E. Gur, and P. J. Moberg. 2004. Normative Data for the Symbol Cancellation Test in Young Healthy Adults. Applied Neuropsychology 11(4): 21619. https://doi.org/10.1207/s15324826an1104_8.

Martin, A.R., Gignoux, C.R., Walters, R.K., Wojcik, G.L., Neale, B.M., Gravel, S., Daly, M.J., Bustamante, C.D., \& Kenny, E.E. 2017. Human demographic history impacts genetic risk prediction across diverse populations. The American Journal of Human Genetics 100(4): 635-49.

Mattis, S. 1988. Dementia Rating Scale. Professional Manual. Florida: Psychological Assessment Resources.

Morris JC. 1993. The clinical dementia rating (CDR): current version and scoring rules. Neurology, 43(11):2412-4.

Morris, J. C., A. Heyman, R. C. Mohs, J. P. Hughes, G. van Belle, G. Fillenbaum, E. D. Mellits, and C. Clark. 1989. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and Neuropsychological Assessment of Alzheimer's Disease. Neurology 39(9): 1159-65.

Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., \& Reich, D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38(8): 904-909.

Prince, M., C. P. Ferri, D. Acosta, E. Albanese, R. Arizaga, M. Dewey, S. I. Gavrilova, et al. 2007. The Protocols for the 10/66 Dementia Research Group Population-Based Research Programme. BMC Public Health 7(1): 165. https://doi.org/10.1186/1471-2458-7-165.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., \& Sham, P.C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81(3): 559-75. doi: 10.1086/519795.

Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., \& Solenberger, P. 2001. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-95.

Raven, J. 2000. The Raven's Progressive Matrices: Change and Stability over Culture and Time. Cognitive Psychology 41(1): 1-48. https://doi.org/10.1006/cogp.1999.0735.

Rosen, W. G., R. C. Mohs, and K. L. Davis. 1984. A New Rating Scale for Alzheimer's Disease. The American Journal of Psychiatry 141(11): 1356-64. https://doi.org/10.1176/ajp.141.11.1356.

Smith, J.A., Zhao, W., Yu, M., Rumfelt, K.E., Moorjani, P., Ganna, A., Dey, A.B., Lee, J., \& Kardia, S.L. 2020. Association Between Episodic Memory and Genetic Risk Factors for Alzheimer's Disease in South Asians from the Longitudinal Aging Study in IndiaDiagnostic Assessment of Dementia (LASI-DAD). Journal of the American Geriatrics Society 68 Suppl 3: S45-S53.

Tripathi, R., J. K. Kumar, S. Bharath, P. Marimuthu, and M. Varghese. 2013. Clinical Validity of NIMHANS Neuropsychological Battery for Elderly: A Preliminary Report. Indian Journal of Psychiatry 55(3): 279-82. https://doi.org/10.4103/0019-5545.117149.

Valliant, R., Dever, J.A., \& Kreuter, F. 2013. Practical Tools for Designing and Weighting Survey Samples. Springer, New York.

Van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., \& Rubin, D. B. 2006. Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 1049-1064.

Wechsler, D. 1997. Wechsler Adult Intelligence Scale. 3rd Ed. San Antonio, Texas: The Psychological Corporation.

Wechsler, D. 2009. Wechsler Memory Scales—Fourth Edition (WMS-IV): Technical and Interpretive Manual. San Antonio, Texas: Pearson Clinical Assessment.
https://www.pearsonassessments.com/store/usassessments/en/Store/Professional-Assessments/Cognition-\%26-Neuro/Wechsler-Memory-Scale-\|-FourthEdition/p/100000281.html.

Woodcock, R.W., K.S. McGrew, and N. Mather. 2001. The Woodcock-Johnson III (WJIII), Tests of Achievement. Itasca, IL: Riverside Publishing Co.

[^0]: ${ }^{1}$ These centers include: the All India Institute of Medical Sciences, Delhi; Madras Medical College, Chennai; National Institute of Mental Health and Neurosciences, Bangalore; BHU, Varanasi; S.N. Medical College, Jodhpur; TMC, Trivandrum; Grant Medical College, Mumbai; SKIMS, Srinagar, Gauwhati Medical College, Guwahati, Assam; Nizam's Institute of Medical Sciences, Hyderabad, All India Institute of Medical Sciences, Bhubaneswar, Odisha; IPGMER, Kolkata; Indira Gandhi Institute of Medical Sciences, Patna, Bihar; All India Institute of Medical Sciences, Madhya Pradesh; All India Institute of Medical Sciences, Rishikesh, Uttarakhand; and Government Medical College, Chandigarh, Punjab.

[^1]: ${ }^{2}$ The reference person need not be the person who responded to the question. It is the person whose information is central to the data file observation.

[^2]: ${ }^{3}$ The LASI-DAD sample includes 18 Indian states. While these states cover the vast majority of the Indian population (more than 90%), the excluded states may have systematically different characteristics, which would prevent us from using national-level statistics as benchmarks at the post-stratification stage. We run an extensive battery of tests and find no evidence that LASI-DAD and non-LASI-DAD states differ systematically in terms of per capita net state domestic product, average gender, age, literacy, education, and cognitive functions.

[^3]: DAD_FINAL_WEIGHT
 DAD Final Weight after Post-stratification

