
Implementation of Wireless

Communication based on Software

Defined Radio

Author: Lei Zhang

Supervisor: César Briso Rodríguez

PROGRAMA OFICIAL DE POSTGRADO EN INGENIERÍA DE SISTEMAS Y

SERVICIOS PARA LA SOCIEDAD DE LA INFORMACIÓN

DEPARTAMENTO DE INGENIERÍA AUDIOVISUAL Y COMUNICACIONES.

E.U.I.T.TELECOMUNICACIE.U.I.T.TELECOMUNICACIE.U.I.T.TELECOMUNICACIE.U.I.T.TELECOMUNICACIÓÓÓÓNNNN

Julio de 2013

TrabajoTrabajoTrabajoTrabajo FinFinFinFin dededede MMMMáááásterstersterster
Título Implementation of Wireless Communication based on

Software Defined Radio

Autor Lei Zhang

Programa de

Postgrado Oficial

MÁSTER EN INGENIERÍA DE SISTEMAS Y SERVICIOS

PARA LA SOCIEDAD DE LA INFORMACIÓN

Tutor César Briso Rodríguez

Tribunal
Presidente Rafael Herradón Díez

Secretario Antonio Mínguez Olivares

Vocal Florentino Jiménez Muñoz

Fecha de lectura Madrid, a 18 de Julio de 2013

路漫漫其修遠兮，吾將上下⽽求索。

——屈原<離騷>

The road ahead is hard and endless,

but my climbing never stop.

—— Qu Yuan <Li Sao>

ACKNOWLEDGEMENTS

My deepest gratitude goes first and foremost to my supervisor, Professor César

Briso Rodríguez, for his constant encouragement and guidance which offered

me valuable suggestions in the academic studies. Without his patient instruction,

insightful criticism and expert guidance, the completion of this thesis would not

have been possible. Also, I would like to thank my lab-mates and every friend in

Spain, especially Mr. Jean Raphaël Fernández Fernández and Mr. Sergio Pérez

Jiménez who gave me valuable experience and selfless help.

I also owe a special debt of gratitude to all the professors in E.U.I.T de

Telecomunicación, from whose devoted teaching and enlightening lectures I

have benefited a lot and academically prepared for the thesis.

Apart from all above, I would like to extend my heartfelt gratitude to my beloved

families, for their permanent help and support through every step not only in this

time but also in my whole life.

I love this beautiful country and this excellent university, ¡Gracias a todos!

The author.

IIIIndexndexndexndex

1 Introduction... 1

1.1. Objectives...3

1.1.1. General Objective... 3

1.1.2. Specific Objectives... 3

1.2. Structure... 3

1.3. Related Work... 4

2 Background..6

2.1. Software Defined Radio... 7

2.2. Universal Software Radio Peripheral... 9

2.2.1. The motherboard...13

2.2.2. The daughterboard... 15

2.2.3. Relative Projects... 16

2.2.3.1. Open BTS Project.. 16

2.2.3.2. Gqrx SDR Receiver..21

2.3. Radio Basic.. 23

2.3.1. GMSK... 24

2.3.2. OFDM... 26

2.3.3. UDP...33

3 GNU Radio.. 38

3.1. GNU Radio Architecture...40

3.2. GNU Radio Companion... 42

3.3. Basic Blocks...43

3.3.1. UHD Blocks..43

3.3.2. WX GUI Blocks..44

3.4. Python codes explanation..45

3.4.1. wfm_rcv_pll.py...45

3.4.2. gmsk.py.. 46

3.4.3. ofdm.py...48

4 Implementation..49

4.1. GSM Scanning...50

4.2. FM Receiver...55

4.3. Benchmark OFDM.. 59

4.4. Real-time Digital Video Broadcasting.. 63

4.4.1. Transmitter Side.. 65

4.4.2. Receiver Side.. 67

4.4.3. Simulation.. 69

4.4.4. Problems.. 72

5 Conclusion and Future Work... 75

5.1. Conclusion..76

5.2. Future Work..76

6 Reference... 77

APPENDIX A... 81

APPENDIX B... 83

APPENDIX C... 88

APPENDIX D... 90

IndexIndexIndexIndex ofofofof figuresfiguresfiguresfigures

Figure 2.1.1: Software Defined Radio System Block Diagram 8

Figure 2.2.1:USRP motherboard and four daughter boards 11

Figure 2.2.2: Universal Software Radio Peripheral block diagram 12

Figure 2.2.3: USRP motherboard Architecture 13

Figure 2.2.4: Digital Down Converter Block Diagram 13

Figure 2.2.5: GSM network diagram 17

Figure 2.2.6: Open BTS RF component 18

Figure 2.2.7: Mobile phone network system 19

Figure 2.2.8: NOAA-18 APT image received with Gqrx and Funcube Dongle 22

Figure 2.3.1: Spectral density of MSK and GMSK signals 24

Figure 2.3.2: Block diagram of I-Q modulator for GMSK 25

Figure2.3.3: A sub-channel(left) and 5 sub-carriers OFDM spectrum(right) 26

Figure2.3.4: OFDM Orthogonality 27

Figure2.3.5: Frequency Domain Orthogonality 27

Figure 2.4.3: OFDM modulator 29

Figure 2.4.4: OFDM demodulator 30

Figure 2.4.5: OFDM Symbol with Cyclic Prefix 31

Figure 2.4.6: UDP packet structure 34

Figure 3.1.1: GNU Radio combined with USRP 38

Figure 3.1.2: GNU Radio Software Architecture 39

Figure 3.1.3: Untitled GNU Radio companion 41

Figure 4.1.1: UHD FFT window 51

Figure 4.1.3: GSM Channel bump 52

Figure 4.1.4: Frequency correction burst and possible traffic channel 53

Figure 4.2.1: Stereo FM Receiver system 54

Figure 4.2.2: Stereo FM theory 55

Figure 4.2.2: Received signal spectrum of Stereo FM Receiver system 57

Figure 4.3.1: OFDM transmitter (up) and receiver (down) 58

Figure 4.3.2: Using the “benchmark_tx.py” 59

Figure 4.3.3: Simulation for OFDM transmission 60

Figure 4.3.4: OFDM signal spectrum(500ksps, occupied tones=200, FFT length=512)

61

Figure 4.3.5: OFDM signal spectrum(500ksps, occupied tones=100, FFT length=1024)

62

Figure 4.4.1: DVB project description diagram 63

Figure 4.4.2: Transmitter GNU Radio block diagram 64

Figure 4.4.3: Receiver GNU Radio block diagram 67

Figure 4.4.4: UDP client setup 68

Figure 4.4.5: DVB simulation block diagram 69

Figure 4.4.6: Video transmission when SNR=50 69

Figure 4.4.7: Broadcasting video on three different clients 70

Figure 4.4.8: Video transmission when SNR=10 71

Figure 4.4.9: VLC captured video transmission when SNR<10 71

IndexIndexIndexIndex ofofofof tablestablestablestables

Table 2.1 USRP Specifications 12

Table 2.2 USRP daughterboard list 15

Table 2.3 Frequency range in tuners 21

Table 2.4 A comparison of TCP and UDP 35

Table 3.1 Explanation for “WBFM Receiver Pll” block 45

Table 3.2 Explanation for “GMSK Mod” block 45

Table 3.3 Explanation for “GMSK Demod” block 46

Table 3.4 Explanation for “OFDM Mod” block 47

Table 4.1 GSM Frequency bands 50

IndexIndexIndexIndex ofofofof equationsequationsequationsequations

Equation 1 IFFT of the signal 28

Equation 2 FFT of the signal 28

Equation 3 The bandwidth of OFDM signal 61

ResumenResumenResumenResumen

Software Defined Radio (SDR) es una tecnología emergente que está creando un

impacto revolucionario en la tecnología de radio convencional. Un buen ejemplo de

radio software son los sistemas de código abierto llamados GNU Radio que emplean

un kit de herramientas de desarrollo de software libre. En este trabajo se ha empleado

un kit de desarrollo comercial (Ettus Research) que consiste en un módulo de

procesado de señal y un hardaware sencillo. El módulo emplea un software de

desarrollo basado en Linux sobre el que se pueden implementar aplicaciones de radio

software muy variadas. El hardware de desarrollo consta de un un microprocesador de

propósito general, un dispositivo programable (FPGA) y un interfaz de radiofrecuencia

que cubre de 50 a 2200MHz. Este hardware se conecta al PC por medio de un interfaz

USB de 8Mb/s de velocidad. Sobre la plataforma de Ettus se pueden ejecutar

aplicaciones GNU radio que utilizan principalmente lenguaje de programación Python

para implementarse. Sin embargo, su módulo de procesado de señal está construido

en C + + y emplea un microprocesador con aritmética de coma flotante. Por lo tanto,

los desarrolladores pueden rápida y fácilmente construir aplicaciones en tiempo real

sistemas de comunicación inalámbrica de alta capacidad. Aunque su función principal

no es ser un simulador, si no puesto que hay componentes de hardware RF, Radio

GNU sirve de apoyo a la investigación del algoritmo de procesado de señales basado

en pre-almacenados y generados por los datos del generador de señal.

En este trabajo fin de master se ha evaluado la plataforma de hardware de DEG

(USRP) y el software (GNU Radio). Para ello se han empleado algunas técnicas de

modulación básicas en el sistema de comunicación inalámbrica. A partir de los

ejemplos proporcionados por GNU Radio, hemos realizado algunos experimentos

relacionados, por ejemplo, escaneado del espectro, demodulación de señales de FM

empleando siempre el hardware de USRP. Una vez evaluadas aplicaciones sencillas

se ha pasado a realizar un cierto grado de mejora y optimización de aplicaciones

complejas descritas en la literatura. Se han empleado aplicaciones como la que

consiste en la generación de un espectro de OFDM y la simulación y transmisión de de

señales de vídeo en tiempo real. Con estos resultados se está ahora en disposición de

abordar la elaboración de aplicaciones complejas.

SummarySummarySummarySummary

In current communication systems, there are many new challenges like various

competitive standards, the scarcity of frequency resource, etc., especially the

development of personal wireless communication systems result the new system

update faster than ever before, the conventional hardware-based wireless

communication system is difficult to adapt to this situation. The emergence of SDR

enabled the third revolution of wireless communication which from hardware to

software and build a flexible, reliable, upgradable, reusable, reconfigurable and low

cost platform.

The Universal Software Radio Peripheral (USRP) products are commonly used with

the GNU Radio software suite to create complex SDR systems. GNU Radio is a toolkit

where digital signal processing blocks are written in C++, and connected to each other

with Python. This makes it easy to develop more sophisticated signal processing

systems, because many blocks already written by others and you can quickly put them

together to create a complete system. Although the main function of GNU Radio is not

be a simulator, but if there is no RF hardware components,it supports to researching

the signal processing algorithm based on pre-stored and generated data by signal

generator.

This thesis introduced SDR platform from hardware (USRP) and software(GNU Radio),

as well as some basic modulation techniques in wireless communication system.

Based on the examples provided by GNU Radio, carried out some related experiments,

for example GSM scanning and FM radio station receiving on USRP. And make a

certain degree of improvement based on the experience of some investigators to

observe OFDM spectrum and simulate real-time video transmission. GNU Radio

combine with USRP hardware proved to be a valuable lab platform for implementing

complex radio system prototypes in a short time.

1

1 IntroductionIntroductionIntroductionIntroduction

2

Radio communication in the modern communication system occupies an

extremely important position, which is widely used in commercial, meteorology military

and civilian fields. Communication system constantly transit from analog systems to

digital systems, a number of digital IF receiver appeared in this trend. Despite these

receivers can cover multiple bands, but they only work on a single frequency band and

mode, function is relatively small, lack of flexibility and scalability. It is still not fully

interoperable between different types of stations, unable to meet the modern

communications.

Conventional communication system which hardware-based, for the specific

purpose, urgently needs to be replaced by a multiband, multimode, programmable,

versatile radio system. The Software Defined Radio(SDR) concept put forward in a

timely manner to solve these problems.

Software Definition Radio, suggests that it is a wireless communications which

use modern software to manipulate and control the traditional "pure hardware circuit".

Breaking the development pattern that communication device implementation always

depends on hardware[1]. The central idea is: constructs a open, standardized, modular

common hardware platform, and the various functions, such as working frequency,

modulation and demodulation types, data formats, encryption mode communication

protocol software to accomplish, and to A/DA/DA/DA/D and D/AD/AD/AD/A converter as close to the antenna,

in order to develop a high degree of flexibility, openness, a new generation of wireless

communication systems[2].

USRP (Universal Software Radio Peripheral) designed to enable ordinary

computer can work like high bandwidth software defined radios. Essentially, it acts as

digital baseband and IF section in radio communications system[3]. At the same time,

there is an open source software named GNU Radio which is one of free software

development tool kit and provides signal operation and processing module, it can be

implemented software defined radio on a low cost radio frequency (RF) hardware

which is easily produced and a general purpose microprocessor. GNU Radio

applications are mainly using Python programming language to write. But its core

signal processing module is built in C++ on a microprocessor with floating-point

arithmetic. Thus, developers can quickly and easily build a real-time, high-capacity

wireless communication systems.

3

1.1.1.1.1.1.1.1. ObjectiveObjectiveObjectiveObjectivessss

1.1.1.1.1.1.1.1.1.1.1.1. GeneralGeneralGeneralGeneral ObjeObjeObjeObjectivectivectivective

Learning and understanding the basics of the wireless communication,

combined with the applications of software defined radio. Search relevant literature,

learning work principle and usage of USRP and GNU Radio by the examples provide

by Ettu Research. Carried out relevant test to obtain results for analysis.

1.1.2.1.1.2.1.1.2.1.1.2. SpecificSpecificSpecificSpecific OOOObjectivesbjectivesbjectivesbjectives

• Broadly understanding the application of SDR platform.

• Installing correctly and learning the working principle of USRP.

• Setting up GNU Radio to implement the adapted project.

• Scanning the GSM base station nearby and analyze the frequency

spectrum.

• Changing the center frequency by GNU Radio to receive different FM

radio stations.

• Transmitting the OFDM signal and observe the spectrum, on this basis,

designing a simulation to observe and transmit the OFDM signal.

• Creating a simulation for video transmission, add UDP sink block to

achieve real-time video broadcasting.

1.2.1.2.1.2.1.2. StructureStructureStructureStructure

This master work is conducted into two phases. The first phase is a literature

study about Software Defined Radio, the working principle of GNU Radio and the

USRP. The details of the literature study is described in chapter 2 combine with chapter

3. These study are essential to fully understand how to use the approach, set the

parameters and finish a application and implemented in chapter 4.

4

The second phase describes the result of the practical work. In this phase the

setting up for GNU Radio and USRP will described in details. an FFT spectrum

analysis experiment is proposed to perform GSM scanning system. Then a stereo

wideband FM receiver is implemented to receive different FM radio stations. The

approach to transmitting OFDM signal described in the 3rd section of this phase. And

base on the python code, designed a OFDM signal observing simulation. The last

implementation is a design for real-time digital video broadcasting, the explanation and

test result will described step by step.

Finally, The thesis finishes with the considerations, conclusions and future work.

USRP B100 datasheet and the created source codes can be found in the appendix.

1.3.1.3.1.3.1.3. RelatedRelatedRelatedRelated WorkWorkWorkWork

Chapman E, El Choueiry R, Jackson J, et al presented the design, development,

and results of two major aspects of a Software Defined Radio. They are the RF unit,

which is the means of transmitting wireless data, and the Forward Error Correction

(FEC) coding which supplies a coding gain to the system, and a simulation of the entire

SDR in Multi-Disciplinary Engineering Design Conference[4].

David A. Scaperoth defined cognitive radio merges artificial intelligence and

software defined radios. This research create a method for communicating between

these two levels and showed a genetic algorithm approach to perform intelligent radio

adaptation, using the GNU radio platform as an example[5].

Although conventional cryptographic security mechanisms are essential to the

overall problem of securing wireless networks, these techniques do not directly

leverage the unique properties of the wireless domain to address security threats[6].

Zang Li, Wenyuan Xu, Rob Miller and Wade established new forms of authentication

and confidentiality that operate at the physical layer and can be used to facilitate cross-

layer security paradigms. Their work showed that GNU Radio combine with USRP will

be a good choice to perform prototyping of wireless protocols.

Kalen Watermeyer aimed to create an ADC-based system that could capture

samples for processing in software on a host PC, while providing a framework for

5

functionality enhancements through system extensions in [7]. his demonstrates that

GNU Radio software is not on only combine with USRP, but also with other different

kind of hardware peripherals.

In[8], Mate A, Lee K H, Lu I T use Software Defined Radio implement spectrum

sensing in real environment and verify two present algorithms based on the time-

covariance matrix. In their work, GNU Radio and USRP were combined as a powerful

tool to do spectrum sensing without any prior knowledge of primary signal and noise

power. Spectrum sensing plays a paramount role in cognitive radio, Sarijari M A and his

colleagues also made an analysis study on energy detection sensing based on GNU

radio and USRP[9].

OFDM has developed into a popular scheme for wideband digital

communication. [10] implemented in GNU Radio framework, enables interference-free

coexistence of two OFDM-based systems within a common frequency band with

optimally configured transmission parameters for given system constraints to meet the

optimal utilization of radio resources in multi-carrier based systems. Braun M, Müller M

and Fuhr M presented a measurement testbed for OFDM radar which uses USRP as a

front-end to perform measurements for car-to-car or car-to-infrastructure applications.

And showed how signals parametrized according to the IEEE 802.11a/p standards can

be enhanced by radar functions. By using the constellation expansion technique for

OFDM based systems in DSA networks. the available bandwidth can be used

efficiently while at the same time keeping the interference power level below a certain

threshold[12], Selim A and Doyle L also did some very valuable work.

6

2 BackgroundBackgroundBackgroundBackground

7

This chapter describes in detail about the relevant background knowledge of the

master work. First of all, section 2.1 will explain the basic concepts and ideas behind

Software Defined Radio platforms. Afterwards, As an excellent platform and the key

equipment of this thesis, Universal Software Radio Peripheral (USRP) conducted in-

depth introduction in section 2.2 and important applications in radiocommunication area

expounded in section 2.3. The last section will explain the different basic background

knowledge about GSMK, OFDM as well as UDP. And the importance of these

techniques which cause to be widely implemented in the current communication

system.

2.1.2.1.2.1.2.1. SoftwareSoftwareSoftwareSoftware DefinedDefinedDefinedDefined RadioRadioRadioRadio

J.Mitola in 1992 first proposed the concept of software defined radio[13], since

the technology has been widespread concern in the industry and research. Its original

purpose was to create a device capable of emulating multiple radios working at

different frequencies. Nowadays, it has evolved and is still doing so into a tool which

has a much broader use.

In SDR, signal will be processed in digital mode instead in analog mode as in

the conventional radio. The digitization work will be done by a device called the Analog

to Digital Converter (ADC). Figure 2.1.1 shows the concept of Software Defined Radio.

It shows that the ADC processor is taking place after the RF Front-End circuit. RF

Front-End is used to down convert the signal to the lower frequency called an

Intermediate Frequency (IF); this is necessary due to the limitation of the speed of

current Commercial of The Shelf (COTS) ADC. The ADC will digitize signal and pass it

to the baseband processor for further processes; demodulation, channel coding,

source coding and etc. Therefore compared with the conventional radio equipment, the

SDR equipment is easier to reconfigure, which can flexibility for multi-format switch and

adapt technology development and evolution.

8

Figure2.1.1. Software Defined Radio System Block Diagram

Software Defined Radio broadly divided into three categories:

• The device integrated with a variety of different formats. For example the

GSM-CDMA dual-mode cellphone on the market. Obviously, this

approach can only be switched between several preset formats, to

increase support for the new standard would mean more integrated

circuit, reconfiguration capability is very limited.

• Based on field-programmable gate array (FPGA) and digital signal

processor (DSP). Such programmable hardware reconfiguration

capability has been greatly improved. But for FPGA VHDL, Verilog and

other languages as well as 418 assembly language are for vendor-

specific products, making the software in this way too dependent on

specific hardware, portability is poor. In addition, for the majority of

technical people, FPGA and DSP development threshold is still high and

the development process is relatively cumbersome.

• For the above two types of defects, the third category of software radio

equipment using common hardware, for example commercial servers,

ordinary PC and embedded systems as a signal processing software

platform. It has the following advantages: pure software signal

processing with great flexibility; adopt a common high-level languages

(such as C / C++) for software development, scalability and portability,

short development cycle; based on a common hardware platform, lower

9

cost, and enjoy the advancement of computer technology brings various

advantages for example CPU processing power continues to improve as

well as software technology, etc.

Although based on a common hardware platform, software-defined radio has

many advantages, but for the efficiency in processing speed, size and power

consumption as well as real-time aspect, the common hardware platform is still worse

than that dedicated FPGA and DSP hardware at the present stage. So now the second

category of software radio is still the mainstream, but because of microelectronics

technology and the rapid development of computer technology, software radio will

increasingly favor a common hardware platform.

Most recently, the GNU Radio using primarily the Universal Software Radio

Peripheral (USRP) through a USB 2.0 interface, an FPGA, and a RF front-end high-

speed set of analog to digital and digital to analog converters, combined with

reconfigurable free software. Its sampling and synthesis bandwidth is a thousand times

that of PC sound cards, which enables wideband operation.

The HPSDR (High Performance Software Defined Radio) project uses a 16-bit

135 MSPS analog-to-digital converter that provides performance over the range 0 to55

MHz comparable to that of a conventional analogue HF radio. The receiver will also

operate in the VHF and UHF range using either mixer image or alias responses.

Interface to a PC is provided by a USB 2.0 interface though Ethernet could be used as

well. The project is modular and comprises a back plane onto which other boards plug

in. This allows experimentation with new techniques and devices without the need to

replace the entire set of boards. An exciter provides 1/2 W of RF over the same range

or into the VHF and UHF range using image or alias outputs[14].

WebSDR[15] is a project initiated by Pieter-Tjerk de Boer providing access via

browser to multiple SDR receivers worldwide covering the complete shortwave

spectrum. Recently he has analyzed Chirp Transmitter signals using the coupled

system of receivers[16].

2.2.2.2.2.2.2.2. UniversalUniversalUniversalUniversal SoftwareSoftwareSoftwareSoftware RadioRadioRadioRadio PeripheralPeripheralPeripheralPeripheral

The current wireless communication systems typically use high frequencies to

10

communicate, Down converting must use to sample and transfer those high

frequencies the SDR implementation. Universal Software Radio Peripheral (USRP) is

such a family of hardware by computer hosted. Simultaneously, a flexible and low-cost

platform for SDR developed by Matt Ettus [17] used to create the connection between

the RF-world (radio frequency) and the PC. USRP composed by USRP motherboard,

along with a variety of daughterboard and the corresponding antenna. Figure 2.2.1

shows a USRP mother board combined with four daughter boards which means the

individual blocks of a typical USRP product consists of two parts: one motherboard with

a high-speed signal processing FPGA, and one or more daughterboards which cover

different frequency ranges and can be swapped. Combine them to achieve the bit

stream data from the antenna to the host computer as a receiver, or from the host

computer to the antenna as a transmitter. In a variety of daughterboards, USRP series

covers the entire range from DC to 5.9GHz, which include all frequencies from AM

radio to over IEEE802.11 standard. The USRP is constructed out of the different

components, which are described in detailed below:

• USB2.0 Controller

• ADC (Analog to Digital Converter)

• DAC (Digital to Analog Converter)

• PGA(Programmable Gain Amplifier)

• Daughterboards

• FPGA (Field Programmable Gate Array)

The specific configuration of modules above and their workflow is described in

Figure 2.2.2. And the specifications of the USRP in first generation were listed in table

2.1.

11

Figure 2.2.1:USRP motherboard and four daughter boards [18]

12

Figure 2.2.2: Universal Software Radio Peripheral block diagram[19]

Supported OS Input Output Auxiliary I/Q

Linux

Mac OS X

Windows XP,

Windows

2000,

FreeBS D,

NetBSD

NumberNumberNumberNumber ofofofof inputinputinputinput

channels:channels:channels:channels:

4 (or 2 I/Q pairs)

SampleSampleSampleSample raterateraterate:

64 Ms/s

ResolResolResolResoluuuution:tion:tion:tion: 12 bits

SFDR:SFDR:SFDR:SFDR: 85 dB

NumberNumberNumberNumber ofofofof outputoutputoutputoutput

channels:channels:channels:channels:

4 (or 2 I/Q pairs)

SampleSampleSampleSample rate:rate:rate:rate:

128 Ms/s

Resolution:Resolution:Resolution:Resolution: 14 bits

SFDR:SFDR:SFDR:SFDR: 83 dB

HighHighHighHigh -speed-speed-speed-speed digitaldigitaldigitaldigital

I/O:I/O:I/O:I/O: 64 bits

AnalogAnalogAnalogAnalog input:input:input:input:

8 channels

AnalogAnalogAnalogAnalog output:output:output:output:

8 channels

Table 2.1 USRP Specifications [20]

2.2.1.2.2.1.2.2.1.2.2.1. TheTheTheThe motherboardmotherboardmotherboardmotherboard

The main function of the motherboard are IF sampling and the conversion

between IF signal and baseband signal.

As figure 2.2.2 shows there are four slots on the motherboard which are used to

connect the daughter boards with the mother board. Two of the four slots, labeled TXA

and TXB, are meant for the transmitter daughterboard while another two, RXA and

13

RXB, are for the receiver daughterboard.

Figure 2.2.3: USRP motherboard Architecture [20]

The motherboard consists of four 12-bit Analog to Digital Converter (ADC) with

sampling rate up to 64Msps(samples per second), four 14-bit Digital to Analog

Converter (DAC) with speed up to 128Msps, two Digital up Converter (DUC) to up

convert the baseband signal to 128Msps before translating them to the selected output

frequency, a programmable USB 2.0 controller for communication between USRP and

GNU Radio or other software which supported USRP and an FPGA for implementing

four Digital Down Converter (DDC) which described by the figure below and high rate

signal processing.

Figure 2.2.4: Digital Down Converter Block Diagram [21]

14

The digitized samples from ADC are mixed down to the desired IF by being

multiplied with a sine and cosine function respectively resulting in the I and Q path. The

frequency is generated with a numerically-controlled oscillator (NCO) which

synthesizes a discrete-time, discrete amplitude waveform within the FPGA. Via the

used NCO, very rapid frequency hopping is feasible. Afterwards a decimation of the

sampling rate is performed by an arbitrary decimation factor N. The sampling rate (fs)

divided by N results in the output sample rate, sent to host. In transmit path, the same

procedure is done by using digital up converters (DUC) and digital analog converters

(DAC).

The FPGA also supports time dependent applications which e.g. use TDMA. A

free running internal counter allows incoming samples to be sent in strictly definable

time stamps.

2.2.2.2.2.2.2.2.2.2.2.2. TheTheTheThe daughtdaughtdaughtdaughterboarderboarderboarderboard

The daughterboard is acting as the RF front-end of the SDR. In most of

daughterboards, the signal is already filtered, amplified and tuned to a baseband

frequency dependent on the boards IF bandwidth and local oscillator frequency. There

are also so called Basic Rx/Tx boards with no frequency conversion or filtering. They

only provide a direct RF connection to the motherboard. The details for most of

available daughterboards are listed in table 2.2.

IdentifierIdentifierIdentifierIdentifier FrequencyFrequencyFrequencyFrequency rangerangerangerange AreaAreaAreaArea ofofofof applicationapplicationapplicationapplication

TransceiverTransceiverTransceiverTransceiver
WBX 50-2200 MHz Broadcast TV; GSM; WSN

SBX 400-4400 MHz WiFi, WiMax

RFX900 750-1050 MHz GSM (Low Band)

RFX1200 1150-1450 MHz GPS

RFX1800 1.5-2.1 GHz DECT, GSM (High Band)

RFX2400 2.3-2.9 GHz WLAN, Bluetooth

XCVR 2450 2.4 GHz and 5 GHz WLAN

TransmitterTransmitterTransmitterTransmitter &&&& ReceiverReceiverReceiverReceiver
Basic TX, Basic RX 1-250 MHz Misc baseband operations

TVRX Receiver 50-860 MHz VHF, DAB

DBSRX2 Receiver 800-2300 MHz Cellular and PCS,DECT

15

Table 2.2 USRP daughterboard list

2.2.3.2.2.3.2.2.3.2.2.3. RelativeRelativeRelativeRelative ProjectsProjectsProjectsProjects

In this section, Two practical and interesting projects will be introduced.

2.2.3.1.2.2.3.1.2.2.3.1.2.2.3.1.OpenOpenOpenOpen BTSBTSBTSBTS ProjectProjectProjectProject

It's been a century since the growth of telecom industry, still telecom sector is in

the middle of a communication revolution as wireless technologies radically transform

the industry. The world of telecommunications has been characterized by a remarkable

growth like many other sectors which experienced rapid growth and high technological

development. Implementation of GSM (Global System for Mobile Communications)

system was a big step towards improving communication, traditionally it has an

expensive hardware.

The most common example of a cellular network is a mobile phone (cell phone)

network. A mobile phone is a portabletelephone which receives or makes calls through

a cell site (base station), or transmitting tower. Radio waves are used to transfer

signals to and from the cell phone.

Modern mobile phone networks use cells because radio frequencies are a

limited, shared resource. Cell-sites and handsets change frequency under computer

control and use low power transmitters so that a limited number of radio frequencies

can be simultaneously used by many callers with less interference.

A cellular network is used by the mobile phone operator to achieve both

coverage and capacity for their subscribers. Large geographic areas are split into

smaller cells to avoid line-of-sight signal loss and to support a large number of active

phones in that area. All of the cell sites are connected to telephone exchanges (or

switches), which in turn connect to the public telephone network.

In cities, each cell site may have a range of up to approximately ½ mile, while in

rural areas, the range could be as much as 5 miles. It is possible that in clear open

areas, a user may receive signals from a cell site 25 miles away.

16

Since almost all mobile phones use cellular technology, including GSM, CDMA,

and AMPS (analog), the term "cell phone" is in some regions, notably the US, used

interchangeably with "mobile phone". However, satellite phones are mobile phones that

do not communicate directly with a ground-based cellular tower, but may do so

indirectly by way of a satellite.

A simple view of the cellular mobile-radio network consists of the following:

• A network of radio base stations forming the base station subsystem.

• The core circuit switched network for handling voice calls and text.

• A packet switched network for handling mobile data.

• The public switched telephone network to connect subscribers to the

wider telephony network.

This network is the foundation of the GSM system network. There are many

functions that are performed by this network in order to make sure customers get the

desired service including mobility management, registration, call set up, and

handover[22].

A normal GSM network working is as follows.The end point of the system will be

BTS (Base Transceiver Station) which send radio frequency signal to and from mobile

devices or a modem.The BTS comes under BSC(Base station Controller) with makes

the communication between there radio signals with MSC/VLR. The MSC/VLR is

responsible to authenticate the user against the database (HLR – Home Location

Register, AuC - Authentication Center), call setup and call routing. A typical GSM

network diagram is shown below.

17

Figure 2.2.5 GSM network diagram

An upcoming technology named Open Base Transceiver Station (BTS) which is

a new kind of cellular network that can be installed and operated at a very low cost

compare to current GSM technology. Recent development in Software Defined Radio

(SDR) in signal processing has made it much more economical to implement such a

system where most of the back end hardware can be substituted with real-time

software applications. With the development of GNU radio and Universal Software

Radio Peripheral (USRP) this network can be accessed by the normal GSM handsets

which are available in the market.

Figure 2.2.6 described the composition of the radio frequency part which Open

BTS used. the key component is the Universal Software Radio Peripheral which is also

the core of Open BTS.

Conventional radio signal processing is essentially complete by the pure

hardware device, but the realization of USRP is send the complex signal to the PC

software to processing, including modulation and demodulation of the signal and line

switching. The most basic processing for radio frequency signals, such as a digital

signal conversion, interpolation and sampling, to the FPGA on USRP accomplished

through a USB to link PC.

Put such advanced features to the software, and put the underlying processing

practices to the hardware ensure the performance of the system and also convenient

for system expansion.

18

Figure 2.2.6 Open BTS RF component[23]

Open base transceiver station (BTS) is a Unix application that uses a software

defined radio platform(like the USRP) to present a GSM (Global System for Mobile

Communications) air interface ("UM") to standard GSM handsets and uses a SIP softs

witch or PBX to connect calls. (It might even say that Open BTS is a simplified form of

IMS that works with 2G feature-phone handsets). The combination of the global-

standard GSM air interface with low-cost VoIP backhaul forms the basis of a new type

of cellular network that could be deployed and operated at substantially lower cost than

existing technologies (for example, commercial carrier BTS systems) in many

applications, especially rural cellular deployments and private cellular networks in

remote areas[23].

19

Figure 2.2.7 Mobile phone network system

An entire mobile phone network system which contained Open BTS project

shows above:

Open BTS, acts as a mobile phone base station (BTS) and base station

controllers (BSC), provide basic functions of modulation, demodulation and assigning

channel frequency for each communication.

Asterisk, acts as mobile switching center (MSC) and telephone switching center.

If there is a internal communication in the Open BTS users network, the Asterisk will

20

responsible for establishing communication links directly in the internal network; if there

is a phone call to the external network, the Asterisk will connected PSTN networks via

VoIP gateway.

MySQL, responsible for mobile phone users account management, recording

call information and data. It is also responsible for the storage functions for HLR (Home

Location Register) and VLR (Visitor Location Register) in the traditional mobile network.

Antenna, RF hardware and USRP, via a USB port to connect to a PC, running

free software, access to Internet, can form a complete mobile phone networks.

2.2.3.2.2.2.3.2.2.2.3.2.2.2.3.2. GqrxGqrxGqrxGqrx SDRSDRSDRSDR ReceiverReceiverReceiverReceiver

Gqrx SDR receiver is designed and implemented by Alexandru Csete OZ9AEC

which is a software defined radio receiver for Funcube Dongle (FCD), RTL2832U-

based DVB-T devices (RTL-SDR), and Universal Software Radio Peripheral (USRP)

and Osmo SDR devices. It is powered by GNU Radio and the Qt GUI toolkit[24].

OsmoSDR can be thought of something in between a FunCube Dongle (only

96kHz bandwidth) and a USRP (much more expensive). For a very cheap (but

inaccurate) SDR, you can use the DVB-T USB stick using the RTL2832U chip, as

documented in rtl-sdr[25].

The RTL2832U outputs 8-bit I/Q-samples, and the highest theoretically possible

sample-rate is 3.2 MS/s, however, the highest sample-rate without lost samples that

has been tested so far is 2.4 MS/s. The frequency range is highly dependent of the

used tuner, dongles that use the Elonics E4000 offer the widest possible range as the

table shows below.

Tuner Frequency Range

Elonics E4000 52 - 2200 MHz with a gap from 1100 MHz to 1250 MHz (varies)

Rafael Micro

R820T

24 - 1766 MHz

Fitipower

FC0013

22 - 1100 MHz (FC0013B/C, FC0013G has a separate L-band input,

which is unconnected on most sticks)

Fitipower 22 - 948.6 MHz

21

FC0012

FCI FC2580 146 - 308 MHz and 438 - 924 MHz (gap in between)

Table 2.3 Frequency range in tuners

Currently, Gqrx offers the following features:

• Automatically detect supported devices attached to the computer.

• Process I/Q data from Funcube Dongle, RTL2832U SDR, USRP and

OSmo SDR.

• Change frequency, gain and apply various correction (freqeuncy, I/Q

blanace).

• AM, SSB, FM-N and FM-W modulations.

• Variable band pass filter.

• Squelch, noise blankers and AGC.

• FFT plot and waterfall.

• Record audio to file (playback is planned).

• Spectrum analyzer mode where all signal processing is disabled.

For example, in this project Csete uses the Funcube Dongle with an arrow

antenna and the hardware(for example USRP) supported by Gqrx received automatic

picture transmissions (APT) from NOAA weather satellites using Gqrx SDR, record

them to a WAV file, and finally decode the images using the free and open source

Atpdec decoder there is a very nice results show below[24].

22

Figure 2.2.8 NOAA-18 APT image received with Gqrx and Funcube Dongle[24]

2.3.2.3.2.3.2.3. RadioRadioRadioRadio BasicBasicBasicBasic

Two widely applied modulation techniques and a useful internet protocol which

associated with this thesis will be introduced in this section as background knowledge

and aim to learn to develop complex wireless applications.

23

2.3.1.2.3.1.2.3.1.2.3.1. GMSKGMSKGMSKGMSK

GMSK (Gaussian Filtered Minimum Shift Keying) is a digital modulation method

that developed on the basis of MSK (Minimum Shift Keying) modulation, which is a

form of modulation used in a variety of digital radio communications systems. It has

advantages of being able to carry digital modulation while still using the spectrum

efficiently. One of the problems with other forms of phase shift keying is that the

sidebands extend outwards from the main carrier and these can cause interference to

other radio communications systems using nearby channels. In GMSK, because the

Gauss pre-modulation filtering for digital signal before the modulation, the modulated

signal in the zero crossing is not only continuous phase, but also smoothing filter, so

the spectrum of the GSMK modulated signal compact and has good error

characteristics, has been used in a number of radio communications applications.

Possibly the most widely used is the GSM (Global System for Mobile communication)

cellular technology which is used worldwide and has well over 3 billion subscribers.

MSK and also GMSK modulation are what is known as a continuous phase

scheme. Here there are no phase discontinuities because the frequency changes occur

at the carrier zero crossing points. This arises as a result of the unique factor of MSK

that the frequency difference between the logical one and logical zero states is always

equal to half the data rate. This can be expressed in terms of the modulation index, and

it is always equal to 0.5.

A plot of the spectrum of an MSK signal shows sidebands extending well

beyond a bandwidth equal to the data rate. This can be reduced by passing the

modulating signal through a low pass filter prior to applying it to the carrier. The

requirements for the filter are that it should have a sharp cut-off, narrow bandwidth and

its impulse response should show no overshoot. The ideal filter is known as a

Gaussian filter which has a Gaussian shaped response to an impulse and no ringing. In

this way the basic MSK signal is converted to GMSK modulation.

24

Figure 2.3.1 Spectral density of MSK and GMSK signals

There are two main ways in which GMSK modulation can be generated. The

most obvious way is to filter the modulating signal using a Gaussian filter and then

apply this to a frequency modulator where the modulation index is set to 0.5. This

method is very simple and straightforward but it has the drawback that the modulation

index must exactly equal 0.5. In practice this analogue method is not suitable because

component tolerances drift and cannot be set exactly.

The second method is more widely used which described in figure 2.3.1. Here

what is known as a quadrature modulator is used. The term quadrature means that the

phase of a signal is in quadrature or 90 degrees to another one. The quadrature

modulator uses one signal that is said to be in-phase and another that is in quadrature

to this. In view of the in-phase and quadrature elements this type of modulator is often

said to be an I-Q modulator. Using this type of modulator the modulation index can be

maintained at exactly 0.5 without the need for any settings or adjustments. This makes

it much easier to use, and capable of providing the required level of performance

without the need for adjustments. For demodulation the technique can be used in

reverse.

25

Figure 2.3.2 Block diagram of I-Q modulator for GMSK

There are several advantages to the use of GMSK modulation for a radio

communications system. One is obviously the improved spectral efficiency when

compared to other phase shift keyed modes.

A further advantage of GMSK is that it can be amplified by a non-linear amplifier

and remain undistorted This is because there are no elements of the signal that are

carried as amplitude variations. This advantage is of particular importance when using

small portable transmitters, such as those required by cellular technology. Non-linear

amplifiers are more efficient in terms of the DC power input from the power rails that

they convert into a radio frequency signal. This means that the power consumption for

a given output is much less, and this results in lower levels of battery consumption; a

very important factor for cell phones.

A further advantage of GMSK modulation again arises from the fact that none of

the information is carried as amplitude variations. This means that is immune to

amplitude variations and therefore more resilient to noise, than some other forms of

modulation, because most noise is mainly amplitude based[26].

2.3.2.2.3.2.2.3.2.2.3.2. OFDMOFDMOFDMOFDM

In recent years, OFDM (Orthogonal Frequency Division Multiplexing) technique

26

has been replaced the single-carrier spread spectrum technique (such as CDMA) in the

new generation broadband wireless communication system.

OFDM is a multi-carrier modulation scheme, by reducing and eliminating the

influence of inter-symbol interference to overcome the frequency selective fading in

channel. It divides total available bandwidth into a large number of closely-spaced

orthogonal sub-carriers and simultaneously transfers signals on these sub-carriers with

a low data rate, achieving a total data rate approaching ideal Nyquist data rate. The

data is divided into several parallel data streams or channels, each sub-carrier is

modulated with a conventional scheme,such as quadrature modulation(QAM) or phase

shift keying (PSK) at low symbol rate. maintaining total data rates similar to

conventional single-carrier modulation schemes in the same bandwidth. Figure 2.3.3

shows a single sub-channel and 5 sub-carriers OFDM spectrum, at the central

frequency of each sub-channel, there is no crosstalk from other sub-channels.

Figure2.3.3 A sub-channel(left) and 5 sub-carriers OFDM spectrum(right)

���� OrthogonalityOrthogonalityOrthogonalityOrthogonality

Conceptually, OFDM is a specialized FDM, the additional constraint being: all

the carrier signals are orthogonal to each other. Orthogonality simplifies recovery of the

N data streams, Orthogonal sub-carriers means no inter-carrier-interference (ICI). An

orthogonal set of functions is a set with the property that a particular operation

performed between any two distinct members of the set yields zero. Vectors are

orthogonal if they are at right angles to each other. The dot product of any two distinct

vectors is zero. Figure 2.3.4 shows the time domain and frequency domain

orthogonality of OFDM.

27

Figure2.3.4 OFDM Orthogonality

Time Domain Orthogonality:

Every sub-carrier has an integer number of cycles within OFDMT . Satisfies

precise mathematical definition of orthogonality for complex exponential (and

sinusoidal) functions over the interval []OFDMT,0 .

Frequency Domain Orthogonality:

Figure2.3.5 Frequency Domain Orthogonality

If FDM system had been able to use a set of sub-carriers that were orthogonal

to each other, and as long as orthogonality is maintained, it is still possible to recover

the individual sub-carriers signals, because if the dot product of two deterministic

signals is equal to zero, these signals are said to be orthogonal to each other.

Orthogonality can also be viewed from the standpoint of stochastic processes. If two

28

random processes are uncorrelated, then they are orthogonal. Given the random

nature of signals in a communications system, this probabilistic view of orthogonality

provides an intuitive understanding of the implications of orthogonality in OFDM [27].

� ModulationModulationModulationModulation

The idea behind the analog implementation of OFDM can be extended to the

digital domain by using the discrete Fourier Transform (DFT) and its counterpart, the

inverse discrete Fourier Transform (IDFT). These mathematical operations are widely

used for transforming data between the time-domain and frequency-domain. These

transforms are interesting from the OFDM perspective because they can be viewed as

mapping data onto orthogonal sub-carriers. For example, the IDFT is used to take in

frequency-domain data and convert it to time-domain data. In order to perform that

operation, the IDFT correlates the frequency-domain input data with its orthogonal

basis functions, which are sinusoids at certain frequencies. This correlation is

equivalent to mapping the input data onto the sinusoidal basis functions.

In practice, OFDM systems are implemented using a combination of fast Fourier

Transform (FFT) and inverse fast Fourier Transform (IFFT) blocks that are

mathematically equivalent versions of the DFT and IDFT, respectively, but more

efficient to implement.

For example, n denotes the frequency component index,)(nS denotes the

original signal on the transmitter side. And the IFFT of the signal)(nS is:

1,...0,)(1)(/2
1

0

−== ∑
−

=

NkenS
N

ks Nnkj
N

n

π

(1)

29

Figure 2.4.3 OFDM modulator[28]

Where N designates the number of frequency components, and s(k) is the

resulting sampled signal, which is formed by the sum of the modulated frequency

components S(n). To retrieve again the digital frequency components, the inverse

equation is:

1,...0,)()(/2
1

0

−== −
−

=
∑ NkeksnS Nnkj
N

k

π

(2)

Which corresponds to the N-point FFT of S(n).

30

Figure 2.44 OFDM demodulator[27]

���� GuardGuardGuardGuard IntervalIntervalIntervalInterval

Assume the delay spread of the channel is mT , then instead of a single carrier

with a data rate of R (symbols/second), an OFDM system has N sub-carriers, each

with a data rate of R / N (symbols/second) can be used. And because the data rate is

reduced by factor of N , the OFDM symbol period is increased by a factor of N , so

by choosing an appropriate value for N , the length of OFDM symbol becomes longer

than the delay spread of channel. And because of this configuration, the effect of inter-

symbol interference will be reduced but no completely eliminated. Guard interval is the

technique that OFDM use to cancel the effect of inter-symbol interference. Guard

Interval is samples inserted at the beginning of each symbol, and it could be a section

of all zero-zero padding. Since it does not contain any useful information, the guard

interval would be discarded at the receiver. If the length of the guard interval is properly

chosen such that it is longer than the time span of the channel, the OFDM symbol itself

will not be distorted. Thus, by discarding the guard interval, the effects of inter-symbol

interference are thrown away[27]. The guard interval also eliminates the need for a

pulse-shaping filter, and it reduces the sensitivity to time synchronization problems.

31

Figure 2.4.5 OFDM Symbol with Cyclic Prefix

The cyclic prefix, which is transmitted during the guard interval, consists of the

end of the OFDM symbol copied into the guard interval, and the guard interval is

transmitted followed by the OFDM symbol. Figure 2.4.5 shows the structure of the

cyclic prefix OFDM. The reason that the guard interval consists of a copy of the end of

the OFDM symbol is so that the receiver will integrate over an integer number of

sinusoid cycles for each of the multi-paths when it performs OFDM demodulation with

the FFT. In some standards such as Ultra wideband, in the interest of transmitted

power, cyclic prefix is skipped and nothing is sent during the guard interval. The

receiver will then have to mimic the cyclic prefix functionality by copying the end part of

the OFDM symbol and adding it to the beginning portion.

Advantages and Disadvantages

OFDM modulation techniques have been used both in wired and wireless

systems due to its advantages. Among them, the following features must be mentioned:

• Efficiently Deals With Multi-paths Fading

• Efficiently Deals With Channel Delay Spread

• Enhanced Channel Capacity

• Adaptively Modifies Modulation Density

• Robustness to Narrowband Interference

On the other hand, there are some disadvantages below can not be ignored:

32

• Complexity

– FFT for modulation, demodulation must be compared to complexity of

equalizer.

– Synchronization.

• Overhead

– Cyclic extension increases the length of the symbol for no increase in

capacity.

– Pilot tones simplify equalization and tracking for no increase in capacity.

• PAPR

– Depending on the configuration, the PAPR can be ~3dB-6dB worse than

a single carrier system.

• Phase noise sensitivity

– The sub-carriers are N-times narrower than a comparable single carrier

system.

• Doppler Spread sensitivity

– Synchronization and EQ tracking can be problematic in high doppler

environments.

2.3.3.2.3.3.2.3.3.2.3.3. UDPUDPUDPUDP

The User Datagram Protocol (UDP) is one of the core members of the Internet

protocol suite (the set of network protocols used for the Internet). With UDP, computer

applications can send messages, in this case referred to as datagrams, to other hosts

on an Internet Protocol (IP) network without prior communications to set up special

transmission channels or data paths. The protocol was designed by David P. Reed in

1980 and formally defined in RFC 768.

33

UDP uses a simple transmission model with a minimum of protocol

mechanism[29]. It has no handshaking dialogues, and thus exposes any unreliability of

the underlying network protocol to the user's program. As this is normally IP over

unreliable media, there is no guarantee of delivery, ordering or duplicate protection.

UDP provides checksums for data integrity, and port numbers for addressing different

functions at the source and destination of the datagram.

UDP is suitable for purposes where error checking and correction is either not

necessary or performed in the application, avoiding the overhead of such processing at

the network interface level. Time-sensitive applications often use UDP because

dropping packets is preferable to waiting for delayed packets, which may not be an

option in a real-time system[30]. If error correction facilities are needed at the network

interface level, an application may use the Transmission Control Protocol (TCP) or

Stream Control Transmission Protocol (SCTP) which are designed for this purpose.

A number of UDP's attributes make it especially suited for certain applications.

• It is transaction-oriented, suitable for simple query-response protocols

such as the Domain Name System or the Network Time Protocol.

• It provides datagrams, suitable for modeling other protocols such as in

IP tunneling or Remote Procedure Call and the Network File System.

• It is simple, suitable for bootstrapping or other purposes without a full

protocol stack, such as the DHCP and Trivial File Transfer Protocol.

• It is stateless, suitable for very large numbers of clients, such as in

streaming media applications for example IPTV.

• The lack of retransmission delays makes it suitable for real-time

applications such as Voice over IP, online games, and many protocols

built on top of the Real Time Streaming Protocol.

• Works well in unidirectional communication, suitable for broadcast

information such as in many kinds of service discovery and shared

information such as broadcast time or Routing Information Protocol.

34

UDP provides application multiplexing (via port numbers) and integrity

verification (via checksum) of the header and payload[31]. If transmission reliability is

desired, it must be implemented in the user's application.

The figure below is a typical UDP packet structure. A UDP packet consists of an

Ethernet Header, an IP Header, a UDP Header, the packet data and an Ethernet Trailer.

The size of the packet data can be up to 1500 bytes. Any data over 1500 bytes is

typically broken up into multiple packets.

Figure 2.4.6 UDP packet structure

Compare with TCP (Transmission Control Protocol):

UDPUDPUDPUDP TCPTCPTCPTCP

Unreliable

- no concept for acknowledgment,

retransmission, or timeout

Reliable

- monitors message transmission, tracks

data transfer to ensure receipt of all

packets

Not ordered

- data arrives in order of receipt

Ordered

- buffering provisions to ensure correct

35

order of data packets

Lightweight

- no dedicated end-to-end connection, no

congestion control

Heavyweight

- dedicated connection, provisions for

speed and congestion control

Datagram oriented Streaming

Light overhead Heavy overhead

Higher speed Lower speed

Table 2.4 A comparison of TCP and UDP

UDP is a simpler message-based connectionless protocol, with no dedicated

end-to-end connection. Communication is achieved by transmitting information in one

direction from source to destination without verifying the readiness or state of the

receiver. Because of the lack of reliability, applications using UDP must be tolerant of

data loss, errors, or duplication, or be able to assume correct transmission. Such

applications generally do not include reliability mechanisms and may even be hindered

by them. In these cases, UDP—a much simpler protocol than TCP—can transfer the

same amount of data with far less overhead, and can achieve much greater throughput.

UDP is often preferable for real-time systems, since data delay might be more

detrimental than occasional packet loss. Streaming media, real-time multiplayer games

and voice-over-IP (VoIP) services are examples of applications that often use UDP. In

these particular applications, loss of packets is not usually a fatal problem, since the

human eye and ear cannot detect most occasional imperfections in a continuous

stream of images or sounds. To achieve higher performance, the protocol allows

individual packets to be dropped with no retries and UDP packets to be received in a

different order than they were sent as dictated by the application. Real-time video and

audio streaming protocols are designed to handle occasional lost packets, so only

slight degradation in quality occurs, rather than large delays, which would occur if lost

packets were retransmitted.

Another environment in which UDP might be preferred over TCP is within a

closed network, where there is little chance of data loss or delay. For example, on a

board or within an SoC, data transfers from one component to another can be tightly

controlled within the application, obviating the need for the reliability features of TCP.

36

UDP might be a more efficient and equally reliable protocol in such situations. UDP’s

stateless nature is also useful for servers answering small queries from huge numbers

of clients, such as DNS, SNMP and so on.

Both TCP and UDP are widely used IP transfer layer protocols. For applications

requiring reliable transfers, TCP is generally preferred, while applications that value

throughput more than reliability are best served using UDP. Most TCP/IP stacks

provide both protocols, so the application can use whichever transfer protocol is more

appropriate, even changing from one to the other as desired. Rather than rely solely on

TCP, the network system developer might want to investigate the trade-offs related to

use of UDP. It might turn out to be beneficial to sacrifice some reliability in favor of

greater throughput[32].

In summary, for applications like streaming video that offer real-time validation,

user datagram protocol (UDP) can provide a fast, low-overhead option to TCP.

37

3 GNUGNUGNUGNU RadioRadioRadioRadio

38

GNU Radio is a free and open-source software development toolkit that

provides signal processing blocks to implement software radios. It can be used with

readily-available low-cost external RF hardware to create software-defined radios, or

without hardware in a simulation-like environment. It is widely used in hobbyist,

academic and commercial environments to support both wireless communications

research and real-world radio systems[33].

After the signal has been processed by the USRP FPGA, the stream of bits

finally lows through the USB connection to the host cpu. It is here that the GNU radio

framework comes into play. GNU Radio is a free software toolkit licensed under the

GPL for implementing software-defined radios. Initially, it was mainly used by radio

amateur enthusiasts, but it gained exponential interest from the research world, in an

attempt to stay away from closed source firmwares/drivers, and low level of

customizability of commercial chips. The GNU radio project was founded by Eric

Blossom. It supports natively Linux, and packages are pre-compiled for the major Linux

distributions. A port to Windows has been also developed, but it provides limited

functionalities. GNU Radio includes a library of signal processing blocks like

modulators, demodulators, filters etc. which are used to construct a radio. Essentially it

needs the USRP to receive real radio waves or to transmit. You do not necessarily

need a USRP. There is also the possibility to use a pre-recorded file as input. A

universal SDR structure with the specific software (GNU Radio) and hardware (USRP)

is given in figure 3.1.1.

Figure 3.1.1 GNU Radio combined with USRP

39

GNU Radio's software is organized using a two-tier structure. All the

performance-critical signal processing blocks are implemented in C++ [34], while the

higher-level organizing, connecting and gluing the signal blocks together is done using

Python [35]. There is also a graphical environment available to create a custom radio.

This is called GNU Radio Companion (GRC).

3.1.3.1.3.1.3.1. GNUGNUGNUGNU RadioRadioRadioRadio ArchitectureArchitectureArchitectureArchitecture

The baseline architecture of GNU Radio shows in figure 2.3.2 involves a

complex flow-graph that consists of modules and low-level algorithms. Each module or

low-level algorithm is structured in C++ and provides basic signal processing functions

(ex: Filters, FFT, Channel Coding etc..). They are automatically generated into python

modules with the use of python ‘wrapper’ or interface i.e., SWIG (Simplified Wrapper

and Interface Generator) which is used as the interface compiler which allows the

integration between C++ and Python language.

Figure 3.1.2 GNU Radio Software Architecture

So the signal processing blocks are written in C++ while python is used as a

scripting language to tie the blocks together to form the flow graph. The generated

blocks are used to construct a flow-graph model with the help of python.The application

40

is built on python program that provides python framework. The python framework is

responsible for communication of data through module buffers and creates a simple

scheduler that helps to run blocks in a sequential order for single iteration[36] .

The GNU Radio software typically consists of four elements[37]:

• Source: Each flow-graph has a single source. It is the head (start) of the

flow-graph. For instance, USRP source or file source are common types

of source blocks.

• Sink: Each flow-graph has a single sink. It is the tail (end) of the flow-

graph. For instance, USRP sink or file sink are common types of sink

blocks.

• Flow-graph: The application is based on a flow-graph. Each flow-graph

consists of intermediate blocks along with single source and sink blocks.

We can have multiple flow graphs within a single application.

• Scheduler: It is created for each active flow-graph, which is based on

steady stream of data flow between the blocks. It is responsible for

transferring data through the flow-graph. It monitors each block for

sufficient data at I/p and O/p buffers so as to trigger processing function

for those blocks.

GNU Radio runs under several operating systems like Linux, Mac OSX,

NetBSD. Also a Cygwin porting for Windows exists, but due to the limited hardware

control, the full functionality is not guaranteed. Python and C++ are used as main

programming languages in GNU Radio as well as the GNU Radio Companion (GRC)

which introduced as follow.

Since the GNU Radio framework is the central point of data streams sent towards and

41

received from USRP, its structure will be illustrated step by step during the whole thesis.

3.2.3.2.3.2.3.2. GNUGNUGNUGNU RadioRadioRadioRadio CompanionCompanionCompanionCompanion

GNU Radio Companion (GRC) is a very useful extension which provides a

graphical interface that allow sits users to easily create GNU Radio applications. GRC

has a list of available modules that can be inserted in the application only need double

clicking or dragging directly. These modules can also be configured, and GRC even

point out if the configured parameters are incorrect. In addition, the modules can be

connected together also very easily. After click the generation or execution, GRC will

automatically generated the corresponding python code that will run the application.

Once the installation is complete, type in Terminal:

“gnuradio-companion”

And press “Enter” to run the graphical programming interface of GNU Radio

Companion. An untitled GRC window similar to the one below should open.

Figure 3.1.3 Untitled GNU Radio companion

The Options block sets some general parameters for the flow graph for example

42

project title, author and so on. The other block that is present is the Variable block. It is

used to set the sample rate for the overall situation. Of course if you want to set more

like frequency just add another variable block on the right side of the window which is a

list of the blocks that are available. By expanding any of the categories (click on

triangle to the left) you can see the blocks available. Explore each of the categories so

that you have an idea of what is available.

Official GRC examples are in the folder named “gnuradio/gnuradio/gnuradio/gnuradio/gnuradio-examplesgnuradio-examplesgnuradio-examplesgnuradio-examples”.
Some of the scripts that come with GNU Radio are generated from GRC flow graphs.

Just run find in your GNU Radio checkout to get a list of all GRC files:

“find -name "*.grc" -print”

3.3.3.3.3.3.3.3. BasicBasicBasicBasic BlocksBlocksBlocksBlocks

Some commonly used blocks will explain in this section.

3.3.1.3.3.1.3.3.1.3.3.1. UHDUHDUHDUHD BlocksBlocksBlocksBlocks

The USRP Hardware Driver software (UHD) is the hardware driver for all USRP

devices. It works on all major platforms (Linux, Windows, and Mac) and can be built

with GCC, Clang, and MSVC compilers. The goal of the UHD software is to provide a

host driver and API for current and future Ettus Research products. Users will be able

to use UHD software standalone or with third-party applications, such as: GNU Radio,

LabVIEW, Simulink, OpenBTS and Iris[33].

The bridge between GNU Radio and the USRP device is a set of blocks in the

gr-uhd component, which includes:

� UHD:UHD:UHD:UHD: USRPUSRPUSRPUSRP sourcesourcesourcesource blockblockblockblock - provides RX data to downstream processing

blocks

The USRP source block receives samples and writes to a stream. The source

block also provides API calls for receiver settings.

� UHD:UHD:UHD:UHD: USRPUSRPUSRPUSRP sinksinksinksink blockblockblockblock - accepts TX data from upstream processing blocks

43

The USRP sink block reads a stream and transmits the samples. The sink block

also provides API calls for transmitter settings.

3.3.2.3.3.2.3.3.2.3.3.2. WXWXWXWX GUIGUIGUIGUI BlocksBlocksBlocksBlocks

The most intuitive and straightforward way to analyze a signal is to display it

graphically, both in time domain and frequency domain. For the applications in the real

world, we have the spectrum analyzer and the oscillograph to facilitate us. Fortunately,

in the software radio world, we also have such nice tools, thanks to wxPython, which

provides a filexible way to construct GUI tools[38].

���� FFTFFTFFTFFT sinksinksinksink blockblockblockblock - spectrum analyzer

In GNU Radio companion, the function of FFT sink block is a “soft spectrum

analyzer”, based on fast Fourier transformation (FFT) of the digital sequence. This “soft

spectrum analyzer” is used as the signal sink. That's why it is named as “fftsink”. It's

defined in the module “wxgui.fftsink.pywxgui.fftsink.pywxgui.fftsink.pywxgui.fftsink.py”. The function “make_fft_sink_c()make_fft_sink_c()make_fft_sink_c()make_fft_sink_c()” serves as
the public interface to create an instance of the FFT sink:

gnuradio/wxgui/fftsink.py

...

def make_fft_sink_c(fg, parent, title, fft_size, input_rate, ymin=0, ymax=100):

block = fft_sink_c(fg, parent, title=title, fft_size=fft_size,

sample_rate=input_rate, y_per_div=(ymax - ymin)/8, ref_level=ymax)

return (block, block.win)

Notice that in Python, a function could return multiple values.

“make_fft_sink_c()” returns two values: “block” is an instance of the class “fft_sink_c”,

defined in the same module “wxgui.fftsink.pywxgui.fftsink.pywxgui.fftsink.pywxgui.fftsink.py”. Another special feature of Python

needs to be emphasized: Python supports multiple inheritance. “fft_sink_c” is derived

from two classes: “gr.hier_block” and “fft_sink_base”. Being a subclass of

"gr.hier_blockgr.hier_blockgr.hier_blockgr.hier_block" implies that "fft_sink_c" can be treated as a normal block, which can be
placed and connected in a flow graph, as the next line shows:

self.connect (src, pre_demod)

“block.winblock.winblock.winblock.win” is obviously an attribute of “block”. In the definition of the class

44

“fft_sink_c”, we can find its data type is the class “fft_window”, a subclass of

“wx.Window”, also defined in the module “wxgui.fftsink.pywxgui.fftsink.pywxgui.fftsink.pywxgui.fftsink.py”. We can think of it as a

window that is going to be hang up on your screen. This window “block.winblock.winblock.winblock.win” will be
used as the argument of the method “vbox.Add”.

���� ScopeScopeScopeScope sinksinksinksink blockblockblockblock - Oscillograph

Another important WX GUI block in GNU Radio is the “Scope sink” which can

be called “soft oscillograph”. It would be very helpful if you wish to see the waveforms

in the time domain. Its usage is quite similar to the “fft_sink”:

if 1:

scope_input, scope_win1 = \

scopesink.make_scope_sink_f (self, panel, "Title", self.fs)

self.connect (signal, scope_input)

vbox.Add (scope_win1, 1, wx.EXPAND)

Note that here “signal” should be a real float signal. If you wish to display a

complex signal with I/Q channels, “make_scope_sink_c()make_scope_sink_c()make_scope_sink_c()make_scope_sink_c()” is the right choice. Copy

these lines wherever you think a scope should appear, then connect it to the signal as

a block. Refer to “gnuradio/wxgui/scopesink.pygnuradio/wxgui/scopesink.pygnuradio/wxgui/scopesink.pygnuradio/wxgui/scopesink.py” for more details.

3.4.3.4.3.4.3.4. PythonPythonPythonPython codescodescodescodes explanationexplanationexplanationexplanation

Tables below are descriptions of the key blocks for the implementations in this

thesis[39].

3.4.1.3.4.1.3.4.1.3.4.1. wfm_rcv_pll.pywfm_rcv_pll.pywfm_rcv_pll.pywfm_rcv_pll.py

Stereo demodulating a broadcast FM signal with a deemphasis.

wfm_rcv_pll ()

Type Function

Description Hierarchical block for demodulating a broadcast FM signal. The input is

the down converted complex baseband signal (gr_complex).The output

is two streams of the demodulated audio (float) 0=Left, 1=Right.

45

Usage blks.wfm_rcv_pll(fg, demod_rate, audio_decimation)

Parameters fg: flow graph.

type fg: flow graph

demod_rate: input sample rate of complex baseband input.

type demod_rate: float

audio_decimation: how much to decimate demod_rate to get to audio.

type audio_decimation: integer

Table 3.1 Explanation for “WBFM Receiver Pll” block

3.4.2.3.4.2.3.4.2.3.4.2. ggggmsk.pymsk.pymsk.pymsk.py

differential QPSK modulation and demodulation

gmsk_mod ()

Type Function , GMSK modulator

Description Hierarchical block for Gaussian Minimum Shift Key (GMSK) modulation.

The input is a byte stream (unsigned char) and the output is the complex

modulated signal at baseband.

Usage blks.gmsk_mod(fg, samples_per_symbol =2,

bt=.35,

verbose=False,

log=False)

Parameters fg: flow graph

type fg: flow graph

samples_per_symbol: samples per baud >= 2

type samples_per_symbol: integer

bt: Gaussian filter bandwidth * symbol time

type bt: float

verbose: Print information about modulator?

type verbose: bool

debug: Print modulation data to files?

type debug: bool

Table 3.2 Explanation for “GMSK Mod” block

46

gmsk_demod ()

Type Function , GMSK demodulator

Description Hierarchical block for Gaussian Minimum Shift Key (GMSK)

demodulation. The input is the complex modulated signal at baseband.

The output is a stream of bits packed 1 bit per byte (the LSB)

Usage blks.gmsk_demod(fg,

samples_per_symbol=2,

gain_mu=None,

mu=0.5,

omega_relative_limit=0.005,

freq_error=0.0,

verbose=False,

log=False)

Parameters fg : flow graph

type fg: flow graph

samples_per_symbol: samples per baud

type samples_per_symbol: integer

Verbose: Print information about modulator?

type verbose: bool

log : Print modulation data to files?

type log: bool

Clock recovery parameters. These all have reasonable defaults.

gain_mu: controls rate of mu adjustment

type gain_mu: float

mu: fractional delay [0.0, 1.0]

type mu: float

omega_relative_limit: sets max variation in omega

type omega_relative_limit: float, typically 0.00020 0 (200 ppm)

freq_error: bit rate error as a fraction

type freq_error:float

Table 3.3 Explanation for “GMSK Demod” block

47

3.4.3.3.4.3.3.4.3.3.4.3. ofdm.pyofdm.pyofdm.pyofdm.py

OFDM mod/demod with packets as i/o.

ofdm_mod ()

Type Function

Description Modulates an OFDM stream. Based on the options fft_length,

occupied_tones, and cp_length, this block creates OFDM symbols using

a specified modulation option. Send packets by calling send_pkt

Hierarchical block for sending packets. Packets to be sent are enqueued

by calling send_pkt. The output is the complex modulated signal at

baseband.

Usage blks.ofdm_mod (fg, options, msgq_limit=2, pad_for_usrp=True)

Parameters fg : flow graph

type fg: flow graph

options : pass modulation options from higher layers (fft length, occupied

tones, etc.)

msgq_limit: maximum number of messages in message queue

type msgq_limit: int

pad_for_usrp: If true, packets are padded such that they end up a

multiple of 128 samples

Sub

Function

Blks.ofdm_mod.send_pkt(payload, eof=False)

Description Send the payload

Parameters payload: data to send

type payload: string

eof: To signal end of transmission

Type eof: Bool True or False

Table 3.4 Explanation for “OFDM Mod” block

48

4 ImplementationImplementationImplementationImplementation

49

The list below are the main hardware and software which are used in the follow

four experiments.

Hardware:Hardware:Hardware:Hardware:
� ASUS K43T laptop

� Ettus USRP B100

� WBX daughterboard (covers 50MHz – 2.2GHz)

� Arrow antenna

� Logitech ClickSmart 510 webcamera

Software:Software:Software:Software:
� Linux OS: Ubuntu 12.10

� GNURADIO 3.6.4.1

� VLC media player 2.0.5 Two flower

4.1.4.1.4.1.4.1. GSMGSMGSMGSM ScanningScanningScanningScanning

Normally there are a number of GSM bands which a mobile phone can use and

these bands can be different depending on the country. As figure4.1.1 shows, most of

the world uses the GSM-900 and GSM-1800 bands, but the the United States, Canada

and other parts of the Americas which use the GSM-850 and GSM-1900 bands.

Frequency

Bands

Names Channel

Number

Uplink

(MHz)

Downlink

(MHz)

Description

GSMGSMGSMGSM 850850850850 GSM

850

128-251 824,0-

849,0

869,0-

894,0

USA, South American and part of Asian

countries.

GSMGSMGSMGSM 900900900900

P-GSM

900

1-124 890,0 -

915,0

935,0 -

960,0

The GSM frequency band which is the first to

achieved and most widely used.

E-GSM

900

975 -

1023

880,0 -

890,0

925,0 -

935,0

900M Extension band.

R-GSM

900

n/a 876,0 -

880,0

921,0 -

925,0

GSM-R, special version developed for Railway

dispatch communication system.

GSM1800GSM1800GSM1800GSM1800 GSM 512 - 885 1710,0 - 1805,0 - Applies to the market which has a great demand

50

1800 1785,0 1880,0 of channel capacity.

GSM1900GSM1900GSM1900GSM1900 GSM

1900

512 - 810 1850,0 -

1910,0

1930,0 -

1990,0

Mainly for American countries, the system is not

compatible with the 1800M because of

frequency overlap.

Table 4.1 GSM Frequency bands

The purpose of this project is to detect the surrounding GSM Base transceiver

station (BTS) mainly used the FFT function of USRP.

First, enter folder “gnuradio/gr-ugnuradio/gr-ugnuradio/gr-ugnuradio/gr-uhdhdhdhd////examplesexamplesexamplesexamples////grcgrcgrcgrc”.

Then double click “uhd_fft.grcuhd_fft.grcuhd_fft.grcuhd_fft.grc” directly.or type in the command terminal:

./uhd_fft.py –s 8M –g 32 –f 940M

A plot window like figure 4.1.2 is shown with a constantly moving blue line which

represents the amplitude of the signal detected at that pre-configured frequency. Here

we observed a 8MHz band of spectrum which centered at 940MHz. There are several

BTS and each one transmitting in a 200KHz wide channel.

51

Figure 4.1.1 UHD FFT window

Next step is trying to find a active channel which should be visible in plot display

as wide bump centered around a vertical division. Here it is very convenient to modify

the center frequency by sliding the WX GUI Slider or typing a new value in the lattice.

As the figure 4.1.4 shows a channel bump near center frequency 944.8 MHz.

52

Figure 4.1.3 GSM Channel bump

To further understand the channel features, continue to slide the slider and we

found a interesting channel which showed on figure 4.1.4.

According to the GSM standard, GSM is FDMA (Frequency Division

Multiplexing Access) and TDMA (Time Division Multiplexing Access) systems, the user

channel is represented by a time slot, Therefore, when a communication between

mobile station and base station must be precisely synchronized, FCCH (Frequency

Correction Channel), MS achieved the clock coarse synchronization through FFCH,

and then achieve precise synchronization by using SCH. After the previous two steps

to determine the timing of the base station transmitted information, and finally receive

the slot data from BCCH (Broadcast Control Channel). So the FFCH is a mechanism

for the mobile phone to find the base station.

The FCCH generates a Frequency correction burst (FB) which can be found on

53

the frequency spectrum plot as a peek frequency offset 1625/24 kHz above the carrier

center. The green line which means peak hold in figure 4.1.4 highlight a FB which is

clearly visible as a narrow peak in the plot. Notice that the spectrum on the right of the

center channel has a similar amplitude, It means there are other channels may be

using it for data traffic or USRP has captured more than one BTS.

Figure 4.1.4 Frequency correction burst and possible traffic channel

This project provide a FFT method which is combined with USRP and GNU

Radio for scanning the GSM BTS and analyzing the channel. And not all of the

channels are used in every area, as we found that some lower strength signals which

means some of channels are reserved for using in neighboring cells. Additionally,

Frequency correction burst (FB) which enables the mobile to synchronize its frequency

with the master frequency appears on frequency correction channel (FCCH).

54

4.2.4.2.4.2.4.2. FMFMFMFM ReceiverReceiverReceiverReceiver

As a popular example, the implementation of an FM receiver with GUI, will be

introduced and analyzed in this section. The FM signal from the air is received by the

USRP board and then gets processed in the FPGA and in the computer. Finally, the

demodulated signal is played using the sound card. You can hear a very high quality

FM signal just by inserting a copper wire into the Basic RX daughter card.

Typical FM receivers are constructed entirely using hardware that must be

fabricated in a plant. This procedure will demonstrate the power of software defined

radio and how easy it is to use as figure 4.2.1 shows in GNU Radio companion.

Figure 4.2.1 Stereo FM Receiver system

The “UHD: USRP Source” block is used to retrieve samples received on the

USRP device connected to the computer as discussed in previous chapter. The sample

rate internally at 64Msps in USRP B100. In the USRP block you can specify a lower

55

rate through set the decimation, and the USRP will try to match it quite closely if it's not

evenly divisible by 64Msps by down conversion done inside the USRP. In this case the

sample rate is set to 500ksps which can be evenly divisible by 64Msps. The reason to

chose the 500ksps sampling rate is the nicely divisible with the supported 48000 Hz

sampling rate of the sound card in the computer, and is enough to reproduce the full

~100 kHz wide FM radio station. The center frequency is the frequency that the USRP

should tune into. So with a 500ksps sample rate, we will be able receive a 500kHz

band around the center frequency[38].

The “Frequency Xlating FIR Filter” block following the USRP block efficiently

combines a frequency translation (typically “down conversion”) with a FIR filter

(typically low-pass) and decimation. It is ideally suited for a “channel selection filter”

and can be efficiently used to select and decimate a narrow band signal out of wide

bandwidth input. In this case it is by using a slider bar to change the center frequency

of the Frequency Xlating FIR Filter to achieve fine tuning.

The WBFM block does the actual heavy work of decoding the FM signal and

converting it into an audio signal that can be processed by the sound card, represented

by the Audio Sink block. The FM stereo modulation is illustrated in the diagram below:

Figure 4.2.2 Stereo FM theory

L corresponds to left signal and R to the right. A mono receiver sees only the L +

R signal. The information which can be used to produce the stereo signal is contained

in the L + R and the L - R signals. The L - R signal is added to the baseband signal as a

DSB signal with suppressed carrier. A pilot tone at 19kHz is used by the receiver to

regenerate the carrier for demodulating the DSB L - R signal. The baseband signal

shown above is used to frequency modulate a carrier.

56

The results of this stereo FM receiver allowed us to listen to multiple radio

stations with acceptable to exceptional Stereo quality. WX GUI Scope Sink is for

observing time domain signals and WX GUI FFT Sink used to observing frequency

spectrum which shows on figure4.2.2.

57

Figure 4.2.2 Received signal spectrum of Stereo FM Receiver system

In this project, the frequencies are read in from the USRP source, fed to an FIR

58

filter, demodulated with a phase-locked loop, and then resampled to a frequency

compatible with sound card of PC and allowed users to listen to multiple radio stations

with acceptable to exceptional stereo quality.

4.3.4.3.4.3.4.3. BenchmarkBenchmarkBenchmarkBenchmark OFDMOFDMOFDMOFDM

There are reconfigurable python codes which provided by Ettu Research named

“benchmark_ofdm_tx.pybenchmark_ofdm_tx.pybenchmark_ofdm_tx.pybenchmark_ofdm_tx.py” and “benchmark_ofdm_rx.pybenchmark_ofdm_rx.pybenchmark_ofdm_rx.pybenchmark_ofdm_rx.py” in the folder

“/gnuradio/gnuradio-example/python/ofdm//gnuradio/gnuradio-example/python/ofdm//gnuradio/gnuradio-example/python/ofdm//gnuradio/gnuradio-example/python/ofdm/” as an OFDM example in the GNU

Radio package and used to transmit and receive OFDM signals as the flow chart

below[40]:

Figure 4.3.1 OFDM transmitter (up) and receiver (down)

In this project, use two USRP equipped WBX daughterboards connected with

two apart computers. One as transmitter and the other as receiver. Accordingly, the

source code “benchmark_ofdm_tx.pybenchmark_ofdm_tx.pybenchmark_ofdm_tx.pybenchmark_ofdm_tx.py” run on the GNU Radio of computer which as

the transmitter and “benchmark_ofdm_rx.pybenchmark_ofdm_rx.pybenchmark_ofdm_rx.pybenchmark_ofdm_rx.py” for the receiver.

���� OFDMOFDMOFDMOFDM spectrumspectrumspectrumspectrum

59

On the transmitter side, connect the port of TX/RX port to spectrum analyzer or

use two antenna to get the signal spectrum and set the center frequency to 474Mhz

and the span set to 500KHz which is the default sample rate value of

“benchmark_ofdm_tx.pybenchmark_ofdm_tx.pybenchmark_ofdm_tx.pybenchmark_ofdm_tx.py”. Then enter the “/gnuradio/gnuradio-examples/python/o/gnuradio/gnuradio-examples/python/o/gnuradio/gnuradio-examples/python/o/gnuradio/gnuradio-examples/python/o----
fdm/fdm/fdm/fdm/” folder and type the command[41]:

./benchmark_tx.py -f 474M -m bpsk -A TX/RX

It means set the center frequency to 474MHz and modulation is BPSK and use

the TX/RX port to transmit the OFDM signal. Other parameters are default value like

sample rate is 500KHz and FFT length is 512. if you want to modify these kind of value,

type:

./benchmark_tx.py -h

to acquire more command help.

In this case we can obtain the result as follow:

Figure 4.3.2 Using the “benchmark_tx.py”

���� DataDataDataData TransmissionTransmissionTransmissionTransmission andandandand ReceptionReceptionReceptionReception

On the receiver side, enter the “/gnuradio/gnuradio-examples/python/ofdm//gnuradio/gnuradio-examples/python/ofdm//gnuradio/gnuradio-examples/python/ofdm//gnuradio/gnuradio-examples/python/ofdm/”
folder set the corresponding parameters like the transmitter side.

In this case, type:

60

./benchmark_rx.py -f 474M -m bpsk -A TX/RX

The packets will delivery from the transmitter side to the receiver side.

As discussed in chapter 3, the most intuitive and straightforward way to analyze

a signal is to display it graphically. So GNU Radio companion is a better choice to

analysis the OFDM spectrum and set the parameters flexibility. Figure4.3.2 is a

simulation which designed for this project.

Figure 4.3.3 Simulation for OFDM transmission

A series of random binary data were generated by “Random source” block

through the OFDM modulation block and delivery to the USRP to transmit into the air.

At the same time, the modulated signal obtained by WXGUI tool. On the other side, the

signal is received by the receiver USRP to demodulate and analysis. In this case, the

simulation flowchart didn't consider about the packet lost and other problems which

occurs in the actual transmission.

After generating and executing the GNU Radio companion will obtain a

spectrum which is very similar with the one obtained by the benchmark. The bandwidth

of OFDM signal is:

61

LengthFFT
tonesoccupiedratesample

Bw
*

=

(3)

So in this case, the bandwidth should be near 200KHz.

Figure 4.3.4 OFDM signal spectrum(500ksps, occupied tones=200, FFT length=512)

Based on the equation above, modify the occupied tone to 100, and increase

the FFT length to 1024. the bandwidth should be near 50KHz and the actual sub-

carriers will decreased as the occupied tone decreased. The result is very coincide just

62

the figure below shows.

Figure 4.3.5 OFDM signal spectrum(500ksps, occupied tones=100, FFT length=1024)

4.4.4.4.4.4.4.4. Real-timeReal-timeReal-timeReal-time DigitalDigitalDigitalDigital VideoVideoVideoVideo BroadcastingBroadcastingBroadcastingBroadcasting

Digital Video Broadcasting (DVB) is a transmission scheme based on the

MPEG-2 video compression / transmission scheme and utilizing the standard MPEG-2

Transmission scheme. however It is much more than a simple replacement for existing

analogue television transmission. In the first case, DVB provides superior picture

quality with the opportunity to view pictures in standard format or wide screen (16:9)

format, along with mono, stereo or surround sound. It also allows a range of new

63

features and services including subtitling, multiple audio tracks, interactive content,

multimedia content - where, for instance, programme may be linked to world wide web

material[42].

In this case, the objective of this project is to create a real-time digital video

broadcasting setup using easily available components like VLC media player, GNU

Radio and Universal Software Radio Peripherals which illustrated on the figure 4.4.1.

Figure 4.4.1 DVB project description diagram

In the project description diagram, the source file can be a existed video file or

the video stream which captured by the webcam and encoded in H.264 standard by

VLC media player. When the TS stream was generating, GNU Radio will read the

stream through UNIX pipe, encoder the packet and then modulated by

GMSK(Gaussian Minimum Shift Keying) modulation scheme[43].

Then a transmitter USRP is used to transmit the GMSK modulated signal into

air. On the other side, the transmitted signal will received by another receiver USRP

64

which has been set the same center frequency, demodulation and packet decoding

implemented in GNU Radio,the output of GNU Radio should be the TS stream which

can be played by VLC media player through the UNIX pipe on the receiver side. Notice

that the receiver computer can be a UDP server which can broadcast the video to other

clients computer. Finally the whole system achieved a real-time digital video

broadcasting.

4.4.1.4.4.1.4.4.1.4.4.1. TransmitterTransmitterTransmitterTransmitter SideSideSideSide

CCCCNUNUNUNU RadioRadioRadioRadio companioncompanioncompanioncompanion

On the transmitter side, as the block diagram below shows, first, an existed

video file or a real time writing UNIX pipe was using in the File source block, then the

TS file delivery to packet encoder block, in this case, it was set 2 samples per symbol

and one bit per symbol. So the packet encoding here was 2 bit per sample or 16M bit

per second, because the variable “samp_rate” was set to 8MHz.

After the encoding finished, the encoded packet was modulated by “GMSK

mod” block which was set 2 samples per symbol too. A “Multiply Const” block follow the

modulation block was used as a amplifier. Finally three different kind of WXGUI tools

detected the amplified and modulated signal to analysis the spectrum from time domain

and frequency domain. At the same time, the amplified and modulated signal was

delivery to the USRP to finish the rest operation.

Figure 4.4.2 Transmitter GNU Radio block diagram

65

TransmitterTransmitterTransmitterTransmitter USRPUSRPUSRPUSRP

When the transmitter USRP which connected with transmitter GNU Radio

receive the amplified and modulated signal, the FPGA will finish the interpolation and

up-conversion by (DUC), then the DAC (digital-to-analog converter) convert the signal

to sent into the air.

ConfiguringConfiguringConfiguringConfiguring VLCVLCVLCVLC[44][44][44][44]

As we know from the tutorials which provided by VLC team[45]. In the

transmitter side, to know the video and audio files which captured by the webcamera,

open the terminal window and type:

ls /dev/video*

ls /dev/audio*

Or open the VLC media player select “Media->Media->Media->Media-> OpenOpenOpenOpen CaptureCaptureCaptureCapture DeviceDeviceDeviceDevice.. ” on

the top bar. Then you can find the folder of video and audio files in the option named

“DeviceDeviceDeviceDevice selectionselectionselectionselection”.

In our case, the video and audio files associated were video0 and audio. Then

to run the VLC camera streaming from the terminal, type the following commands:

vlc v4l2:// :v4l-vdev="/dev/video0" :v4l-adev="/dev/audio" :v4l-norm=3 :v4l-frequency=-

1 :v4l-caching=300 :v4l-chroma="" :v4l-fps=-1.000000 :v4l-samplerate=44100 :v4l-

channel=0 :v4l-tuner=-1 :v4l-audio=-1 :v4l-stereo :v4l-width=640 :v4l-height=480 :v4l-

brightness=-1 :v4l-colour=-1 :v4l-hue=-1 :v4l-contrast=-1 :no-v4l-mjpeg :v4l-

decimation=1 :v4l-quality=100

--sout

"#transcode{vcodec=mp2v,vb=800,scale=1,acodec=mpga,ab=128,channels=2,sampler

ate=44100}:duplicate{dst=std{access=file,mux=ts,dst=/home/ubuntu/Desktop/tx.ts},dst

=display}"

where the VLC captured video file “ tx.tstx.tstx.tstx.ts” at the address which is defined by

66

“ dstdstdstdst ” in the above command the is the UNIX pipe combine to the GNU radio of

transmitter. Additionally it is configured for MPEG2 codec and MUX = MPEG/TS.

4.4.2.4.4.2.4.4.2.4.4.2. ReceiverReceiverReceiverReceiver SideSideSideSide

ReceiverReceiverReceiverReceiver USRPUSRPUSRPUSRP

On the receiver side, the DDC of FPGA and ADC(analog-to-digital converter)

deal with the signal down-conversion and convert to digital signal for baseband

processing.

GNUGNUGNUGNU RadioRadioRadioRadio

In contrast with the transmitter, the modulated baseband signal will demodulate

by the “GMSK Demod” which follow with the “UHD: USRP source” block.

Correspondingly the “Packet Decoder” block is for unpack and extract the data. The

parameters “threshold” is for detecting the access code with up to threshold bits wrong

(0 -> use default). In this case, there is no access code was used. Finally, the video

data will broadcast to different kind of device to play. For high speed and real time

video transmission, UDP protocol was chosen in this project, so for the destinations

of video data, we assigned three “UPD Sink” block with correspond IP address and port

to broadcast to three different clients. A desktop computer with Ubuntu 12.10, a laptop

using Windows 7 and a mobile phone with android 4.0 were tested in this project. And

certainly, a file sink which for create a file with “.ts” extension would record the final

data was set as another destination for the video stream. The GRC setup for the

receiver as below.

67

Figure 4.4.3 Receiver GNU Radio block diagram
ConfiguringConfiguringConfiguringConfiguring VLCVLCVLCVLC

In this project we choose UDP protocol as we discussed in the GNU Receiver

setup, UDP is a better choice for real-time video transmission because of it's high

transmit speed and “no ACK” mechanism which save much network resources .

So in this case, open VLC player. Click on “MediaMediaMediaMedia” and select “OpenOpenOpenOpen networknetworknetworknetwork

stream...stream...stream...stream... ” . In the “ NetworkNetworkNetworkNetwork ProtocolProtocolProtocolProtocol ” enter a network URL as the format:

“udp://:@portudp://:@portudp://:@portudp://:@port numbernumbernumbernumber” like the figure 4.4.2 shows. the port number is the port of client

to receive the TS stream and delivery to VLC media player.

68

Figure 4.4.4 UDP client setup

When all of the steps above finished, click the “playplayplayplay” bottom, VLC will set to

listen mode to listen the stream will flow from the assigned port in “ udp://:@portudp://:@portudp://:@portudp://:@port

numbernumbernumbernumber”.

Note that if the receiver side need to play with broadcast clients or more clients

require the video broadcast, just add another “UDP Sink” and type their own IP address

and opened port as above setting.

4.4.3.4.4.3.4.4.3.4.4.3. SimulationSimulationSimulationSimulation

For evaluate the impact of noise for the transmission. The block diagram below

introduced a simulation in GNU Radio companion. It makes the modulated signal add a

Gaussian noise which can control the value by “WX GUI Slider” block.

69

Figure 4.4.5 DVB simulation block diagram

���� ResultResultResultResult

Based on the previous introduction and preparation, One existed video file and

a real-time captured video stream by VLC media player were tested in this project.

After executing the GNU Radio companion and we obtained the result below.

Figure 4.4.6 Video transmission when SNR=50

70

When the transmission in condition of every parameters set in the default value

and the network works stable, the SNR equal to 50 as the right window shows in figure

4.4.5, the video broadcasting very good and the GMSK spectrum of transmitter and

receiver almost the same which is a gently undulating waveform, and the receiver side

almost has no delay and the quality playing on clients seems well too. Figure 4.4.6

shows the broadcasting video played on three different clients. Synchronization was

excellent when the network environment is stable.

Figure 4.4.7 Broadcasting video on three different clients

After a period of steady test, make the value of Gaussian noise which add with

modulated signal slowly began to increase. When the SNR=10 which is the 1/5 the

default value, the quality of video transmission decreased dramatically. The video

playing on clients Appeared a large number of blocky noise, image and sound have

some degree of non-smooth. And the GMSK spectrum become to a rapid undulating

waveform like figure 4.4.7 shows. Additionally, the video playing on mobile phone even

stoped.

71

Figure 4.4.8 Video transmission when SNR=10

The similar experiment has done on webcamera mode. The video captured by

VLC in real-time transmitted well, but when we increased the noise like the previous

test, the same situation which was the bad transmission quality occurred as the figure

4.4.8 shows. When the noise value continue to increased, the video playing on receiver

side and other clients will stoped.

Figure 4.4.9 VLC captured video transmission when SNR<10

4.4.4.4.4.4.4.4.4.4.4.4. ProblemsProblemsProblemsProblems

During the experiment, there are some problems can not be ignored as follow:

72

� Delay:

There is a 5~6 seconds delay during the video transmission in webcam mode.

In order to exclude the reason like the format of video file or network delay, the video

file which captured by the webcam was stored and transmitted in the file mode which

was in the same network environment. Through the observation on the receiver side, it

was found that there was no apparent delay on three different client devices. So the

reason should related with the UNIX pipe. The camera capturing, the encoding and

multiplexing by the VLC player, and the routing to GNU Radio jointly caused the delay.

But 5~6 second normally can be accepted in real-time transmission.

� Network:

First, if the IP address for the destination of “UDP Sink” block was a privacy IP

address which need a access code. The clients use this kind of IP addresses can’t

receive any video stream. The transmission in public wireless network environment

worked as normal. Second, when the network was unstable or poor quality, there will

be a considerable amount of erroneous packets receiving or packets loss which

coursed the video can not play or play sluggish.

� Device:

At the first beginning, this experiment was test on a laptop as the transmitter

which has a “AMD A4” processor inside. And there is always a very serious delay and

slow playback on the client device. When the simulation move to a computer which has

a “Intel i5” processor, this kind of problem was solved. Additionally, the VLC player for

mobile phone was just a beta version, some android phone can’t receive the video

stream by UDP protocol. When there was serious noise or bad network, the playing on

the phone may stop.

� Obstacle:

The last problem is not considered in this project, but based on wireless

communication principle. The obstacle and distance would be a very serious problem

which should be test and verify in the further experiment.

73

5 ConclusionConclusionConclusionConclusion andandandand
FutureFutureFutureFuture WorkWorkWorkWork

74

5.1.5.1.5.1.5.1. ConclusionConclusionConclusionConclusion

Software Defined Radio is bound to bring about a technological revolution for

the current wireless communication system. Excellent software GNU Radio and

outstanding hardware USRP family products composed of a combination of ease of

use, saving time, low cost but powerful Software Defined Radio platform. Through this

thesis, SDR as a new concept combined with some popular modulation and

demodulation techniques in wireless communication system are introduced, then some

actual project was implemented based on GNU Radio and USRP: GSM scanning,

Stereo FM radio receiver, OFDM signal transmission and observations and Real-time

digital video broadcasting were achieved on a unified platform. More versatile and

lower cost SDR platform will certainly be developed to apply to more practical

applications in the wireless communications.

5.2.5.2.5.2.5.2. FutureFutureFutureFuture WorkWorkWorkWork

Software Radio is the future trend of communication systems. So there is a

great scope for improving the current project of wireless communication projects. The

effective area of research and development work includes :

1. As the development of SDR platform, extending the project to increase the

spectral efficiency and decrease BER based on advanced algorithms of channel coding

and other novel communication concepts.

2. The cognitive radio represents an SDR with not only the ability to adapt to

spectrum availability, protocols, and waveforms but the capability to learn waveforms

and protocols, to adapt to local spectrum activity, and to learn the current needs of its

user. And CR will also be capable of sensing, responding,and determining optimal

responses to network and geographic operating conditions.

3. Implementation for more communication standards such as DVB-T, IEEE

802.11 a/g/p and LTE.

75

6 ReferenceReferenceReferenceReference

76

[1] Tuttlebee W H W. Software-defined radio: facets of a developing technology[J].

Personal Communications, IEEE, 1999, 6(2): 38-44.

[2] Dillinger M, Madani K, Alonistioti N. Software defined radio: Architectures,

systems and functions[M]. Wiley, 2005.

[3] Ettus M. Universal software radio peripheral (USRP)[J]. Ettus Research LLC

http://www. ettus. com, 2008.

[4] Chapman E, El Choueiry R, Jackson J, et al. Software defined

radio[C]//Proceeding of KGCOE-MD2004: Multi-Disciplinary Engineering Design

Conference. 2004.

[5] Rondeau T W, Le B, Maldonado D, et al. Cognitive radio formulation and

implementation[C]//Cognitive Radio Oriented Wireless Networks and

Communications, 2006. 1st International Conference on. IEEE, 2006: 1-10.

[6] Li Z, Xu W, Miller R, et al. Securing wireless systems via lower layer

enforcements[C]//Proceedings of the 5th ACM workshop on Wireless security.

ACM, 2006: 33-42.

[7] Watermeyer K. Design of a hardware platform for narrow-band Software Defined

Radio applications[D]. University of Cape Town, 2007.

[8] Mate A, Lee K H, Lu I T. Spectrum sensing based on time covariance matrix

using GNU radio and USRP for cognitive radio[C]//Systems, Applications and

Technology Conference (LISAT), 2011 IEEE Long Island. IEEE, 2011: 1-6.

[9] Sarijari M A, Marwanto A, Fisal N, et al. Energy detection sensing based on GNU

radio and USRP: An analysis study[C]//Communications (MICC), 2009 IEEE 9th

Malaysia International Conference on. IEEE, 2009: 338-342.

[10] Zivkovic M, Auras D, Mathar R. OFDM-based dynamic spectrum access[C]//New

Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on. IEEE, 2010: 1-2.

[11] Braun M, Müller M, Fuhr M, et al. A USRP-based Testbed for OFDM-based Radar

and Communication Systems[J].

[12] Selim A, Doyle L. Real-time interference reduction for OFDM-based dynamic

spectrum access networks[C]//Dynamic Spectrum Access Networks (DYSPAN),

2012 IEEE International Symposium on. IEEE, 2012: 268-269.

[13] Mitola J. Software Radio: Wireless Architecture for the 21st Century[J]. Mitola’s

STATISfaction, ISBN 0-9671233-0-5.

[14] HPSDR Website: http://openhpsdr.org/.

77

[15] WebSDR Website: http://websdr.org/.

[16] Chirp Signals analyzed using SDR http://websdr.ewi.utwente.nl:8901/chirps/

[17] Ettus M. USRP User’s and Developer’s Guide[J]. Ettus Research LLC, 2005.

[18] “Using Open Source and Open Hardware Technologies”:

http://statist.h16.ru/how_build_interceptor.html.

[19] Raghavendra Rao, Qi Cheng, Aditya Kelkar, Dhaval Chaudhri, “Cooperative

Cognitive Radio Network Testbed”, 2011.

[20] Blossom, Eric. Exploring GNU Radio. 2009.

[21] Ettus Research LLC. URL http://www.ettus.com/order. October 2011.

[22] Wikipedia Cellular network: http://en.wikipedia.org/wiki/Cellular_network

[23] OpenBTS Website: http://www.openbts.org/

[24] Gqrx SDR receiver Website:

http://www.oz9aec.net/index.php/gnu-radio/gqrx-sdr

[25] OSMOSDR Website: http://sdr.osmocom.org

[26] Ian Poole. “What is GMSK Modulation - Gaussian Minimum Shift Keying”.

[27] Louis Litwin and Michal Pugel. "The Principles of OFDM".

[28] Mohamed Essam Khedr. EC74 4 Wireless Communication ,2008.

[29] David P. Reed. RFC 768 p1.

[30] Kurose J. F.; Ross K. W. Computer Networking: A Top-Down Approach (5th ed.).

Boston, MA: Pearson Education. ISBN 978-0-13-136548-3, 2010.

[31] Clark, M.P. Data Networks IP and the Internet, 1st ed. West Sussex, England:

John Wiley & Sons Ltd, 2003.

[32] John Carbone, “Speed Communications for Selected Applications with UDP”.

November, 2012.

[33] GNU Radio official website. http://gnuradio.org/.

[34] C++ Language tutorial. http://www.cplusplus.com/doc/tutorial/

[35] Python. Website: http://www.python.org/.

[36] Alex Verduin, “GNU Radio wireless protocol analysis approach”. October, 2008.

[37] BBN Technologies Corp. “GNU Radio Architectural Changes”.

78

[38] Dawei Shen, “Tutorial 8: Getting Prepared for Python in GNU Radio by Reading

the FM Receiver Code Line by Line - Part II”. July, 2005.

[39] Firas Abbas ,Simple User Manual for Gnuradio 3.1.1.Free Software Foundation,

Inc. 2007.

[40] A. Marwanto, M.A. Sarijari, N. Fisal, S.K.S. Yusof, and R.A. Rashid, Experimental

study of OFDM implementation utilizing GNU Radio and USRP - SDR,"

Communications (MICC), IEEE 9th Malaysia International Conference on , vol.,

no., pp.132-135, 15-17 Dec. 2009.

[41] L. Yang, W. Hou, L. Cao, B. Y. Zhao, and H. Zheng, "Supporting demanding

wireless applications with frequency-agile radios," in Proceeding of the 7th NSDI,

2010.

[42] Isla Hernandez, Sergio. Simulation and Evaluation of a DVB system using

simulink (Vol I). 2005

[43] Alexandru Csete,Simple DVB with Gstreamer and GNU Radio:

http://www.oz9aec.net.

[44] Asha Mariam Iype and Shashanka C. D. Video transmission using USRP. 2011.

[45] Video LAN team tutorial, “Chapter 3. Advanced streaming using the command

line.”

http://www.oz9aec.net/index.php/gnu-radio/gnu-radio-blog/361-simple-dvb-with-gstreamer-and-gnu-radio
http://www.oz9aec.net/

79

APPENDIXAPPENDIXAPPENDIXAPPENDIX AAAA
USRPUSRPUSRPUSRP B100B100B100B100 DatasheetDatasheetDatasheetDatasheet::::

80

81

APPENDIXAPPENDIXAPPENDIXAPPENDIX BBBB
PythonPythonPythonPython codecodecodecode forforforfor StereoStereoStereoStereo FMFMFMFM receiverreceiverreceiverreceiver::::

#!/usr/bin/env python
##
Gnuradio Python Flow Graph
Title: Stereo FM Receiver
Description: WFM receiver
Generated: Thu Jun 27 17:39:45 2013
##

from gnuradio import audio
from gnuradio import blks2
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio import uhd
from gnuradio import window
from gnuradio.eng_option import eng_option
from gnuradio.gr import firdes
from gnuradio.wxgui import fftsink2
from gnuradio.wxgui import forms
from gnuradio.wxgui import scopesink2
from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser
import wx

class wfm_rx_pll(grc_wxgui.top_block_gui):

def __init__(self):
grc_wxgui.top_block_gui.__init__(self, title="Stereo FM Receiver")
_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

##
Variables
##
self.decim = decim = 128
self.xlate_tune = xlate_tune = 0
self.usrp_freq = usrp_freq = 91e6
self.samp_rate = samp_rate = 64e6/decim
self.rx_freq = rx_freq = usrp_freq+xlate_tune
self.rf_gain = rf_gain = 15
self.filter_taps = filter_taps = firdes.low_pass(1, samp_rate, 250000, 20000, firdes.WIN_HAMMING,

6.76)
self.af_gain = af_gain = 3

##
Blocks
##
_xlate_tune_sizer = wx.BoxSizer(wx.VERTICAL)
self._xlate_tune_text_box = forms.text_box(

parent=self.GetWin(),
sizer=_xlate_tune_sizer,
value=self.xlate_tune,
callback=self.set_xlate_tune,
label="Fine frequency",
converter=forms.float_converter(),
proportion=0,

)
self._xlate_tune_slider = forms.slider(

parent=self.GetWin(),
sizer=_xlate_tune_sizer,
value=self.xlate_tune,
callback=self.set_xlate_tune,
minimum=-250e3,
maximum=250e3,
num_steps=500,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)
self.GridAdd(_xlate_tune_sizer, 7, 0, 1, 5)

82

_usrp_freq_sizer = wx.BoxSizer(wx.VERTICAL)
self._usrp_freq_text_box = forms.text_box(

parent=self.GetWin(),
sizer=_usrp_freq_sizer,
value=self.usrp_freq,
callback=self.set_usrp_freq,
label="USRP frequency",
converter=forms.float_converter(),
proportion=0,

)
self._usrp_freq_slider = forms.slider(

parent=self.GetWin(),
sizer=_usrp_freq_sizer,
value=self.usrp_freq,
callback=self.set_usrp_freq,
minimum=76e6,
maximum=108e6,
num_steps=200,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)
self.GridAdd(_usrp_freq_sizer, 6, 0, 1, 5)
_rf_gain_sizer = wx.BoxSizer(wx.VERTICAL)
self._rf_gain_text_box = forms.text_box(

parent=self.GetWin(),
sizer=_rf_gain_sizer,
value=self.rf_gain,
callback=self.set_rf_gain,
label="RF",
converter=forms.float_converter(),
proportion=0,

)
self._rf_gain_slider = forms.slider(

parent=self.GetWin(),
sizer=_rf_gain_sizer,
value=self.rf_gain,
callback=self.set_rf_gain,
minimum=0,
maximum=50,
num_steps=50,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)
self.GridAdd(_rf_gain_sizer, 8, 0, 1, 2)
self.nbook = self.nbook = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
self.nbook.AddPage(grc_wxgui.Panel(self.nbook), "Receiver")
self.nbook.AddPage(grc_wxgui.Panel(self.nbook), "Demod")
self.nbook.AddPage(grc_wxgui.Panel(self.nbook), "Scope")
self.GridAdd(self.nbook, 0, 0, 5, 5)
_af_gain_sizer = wx.BoxSizer(wx.VERTICAL)
self._af_gain_text_box = forms.text_box(

parent=self.GetWin(),
sizer=_af_gain_sizer,
value=self.af_gain,
callback=self.set_af_gain,
label="AF",
converter=forms.float_converter(),
proportion=0,

)
self._af_gain_slider = forms.slider(

parent=self.GetWin(),
sizer=_af_gain_sizer,
value=self.af_gain,
callback=self.set_af_gain,
minimum=0,
maximum=10,
num_steps=100,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)
self.GridAdd(_af_gain_sizer, 8, 2, 1, 2)
self.xlating_fir_filter = gr.freq_xlating_fir_filter_ccc(1, (filter_taps), -xlate_tune, samp_rate)
self.wxgui_scopesink2_0 = scopesink2.scope_sink_f(

83

self.nbook.GetPage(2).GetWin(),
title="Scope Plot",
sample_rate=samp_rate/2,
v_scale=0,
v_offset=0,
t_scale=0,
ac_couple=False,
xy_mode=False,
num_inputs=1,
trig_mode=gr.gr_TRIG_MODE_AUTO,
y_axis_label="Counts",

)
self.nbook.GetPage(2).Add(self.wxgui_scopesink2_0.win)
self.wxgui_fftsink2_0 = fftsink2.fft_sink_f(

self.nbook.GetPage(1).GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate/2,
fft_size=512,
fft_rate=15,
average=False,
avg_alpha=None,
title="Demod",
peak_hold=False,

)
self.nbook.GetPage(1).Add(self.wxgui_fftsink2_0.win)
self.wfm_rcv_pll = blks2.wfm_rcv_pll(

demod_rate=samp_rate,
audio_decimation=10,

)
self.uhd_usrp_source_0 = uhd.usrp_source(

device_addr="",
stream_args=uhd.stream_args(

cpu_format="fc32",
channels=range(1),

),
)
self.uhd_usrp_source_0.set_samp_rate(samp_rate)
self.uhd_usrp_source_0.set_center_freq(usrp_freq, 0)
self.uhd_usrp_source_0.set_gain(rf_gain, 0)
self.uhd_usrp_source_0.set_antenna("TX/RX", 0)
self._rx_freq_static_text = forms.static_text(

parent=self.GetWin(),
value=self.rx_freq,
callback=self.set_rx_freq,
label="Receive",
converter=forms.float_converter(),

)
self.GridAdd(self._rx_freq_static_text, 5, 3, 1, 1)
self.rr_stereo_right = blks2.rational_resampler_fff(

interpolation=48,
decimation=50,
taps=None,
fractional_bw=None,

)
self.rr_stereo_left = blks2.rational_resampler_fff(

interpolation=48,
decimation=50,
taps=None,
fractional_bw=None,

)
self.fftsink_rf = fftsink2.fft_sink_c(

self.nbook.GetPage(0).GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=13490.0,
sample_rate=samp_rate/2,
fft_size=512,
fft_rate=10,
average=True,
avg_alpha=0.5,

84

title="Baseband",
peak_hold=False,
size=(1120,527),

)
self.nbook.GetPage(0).Add(self.fftsink_rf.win)
self.audio_sink = audio.sink(48000, "", True)
self.af_gain_stereo_right = gr.multiply_const_vff((af_gain,))
self.af_gain_stereo_left = gr.multiply_const_vff((af_gain,))

##
Connections
##
self.connect((self.xlating_fir_filter, 0), (self.fftsink_rf, 0))
self.connect((self.xlating_fir_filter, 0), (self.wfm_rcv_pll, 0))
self.connect((self.af_gain_stereo_right, 0), (self.audio_sink, 1))
self.connect((self.rr_stereo_right, 0), (self.af_gain_stereo_left, 0))
self.connect((self.rr_stereo_left, 0), (self.af_gain_stereo_right, 0))
self.connect((self.wfm_rcv_pll, 0), (self.rr_stereo_right, 0))
self.connect((self.wfm_rcv_pll, 1), (self.rr_stereo_left, 0))
self.connect((self.uhd_usrp_source_0, 0), (self.xlating_fir_filter, 0))
self.connect((self.af_gain_stereo_left, 0), (self.audio_sink, 0))
self.connect((self.wfm_rcv_pll, 1), (self.wxgui_fftsink2_0, 0))
self.connect((self.wfm_rcv_pll, 0), (self.wxgui_scopesink2_0, 0))

def get_decim(self):
return self.decim

def set_decim(self, decim):
self.decim = decim
self.set_samp_rate(64e6/self.decim)

def get_xlate_tune(self):
return self.xlate_tune

def set_xlate_tune(self, xlate_tune):
self.xlate_tune = xlate_tune
self._xlate_tune_slider.set_value(self.xlate_tune)
self._xlate_tune_text_box.set_value(self.xlate_tune)
self.set_rx_freq(self.usrp_freq+self.xlate_tune)
self.xlating_fir_filter.set_center_freq(-self.xlate_tune)

def get_usrp_freq(self):
return self.usrp_freq

def set_usrp_freq(self, usrp_freq):
self.usrp_freq = usrp_freq
self.set_rx_freq(self.usrp_freq+self.xlate_tune)
self.uhd_usrp_source_0.set_center_freq(self.usrp_freq, 0)
self._usrp_freq_slider.set_value(self.usrp_freq)
self._usrp_freq_text_box.set_value(self.usrp_freq)

def get_samp_rate(self):
return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self.fftsink_rf.set_sample_rate(self.samp_rate/2)
self.wxgui_scopesink2_0.set_sample_rate(self.samp_rate/2)
self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)
self.wxgui_fftsink2_0.set_sample_rate(self.samp_rate/2)
self.set_filter_taps(firdes.low_pass(1, self.samp_rate, 250000, 20000, firdes.WIN_HAMMING, 6.76))

def get_rx_freq(self):
return self.rx_freq

def set_rx_freq(self, rx_freq):
self.rx_freq = rx_freq
self._rx_freq_static_text.set_value(self.rx_freq)

def get_rf_gain(self):
return self.rf_gain

def set_rf_gain(self, rf_gain):
self.rf_gain = rf_gain
self._rf_gain_slider.set_value(self.rf_gain)

85

self._rf_gain_text_box.set_value(self.rf_gain)
self.uhd_usrp_source_0.set_gain(self.rf_gain, 0)

def get_filter_taps(self):
return self.filter_taps

def set_filter_taps(self, filter_taps):
self.filter_taps = filter_taps
self.xlating_fir_filter.set_taps((self.filter_taps))

def get_af_gain(self):
return self.af_gain

def set_af_gain(self, af_gain):
self.af_gain = af_gain
self._af_gain_slider.set_value(self.af_gain)
self._af_gain_text_box.set_value(self.af_gain)
self.af_gain_stereo_left.set_k((self.af_gain,))
self.af_gain_stereo_right.set_k((self.af_gain,))

if __name__ == '__main__':
parser = OptionParser(option_class=eng_option, usage="%prog: [options]")
(options, args) = parser.parse_args()
tb = wfm_rx_pll()
tb.Run(True)

86

APPENDIXAPPENDIXAPPENDIXAPPENDIX CCCC
PythonPythonPythonPython codecodecodecode forforforfor OFDMOFDMOFDMOFDM simulation:simulation:simulation:simulation:

#!/usr/bin/env python
##
Gnuradio Python Flow Graph
Title: OFDM simulation
Author: Lei
Generated: Tue Jun 25 20:44:45 2013
##

from gnuradio import analog
from gnuradio import blocks
from gnuradio import digital
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio import window
from gnuradio.eng_option import eng_option
from gnuradio.gr import firdes
from gnuradio.wxgui import fftsink2
from grc_gnuradio import blks2 as grc_blks2
from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser
import numpy
import wx

class sim_ofdm(grc_wxgui.top_block_gui):

def __init__(self):
grc_wxgui.top_block_gui.__init__(self, title="OFDM simulation")
_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

##
Variables
##
self.samp_rate = samp_rate = 500e3

##
Blocks
##
self.wxgui_fftsink2_0_0 = fftsink2.fft_sink_c(

self.GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=1024,
fft_rate=15,
average=True,
avg_alpha=None,
title="FFT Plot",
peak_hold=False,

)
self.Add(self.wxgui_fftsink2_0_0.win)
self.wxgui_fftsink2_0 = fftsink2.fft_sink_c(

self.GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=1024,
fft_rate=15,
average=True,
avg_alpha=None,
title="FFT Plot",
peak_hold=False,

)

87

self.Add(self.wxgui_fftsink2_0.win)
self.random_source_x_0 = gr.vector_source_s(map(int, numpy.random.randint(0, 2, 1000)), True)
self.gr_short_to_float_0 = gr.short_to_float(1, 1)
self.gr_float_to_short_0 = gr.float_to_short(1, 1)
self.gr_file_sink_1 = gr.file_sink(gr.sizeof_short*1, "/home/ubuntu/Desktop/ofdm1.txt")
self.gr_file_sink_1.set_unbuffered(False)
self.gr_add_xx_0 = gr.add_vcc(1)
self.digital_ofdm_mod_0 = grc_blks2.packet_mod_f(digital.ofdm_mod(

options=grc_blks2.options(
modulation="qpsk",
fft_length=1024,
occupied_tones=100,
cp_length=128,
pad_for_usrp=True,
log=None,
verbose=None,

),
),
payload_length=0,

)
self.digital_ofdm_demod_0 = grc_blks2.packet_demod_f(digital.ofdm_demod(

options=grc_blks2.options(
modulation="qpsk",
fft_length=512,
occupied_tones=200,
cp_length=128,
snr=10,
log=None,
verbose=None,

),
callback=lambda ok, payload: self.digital_ofdm_demod_0.recv_pkt(ok, payload),

),
)
self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate)
self.analog_noise_source_x_0 = analog.noise_source_c(analog.GR_GAUSSIAN, 0, 0)

##
Connections
##
self.connect((self.random_source_x_0, 0), (self.gr_short_to_float_0, 0))
self.connect((self.gr_short_to_float_0, 0), (self.digital_ofdm_mod_0, 0))
self.connect((self.blocks_throttle_0, 0), (self.wxgui_fftsink2_0, 0))
self.connect((self.digital_ofdm_mod_0, 0), (self.blocks_throttle_0, 0))
self.connect((self.blocks_throttle_0, 0), (self.gr_add_xx_0, 0))
self.connect((self.analog_noise_source_x_0, 0), (self.gr_add_xx_0, 1))
self.connect((self.gr_add_xx_0, 0), (self.digital_ofdm_demod_0, 0))
self.connect((self.digital_ofdm_demod_0, 0), (self.gr_float_to_short_0, 0))
self.connect((self.gr_float_to_short_0, 0), (self.gr_file_sink_1, 0))
self.connect((self.gr_add_xx_0, 0), (self.wxgui_fftsink2_0_0, 0))

def get_samp_rate(self):
return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self.blocks_throttle_0.set_sample_rate(self.samp_rate)
self.wxgui_fftsink2_0.set_sample_rate(self.samp_rate)
self.wxgui_fftsink2_0_0.set_sample_rate(self.samp_rate)

if __name__ == '__main__':
parser = OptionParser(option_class=eng_option, usage="%prog: [options]")
(options, args) = parser.parse_args()
tb = sim_ofdm()
tb.Run(True)

88

APPENDIXAPPENDIXAPPENDIXAPPENDIX DDDD
PythonPythonPythonPython codecodecodecode forforforfor Real-timeReal-timeReal-timeReal-time DVBDVBDVBDVB simulation:simulation:simulation:simulation:

#!/usr/bin/env python
##
Gnuradio Python Flow Graph
Title: DVB Simulator
Author: Lei
Generated: Thu Jun 27 17:38:51 2013
##

from gnuradio import digital
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio import window
from gnuradio.eng_option import eng_option
from gnuradio.gr import firdes
from gnuradio.wxgui import fftsink2
from gnuradio.wxgui import forms
from grc_gnuradio import blks2 as grc_blks2
from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser
import wx

class gmsk_sim(grc_wxgui.top_block_gui):

def __init__(self):
grc_wxgui.top_block_gui.__init__(self, title="DVB Simulator ")
_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

##
Variables
##
self.signal = signal = 500
self.noise = noise = 10
self.variable_static_text_0 = variable_static_text_0 = signal/noise
self.samp_rate = samp_rate = 8e6

##
Blocks
##
_signal_sizer = wx.BoxSizer(wx.VERTICAL)
self._signal_text_box = forms.text_box(

parent=self.GetWin(),
sizer=_signal_sizer,
value=self.signal,
callback=self.set_signal,
label="Signal",
converter=forms.float_converter(),
proportion=0,

)
self._signal_slider = forms.slider(

parent=self.GetWin(),
sizer=_signal_sizer,
value=self.signal,
callback=self.set_signal,
minimum=0,
maximum=1000,
num_steps=1000,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)
self.Add(_signal_sizer)
self.notebook = self.notebook = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "Tx")
self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "RX")
self.Add(self.notebook)
_noise_sizer = wx.BoxSizer(wx.VERTICAL)
self._noise_text_box = forms.text_box(

parent=self.GetWin(),

89

sizer=_noise_sizer,
value=self.noise,
callback=self.set_noise,
label="Noise",
converter=forms.float_converter(),
proportion=0,

)
self._noise_slider = forms.slider(

parent=self.GetWin(),
sizer=_noise_sizer,
value=self.noise,
callback=self.set_noise,
minimum=0,
maximum=1000,
num_steps=1000,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)
self.Add(_noise_sizer)
self.wxgui_fftsink2_0_0_0 = fftsink2.fft_sink_c(

self.notebook.GetPage(0).GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=512,
fft_rate=15,
average=False,
avg_alpha=None,
title="Transmitter Side",
peak_hold=False,

)
self.notebook.GetPage(0).Add(self.wxgui_fftsink2_0_0_0.win)
self.wxgui_fftsink2_0_0 = fftsink2.fft_sink_c(

self.notebook.GetPage(1).GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=512,
fft_rate=15,
average=False,
avg_alpha=None,
title="Receiver Side",
peak_hold=False,

)
self.notebook.GetPage(1).Add(self.wxgui_fftsink2_0_0.win)
self._variable_static_text_0_static_text = forms.static_text(

parent=self.GetWin(),
value=self.variable_static_text_0,
callback=self.set_variable_static_text_0,
label="SNR",
converter=forms.float_converter(),

)
self.GridAdd(self._variable_static_text_0_static_text, 0, 0, 1, 1)
self.gr_udp_sink_0_2_1_0 = gr.udp_sink(gr.sizeof_char*1, "138.100.50.70", 1234, 1472, True)
self.gr_udp_sink_0_2_1 = gr.udp_sink(gr.sizeof_char*1, "138.100.50.72", 1234, 1472, True)
self.gr_udp_sink_0_2_0 = gr.udp_sink(gr.sizeof_char*1, "138.100.50.74", 1234, 1472, True)
self.gr_udp_sink_0_2 = gr.udp_sink(gr.sizeof_char*1, "138.100.50.73", 1234, 1472, True)
self.gr_throttle_0_0 = gr.throttle(gr.sizeof_char*1, samp_rate)
self.gr_throttle_0 = gr.throttle(gr.sizeof_gr_complex*1, samp_rate)
self.gr_noise_source_x_0 = gr.noise_source_c(gr.GR_GAUSSIAN, noise, 42)
self.gr_multiply_const_vxx_0 = gr.multiply_const_vcc((signal,))
self.gr_file_source_0 = gr.file_source(gr.sizeof_char*1, "/home/ubuntu/Desktop/tx.ts", True)
self.gr_file_sink_1 = gr.file_sink(gr.sizeof_char*1, "/home/ubuntu/Desktop/test2.ts")
self.gr_file_sink_1.set_unbuffered(False)
self.gr_file_sink_0 = gr.file_sink(gr.sizeof_char*1, "/home/ubuntu/Desktop/tx.ts")
self.gr_file_sink_0.set_unbuffered(False)
self.gr_add_xx_0 = gr.add_vcc(1)
self.digital_gmsk_mod_0 = digital.gmsk_mod(

samples_per_symbol=2,

90

bt=0.35,
verbose=False,
log=False,

)
self.digital_gmsk_demod_0 = digital.gmsk_demod(

samples_per_symbol=2,
gain_mu=0.175,
mu=0.5,
omega_relative_limit=0.005,
freq_error=0.0,
verbose=False,
log=False,

)
self.blks2_packet_encoder_0 = grc_blks2.packet_mod_b(grc_blks2.packet_encoder(

samples_per_symbol=2,
bits_per_symbol=1,
access_code="",
pad_for_usrp=True,

),
payload_length=0,

)
self.blks2_packet_decoder_0 = grc_blks2.packet_demod_b(grc_blks2.packet_decoder(

access_code="",
threshold=-1,
callback=lambda ok, payload: self.blks2_packet_decoder_0.recv_pkt(ok,

payload),
),

)

##
Connections
##
self.connect((self.gr_multiply_const_vxx_0, 0), (self.gr_throttle_0, 0))
self.connect((self.gr_add_xx_0, 0), (self.digital_gmsk_demod_0, 0))
self.connect((self.gr_noise_source_x_0, 0), (self.gr_add_xx_0, 1))
self.connect((self.gr_throttle_0_0, 0), (self.gr_file_sink_1, 0))
self.connect((self.blks2_packet_encoder_0, 0), (self.digital_gmsk_mod_0, 0))
self.connect((self.digital_gmsk_demod_0, 0), (self.blks2_packet_decoder_0, 0))
self.connect((self.gr_throttle_0, 0), (self.gr_add_xx_0, 0))
self.connect((self.gr_add_xx_0, 0), (self.wxgui_fftsink2_0_0, 0))
self.connect((self.gr_file_source_0, 0), (self.blks2_packet_encoder_0, 0))
self.connect((self.gr_file_source_0, 0), (self.gr_file_sink_0, 0))
self.connect((self.blks2_packet_decoder_0, 0), (self.gr_throttle_0_0, 0))
self.connect((self.gr_throttle_0, 0), (self.wxgui_fftsink2_0_0_0, 0))
self.connect((self.digital_gmsk_mod_0, 0), (self.gr_multiply_const_vxx_0, 0))
self.connect((self.gr_throttle_0_0, 0), (self.gr_udp_sink_0_2, 0))
self.connect((self.gr_throttle_0_0, 0), (self.gr_udp_sink_0_2_0, 0))
self.connect((self.gr_throttle_0_0, 0), (self.gr_udp_sink_0_2_1, 0))
self.connect((self.gr_throttle_0_0, 0), (self.gr_udp_sink_0_2_1_0, 0))

def get_signal(self):
return self.signal

def set_signal(self, signal):
self.signal = signal
self.gr_multiply_const_vxx_0.set_k((self.signal,))
self.set_variable_static_text_0(self.signal/self.noise)
self._signal_slider.set_value(self.signal)
self._signal_text_box.set_value(self.signal)

def get_noise(self):
return self.noise

def set_noise(self, noise):
self.noise = noise
self.gr_noise_source_x_0.set_amplitude(self.noise)
self.set_variable_static_text_0(self.signal/self.noise)
self._noise_slider.set_value(self.noise)
self._noise_text_box.set_value(self.noise)

def get_variable_static_text_0(self):
return self.variable_static_text_0

def set_variable_static_text_0(self, variable_static_text_0):
self.variable_static_text_0 = variable_static_text_0

91

self._variable_static_text_0_static_text.set_value(self.variable_static_text_0)

def get_samp_rate(self):
return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self.wxgui_fftsink2_0_0.set_sample_rate(self.samp_rate)
self.gr_throttle_0.set_sample_rate(self.samp_rate)
self.wxgui_fftsink2_0_0_0.set_sample_rate(self.samp_rate)
self.gr_throttle_0_0.set_sample_rate(self.samp_rate)

if __name__ == '__main__':
parser = OptionParser(option_class=eng_option, usage="%prog: [options]")
(options, args) = parser.parse_args()
tb = gmsk_sim()
tb.Run(True)

	Objectives
	GeneralObjective
	SpecificObjectives

	Structure
	RelatedWork
	SoftwareDefinedRadio
	UniversalSoftwareRadioPeripheral
	2.2.1.Themotherboard
	2.2.2.Thedaughterboard
	2.2.3.RelativeProjects
	2.2.3.1.OpenBTSProject
	2.2.3.2.GqrxSDRReceiver

	RadioBasic
	2.3.1.GMSK
	2.3.2.OFDM
	2.3.3.UDP

	GNURadioArchitecture
	GNURadioCompanion
	BasicBlocks
	3.3.1.UHDBlocks
	3.3.2.WXGUIBlocks

	Pythoncodesexplanation
	3.4.1.wfm_rcv_pll.py
	3.4.2.gmsk.py
	3.4.3.ofdm.py

	GSMScanning
	FMReceiver
	BenchmarkOFDM
	Real-timeDigitalVideoBroadcasting
	Conclusion
	FutureWork

