Skip to main content
Log in

Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly (vinyl alcohol)/starch nanocomposite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, we synthesized a biodegradable nanocomposite containing starch, polyvinyl alcohol (PVA), and graphene oxide (GO). The non-isothermal degradation kinetics of this nanocomposite was investigated by thermogravimetric analysis. Accordingly, the kinetic parameters, such as activation energy (Ea), exponential factor (A), rate constant (k), and degradation time, were calculated. The calculated kinetic parameters are used to predict the lifetime. The master plot analysis showed that the kinetic function of the thermal degradation changed from A2 to A3 upon addition of GO to the PVA/starch blend. The reaction heat (ΔH), glass transition temperature (Tg), and melting point (Tm) of the PVA/starch film and PVA/starch/GO nanocomposite were determined by the differential scanning calorimetry analysis. Also, the Tg values were determined by dynamic mechanical thermal analyzer. The changes in peak bandwidth, strength, and frequency in the samples are identified by FTIR spectra. The structure and morphology of the nanocomposite were studied by X-ray diffraction analysis and field emission scanning electronic microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Olewnik E, Garman K, Czerwiński W. Thermal properties of new composites based on nanoclay polyethylene and polypropylene. J Therm Anal Calorim. 2010;101:323–9.

    Article  CAS  Google Scholar 

  2. Avérous L, Halley P-J. Biocomposites based on plasticized starch. Biofuels Bioprod Biorefin. 2009;3:329–43.

    Article  CAS  Google Scholar 

  3. Zia F, Zia K-M, Zuber M, Kamal S, Aslam N. Starch based polyurethanes: a critical review updating recent literature. Carbohydr Polym. 2015;134:784–98.

    Article  CAS  PubMed  Google Scholar 

  4. Stojanović Ž, Katsikas L, Popović I, Jovanović S, Jeremić K. Thermal stability of starch benzoate. Polym Degrad Stab. 2005;87:177–82.

    Article  CAS  Google Scholar 

  5. Zhai M, Yoshii F, Kume T, Hashim K. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym. 2002;50:295–303.

    Article  CAS  Google Scholar 

  6. Cano A, Fortunati E, Cháfer M, Kenny JM, Chiralt A, González-Martínez C. Properties and ageing behaviour of pea starch films as affected by blend with poly (vinyl alcohol). Food Hydrocoll. 2015;48:84–93.

    Article  CAS  Google Scholar 

  7. Jiménez A, Fabra MJ, Talens P, Chiralt A. Edible and biodegradable starch films: a review. Food Bioprocess Technol. 2012;5:2058–76.

    Article  CAS  Google Scholar 

  8. Taghizadeh M-T, Abdollahi R. A kinetics study on the thermal degradation of starch/poly (vinyl alcohol) blend. Chem Mater Eng. 2015;3:73–8.

    CAS  Google Scholar 

  9. Xie F, Pollet E, Halley P-J, Avérous L. Starch-based nano-biocomposites. Prog Polym Sci. 2013;38:1590–628.

    Article  CAS  Google Scholar 

  10. Adebowale K-O, Afolabi T-A, Olu-Owolabi B-I. Functional, physicochemical and retrogradation properties of sword bean (Canavalia gladiata) acetylated and oxidized starches. Carbohydr Polym. 2006;65:93–101.

    Article  CAS  Google Scholar 

  11. Warren F-J, Gidley M-J, Flanagan B-M. Infrared spectroscopy as a tool to characterise starch ordered structurea joint FTIR–ATR, NMR,XRD and DSC study. Carbohydr Polym. 2016;139:35–42.

    Article  CAS  PubMed  Google Scholar 

  12. Cano A, Jiménez A, Cháfer M, Gónzalez C, Chiralt A. Effect of amylose: amylopectin ratio and rice bran addition on starch films properties. Carbohydr Polym. 2014;111:543–55.

    Article  CAS  PubMed  Google Scholar 

  13. Forssell P-M, Hulleman S-H, Myllärinen P-J, Moates G-K, Parker R. Ageing of rubbery thermoplastic barley and oat starches. Carbohydr Polym. 1999;39:43–51.

    Article  CAS  Google Scholar 

  14. Sukhija S, Singh S, Riar C-S. Physicochemical, crystalline, morphological, pasting and thermal properties of modified lotus rhizome (Nelumbo nucifera) starch. Food Hydrocoll. 2016;60:50–8.

    Article  CAS  Google Scholar 

  15. Priya B, Gupta V-K, Pathania D, Singha A-S. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym. 2014;109:171–9.

    Article  CAS  PubMed  Google Scholar 

  16. Aydın A-A, Ilberg V. Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: starch blends. Carbohydr Polym. 2016;136:441–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cano A-I, Cháfer M, Chiralt A, González-Martínez C. Physical and microstructural properties of biodegradable films based on pea starch and PVA. J Food Eng. 2015;167:59–64.

    Article  CAS  Google Scholar 

  18. Ortega-Toro R, Jiménez A, Talens P, Chiralt A. Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydr Polym. 2014;109:155–65.

    Article  CAS  PubMed  Google Scholar 

  19. Nistor M-T, Vasile C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly (vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim. 2013;111:1903–19.

    Article  CAS  Google Scholar 

  20. Majdzadeh-Ardakani K, Nazari B. Improving the mechanical properties of thermoplastic starch/poly (vinyl alcohol)/clay nanocomposites. Compos Sci Technol. 2010;70:1557–63.

    Article  CAS  Google Scholar 

  21. Noshirvani N, Hong W, Ghanbarzadeh B, Fasihi H, Montazami R. Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. Int J Biol Macromol. 2017;107:2065–74.

    Article  CAS  PubMed  Google Scholar 

  22. Abd-Elrahman M-I. Enhancement of thermal stability and degradation kinetics study of poly (vinyl alcohol)/zinc oxide nanoparticles composite. J Thermoplast Compos Mater. 2014;27:160–6.

    Article  CAS  Google Scholar 

  23. Usman A, Hussain Z, Riaz A, Khan A-N. Enhanced mechanical, thermal and antimicrobial properties of poly (vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr Polym. 2016;153:592–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ferreira W-H, Andrade C-T. Characterization of glycerol-plasticized starch and graphene oxide extruded hybrids. Ind Crops Prod. 2015;77(23):684–90.

    Article  CAS  Google Scholar 

  25. Li R, Liu C, Ma J. Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym. 2011;84:631–7.

    Article  CAS  Google Scholar 

  26. Peregrino P-P, Sales M-J-A, da Silva M-F-P, Soler M-A-G, da Silva L-F-L, Moreira S-G-C, Paterno L-G. Thermal and electrical properties of starch-graphene oxide nanocomposites improved by photochemical treatment. Carbohydr Polym. 2014;106:305–11.

    Article  CAS  PubMed  Google Scholar 

  27. Beeran Y, Bobnar V, Gorgieva S, Grohens Y, Finsgar M, Thomas S, Kokol V. Mechanically strong, flexible and thermally stable graphene oxide/nanocellulosic films with enhanced dielectric properties. RSC Adv. 2016;6:49138–49.

    Article  CAS  Google Scholar 

  28. Sadhu SD, Soni A, Garg M. Thermal studies of the starch and polyvinyl alcohol based film and its nano composites. J Nanomedic Nanotechnol S. 2015;7:2.

    Google Scholar 

  29. Vyazovkin S, Chrissafis K, Di Lorenzo M-L, Koga N, Pijolat M, Roduit B, Suñol J-J. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  30. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Model. 1996;36:42–5.

    CAS  Google Scholar 

  32. Senum G-I, Yang R-T. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  33. Perez-Maqueda L-A, Criado J-M. Accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Calorim. 2000;60:909–15.

    Article  CAS  Google Scholar 

  34. Criado J-M, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  35. Paterson W-L. Computation of the exponential trap population integral of glow curve theory. J Comput Phys. 1971;7:187–90.

    Article  Google Scholar 

  36. Friedman H. Kinetics and gaseous products of thermal decomposition of polymers. J Macromol Sci. 1967;79:37–41.

    Google Scholar 

  37. Kissinger H-E. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  38. Malek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  CAS  Google Scholar 

  39. Sestak J, Malek J. Diagnostic limits of phenomenological models of heterogeneous reactions and thermal analysis kinetics. Solid State Ion. 1993;63:245–54.

    Article  Google Scholar 

  40. Zhou L, Luo T, Huang Q. Energy Convers Manage. 2009;50:705.

    Article  CAS  Google Scholar 

  41. Zhaosheng Y, Xiaoqian M, Ao L. Energy Convers Manag. 2009;50:561.

    Article  CAS  Google Scholar 

  42. Gotor F-J, Criado J-M, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from University of Mazandaran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmat Sedaghat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedaghat, E., Rostami, A.A., Ghaemy, M. et al. Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly (vinyl alcohol)/starch nanocomposite. J Therm Anal Calorim 136, 759–769 (2019). https://doi.org/10.1007/s10973-018-7649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7649-1

Keywords

Navigation