IMPLEMENTATION OF WIRELESS
COMMUNICATION BASED ON SOFTWARE
DEFINED RADIO

AUTHOR: LEI ZHANG
SUPERVISOR: CESAR BRISO RODRIGUEZ

PROGRAMA OFICIAL DE POSTGRADO EN INGENIERIA DE SISTEMAS Y
SERVICIOS PARA LA SOCIEDAD DE LA INFORMACION

DEPARTAMENTO DE INGENIERIA AUDIOVISUAL Y COMUNICACIONES.

E.U.LT.TELECOMUNICACION

JULIO DE 2013

Trabajo Fin de Master

Titulo Implementation of Wireless Communication based on
Software Defined Radio
Autor Lei Zhang

Programa de
Postgrado Oficial

MASTER EN INGENIERIA DE SISTEMAS Y SERVICIOS
PARA LA SOCIEDAD DE LA INFORMACION

Tutor César Briso Rodriguez
Tribunal
Presidente Rafael Herradon Diez
Secretario Antonio Minguez Olivares
Vocal Florentino Jiménez Muioz

Fecha de lectura

Madrid, a 18 de Julio de 2013

POLITECNICA

BegHttrs, ERLETORER,

— BR<MER>

THE ROAD AHEAD IS HARD AND ENDLESS,

BUT MY CLIMBING NEVER STOP.

—— QU YUAN <LI SAO>

ACKNOWLEDGEMENTS

My deepest gratitude goes first and foremost to my supervisor, Professor César
Briso Rodriguez, for his constant encouragement and guidance which offered
me valuable suggestions in the academic studies. Without his patient instruction,
insightful criticism and expert guidance, the completion of this thesis would not
have been possible. Also, | would like to thank my lab-mates and every friend in
Spain, especially Mr. Jean Raphaél Fernandez Fernandez and Mr. Sergio Pérez

Jiménez who gave me valuable experience and selfless help.
| also owe a special debt of gratitude to all the professors in E.U.LLT de
Telecomunicacion, from whose devoted teaching and enlightening lectures |
have benefited a lot and academically prepared for the thesis.
Apart from all above, | would like to extend my heartfelt gratitude to my beloved
families, for their permanent help and support through every step not only in this

time but also in my whole life.

I love this beautiful country and this excellent university, ;Gracias a fodos’

The author.

Index

B IIEOQUCHON. 1o eeee s s e ee s ees e se s eeseeeeseees e ees e ses e eeseserens 1
1.1 ODJECHVES. ...ttt ettt 3
1.1.1. General ODbJECHIVE..........ccooiiieeeee e 3
1.1.2. SPeCific ODJECHVES. ..o 3
1.2, SHTUCTUI. ...ttt 3
1.3. Related WOTK........coiiiiei e 4
2 Back@round..........coocuieiiiiiieieee et 6
2.1. Software Defined Radio............cocoiviiiiiiniiiiiciccccce e 7
2.2. Universal Software Radio Peripheral.............cccooovoeieiiieieeeeeeeeeeeee e 9
2.2.1. The motherboard............cccooiiiiiiiiie e 13
2.2.2. The daughterboard..............ccoooviioiiiie e 15
2.2.3. Relative Projects.........c.occuiiieiieeceeeceeee e 16
2.2.3.1.0pen BTS ProjecCt........ccvooiieiicieeeeeeeee e 16
2.2.3.2. GQrX SDR RECEIVET.......ceeeeeeeeeeeeeeeeeeeeeeeeeee e, 21

2.3. RO BASIC......coueiiiiiiiciie s 23
2.3 GMSK ..ot 24
2.3.2. OF DMLttt 26
2.3.3. UDP...c ettt 33

B GNU RAGIO. v 38
3.1. GNU Radio ArchiteCture..........cccooeieiiieeeeeeee e 40
3.2. GNU Radio COMPANION.........cooiiieieceeeeeeeeeeeteeee et 42

3.3, BASIC BIOCKS. ... 43

3.3.1. UHD BIOCKS......coviiiiicieiciteeiee e 43
3.3.2. WX GUI BIOCKS......c.ooveeeieiiiieieieiceisieiee e 44
3.4. Python codes explanation...............cccceoiieiiiiiiciecececeee e 45
3.4 1. WIML_TCV_PILPY oot 45
34,2, GIMSKPY ittt sttt este e aeeabesreenbeas 46
3.4 3. OFAMLPY et 48
4 IMPIEMENTALION.eetiiiiiiiie ettt ettt et s e esbeessaeenbeesaaeenbeessseenseens 49
4.1. GSM SCANNING......cciiiieiieieieeeeeee ettt et e e sbeebe e e e sseesseesaesseennas 50
4.2, FIM RECEIVET ...ttt 55
4.3. Benchmark OFDM.......ccooiiiiie e 59
4.4. Real-time Digital Video Broadcasting...........ccccoevvieiiiiiieciiciiceeceeeeee 63
4.4.1. TransSmitter SIde........ccooueiiiniriiincce e 65
4.4.2. RECEIVET SIUC....c..ceiiiiiiiiiiirceteeeee ettt 67
4.4.3. SIMUIAHION. ...t 69
4.4.4. ProblemsS......c.ooiiiiiiieeee et 72
5 Conclusion and FUUIE WOTK.............vweeveereeeeeeeeeeeeeeeeeeeseseseseseseseeseseeseeeeseeeess e seeeed 75
5.1, CONCIUSION. ...ttt 76
5.2, FUUIE WOTK....ceiniiiiiec ettt 76
B RETEICIICE. ... e e ee e e s seeseeeeee e ee e seeeed 77
APPENDIDX A ..ottt 81
APPENDIX Bttt 83
APPENDIX C...ooo ettt ettt 88

APPENDIX Dottt 90

Figure 2.1.1:

Index of figures

Software Defined Radio System Block Diagram

Figure 2.2.1:USRP motherboard and four daughter boards

Figure 2.2.2:
Figure 2.2.3:
Figure 2.2.4:
Figure 2.2.5:
Figure 2.2.6:
Figure 2.2.7:
Figure 2.2.8:
Figure 2.3.1:

Figure 2.3.2:

Universal Software Radio Peripheral block diagram

USRP motherboard Architecture

Digital Down Converter Block Diagram

GSM network diagram

Open BTS RF component

Mobile phone network system

NOAA-18 APT image received with Ggrx and Funcube Dongle
Spectral density of MSK and GMSK signals

Block diagram of I-Q modulator for GMSK

Figure2.3.3: A sub-channel(left) and 5 sub-carriers OFDM spectrum(right)

Figure2.3.4: OFDM Orthogonality

Figure2.3.5: Frequency Domain Orthogonality

Figure 2.4.3:
Figure 2.4.4:
Figure 2.4.5:
Figure 2.4.6:
Figure 3.1.1:
Figure 3.1.2:
Figure 3.1.3:
Figure 4.1.1:

Figure 4.1.3:

OFDM modulator

OFDM demodulator

OFDM Symbol with Cyclic Prefix
UDP packet structure

GNU Radio combined with USRP
GNU Radio Software Architecture
Untitled GNU Radio companion
UHD FFT window

GSM Channel bump

11

12

13

13

17

18

19

24

25

26

27

27

29

30

31

34

38

39

41

51

52

Figure 4.1.4:
Figure 4.2.1:
Figure 4.2.2:
Figure 4.2.2:
Figure 4.3.1:
Figure 4.3.2:
Figure 4.3.3:

Figure 4.3.4:

Figure 4.3.5:

Figure 4.4.1:
Figure 4.4.2:
Figure 4.4.3:
Figure 4.4.4:
Figure 4.4.5:
Figure 4.4.6:
Figure 4.4.7:
Figure 4.4.8:

Figure 4.4.9:

Frequency correction burst and possible traffic channel
Stereo FM Receiver system

Stereo FM theory

Received signal spectrum of Stereo FM Receiver system
OFDM transmitter (up) and receiver (down)

Using the “benchmark_tx.py”

Simulation for OFDM transmission

53

54

55

57

58

59

60

OFDM signal spectrum(500ksps, occupied tones=200, FFT length=512)

61

OFDM signal spectrum(500ksps, occupied tones=100, FFT length=1024)

DVB project description diagram
Transmitter GNU Radio block diagram
Receiver GNU Radio block diagram

UDP client setup

DVB simulation block diagram

Video transmission when SNR=50
Broadcasting video on three different clients
Video transmission when SNR=10

VLC captured video transmission when SNR<10

62

63

64

67

68

69

69

70

71

71

IndeXx of tables

Table 2.1 USRP Specifications

Table 2.2 USRP daughterboard list

Table 2.3 Frequency range in tuners

Table 2.4 A comparison of TCP and UDP

Table 3.1 Explanation for “WBFM Receiver PII” block
Table 3.2 Explanation for “GMSK Mod” block

Table 3.3 Explanation for “GMSK Demod” block
Table 3.4 Explanation for “OFDM Mod” block

Table 4.1 GSM Frequency bands

12

15

21

35

45

45

46

47

50

Index of equations
Equation 1 IFFT of the signal 28
Equation 2 FFT of the signal 28

Equation 3 The bandwidth of OFDM signal 61

Resumen

Software Defined Radio (SDR) es una tecnologia emergente que estd creando un
impacto revolucionario en la tecnologia de radio convencional. Un buen ejemplo de
radio software son los sistemas de cédigo abierto llamados GNU Radio que emplean
un kit de herramientas de desarrollo de software libre. En este trabajo se ha empleado
un kit de desarrollo comercial (Ettus Research) que consiste en un mddulo de
procesado de sefal y un hardaware sencillo. EI médulo emplea un software de
desarrollo basado en Linux sobre el que se pueden implementar aplicaciones de radio
software muy variadas. El hardware de desarrollo consta de un un microprocesador de
propésito general, un dispositivo programable (FPGA) y un interfaz de radiofrecuencia
que cubre de 50 a 2200MHz. Este hardware se conecta al PC por medio de un interfaz
USB de 8Mb/s de velocidad. Sobre la plataforma de Ettus se pueden ejecutar
aplicaciones GNU radio que utilizan principalmente lenguaje de programacion Python
para implementarse. Sin embargo, su modulo de procesado de sefial esta construido
en C + + y emplea un microprocesador con aritmética de coma flotante. Por lo tanto,
los desarrolladores pueden rapida y facilmente construir aplicaciones en tiempo real
sistemas de comunicacion inalambrica de alta capacidad. Aunque su funcién principal
no es ser un simulador, si no puesto que hay componentes de hardware RF, Radio
GNU sirve de apoyo a la investigacion del algoritmo de procesado de sefiales basado

en pre-almacenados y generados por los datos del generador de sefial.

En este trabajo fin de master se ha evaluado la plataforma de hardware de DEG
(USRP) y el software (GNU Radio). Para ello se han empleado algunas técnicas de
modulacion basicas en el sistema de comunicacion inaldambrica. A partir de los
ejemplos proporcionados por GNU Radio, hemos realizado algunos experimentos
relacionados, por ejemplo, escaneado del espectro, demodulacién de sefiales de FM
empleando siempre el hardware de USRP. Una vez evaluadas aplicaciones sencillas
se ha pasado a realizar un cierto grado de mejora y optimizacion de aplicaciones
complejas descritas en la literatura. Se han empleado aplicaciones como la que
consiste en la generacion de un espectro de OFDM vy la simulacién y transmision de de
sefales de video en tiempo real. Con estos resultados se esta ahora en disposicion de

abordar la elaboracién de aplicaciones complejas.

Summary

In current communication systems, there are many new challenges like various
competitive standards, the scarcity of frequency resource, etc., especially the
development of personal wireless communication systems result the new system
update faster than ever before, the conventional hardware-based wireless
communication system is difficult to adapt to this situation. The emergence of SDR
enabled the third revolution of wireless communication which from hardware to
software and build a flexible, reliable, upgradable, reusable, reconfigurable and low

cost platform.

The Universal Software Radio Peripheral (USRP) products are commonly used with
the GNU Radio software suite to create complex SDR systems. GNU Radio is a toolkit
where digital signal processing blocks are written in C++, and connected to each other
with Python. This makes it easy to develop more sophisticated signal processing
systems, because many blocks already written by others and you can quickly put them
together to create a complete system. Although the main function of GNU Radio is not
be a simulator, but if there is no RF hardware components,it supports to researching
the signal processing algorithm based on pre-stored and generated data by signal

generator.

This thesis introduced SDR platform from hardware (USRP) and software(GNU Radio),
as well as some basic modulation techniques in wireless communication system.
Based on the examples provided by GNU Radio, carried out some related experiments,
for example GSM scanning and FM radio station receiving on USRP. And make a
certain degree of improvement based on the experience of some investigators to
observe OFDM spectrum and simulate real-time video transmission. GNU Radio
combine with USRP hardware proved to be a valuable lab platform for implementing

complex radio system prototypes in a short time.

1 Introduction

Radio communication in the modern communication system occupies an
extremely important position, which is widely used in commercial, meteorology military
and civilian fields. Communication system constantly transit from analog systems to
digital systems, a number of digital IF receiver appeared in this trend. Despite these
receivers can cover multiple bands, but they only work on a single frequency band and
mode, function is relatively small, lack of flexibility and scalability. It is still not fully
interoperable between different types of stations, unable to meet the modern

communications.

Conventional communication system which hardware-based, for the specific
purpose, urgently needs to be replaced by a multiband, multimode, programmable,
versatile radio system. The Software Defined Radio(SDR) concept put forward in a

timely manner to solve these problems.

Software Definition Radio, suggests that it is a wireless communications which
use modern software to manipulate and control the traditional "pure hardware circuit".
Breaking the development pattern that communication device implementation always
depends on hardware[1]. The central idea is: constructs a open, standardized, modular
common hardware platform, and the various functions, such as working frequency,
modulation and demodulation types, data formats, encryption mode communication
protocol software to accomplish, and to A/D and D/A converter as close to the antenna,
in order to develop a high degree of flexibility, openness, a new generation of wireless

communication systems[2].

USRP (Universal Software Radio Peripheral) designed to enable ordinary
computer can work like high bandwidth software defined radios. Essentially, it acts as
digital baseband and IF section in radio communications system[3]. At the same time,
there is an open source software named GNU Radio which is one of free software
development tool kit and provides signal operation and processing module, it can be
implemented software defined radio on a low cost radio frequency (RF) hardware
which is easily produced and a general purpose microprocessor. GNU Radio
applications are mainly using Python programming language to write. But its core
signal processing module is built in C++ on a microprocessor with floating-point
arithmetic. Thus, developers can quickly and easily build a real-time, high-capacity

wireless communication systems.

1.1. Objectives

1.1.1. General Objective

Learning and understanding the basics of the wireless communication,
combined with the applications of software defined radio. Search relevant literature,
learning work principle and usage of USRP and GNU Radio by the examples provide

by Ettu Research. Carried out relevant test to obtain results for analysis.

1.1.2. Specific Objectives

e Broadly understanding the application of SDR platform.

¢ |Installing correctly and learning the working principle of USRP.

e Setting up GNU Radio to implement the adapted project.

e Scanning the GSM base station nearby and analyze the frequency
spectrum.

o Changing the center frequency by GNU Radio to receive different FM
radio stations.

¢ Transmitting the OFDM signal and observe the spectrum, on this basis,
designing a simulation to observe and transmit the OFDM signal.

o Creating a simulation for video transmission, add UDP sink block to

achieve real-time video broadcasting.

1.2. Structure

This master work is conducted into two phases. The first phase is a literature
study about Software Defined Radio, the working principle of GNU Radio and the
USRP. The details of the literature study is described in chapter 2 combine with chapter
3. These study are essential to fully understand how to use the approach, set the

parameters and finish a application and implemented in chapter 4.

The second phase describes the result of the practical work. In this phase the
setting up for GNU Radio and USRP will described in details. an FFT spectrum
analysis experiment is proposed to perform GSM scanning system. Then a stereo
wideband FM receiver is implemented to receive different FM radio stations. The
approach to transmitting OFDM signal described in the 3 section of this phase. And
base on the python code, designed a OFDM signal observing simulation. The last
implementation is a design for real-time digital video broadcasting, the explanation and

test result will described step by step.

Finally, The thesis finishes with the considerations, conclusions and future work.

USRP B100 datasheet and the created source codes can be found in the appendix.

1.3. Related Work

Chapman E, El Choueiry R, Jackson J, et al presented the design, development,
and results of two major aspects of a Software Defined Radio. They are the RF unit,
which is the means of transmitting wireless data, and the Forward Error Correction
(FEC) coding which supplies a coding gain to the system, and a simulation of the entire

SDR in Multi-Disciplinary Engineering Design Conference[4].

David A. Scaperoth defined cognitive radio merges artificial intelligence and
software defined radios. This research create a method for communicating between
these two levels and showed a genetic algorithm approach to perform intelligent radio

adaptation, using the GNU radio platform as an example[5].

Although conventional cryptographic security mechanisms are essential to the
overall problem of securing wireless networks, these techniques do not directly
leverage the unique properties of the wireless domain to address security threats[6].
Zang Li, Wenyuan Xu, Rob Miller and Wade established new forms of authentication
and confidentiality that operate at the physical layer and can be used to facilitate cross-
layer security paradigms. Their work showed that GNU Radio combine with USRP will

be a good choice to perform prototyping of wireless protocols.

Kalen Watermeyer aimed to create an ADC-based system that could capture

samples for processing in software on a host PC, while providing a framework for

functionality enhancements through system extensions in [7]. his demonstrates that
GNU Radio software is not on only combine with USRP, but also with other different

kind of hardware peripherals.

In[8], Mate A, Lee K H, Lu | T use Software Defined Radio implement spectrum
sensing in real environment and verify two present algorithms based on the time-
covariance matrix. In their work, GNU Radio and USRP were combined as a powerful
tool to do spectrum sensing without any prior knowledge of primary signal and noise
power. Spectrum sensing plays a paramount role in cognitive radio, Sarijari M A and his
colleagues also made an analysis study on energy detection sensing based on GNU
radio and USRP[9].

OFDM has developed into a popular scheme for wideband digital
communication. [10] implemented in GNU Radio framework, enables interference-free
coexistence of two OFDM-based systems within a common frequency band with
optimally configured transmission parameters for given system constraints to meet the
optimal utilization of radio resources in multi-carrier based systems. Braun M, Mller M
and Fuhr M presented a measurement testbed for OFDM radar which uses USRP as a
front-end to perform measurements for car-to-car or car-to-infrastructure applications.
And showed how signals parametrized according to the IEEE 802.11a/p standards can
be enhanced by radar functions. By using the constellation expansion technique for
OFDM based systems in DSA networks. the available bandwidth can be used
efficiently while at the same time keeping the interference power level below a certain

threshold[12], Selim A and Doyle L also did some very valuable work.

2 Background

This chapter describes in detail about the relevant background knowledge of the
master work. First of all, section 2.1 will explain the basic concepts and ideas behind
Software Defined Radio platforms. Afterwards, As an excellent platform and the key
equipment of this thesis, Universal Software Radio Peripheral (USRP) conducted in-
depth introduction in section 2.2 and important applications in radiocommunication area
expounded in section 2.3. The last section will explain the different basic background
knowledge about GSMK, OFDM as well as UDP. And the importance of these
techniques which cause to be widely implemented in the current communication

system.

2.1. Software Defined Radio

J.Mitola in 1992 first proposed the concept of software defined radio[13], since
the technology has been widespread concern in the industry and research. Its original
purpose was to create a device capable of emulating multiple radios working at
different frequencies. Nowadays, it has evolved and is still doing so into a tool which

has a much broader use.

In SDR, signal will be processed in digital mode instead in analog mode as in
the conventional radio. The digitization work will be done by a device called the Analog
to Digital Converter (ADC). Figure 2.1.1 shows the concept of Software Defined Radio.
It shows that the ADC processor is taking place after the RF Front-End circuit. RF
Front-End is used to down convert the signal to the lower frequency called an
Intermediate Frequency (IF); this is necessary due to the limitation of the speed of
current Commercial of The Shelf (COTS) ADC. The ADC will digitize signal and pass it
to the baseband processor for further processes; demodulation, channel coding,
source coding and etc. Therefore compared with the conventional radio equipment, the
SDR equipment is easier to reconfigure, which can flexibility for multi-format switch and

adapt technology development and evolution.

Figure2.1.1. Software Defined Radio System Block Diagram

Software Defined Radio broadly divided into three categories:

The device integrated with a variety of different formats. For example the
GSM-CDMA dual-mode cellphone on the market. Obviously, this
approach can only be switched between several preset formats, to
increase support for the new standard would mean more integrated

circuit, reconfiguration capability is very limited.

Based on field-programmable gate array (FPGA) and digital signal
processor (DSP). Such programmable hardware reconfiguration
capability has been greatly improved. But for FPGA VHDL, Verilog and
other languages as well as 418 assembly language are for vendor-
specific products, making the software in this way too dependent on
specific hardware, portability is poor. In addition, for the majority of
technical people, FPGA and DSP development threshold is still high and

the development process is relatively cumbersome.

For the above two types of defects, the third category of software radio
equipment using common hardware, for example commercial servers,
ordinary PC and embedded systems as a signal processing software
platform. It has the following advantages: pure software signal
processing with great flexibility; adopt a common high-level languages
(such as C / C++) for software development, scalability and portability,

short development cycle; based on a common hardware platform, lower

cost, and enjoy the advancement of computer technology brings various
advantages for example CPU processing power continues to improve as

well as software technology, etc.

Although based on a common hardware platform, software-defined radio has
many advantages, but for the efficiency in processing speed, size and power
consumption as well as real-time aspect, the common hardware platform is still worse
than that dedicated FPGA and DSP hardware at the present stage. So now the second
category of software radio is still the mainstream, but because of microelectronics
technology and the rapid development of computer technology, software radio will

increasingly favor a common hardware platform.

Most recently, the GNU Radio using primarily the Universal Software Radio
Peripheral (USRP) through a USB 2.0 interface, an FPGA, and a RF front-end high-
speed set of analog to digital and digital to analog converters, combined with
reconfigurable free software. Its sampling and synthesis bandwidth is a thousand times

that of PC sound cards, which enables wideband operation.

The HPSDR (High Performance Software Defined Radio) project uses a 16-bit
135 MSPS analog-to-digital converter that provides performance over the range 0 to55
MHz comparable to that of a conventional analogue HF radio. The receiver will also
operate in the VHF and UHF range using either mixer image or alias responses.
Interface to a PC is provided by a USB 2.0 interface though Ethernet could be used as
well. The project is modular and comprises a back plane onto which other boards plug
in. This allows experimentation with new techniques and devices without the need to
replace the entire set of boards. An exciter provides 1/2 W of RF over the same range

or into the VHF and UHF range using image or alias outputs[14].

WebSDR[15] is a project initiated by Pieter-Tjerk de Boer providing access via
browser to multiple SDR receivers worldwide covering the complete shortwave
spectrum. Recently he has analyzed Chirp Transmitter signals using the coupled

system of receivers[16].

2.2. Universal Software Radio Peripheral

The current wireless communication systems typically use high frequencies to

communicate, Down converting must use to sample and transfer those high
frequencies the SDR implementation. Universal Software Radio Peripheral (USRP) is
such a family of hardware by computer hosted. Simultaneously, a flexible and low-cost
platform for SDR developed by Matt Ettus [17] used to create the connection between
the RF-world (radio frequency) and the PC. USRP composed by USRP motherboard,
along with a variety of daughterboard and the corresponding antenna. Figure 2.2.1
shows a USRP mother board combined with four daughter boards which means the
individual blocks of a typical USRP product consists of two parts: one motherboard with
a high-speed signal processing FPGA, and one or more daughterboards which cover
different frequency ranges and can be swapped. Combine them to achieve the bit
stream data from the antenna to the host computer as a receiver, or from the host
computer to the antenna as a transmitter. In a variety of daughterboards, USRP series
covers the entire range from DC to 5.9GHz, which include all frequencies from AM
radio to over IEEE802.11 standard. The USRP is constructed out of the different

components, which are described in detailed below:

e USB2.0 Controller

e ADC (Analog to Digital Converter)

o DAC (Digital to Analog Converter)

e PGA(Programmable Gain Amplifier)

o Daughterboards

e FPGA (Field Programmable Gate Array)

The specific configuration of modules above and their workflow is described in
Figure 2.2.2. And the specifications of the USRP in first generation were listed in table
2.1.

10

Receive Channel Transmit Channel
RF Interface Altera FPGA RF Interface

DC Power USE 2.0 Analog Devices
Port Mixed Signal
Processor

Figure 2.2.1:USRP motherboard and four daughter boards [18]

11

Quadrature Complex
Mixer Mixer
- } ._]_, Complex
: LE Baseband
? T 84 Msps T T ! : BFH USB 20
b R | (oo Redio
C y - to. scalisia application
i:::;;ic) (14 bits on MHz
Tx side)

USRP
Daughterboard

USRP
Motherboard

Figure 2.2.2: Universal Software Radio Peripheral block diagram[19]

Supported OS
Linux
Mac OS X
Windows XP,
Windows
2000,
FreeBS D,
NetBSD

Input
Number of input
channels:

4 (or 2 I/Q pairs)
Sample rate:

64 Ms/s
Resolution: 12 bits
SFDR: 85dB

Output
Number of output
channels:

4 (or 2 I/Q pairs)
Sample rate:
128 Ms/s
Resolution: 14 bits

SFDR: 83 dB

Auxiliary I/Q
High -speed digital
I/0: 64 bits

Analog input:

8 channels
Analog output:

8 channels

Table 2.1 USRP Specifications [20]

2.2.1. The motherboard

The main function of the motherboard are IF sampling and the conversion

between IF signal and baseband signal.
As figure 2.2.2 shows there are four slots on the motherboard which are used to

connect the daughter boards with the mother board. Two of the four slots, labeled TXA

and TXB, are meant for the transmitter daughterboard while another two, RXA and

12

RXB, are for the receiver daughterboard.

Receive
Daughtarboard

Transmif
Daughterboard

Fx2
UsB 2
Controller
ADC — - ADC —
Recaiva
Daughterboard
- ADC — — ADC —
FPGA
DAC — DAC
Transmit
Daughterboard
- DAC — — DAC —

Figure 2.2.3: USRP motherboard Architecture [20]

The motherboard consists of four 12-bit Analog to Digital Converter (ADC) with

sampling rate up to 64Msps(samples per second), four 14-bit Digital to Analog

Converter (DAC) with speed up to 128Msps, two Digital up Converter (DUC) to up

convert the baseband signal to 128Msps before translating them to the selected output

frequency, a programmable USB 2.0 controller for communication between USRP and

GNU Radio or other software which supported USRP and an FPGA for implementing

four Digital Down Converter (DDC) which described by the figure below and high rate

signal processing.

fJ/N data
‘\ to host
» > |
Input from y Decimating
ADC Low Pass Filter
—» Q
sin cos T
NCO Bandwidth
Sine / Cosine decimation
Generator factor=N

T

Center frequency
-f/2 to +f,/2

Figure 2.2.4: Digital Down Converter Block Diagram [21]

13

The digitized samples from ADC are mixed down to the desired IF by being
multiplied with a sine and cosine function respectively resulting in the | and Q path. The
frequency is generated with a numerically-controlled oscillator (NCO) which
synthesizes a discrete-time, discrete amplitude waveform within the FPGA. Via the
used NCO, very rapid frequency hopping is feasible. Afterwards a decimation of the
sampling rate is performed by an arbitrary decimation factor N. The sampling rate (fs)
divided by N results in the output sample rate, sent to host. In transmit path, the same
procedure is done by using digital up converters (DUC) and digital analog converters
(DAC).

The FPGA also supports time dependent applications which e.g. use TDMA. A
free running internal counter allows incoming samples to be sent in strictly definable

time stamps.

2.2.2. The daughterboard

The daughterboard is acting as the RF front-end of the SDR. In most of
daughterboards, the signal is already filtered, amplified and tuned to a baseband
frequency dependent on the boards IF bandwidth and local oscillator frequency. There
are also so called Basic Rx/Tx boards with no frequency conversion or filtering. They
only provide a direct RF connection to the motherboard. The details for most of

available daughterboards are listed in table 2.2.

Identifier Frequency range Area of application
Transceiver

WBX 50-2200 MHz Broadcast TV; GSM; WSN
SBX 400-4400 MHz WiFi, WiMax
RFX900 750-1050 MHz GSM (Low Band)
RFX1200 1150-1450 MHz GPS
RFX1800 1.5-2.1 GHz DECT, GSM (High Band)
RFX2400 2.3-2.9 GHz WLAN, Bluetooth
XCVR 2450 2.4 GHz and 5 GHz WLAN

Transmitter & Receiver

Basic TX, Basic RX

1-250 MHz

Misc baseband operations

TVRX Receiver

50-860 MHz

VHF, DAB

DBSRX2 Receiver

800-2300 MHz

Cellular and PCS,DECT

14

Table 2.2 USRP daughterboard list

2.2.3. Relative Projects

In this section, Two practical and interesting projects will be introduced.

2.2.3.1. Open BTS Project

It's been a century since the growth of telecom industry, still telecom sector is in
the middle of a communication revolution as wireless technologies radically transform
the industry. The world of telecommunications has been characterized by a remarkable
growth like many other sectors which experienced rapid growth and high technological
development. Implementation of GSM (Global System for Mobile Communications)
system was a big step towards improving communication, traditionally it has an

expensive hardware.

The most common example of a cellular network is a mobile phone (cell phone)
network. A mobile phone is a portabletelephone which receives or makes calls through
a cell site (base station), or transmitting tower. Radio waves are used to transfer

signals to and from the cell phone.

Modern mobile phone networks use cells because radio frequencies are a
limited, shared resource. Cell-sites and handsets change frequency under computer
control and use low power transmitters so that a limited number of radio frequencies

can be simultaneously used by many callers with less interference.

A cellular network is used by the mobile phone operator to achieve both
coverage and capacity for their subscribers. Large geographic areas are split into
smaller cells to avoid line-of-sight signal loss and to support a large number of active
phones in that area. All of the cell sites are connected to telephone exchanges (or

switches), which in turn connect to the public telephone network.
In cities, each cell site may have a range of up to approximately %2 mile, while in

rural areas, the range could be as much as 5 miles. It is possible that in clear open

areas, a user may receive signals from a cell site 25 miles away.

15

Since almost all mobile phones use cellular technology, including GSM, CDMA,
and AMPS (analog), the term "cell phone" is in some regions, notably the US, used
interchangeably with "mobile phone". However, satellite phones are mobile phones that
do not communicate directly with a ground-based cellular tower, but may do so

indirectly by way of a satellite.

A simple view of the cellular mobile-radio network consists of the following:

A network of radio base stations forming the base station subsystem.

e The core circuit switched network for handling voice calls and text.

¢ A packet switched network for handling mobile data.

o The public switched telephone network to connect subscribers to the

wider telephony network.

This network is the foundation of the GSM system network. There are many
functions that are performed by this network in order to make sure customers get the
desired service including mobility management, registration, call set up, and
handover[22].

A normal GSM network working is as follows.The end point of the system will be
BTS (Base Transceiver Station) which send radio frequency signal to and from mobile
devices or a modem.The BTS comes under BSC(Base station Controller) with makes
the communication between there radio signals with MSC/VLR. The MSC/VLR is
responsible to authenticate the user against the database (HLR — Home Location
Register, AuC - Authentication Center), call setup and call routing. A typical GSM

network diagram is shown below.

16

MSV/VLR AucC

% g%

Figure 2.2.5 GSM network diagram

An upcoming technology named Open Base Transceiver Station (BTS) which is
a new kind of cellular network that can be installed and operated at a very low cost
compare to current GSM technology. Recent development in Software Defined Radio
(SDR) in signal processing has made it much more economical to implement such a
system where most of the back end hardware can be substituted with real-time
software applications. With the development of GNU radio and Universal Software
Radio Peripheral (USRP) this network can be accessed by the normal GSM handsets

which are available in the market.

Figure 2.2.6 described the composition of the radio frequency part which Open
BTS used. the key component is the Universal Software Radio Peripheral which is also
the core of Open BTS.

Conventional radio signal processing is essentially complete by the pure
hardware device, but the realization of USRP is send the complex signal to the PC
software to processing, including modulation and demodulation of the signal and line
switching. The most basic processing for radio frequency signals, such as a digital
signal conversion, interpolation and sampling, to the FPGA on USRP accomplished
through a USB to link PC.

Put such advanced features to the software, and put the underlying processing

practices to the hardware ensure the performance of the system and also convenient

for system expansion.

17

Band Pass Filter Low Noise Amplifer

Ty I
e - SESa— - Duplexer
@ ® .

-]

-]
L] -]
(-]

:{j' ®

Universal Software Power 7‘
Radio Peripheral Amplifier

Figure 2.2.6 Open BTS RF component[23]

Open base transceiver station (BTS) is a Unix application that uses a software
defined radio platform(like the USRP) to present a GSM (Global System for Mobile
Communications) air interface ("UM") to standard GSM handsets and uses a SIP softs
witch or PBX to connect calls. (It might even say that Open BTS is a simplified form of
IMS that works with 2G feature-phone handsets). The combination of the global-
standard GSM air interface with low-cost VolP backhaul forms the basis of a new type
of cellular network that could be deployed and operated at substantially lower cost than
existing technologies (for example, commercial carrier BTS systems) in many
applications, especially rural cellular deployments and private cellular networks in

remote areas[23].

18

Ml_.[SCiL

i
‘ﬁusa ﬁ—?;‘

Open BTS

RF and USRP
OpenBTS System

/ Network SubSystem (NSS)

! HLR
: | AUC
i (EIR)

/ | MSC/VLR

H/E etc

- WRARRARARAN -

P GosN

Base Station Subsystem (BSS) SGSN Gi GPRS Core Network

Figure 2.2.7 Mobile phone network system

An entire mobile phone network system which contained Open BTS project

shows above:
Open BTS, acts as a mobile phone base station (BTS) and base station
controllers (BSC), provide basic functions of modulation, demodulation and assigning

channel frequency for each communication.

Asterisk, acts as mobile switching center (MSC) and telephone switching center.

If there is a internal communication in the Open BTS users network, the Asterisk will

19

responsible for establishing communication links directly in the internal network; if there
is a phone call to the external network, the Asterisk will connected PSTN networks via

VolP gateway.

MySQL, responsible for mobile phone users account management, recording
call information and data. It is also responsible for the storage functions for HLR (Home

Location Register) and VLR (Visitor Location Register) in the traditional mobile network.

Antenna, RF hardware and USRP, via a USB port to connect to a PC, running

free software, access to Internet, can form a complete mobile phone networks.

2.2.3.2. Gqrx SDR Receiver

Gagrx SDR receiver is designed and implemented by Alexandru Csete OZ9AEC
which is a software defined radio receiver for Funcube Dongle (FCD), RTL2832U-
based DVB-T devices (RTL-SDR), and Universal Software Radio Peripheral (USRP)
and Osmo SDR devices. It is powered by GNU Radio and the Qt GUI toolkit[24].

OsmoSDR can be thought of something in between a FunCube Dongle (only
96kHz bandwidth) and a USRP (much more expensive). For a very cheap (but
inaccurate) SDR, you can use the DVB-T USB stick using the RTL2832U chip, as
documented in rtl-sdr[25].

The RTL2832U outputs 8-bit I/Q-samples, and the highest theoretically possible
sample-rate is 3.2 MS/s, however, the highest sample-rate without lost samples that
has been tested so far is 2.4 MS/s. The frequency range is highly dependent of the
used tuner, dongles that use the Elonics E4000 offer the widest possible range as the

table shows below.

Frequency Range

Elonics E4000 | 52 - 2200 MHz with a gap from 1100 MHz to 1250 MHz (varies)

Rafael Micro | 24 - 1766 MHz

R820T

Fitipower 22 - 1100 MHz (FC0013B/C, FC0013G has a separate L-band input,
FC0013 which is unconnected on most sticks)

Fitipower 22 -948.6 MHz

20

FC0012
FCI FC2580 146 - 308 MHz and 438 - 924 MHz (gap in between)

Table 2.3 Frequency range in tuners

Currently, Ggrx offers the following features:

o Automatically detect supported devices attached to the computer.

e Process 1/Q data from Funcube Dongle, RTL2832U SDR, USRP and
OSmo SDR.

e Change frequency, gain and apply various correction (freqeuncy, 1/Q

blanace).

¢ AM, SSB, FM-N and FM-W modulations.

e Variable band pass filter.

e Squelch, noise blankers and AGC.

e FFT plot and waterfall.

e Record audio to file (playback is planned).

e Spectrum analyzer mode where all signal processing is disabled.

For example, in this project Csete uses the Funcube Dongle with an arrow

antenna and the hardware(for example USRP) supported by Gqgrx received automatic

picture transmissions (APT) from NOAA weather satellites using Ggrx SDR, record

them to a WAV file, and finally decode the images using the free and open source

Atpdec decoder there is a very nice results show below[24].

21

Figure 2.2.8 NOAA-18 APT image received with Ggrx and Funcube Dongle[24]

2.3. Radio Basic

Two widely applied modulation techniques and a useful internet protocol which
associated with this thesis will be introduced in this section as background knowledge

and aim to learn to develop complex wireless applications.

22

2.3.1. GMSK

GMSK (Gaussian Filtered Minimum Shift Keying) is a digital modulation method
that developed on the basis of MSK (Minimum Shift Keying) modulation, which is a
form of modulation used in a variety of digital radio communications systems. It has
advantages of being able to carry digital modulation while still using the spectrum
efficiently. One of the problems with other forms of phase shift keying is that the
sidebands extend outwards from the main carrier and these can cause interference to
other radio communications systems using nearby channels. In GMSK, because the
Gauss pre-modulation filtering for digital signal before the modulation, the modulated
signal in the zero crossing is not only continuous phase, but also smoothing filter, so
the spectrum of the GSMK modulated signal compact and has good error
characteristics, has been used in a number of radio communications applications.
Possibly the most widely used is the GSM (Global System for Mobile communication)

cellular technology which is used worldwide and has well over 3 billion subscribers.

MSK and also GMSK modulation are what is known as a continuous phase
scheme. Here there are no phase discontinuities because the frequency changes occur
at the carrier zero crossing points. This arises as a result of the unique factor of MSK
that the frequency difference between the logical one and logical zero states is always
equal to half the data rate. This can be expressed in terms of the modulation index, and

it is always equal to 0.5.

A plot of the spectrum of an MSK signal shows sidebands extending well
beyond a bandwidth equal to the data rate. This can be reduced by passing the
modulating signal through a low pass filter prior to applying it to the carrier. The
requirements for the filter are that it should have a sharp cut-off, narrow bandwidth and
its impulse response should show no overshoot. The ideal filter is known as a
Gaussian filter which has a Gaussian shaped response to an impulse and no ringing. In

this way the basic MSK signal is converted to GMSK modulation.

23

[
0 -
2 104
=
27 20
Eo
2@ 30 - MSK
ER
T 40 -
o
=50 7 GMSK (ET=0.5)
[[[
05 1 15

Frequency/bit rate offset from carrier

Figure 2.3.1 Spectral density of MSK and GMSK signals

There are two main ways in which GMSK modulation can be generated. The
most obvious way is to filter the modulating signal using a Gaussian filter and then
apply this to a frequency modulator where the modulation index is set to 0.5. This
method is very simple and straightforward but it has the drawback that the modulation
index must exactly equal 0.5. In practice this analogue method is not suitable because

component tolerances drift and cannot be set exactly.

The second method is more widely used which described in figure 2.3.1. Here
what is known as a quadrature modulator is used. The term quadrature means that the
phase of a signal is in quadrature or 90 degrees to another one. The quadrature
modulator uses one signal that is said to be in-phase and another that is in quadrature
to this. In view of the in-phase and quadrature elements this type of modulator is often
said to be an I-Q modulator. Using this type of modulator the modulation index can be
maintained at exactly 0.5 without the need for any settings or adjustments. This makes
it much easier to use, and capable of providing the required level of performance
without the need for adjustments. For demodulation the technique can be used in

reverse.

24

-

!
Gaussian
Data #| low-pass = Local = z =
input fitar oscillator
i
[1\
i
i / Summation
90~ a0e
phasea phass
shift shift

l
-

Mixar
or multiplier

Figure 2.3.2 Block diagram of I-Q modulator for GMSK

There are several advantages to the use of GMSK modulation for a radio
communications system. One is obviously the improved spectral efficiency when

compared to other phase shift keyed modes.

A further advantage of GMSK is that it can be amplified by a non-linear amplifier
and remain undistorted This is because there are no elements of the signal that are
carried as amplitude variations. This advantage is of particular importance when using
small portable transmitters, such as those required by cellular technology. Non-linear
amplifiers are more efficient in terms of the DC power input from the power rails that
they convert into a radio frequency signal. This means that the power consumption for
a given output is much less, and this results in lower levels of battery consumption; a

very important factor for cell phones.
A further advantage of GMSK modulation again arises from the fact that none of
the information is carried as amplitude variations. This means that is immune to

amplitude variations and therefore more resilient to noise, than some other forms of

modulation, because most noise is mainly amplitude based[26].

2.3.2. OFDM

In recent years, OFDM (Orthogonal Frequency Division Multiplexing) technique

25

has been replaced the single-carrier spread spectrum technique (such as CDMA) in the

new generation broadband wireless communication system.

OFDM is a multi-carrier modulation scheme, by reducing and eliminating the
influence of inter-symbol interference to overcome the frequency selective fading in
channel. It divides total available bandwidth into a large number of closely-spaced
orthogonal sub-carriers and simultaneously transfers signals on these sub-carriers with
a low data rate, achieving a total data rate approaching ideal Nyquist data rate. The
data is divided into several parallel data streams or channels, each sub-carrier is
modulated with a conventional scheme,such as quadrature modulation(QAM) or phase
shift keying (PSK) at low symbol rate. maintaining total data rates similar to
conventional single-carrier modulation schemes in the same bandwidth. Figure 2.3.3
shows a single sub-channel and 5 sub-carriers OFDM spectrum, at the central

frequency of each sub-channel, there is no crosstalk from other sub-channels.

R AN D AP | REPVAY- YA s VAR A A

R ARY \ j \/ YA "HVV\/’VW W\jvvv'vv~vv 7

Figure2.3.3 A sub-channel(left) and 5 sub-carriers OFDM spectrum(right)

® Orthogonality

Conceptually, OFDM is a specialized FDM, the additional constraint being: all
the carrier signals are orthogonal to each other. Orthogonality simplifies recovery of the
N data streams, Orthogonal sub-carriers means no inter-carrier-interference (ICl). An
orthogonal set of functions is a set with the property that a particular operation
performed between any two distinct members of the set yields zero. Vectors are
orthogonal if they are at right angles to each other. The dot product of any two distinct
vectors is zero. Figure 2.3.4 shows the time domain and frequency domain
orthogonality of OFDM.

26

Time domain Frequency domain

Example of four subcarriers within one OFDM symbol Spectra of individual subcarriers

Figure2.3.4 OFDM Orthogonality

Time Domain Orthogonality:

Every sub-carrier has an integer number of cycles within orou . Satisfies

precise mathematical definition of orthogonality for complex exponential (and

sinusoidal) functions over the interval [O’TOFDM].

Frequency Domain Orthogonality:

) — ICI =0atf=nf,
IR
[[\ \ \
f «—l L L

Some FDM systems achieve OFDM systems have overlapped
orthogonality through zero spectra with each subcarrier spectrum
spectral_over!a;-) having a Nyquist “zero ISl pulse shape”
= BW inefficient! (really zero ICI in this case).

= BW efficient!

Figure2.3.5 Frequency Domain Orthogonality

If FDM system had been able to use a set of sub-carriers that were orthogonal
to each other, and as long as orthogonality is maintained, it is still possible to recover
the individual sub-carriers signals, because if the dot product of two deterministic
signals is equal to zero, these signals are said to be orthogonal to each other.

Orthogonality can also be viewed from the standpoint of stochastic processes. If two

27

random processes are uncorrelated, then they are orthogonal. Given the random
nature of signals in a communications system, this probabilistic view of orthogonality

provides an intuitive understanding of the implications of orthogonality in OFDM [27].

® Modulation

The idea behind the analog implementation of OFDM can be extended to the
digital domain by using the discrete Fourier Transform (DFT) and its counterpart, the
inverse discrete Fourier Transform (IDFT). These mathematical operations are widely
used for transforming data between the time-domain and frequency-domain. These
transforms are interesting from the OFDM perspective because they can be viewed as
mapping data onto orthogonal sub-carriers. For example, the IDFT is used to take in
frequency-domain data and convert it to time-domain data. In order to perform that
operation, the IDFT correlates the frequency-domain input data with its orthogonal
basis functions, which are sinusoids at certain frequencies. This correlation is

equivalent to mapping the input data onto the sinusoidal basis functions.

In practice, OFDM systems are implemented using a combination of fast Fourier
Transform (FFT) and inverse fast Fourier Transform (IFFT) blocks that are
mathematically equivalent versions of the DFT and IDFT, respectively, but more

efficient to implement.

For example, n denotes the frequency component index, S() denotes the

original signal on the transmitter side. And the IFFT of the signal S(7) is:

N-1
(B = /lv S S h=0,.. N1

7=0

(1)

28

Symbol | 9% Sl
Generator

5(0)= 3. d (Y, (1 RO S’ S

k=0 g ds) N
N=l ,.I'. q._',-JT ki 'E
s(t)y=>Y d(kye "’
k=0
diN-1) ¥ Pn1t)
—®

Figure 2.4.3 OFDM modulator[28]

Where N designates the number of frequency components, and s(k) is the
resulting sampled signal, which is formed by the sum of the modulated frequency
components S(n). To retrieve again the digital frequency components, the inverse

equation is:

N-1
S(n) = s(Be ™" f=0,.N-1

A=0

(2)

Which corresponds to the N-point FFT of S(n).

29

A hd[k]
d(0) . mbol
o o Qi'—r » Serial - A —»
A Detector
d(1)
.i'l e D —

: ‘4@)
-_)gv 43)
.|I Jud¥ _.
: W)
i
d(5)
_[il){—p

(m+1)NT)
c;’(fr) = j-a'{n)h; (1)dt

m{NT')

Farallel

(M+10NT) 2

= j s(f)ye M "t

M
m : :' diN-1)
I %] ——_

Figure 2.44 OFDM demodulator[27]

® Guard Interval

Assume the delay spread of the channel is Z, , then instead of a single carrier
with a data rate of £ (symbols/second), an OFDM system has N sub-carriers, each
with a data rate of £/ (symbols/second) can be used. And because the data rate is
reduced by factor of N the OFDM symbol period is increased by a factor of N so

by choosing an appropriate value for /', the length of OFDM symbol becomes longer
than the delay spread of channel. And because of this configuration, the effect of inter-
symbol interference will be reduced but no completely eliminated. Guard interval is the
technique that OFDM use to cancel the effect of inter-symbol interference. Guard
Interval is samples inserted at the beginning of each symbol, and it could be a section
of all zero-zero padding. Since it does not contain any useful information, the guard
interval would be discarded at the receiver. If the length of the guard interval is properly
chosen such that it is longer than the time span of the channel, the OFDM symbol itself
will not be distorted. Thus, by discarding the guard interval, the effects of inter-symbol
interference are thrown away[27]. The guard interval also eliminates the need for a

pulse-shaping filter, and it reduces the sensitivity to time synchronization problems.

30

Total Symbal Period

4 Ti- *
lic
?r:ﬁu Data Payload
Te o Tu | ‘
Guard Interval Useful Symbol Te o
Period

Figure 2.4.5 OFDM Symbol with Cyclic Prefix

The cyclic prefix, which is transmitted during the guard interval, consists of the
end of the OFDM symbol copied into the guard interval, and the guard interval is
transmitted followed by the OFDM symbol. Figure 2.4.5 shows the structure of the
cyclic prefix OFDM. The reason that the guard interval consists of a copy of the end of
the OFDM symbol is so that the receiver will integrate over an integer number of
sinusoid cycles for each of the multi-paths when it performs OFDM demodulation with
the FFT. In some standards such as Ultra wideband, in the interest of transmitted
power, cyclic prefix is skipped and nothing is sent during the guard interval. The
receiver will then have to mimic the cyclic prefix functionality by copying the end part of

the OFDM symbol and adding it to the beginning portion.

Advantages and Disadvantages

OFDM modulation techniques have been used both in wired and wireless

systems due to its advantages. Among them, the following features must be mentioned:

Efficiently Deals With Multi-paths Fading

Efficiently Deals With Channel Delay Spread

Enhanced Channel Capacity

Adaptively Modifies Modulation Density

Robustness to Narrowband Interference

On the other hand, there are some disadvantages below can not be ignored:

31

o Complexity

— FFT for modulation, demodulation must be compared to complexity of

equalizer.

— Synchronization.

e Overhead

— Cyclic extension increases the length of the symbol for no increase in

capacity.

Pilot tones simplify equalization and tracking for no increase in capacity.

PAPR

Depending on the configuration, the PAPR can be ~3dB-6dB worse than

o)

single carrier system.

Phase noise sensitivity

The sub-carriers are N-times narrower than a comparable single carrier

system.

e Doppler Spread sensitivity

— Synchronization and EQ tracking can be problematic in high doppler

environments.

2.3.3. UDP

The User Datagram Protocol (UDP) is one of the core members of the Internet

protocol suite (the set of network protocols used for the Internet). With UDP, computer

applications can send messages, in this case referred to as datagrams, to other hosts

on an Internet Protocol (IP) network without prior communications to set up special

transmission channels or data paths. The protocol was designed by David P. Reed in
1980 and formally defined in RFC 768.

32

UDP uses a simple transmission model with a minimum of protocol
mechanism([29]. It has no handshaking dialogues, and thus exposes any unreliability of
the underlying network protocol to the user's program. As this is normally IP over
unreliable media, there is no guarantee of delivery, ordering or duplicate protection.
UDP provides checksums for data integrity, and port numbers for addressing different

functions at the source and destination of the datagram.

UDP is suitable for purposes where error checking and correction is either not
necessary or performed in the application, avoiding the overhead of such processing at
the network interface level. Time-sensitive applications often use UDP because
dropping packets is preferable to waiting for delayed packets, which may not be an
option in a real-time system[30]. If error correction facilities are needed at the network
interface level, an application may use the Transmission Control Protocol (TCP) or

Stream Control Transmission Protocol (SCTP) which are designed for this purpose.

A number of UDP's attributes make it especially suited for certain applications.

It is transaction-oriented, suitable for simple query-response protocols

such as the Domain Name System or the Network Time Protocol.

e It provides datagrams, suitable for modeling other protocols such as in

IP tunneling or Remote Procedure Call and the Network File System.

o |t is simple, suitable for bootstrapping or other purposes without a full

protocol stack, such as the DHCP and Trivial File Transfer Protocol.

e It is stateless, suitable for very large numbers of clients, such as in

streaming media applications for example IPTV.

e The lack of retransmission delays makes it suitable for real-time
applications such as Voice over IP, online games, and many protocols

built on top of the Real Time Streaming Protocol.

e Works well in unidirectional communication, suitable for broadcast
information such as in many kinds of service discovery and shared

information such as broadcast time or Routing Information Protocol.

33

UDP provides application multiplexing

(via port numbers) and integrity

verification (via checksum) of the header and payload[31]. If transmission reliability is

desired, it must be implemented in the user's application.

The figure below is a typical UDP packet structure. A UDP packet consists of an
Ethernet Header, an IP Header, a UDP Header, the packet data and an Ethernet Trailer.

The size of the packet data can be up to 1500 bytes. Any data over 1500 bytes is

typically broken up into multiple packets.

Ethernet Header

IP Header

UDP Header

Ethernet Trailer

14 bytes

20 bytes

8 bytes

1,472 bytes

8,954 bytes

4 bytes

Figure 2.4.6 UDP packet structure

Compare with TCP (Transmission Control Protocol):

UDP
Unreliable
- no concept for acknowledgment,

retransmission, or timeout

TCP
Reliable
- monitors message transmission, tracks
data transfer to ensure receipt of all

packets

Not ordered

- data arrives in order of receipt

Ordered

- buffering provisions to ensure correct

34

order of data packets

Lightweight Heavyweight

- no dedicated end-to-end connection, no - dedicated connection, provisions for
congestion control speed and congestion control

Datagram oriented Streaming

Light overhead Heavy overhead

Higher speed Lower speed

Table 2.4 A comparison of TCP and UDP

UDP is a simpler message-based connectionless protocol, with no dedicated
end-to-end connection. Communication is achieved by transmitting information in one
direction from source to destination without verifying the readiness or state of the
receiver. Because of the lack of reliability, applications using UDP must be tolerant of
data loss, errors, or duplication, or be able to assume correct transmission. Such
applications generally do not include reliability mechanisms and may even be hindered
by them. In these cases, UDP—a much simpler protocol than TCP—can transfer the

same amount of data with far less overhead, and can achieve much greater throughput.

UDP is often preferable for real-time systems, since data delay might be more
detrimental than occasional packet loss. Streaming media, real-time multiplayer games
and voice-over-IP (VolP) services are examples of applications that often use UDP. In
these particular applications, loss of packets is not usually a fatal problem, since the
human eye and ear cannot detect most occasional imperfections in a continuous
stream of images or sounds. To achieve higher performance, the protocol allows
individual packets to be dropped with no retries and UDP packets to be received in a
different order than they were sent as dictated by the application. Real-time video and
audio streaming protocols are designed to handle occasional lost packets, so only
slight degradation in quality occurs, rather than large delays, which would occur if lost

packets were retransmitted.

Another environment in which UDP might be preferred over TCP is within a
closed network, where there is little chance of data loss or delay. For example, on a
board or within an SoC, data transfers from one component to another can be tightly

controlled within the application, obviating the need for the reliability features of TCP.

35

UDP might be a more efficient and equally reliable protocol in such situations. UDP’s
stateless nature is also useful for servers answering small queries from huge numbers
of clients, such as DNS, SNMP and so on.

Both TCP and UDP are widely used IP transfer layer protocols. For applications
requiring reliable transfers, TCP is generally preferred, while applications that value
throughput more than reliability are best served using UDP. Most TCP/IP stacks
provide both protocols, so the application can use whichever transfer protocol is more
appropriate, even changing from one to the other as desired. Rather than rely solely on
TCP, the network system developer might want to investigate the trade-offs related to
use of UDP. It might turn out to be beneficial to sacrifice some reliability in favor of

greater throughput[32].

In summary, for applications like streaming video that offer real-time validation,

user datagram protocol (UDP) can provide a fast, low-overhead option to TCP.

36

GNU Radio is a free and open-source software development toolkit that
provides signal processing blocks to implement software radios. It can be used with
readily-available low-cost external RF hardware to create software-defined radios, or
without hardware in a simulation-like environment. It is widely used in hobbyist,
academic and commercial environments to support both wireless communications

research and real-world radio systems[33].

After the signal has been processed by the USRP FPGA, the stream of bits
finally lows through the USB connection to the host cpu. It is here that the GNU radio
framework comes into play. GNU Radio is a free software toolkit licensed under the
GPL for implementing software-defined radios. Initially, it was mainly used by radio
amateur enthusiasts, but it gained exponential interest from the research world, in an
attempt to stay away from closed source firmwares/drivers, and low level of
customizability of commercial chips. The GNU radio project was founded by Eric
Blossom. It supports natively Linux, and packages are pre-compiled for the major Linux
distributions. A port to Windows has been also developed, but it provides limited
functionalities. GNU Radio includes a library of signal processing blocks like
modulators, demodulators, filters etc. which are used to construct a radio. Essentially it
needs the USRP to receive real radio waves or to transmit. You do not necessarily
need a USRP. There is also the possibility to use a pre-recorded file as input. A
universal SDR structure with the specific software (GNU Radio) and hardware (USRP)

is given in figure 3.1.1.

@

+D—> V(A e FPGA GNU Radio

*up-/down- |] N signal processing
sampling Uss/cbited | * modulation

< D) —<

*data rate N4 * demodulation
RE A conversion
T
IF D[| *timing
antenna USRP/2
Daughterboards USRP/2 Motherboard PC

Figure 3.1.1 GNU Radio combined with USRP

38

GNU Radio's software is organized using a two-tier structure. All the
performance-critical signal processing blocks are implemented in C++ [34], while the
higher-level organizing, connecting and gluing the signal blocks together is done using
Python [35]. There is also a graphical environment available to create a custom radio.
This is called GNU Radio Companion (GRC).

3.1. GNU Radio Architecture

The baseline architecture of GNU Radio shows in figure 2.3.2 involves a
complex flow-graph that consists of modules and low-level algorithms. Each module or
low-level algorithm is structured in C++ and provides basic signal processing functions
(ex: Filters, FFT, Channel Coding etc..). They are automatically generated into python
modules with the use of python ‘wrapper’ or interface i.e., SWIG (Simplified Wrapper
and Interface Generator) which is used as the interface compiler which allows the
integration between C++ and Python language.

Python
-Application Development
-Creating Flow Graphs

Figure 3.1.2 GNU Radio Software Architecture
So the signal processing blocks are written in C++ while python is used as a

scripting language to tie the blocks together to form the flow graph. The generated

blocks are used to construct a flow-graph model with the help of python.The application

39

is built on python program that provides python framework. The python framework is
responsible for communication of data through module buffers and creates a simple

scheduler that helps to run blocks in a sequential order for single iteration[36] .

The GNU Radio software typically consists of four elements[37]:

e Source: Each flow-graph has a single source. It is the head (start) of the
flow-graph. For instance, USRP source or file source are common types

of source blocks.

e Sink: Each flow-graph has a single sink. It is the tail (end) of the flow-
graph. For instance, USRP sink or file sink are common types of sink

blocks.

e Flow-graph: The application is based on a flow-graph. Each flow-graph
consists of intermediate blocks along with single source and sink blocks.

We can have multiple flow graphs within a single application.

e Scheduler: It is created for each active flow-graph, which is based on
steady stream of data flow between the blocks. It is responsible for
transferring data through the flow-graph. It monitors each block for
sufficient data at I/p and O/p buffers so as to trigger processing function

for those blocks.

GNU Radio runs under several operating systems like Linux, Mac OSX,
NetBSD. Also a Cygwin porting for Windows exists, but due to the limited hardware
control, the full functionality is not guaranteed. Python and C++ are used as main
programming languages in GNU Radio as well as the GNU Radio Companion (GRC)

which introduced as follow.

Since the GNU Radio framework is the central point of data streams sent towards and

40

received from USRP, its structure will be illustrated step by step during the whole thesis.

3.2. GNU Radio Companion

GNU Radio Companion (GRC) is a very useful extension which provides a
graphical interface that allow sits users to easily create GNU Radio applications. GRC
has a list of available modules that can be inserted in the application only need double
clicking or dragging directly. These modules can also be configured, and GRC even
point out if the configured parameters are incorrect. In addition, the modules can be
connected together also very easily. After click the generation or execution, GRC will

automatically generated the corresponding python code that will run the application.

Once the installation is complete, type in Terminal:

“gnuradio-companion”

And press “Enter” to run the graphical programming interface of GNU Radio

Companion. An untitled GRC window similar to the one below should open.

& untitled - GNU Radic Companion

g el x = 0.

| | Blocks

Options
1D: top_binck. » [Level Controls]
Generate Options: Wx G » [Modulators]
* [Sources]
* [synchronizers]
» [Probes]
» [Sinks]
» [Message Tools]

variable
1D: zamp_rate » [Operators]
Mukon: 3% * [Type Conversions |

» [Stream Conversions |
» [Misc Conversions]

» [Filters]

® | Error Correction |

* [Line Coding]

v [varlables]

P | Misc]

* [Sources (New)]

* [Sinks (New)]

» [Math Operations (New!
* [Boolean Operations (N
» [Stream Type Conversiol
® [Stream Operations (Ne
<<« Welcome to GNU Radic Companion 3.6.4 >>> * [Misc (New) |

» [Digital]

» [Digital Modulators]

» [oFDM]

» [Extras]

Showing: ""

Figure 3.1.3 Untitled GNU Radio companion

The Options block sets some general parameters for the flow graph for example

41

project title, author and so on. The other block that is present is the Variable block. It is
used to set the sample rate for the overall situation. Of course if you want to set more
like frequency just add another variable block on the right side of the window which is a
list of the blocks that are available. By expanding any of the categories (click on
triangle to the left) you can see the blocks available. Explore each of the categories so

that you have an idea of what is available.

Official GRC examples are in the folder named “gnuradio/gnuradio-examples”.
Some of the scripts that come with GNU Radio are generated from GRC flow graphs.
Just run find in your GNU Radio checkout to get a list of all GRC files:

find -name " grc” -print”

3.3. Basic Blocks

Some commonly used blocks will explain in this section.

3.3.1. UHD Blocks

The USRP Hardware Driver software (UHD) is the hardware driver for all USRP
devices. It works on all major platforms (Linux, Windows, and Mac) and can be built
with GCC, Clang, and MSVC compilers. The goal of the UHD software is to provide a
host driver and API for current and future Ettus Research products. Users will be able
to use UHD software standalone or with third-party applications, such as: GNU Radio,
LabVIEW, Simulink, OpenBTS and Iris[33].

The bridge between GNU Radio and the USRP device is a set of blocks in the

gr-uhd component, which includes:

e UHD: USRP source block - provides RX data to downstream processing

blocks
The USRP source block receives samples and writes to a stream. The source

block also provides API calls for receiver settings.

e UHD: USRP sink block - accepts TX data from upstream processing blocks

42

The USRP sink block reads a stream and transmits the samples. The sink block

also provides API calls for transmitter settings.

3.3.2. WX GUI Blocks

The most intuitive and straightforward way to analyze a signal is to display it
graphically, both in time domain and frequency domain. For the applications in the real
world, we have the spectrum analyzer and the oscillograph to facilitate us. Fortunately,
in the software radio world, we also have such nice tools, thanks to wxPython, which

provides a filexible way to construct GUI tools[38].

e FFT sink block - spectrum analyzer

In GNU Radio companion, the function of FFT sink block is a “soft spectrum
analyzer”, based on fast Fourier transformation (FFT) of the digital sequence. This “soft
spectrum analyzer” is used as the signal sink. That's why it is named as “fftsink”. It's
defined in the module “wxgui.fftsink.py”. The function “make_fft_sink_c()” serves as

the public interface to create an instance of the FFT sink:
gnuradio/wxgui/iftsink.py

def make_fit_sink_c(fg, parent, title, fit_size, input_rate, ymin=0, ymax=100):
block = fft_sink_c(fg, parent, title=title, fit_size=1t_size,
sample_rate=input _rate, y per div=(ymax - ymin)/8, ref leve/=ymax)

return (block, block.win)

Notice that in Python, a function could return multiple values.
“make_fft_sink_c()” returns two values: “block” is an instance of the class “fft_sink c”,
defined in the same module “wxgui.fftsink.py”’. Another special feature of Python
needs to be emphasized: Python supports multiple inheritance. “fft_sink_c¢” is derived
from two classes: “gr.hier_block” and “fft sink base”. Being a subclass of
"gr.hier_block" implies that "fft_sink_c" can be treated as a normal block, which can be

placed and connected in a flow graph, as the next line shows:
self.connect (src, pre_dermod)

“‘block.win” is obviously an attribute of “block”. In the definition of the class

43

“fft_sink_c”, we can find its data type is the class “fft_ window”, a subclass of
“wx.Window”, also defined in the module “wxgui.fftsink.py”. We can think of it as a
window that is going to be hang up on your screen. This window “block.win” will be

used as the argument of the method “vbox.Add”.

e Scope sink block - Oscillograph
Another important WX GUI block in GNU Radio is the “Scope sink” which can

be called “soft oscillograph”. It would be very helpful if you wish to see the waveforms

in the time domain. Its usage is quite similar to the “fft_sink”:

Vi s
scope_input, scope_wini = |
scopesink.make_scope_sink_f (self, panel, "Title", self.rs)
self.connect (signal, scope_input)
vbox.Add (scope wint, 1, wx.EXPAND)

Note that here “signal” should be a real float signal. If you wish to display a
complex signal with 1/Q channels, “make_scope_sink_c()’ is the right choice. Copy

these lines wherever you think a scope should appear, then connect it to the signal as

a block. Refer to “gnuradio/wxgui/scopesink.py’ for more details.

3.4. Python codes explanation

Tables below are descriptions of the key blocks for the implementations in this
thesis[39].

3.4.1. wfim_rcv_pll.py
Stereo demodulating a broadcast FM signal with a deemphasis.
wfm_rcv_pll ()
Description | Hierarchical block for demodulating a broadcast FM signal. The input is

the down converted complex baseband signal (gr_complex).The output
is two streams of the demodulated audio (float) O=Left, 1=Right.

44

Usage blks.wfm_rcv_pll(fg, demod_rate, audio_decimation)

Parameters | fg: flow graph.

type fg: flow graph

demod_rate: input sample rate of complex baseband input.
type demod_rate: float

audio_decimation: how much to decimate demod_rate to get to audio.

type audio_decimation: integer

Table 3.1 Explanation for “WBFM Receiver PII” block

3.4.2. gmsk.py
differential QPSK modulation and demodulation

gmsk_mod ()

Function , GMSK modulator

Description | Hierarchical block for Gaussian Minimum Shift Key (GMSK) modulation.
The input is a byte stream (unsigned char) and the output is the complex
modulated signal at baseband.

Usage blks.gmsk_mod(fg, samples_per_symbol =2,
bt=.35,
verbose=False,

log=False)

Parameters @ fg: flow graph

type fg: flow graph

samples_per_symbol: samples per baud >= 2
type samples_per_symbol: integer

bt: Gaussian filter bandwidth * symbol time
type bt: float

verbose: Print information about modulator?
type verbose: bool

debug: Print modulation data to files?

type debug: bool

Table 3.2 Explanation for “GMSK Mod” block

45

gmsk_demod ()

Type Function , GMSK demodulator
Description | Hierarchical block for Gaussian Minimum Shift Key (GMSK)
demodulation. The input is the complex modulated signal at baseband.
The output is a stream of bits packed 1 bit per byte (the LSB)
Usage blks.gmsk_demod(fg,
samples_per_symbol=2,
gain_mu=None,
mu=0.5,
omega_relative_limit=0.005,
freq_error=0.0,
verbose=False,
log=False)
Parameters | fg : flow graph

type fg: flow graph

samples_per_symbol: samples per baud

type samples_per_symbol: integer

Verbose: Print information about modulator?

type verbose: bool

log : Print modulation data to files?

type log: bool

Clock recovery parameters. These all have reasonable defaults.
gain_mu: controls rate of mu adjustment

type gain_mu: float

mu: fractional delay [0.0, 1.0]

type mu: float

omega_relative_limit: sets max variation in omega

type omega_relative_limit: float, typically 0.00020 0 (200 ppm)
freq_error: bit rate error as a fraction

type freq_error:float

Table 3.3 Explanation for “GMSK Demod” block

46

3.4.3. ofdm.py

OFDM mod/demod with packets as i/o.

ofdm_mod ()

Description | Modulates an OFDM stream. Based on the options fft length,
occupied_tones, and cp_length, this block creates OFDM symbols using
a specified modulation option. Send packets by calling send_pkt
Hierarchical block for sending packets. Packets to be sent are enqueued
by calling send_pkt. The output is the complex modulated signal at
baseband.

Usage blks.ofdm_mod (fg, options, msgq_limit=2, pad_for_usrp=True)

Parameters | fg : flow graph

type fg: flow graph

options : pass modulation options from higher layers (fft length, occupied
tones, etc.)

msgq_limit: maximum number of messages in message queue

type msgq_limit: int

pad_for_usrp: If true, packets are padded such that they end up a
multiple of 128 samples

Sub Blks.ofdm_mod.send_pkt(payload, eof=False)

Function

Description | Send the payload

Parameters | payload: data to send

type payload: string

eof: To signal end of transmission
Type eof: Bool True or False

Table 3.4 Explanation for “OFDM Mod” block

47

4 Implementation

The list below are the main hardware and software which are used in the follow

four experiments.

Hardware:
® ASUS K43T laptop

® Ettus USRP B100
® \WBX daughterboard (covers 50MHz — 2.2GHz)
® Arrow antenna

® |Logitech ClickSmart 510 webcamera

Software:
® Linux OS: Ubuntu 12.10

® GNURADIO 3.6.4.1

® VLC media player 2.0.5 Two flower

4.1. GSM Scanning

Normally there are a number of GSM bands which a mobile phone can use and
these bands can be different depending on the country. As figure4.1.1 shows, most of
the world uses the GSM-900 and GSM-1800 bands, but the the United States, Canada
and other parts of the Americas which use the GSM-850 and GSM-1900 bands.

Frequency Names Channel Downlink Description
Bands Number (MHz)

GSM 850 GSM 128-251 | 824,0- | 869,0- USA, South American and part of Asian
850 849,0 894,0 countries.
P-GSM | 1-124 890,0 - | 935,0- The GSM frequency band which is the first to
900 915,0 960,0 achieved and most widely used.

GSM 900 E-GSM | 975 - 880,0- | 925,0 - 900M Extension band.
900 1023 890,0 935,0
R-GSM | n/a 876,0 - | 921,0 - GSM-R, special version developed for Railway
900 880,0 925,0 dispatch communication system.

GSM1800 GSM 512 -885 | 1710,0 - | 1805,0 - Applies to the market which has a great demand

49

1800 1785,0 1880,0 of channel capacity.

GSM1900 GSM 512-810 | 1850,0- | 1930,0 - Mainly for American countries, the system is not
1900 1910,0 1990,0 compatible with the 1800M because of

frequency overlap.

Table 4.1 GSM Frequency bands

The purpose of this project is to detect the surrounding GSM Base transceiver
station (BTS) mainly used the FFT function of USRP.

First, enter folder “gnuradio/gr-uhd/examples/grc”.

Then double click “uhd_fft.gre” directly.or type in the command terminal:
Juhd_fitpy —s 8M —g 32 —f 940M

A plot window like figure 4.1.2 is shown with a constantly moving blue line which
represents the amplitude of the signal detected at that pre-configured frequency. Here

we observed a 8MHz band of spectrum which centered at 940MHz. There are several

BTS and each one transmitting in a 200KHz wide channel.

50

FFT | Waterfall | Scope

FFT Plot Bl Trace oOptions
50 ["] Peak Hold
-55 & Average
-60 Avg Alpha: 0.1333
-65
70 | Persistence
-75
g %0
§ b [T] Trace A | Store
£ 90
E 55 [] TraceB | Store
-100))
105 Axis Options
110 dB/Div: 4+ -
-115 Ref Level: + -
-120
Autoscale
-12%36 937 938 939 240 241 942 943 944
Frequency (MHz) Run

Antenna

sample Rate: |8M @® Rx2 O TX/RX

LO Locked: True

RX Gain: |32

-- USRP-B180 clock control: 18
-- r_counter: 2

vco _divider: 5
chan_divider: 5

vco rate: 1608.800008MHz
chan_rate: 320.000000MHz
out rate: 64.000000MHZ

UHD Warning:
Unable to set the thread priority. Performance may be negatively affected.
Please see the eral application notes in the manual for instructions.
EnvironmentError: OSError: error in pthread setschedparam

Using Volk machine: sse3 32 orc

Figure 4.1.1 UHD FFT window

Next step is trying to find a active channel which should be visible in plot display
as wide bump centered around a vertical division. Here it is very convenient to modify
the center frequency by sliding the WX GUI Slider or typing a new value in the lattice.

As the figure 4.1.4 shows a channel bump near center frequency 944.8 MHz.

51

FFT | waterfall | Scope

FFT Plot Il Trace options
o | [Peak Hold
L e et il At T N Average
-20
-30 —
el T et et St S B Persistence
-50
g -0
g Channel 5
% -80 "’ race Store
E 90 | Trace B | Store
| -100 : :
110 Axis Options
120 dB/Div: +| -
-130 Ref Level: +| -
-140
Autoscale
_159?43.4 943.6 943.8 944 9442 9444 9446 9448 945 9452 945,
Frequency (MHz) Run
Antenna
Sample Rate: |2M) RX2 @ TX/RX LO Locked: True
RX Gain: |0

iRX Tune Frequency: | 944.4M

Figure 4.1.3 GSM Channel bump

To further understand the channel features, continue to slide the slider and we

found a interesting channel which showed on figure 4.1.4.

According to the GSM standard, GSM is FDMA (Frequency Division
Multiplexing Access) and TDMA (Time Division Multiplexing Access) systems, the user
channel is represented by a time slot, Therefore, when a communication between
mobile station and base station must be precisely synchronized, FCCH (Frequency
Correction Channel), MS achieved the clock coarse synchronization through FFCH,
and then achieve precise synchronization by using SCH. After the previous two steps
to determine the timing of the base station transmitted information, and finally receive
the slot data from BCCH (Broadcast Control Channel). So the FFCH is a mechanism

for the mobile phone to find the base station.

The FCCH generates a Frequency correction burst (FB) which can be found on

52

the frequency spectrum plot as a peek frequency offset 1625/24 kHz above the carrier
center. The green line which means peak hold in figure 4.1.4 highlight a FB which is
clearly visible as a narrow peak in the plot. Notice that the spectrum on the right of the
center channel has a similar amplitude, It means there are other channels may be

using it for data traffic or USRP has captured more than one BTS.

FFT | Waterfall | Scope

FFT Plot B B Trace Options
0 & Peak Hold
-10 [] Average
-20
-30
-40 FB — :
< Traffic? Persistence
T 60 @
= r,‘ —
i '|1 -'JI" i] Trace A |Store
5 80 .[1' 4“ I
E w0 H‘l IIIII| l *,. "] Trace B | Store
-100 Lt T
110 m]'m‘ 1} Axis Options
120 dB/Div: +|| -
-130 Channel Ref Level: + -
-140
150 Autoscale
9382 9384 9386 9388 939 939.2 9394 939.6 939.8 940 940.
Frequency (MHz) Stop
Antenna
sample Rate: | 2M ") RX2 @ TX/RX LO Locked: True
RX Gain: |0

RX Tune Frequency: |935.2M

Figure 4.1.4 Frequency correction burst and possible traffic channel

This project provide a FFT method which is combined with USRP and GNU
Radio for scanning the GSM BTS and analyzing the channel. And not all of the
channels are used in every area, as we found that some lower strength signals which
means some of channels are reserved for using in neighboring cells. Additionally,
Frequency correction burst (FB) which enables the mobile to synchronize its frequency

with the master frequency appears on frequency correction channel (FCCH).

53

4.2. FM Receiver

As a popular example, the implementation of an FM receiver with GUI, will be
introduced and analyzed in this section. The FM signal from the air is received by the
USRP board and then gets processed in the FPGA and in the computer. Finally, the
demodulated signal is played using the sound card. You can hear a very high quality

FM signal just by inserting a copper wire into the Basic RX daughter card.

Typical FM receivers are constructed entirely using hardware that must be
fabricated in a plant. This procedure will demonstrate the power of software defined

radio and how easy it is to use as figure 4.2.1 shows in GNU Radio companion.

Options Variable Variable Variable WX GUI FFT Sink WX GUI Notebook
1D: wim_rx_pll 1D: usrp_decim | | 1D: samp_rate 1D: filter_taps Title: Baseband ID: nbook
Title: Stereo FM Receiver Value: 128 Value: 500k Value: firdes.low_pass(1, Sample Rate: 250k Tab Orientation: Top
Description: WFM receiver B band Freq: 0 Labels: Receive...emod, Scope
Generate Options: WX GUI ¥ per Div: 10 dB Grid Position: 0, 0, 5.5
Y Divs: 10
— | ::I ::z :::;_[’13 o WX GUI Scope Sink
WX GUI Slider WX GUI Slider FFT Size: 512 2 Title: Scope Plot
ID: usrp freq ID: late tune WX GUI Static Text i e — i Sample Rate: 250k
Label: USRP frequency Label: Fine freguency 1D: rx_freq Average Alpha: 500m Notebook: nbook, 2
Default Value: 93.9M Default Value: 0 Label: Receive Window Size: 1.12k, 527 Trigger Mode: Auto
Minimum: 76M Minimum: -250k Default Value: 33.9M Notebook: nbook, 0 Y Axis Labek Counts
Mmxirmas: 200M Maximum: 250k LoTvEr Y ot Freq Set Varname: None
Converter: Float Converter: Float Grid Position: 5,3, 1,1
Rational Resampler

Grid Position: 6,0, 1, 5 17,0, L, i
Grid Position: 7,0, 1,5 Decimation: 50

WBFM Receive PLL Interpolation: 48 out
Quadrature Rate: 500k Taps:
Audio Decimation: 10 |Rout Fractional BW: 0
Frequency Xlating FIR Filter
Decimation: 1
:\,d:J Taps: filter_taps - Multiply Const —
Constant: 3
Interpolation: 48 out
Taps:
Fractional BW: 0
in0
Audio Sink

g
'

UHD: USRP Source
Samp Rate (Sps): 500k
ChO: Center Freq (Hz): 93.9M [50f]
Ch0: Gain (dB): 15
Ch0: Antenna: RX2

Rational Resampler

Center Frequency: 0
Decimation: 50

Sample Rate: 500k

e

WX GUI Slider WX GUI Slider Multiply Const Sample Rate: 48KHz
1D: af_gain 1D: rf_gain Constant: 3 Ei

Label: AF Label: RF

Default Value: 3 Default Value: 15

Minimum: 0 Minimum: 0 WX GUI FFT Sink
Maximum: 10 Maximum: 50 Title: FFT Plot
Converter: Float Converter: Float Sample Rate: 250k

Grid Position: 8, 2, 1, 2 Grid Position: 8,0, 1, 2 Baseband Freq: 0

Y per Div: 10 dB
_b‘IE ¥ Divs: 10
RefLevel (dB): 0
Ref Scale (p2p): 2
FFT Size: 512
Refresh Rate: 15

Notebook: nbook, 1
Freq Set Varname: Mone

Figure 4.2.1 Stereo FM Receiver system
The “UHD: USRP Source” block is used to retrieve samples received on the

USRP device connected to the computer as discussed in previous chapter. The sample

rate internally at 64Msps in USRP B100. In the USRP block you can specify a lower

54

rate through set the decimation, and the USRP will try to match it quite closely if it's not
evenly divisible by 64Msps by down conversion done inside the USRP. In this case the
sample rate is set to 500ksps which can be evenly divisible by 64Msps. The reason to
chose the 500ksps sampling rate is the nicely divisible with the supported 48000 Hz
sampling rate of the sound card in the computer, and is enough to reproduce the full
~100 kHz wide FM radio station. The center frequency is the frequency that the USRP
should tune into. So with a 500ksps sample rate, we will be able receive a 500kHz

band around the center frequency[38].

The “Frequency Xlating FIR Filter’ block following the USRP block efficiently
combines a frequency translation (typically “down conversion”) with a FIR filter
(typically low-pass) and decimation. It is ideally suited for a “channel selection filter”
and can be efficiently used to select and decimate a narrow band signal out of wide
bandwidth input. In this case it is by using a slider bar to change the center frequency

of the Frequency Xlating FIR Filter to achieve fine tuning.

The WBFM block does the actual heavy work of decoding the FM signal and
converting it into an audio signal that can be processed by the sound card, represented

by the Audio Sink block. The FM stereo modulation is illustrated in the diagram below:

T 38-kHz

@ 19-kHz suppressed

B pilot tone carrier

=3 | | L-R || L-R |
E| L+R | | flower || (upper |
® | | sideband) | sideband) |
%u 15 18 38

® frequency, kHz ——>

Figure 4.2.2 Stereo FM theory

L corresponds to left signal and R to the right. A mono receiver sees only the L +
R signal. The information which can be used to produce the stereo signal is contained
in the L + R and the L - R signals. The L - R signal is added to the baseband signal as a
DSB signal with suppressed carrier. A pilot tone at 19kHz is used by the receiver to
regenerate the carrier for demodulating the DSB L - R signal. The baseband signal

shown above is used to frequency modulate a carrier.

55

The results of this stereo FM receiver allowed us to listen to multiple radio
stations with acceptable to exceptional Stereo quality. WX GUI Scope Sink is for
observing time domain signals and WX GUI FFT Sink used to observing frequency

spectrum which shows on figure4.2.2.

56

Stereo FM Receiver

Receiver | Demod Scope

-130

Baseband

-135

-145

-150

-155

Amplitude (dB)

-165
-170

\ iNW‘ '\ ﬂi‘ jIL ‘«{L / ‘l] J

175

-180

o) H
o

fﬂ‘J‘ ll

, ='1f"«‘1 ['umfﬁ

[

ad Al
VN

iy :""I./IIJ“:. f‘ rqI ‘l\':‘\{;\«’fi'l

f I

: f\‘-»' WU |ﬂ| I

-100

-80 -60

-20 0
Frequency (kHz)

20

40

60

80

120

Trace Option
Peak Hold

& Average

Avg Alpha: 0.5

Persistenc

TraceA !

" TraceB ¢

Axls Options
dB/Div:

Ref Level:

Autosca

Stop

USRP Frequency: |93.9M

Receive: 93.91M

Fine frequency: 10k

AF: |3

Demod

Amplitude (dB)

-80

-90

-100
0

20

40

60
Frequency (kHz)

a0

100

120

0.08

Scope Plot

0.06

0.04

0.02

Counts
)

-0.06

-0.08

Time: 0.00139929
Counts: 0.0441081

Ch1: 0.0662573

1.92

1.96

2.04
Time (ms)

2.08

212

2.16

Figure 4.2.2 Received signal spectrum of Stereo FM Receiver system

In this project, the frequencies are read in from the USRP source, fed to an FIR

57

filter, demodulated with a phase-locked loop, and then resampled to a frequency
compatible with sound card of PC and allowed users to listen to multiple radio stations

with acceptable to exceptional stereo quality.

4.3. Benchmark OFDM

There are reconfigurable python codes which provided by Ettu Research named
‘benchmark_ofdm_tx.py” and “benchmark_ofdm_rx.py” in the folder
“/gnuradio/gnuradio-example/python/ofdm/’ as an OFDM example in the GNU
Radio package and used to transmit and receive OFDM signals as the flow chart
below[40]:

(~ Sub-carrier r : -
Data Source }—[}1 mapping and GEI"IEI’agllng [
Nttt symbal may L preamble

Transmitter { USRP Scaling J{]—[Add cyclic prefix
k. S R
Time and

Recelver USRP — > Channel filter —» frequency

synchronization

Inwerse FFT

IFIFTF «}— Signal Sampler = }—— Signal <] Freguency

derotating offset

F lati
and equalization |37 Resul
Figure 4.3.1 OFDM transmitter (up) and receiver (down)
In this project, use two USRP equipped WBX daughterboards connected with
two apart computers. One as transmitter and the other as receiver. Accordingly, the

source code “benchmark_ofdm_tx.py” run on the GNU Radio of computer which as
the transmitter and “benchmark_ofdm_rx.py” for the receiver.

® OFDM spectrum

58

On the transmitter side, connect the port of TX/RX port to spectrum analyzer or
use two antenna to get the signal spectrum and set the center frequency to 474Mhz
and the span set to 500KHz which is the default sample rate value of
“benchmark_ofdm_tx.py”. Then enter the “/gnuradio/gnuradio-examples/python/o-
fdm/” folder and type the command[41]:

benchmark tx.py -f 474M -m bpsk -A TX/RX

It means set the center frequency to 474MHz and modulation is BPSK and use
the TX/RX port to transmit the OFDM signal. Other parameters are default value like
sample rate is 500KHz and FFT length is 512. if you want to modify these kind of value,

type:

sbenchmark_tx.py -h

to acquire more command help.

In this case we can obtain the result as follow:

ubuntu@ubuntu: ~/Desktopfofdm heF 24.8 dBa
0 B/ A _Write Norm B_Blank Norm

CENTER
474.0000 MH=z

Figure 4.3.2 Using the “benchmark_tx.py”

® Data Transmission and Reception

On the receiver side, enter the “/gnuradio/gnuradio-examples/python/ofdm/”

folder set the corresponding parameters like the transmitter side.

In this case, type:

59

Jbenchmark_rx.py -f 474M -m bpsk -A TX/RX

The packets will delivery from the transmitter side to the receiver side.

As discussed in chapter 3, the most intuitive and straightforward way to analyze
a signal is to display it graphically. So GNU Radio companion is a better choice to

analysis the OFDM spectrum and set the parameters flexibility. Figure4.3.2 is a

simulation which designed for this project.

Options
1D: top block
Generate Options: WX GUI

Variable

1Dz samp rate Random Source

Value: 500k Minimum: 0
e, | n .
Num Samples: 1k —
Repeat: Yes

OFDM Mod
Modulation: QPSK
FFT Length: 512
Occupied Tones: 200

L3l

Pad for USRP: Yes
Payload Length: 0

|
Cyclic Prefix Length: 128

o

Throttic =1
Sample Rate: 500k [

il cho: center Freq (Hz): 27aM

Noise Source
Noise Type: Gaussian t—
Amplitude: 0 i
Seed: 0

| FFT Length: 512
= Occupied Tones: 200

OFDM Demod
Modulation: QPSK

Cyclic Prefix Length: 128
SNR: 10

Float To Short
-

p| Y Divs: 10
= Reflevel (dB): 0

WX GUI FFT Sink

Title: FFT Plot
Sample Rate: 500k

.

Baseband Freq: 0
Y per Div: 10 dD

File Sink
File: ...tu/Desktop/ofdm1.txt
Unbuffered: Off

UHD: USRP Sink
Samp Rate (Sps): 500k

Cho: Gain (dB): 30
Cho: Antenna: TX/RX

WX GUI FFT Sink
Title: FFT Plot

Sample Rate: 500k
Baseband Freq: 0

¥ per Div: 1008

Y DIVs: 10

Ref Level (dB): 0

Ref Scale (p2p): 2
FFT Size: 1024k
Refresh Rate: 15
Average Alpha: 0
Freq Set Varname: Nons

Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15
Average Alpha: 0

Freq Set Varname: None

Figure 4.3.3 Simulation for OFDM transmission

A series of random binary data were generated by “Random source” block
through the OFDM modulation block and delivery to the USRP to transmit into the air.
At the same time, the modulated signal obtained by WXGUI tool. On the other side, the
signal is received by the receiver USRP to demodulate and analysis. In this case, the
simulation flowchart didn't consider about the packet lost and other problems which

occurs in the actual transmission.
After generating and executing the GNU Radio companion will obtain a

spectrum which is very similar with the one obtained by the benchmark. The bandwidth
of OFDM signal is:

60

2 sample rate* occupied tones
W= = =
FFT Length

3)

So in this case, the bandwidth should be near 200KHz.

@S @ Top Block
FFT Plot - T_I'BCE Options
a [| Peak Hold
10 &4 Average
Avg Alpha: 0.1333
-20
30 "] Persistence

[] Trace A |Store

Amplitude (dB)
S

-60 [] TraceB |Store
-70 Axis Options
-80 dB/Div: +| -
.90 Ref Level: + -
-100 Autoscale
250 -200 -150 -100 -50 0 50 100 150 200 250
Frequency (kHz) Stop
FFT Plot - Trace Options
0 [] Peak Hold
10 & Average
Avg Alpha: 0.1333
-20
.30 [] Persistence

[] Trace A |Store

Amplitude (dB)
w
o

-60 [[] Trace B |Store
-70 Axis Options
-80 ljBJI'IDI‘uII +|| =
.90 Ref Level: * .=
-100 Autoscale
-250 -200 -150 =100 -50 0 50 100 150 200 250
Frequency (kHz) Stop

Figure 4.3.4 OFDM signal spectrum(500ksps, occupied tones=200, FFT length=512)
Based on the equation above, modify the occupied tone to 100, and increase

the FFT length to 1024. the bandwidth should be near 50KHz and the actual sub-

carriers will decreased as the occupied tone decreased. The result is very coincide just

61

the figure below shows.

Top Block
FFT Plot - 'IIar.e Options
0 Peak Hold
10 & Average
Avg Alpha: 0.1333
-20
30 | Persistence
g 40 :
3 —
2 -50 | Trace A | Store
a
-uE: -60 \ | TraceB | Store
10 Axis Options
-80 dB,I"DiV: &
-90 Ref Level: -
100 Autoscale
-250 -200 -150 -100 -50 0 50 100 150 200 250
Frequency (kHz) Stop
FFT Plot - 'I_'!'_ar.e Options
0 Peak Hold
10 & Average
Avg Alpha: 0.1333
-20
30 | Persistence
g _
3 P
2 -50 | Trace A | Store
[-§
E 0 | TraceB | Store
10 Axis Options
-80 dB,I"DIV -
90 Ref Level: +
100 Autoscale
-250 -200 -150 -100 -50 0 50 100 150 200 250
Frequency (kHz) Stop

Figure 4.3.5 OFDM signal spectrum(500ksps, occupied tones=100, FFT length=1024)

4.4. Real-time Digital Video Broadcasting

Digital Video Broadcasting (DVB) is a transmission scheme based on the
MPEG-2 video compression / transmission scheme and utilizing the standard MPEG-2
Transmission scheme. however It is much more than a simple replacement for existing
analogue television transmission. In the first case, DVB provides superior picture
quality with the opportunity to view pictures in standard format or wide screen (16:9)

format, along with mono, stereo or surround sound. It also allows a range of new

62

features and services including subtitling, multiple audio tracks, interactive content,
multimedia content - where, for instance, programme may be linked to world wide web

material[42].

In this case, the objective of this project is to create a real-time digital video
broadcasting setup using easily available components like VLC media player, GNU

Radio and Universal Software Radio Peripherals which illustrated on the figure 4.4.1.

WERCAM -~ VYL Metlia plaver

e - 4

B Transimitter USRP
H.264 MPEG2- F&
Encoder s e
L. -

)

I -] . - Receiver USRP
| Streaming and Playing ! !

UDP NETWORK UDF

|
4

‘ Sreaming and PIaying;)

.'t X , aan

— |
‘ Streaming and Flaying ' s
! Streaming and Playing '

Figure 4.4.1 DVB project description diagram

In the project description diagram, the source file can be a existed video file or
the video stream which captured by the webcam and encoded in H.264 standard by
VLC media player. When the TS stream was generating, GNU Radio will read the
stream through UNIX pipe, encoder the packet and then modulated by
GMSK(Gaussian Minimum Shift Keying) modulation scheme[43].

Then a transmitter USRP is used to transmit the GMSK modulated signal into

air. On the other side, the transmitted signal will received by another receiver USRP

63

which has been set the same center frequency, demodulation and packet decoding
implemented in GNU Radio,the output of GNU Radio should be the TS stream which
can be played by VLC media player through the UNIX pipe on the receiver side. Notice
that the receiver computer can be a UDP server which can broadcast the video to other
clients computer. Finally the whole system achieved a real-time digital video

broadcasting.

4.4.1. Transmitter Side

CNU Radio companion

On the transmitter side, as the block diagram below shows, first, an existed
video file or a real time writing UNIX pipe was using in the File source block, then the
TS file delivery to packet encoder block, in this case, it was set 2 samples per symbol
and one bit per symbol. So the packet encoding here was 2 bit per sample or 16M bit

per second, because the variable “samp_rate” was set to 8MHz.

After the encoding finished, the encoded packet was modulated by “GMSK
mod” block which was set 2 samples per symbol too. A “Multiply Const” block follow the
modulation block was used as a amplifier. Finally three different kind of WXGUI tools
detected the amplified and modulated signal to analysis the spectrum from time domain
and frequency domain. At the same time, the amplified and modulated signal was

delivery to the USRP to finish the rest operation.

Options WX GUI Slider WX GUI Slider WX GUI Waterfall Sink
1D: gmsk_tx 1D: signal 1D: rfgain Title: Waterfall Plot
Title: Video Tr.tter (GMSK) | | Label: Signal Label: RF ::::;Ius::;: Sink Sample Rate: 81
Generate Options: WX GUI | | Default Value: 500 | | Default Value: 0 e “Dt = Baseband Freq: 0
o 0 i . Dynamic Range: 100
Variable i 50 Notebook: notebook, 2 _b_IE Reference Level: 0
g Trigger Mode: Auto Ref Scale (p2p): 2
1D: samp_rate Converter: Float Converter: Float i
Value: BM - Bl 2 FFT Size: 1.024k
FFT Rate: 15
Variable : notebook, 1
ID: freq Freq Set Varname: None
Value: 474M e
s:.: hys"mb;rz UHD: USRP Sink
File Source Biwps i GMSK Mod S Samp Rate {Sps): BM
File: ../Desktopidatad00L.ts [Gutl—e[in] i out | samples/Symbol: 2 |G [in | o [BE}—{ =[] cho: Center Freq (Hz): 474
Repeat: Yes Accass Cove. BT: 350m oA Cho: Gain (dB): 32
: Pad for USRP: Yes 5 s =

ChO: Antenna: TH/RX

Payload Length: 0
WX GUI Notebook

1D: notebook ‘WX GUI FFT Sink
Tab Orientation: Top Title: FFT Plot
Labels: FFT, SCOPE, WATERFALL Sample Rate: BM

Baseband Freq: 474M
Y per Div: 10 dB

ﬁ ¥ Divs: 10

Ref Level (dB): 0

Ref Scale (p2p): 2

FFT Size: 1.024k
Refresh Rate: 15
Notebook: notebook, 0
Freq Set Varname: None

Figure 4.4.2 Transmitter GNU Radio block diagram

64

Transmitter USRP

When the transmitter USRP which connected with transmitter GNU Radio
receive the amplified and modulated signal, the FPGA will finish the interpolation and
up-conversion by (DUC), then the DAC (digital-to-analog converter) convert the signal

to sent into the air.

Configuring VLC[44]

As we know from the tutorials which provided by VLC team[45]. In the
transmitter side, to know the video and audio files which captured by the webcamera,

open the terminal window and type:

/s /dev/video™
/s /dev/audio™

Or open the VLC media player select “Media-> Open Capture Device..” on

the top bar. Then you can find the folder of video and audio files in the option named

“Device selection”.

In our case, the video and audio files associated were videoO and audio. Then

to run the VLC camera streaming from the terminal, type the following commands:

vic v4/2.77 :vél-vdev="7dev/video0" :v4l-adev="7dev/audio” .v4/-norm=3 :v4/-frequency=-
7 :vé/l-caching=300 :v4/-chroma="" v4/-jps=-1.000000 . v4/-samplerate=447100 . v4/-
channel=0 .:v4/-tuner=-1 .v4/-audio=-1 .v4/l-stereo .v4/-widlth=640 .v4/-height=480 .v4/-
brightness=-1 :v4/-colour=-1 .v4/-hue=-1 :v4/-contrast=-1 .no-v4/-mjpeg .v4/-
decimation=1 :v4/-quality=100

--sout
"Hlranscodef/vcodec=mp2v,vb=800,scale=1,acodec=mpga,ab=128,channels=2,sampler
ate=44100}.duplicate{dst=stayaccess=rfile, mux=ts,ast=/home/ubuntu/Desklop/ix.ts}, dst
=display}”

where the VLC captured video file “tx.ts” at the address which is defined by

65

“dst” in the above command the is the UNIX pipe combine to the GNU radio of

transmitter. Additionally it is configured for MPEG2 codec and MUX = MPEG/TS.

4.4.2. Receiver Side

Receiver USRP

On the receiver side, the DDC of FPGA and ADC(analog-to-digital converter)
deal with the signal down-conversion and convert to digital signal for baseband

processing.

GNU Radio

In contrast with the transmitter, the modulated baseband signal will demodulate
by the “GMSK Demod” which follow with the “UHD: USRP source” block.
Correspondingly the “Packet Decoder” block is for unpack and extract the data. The
parameters “threshold” is for detecting the access code with up to threshold bits wrong
(0 -> use default). In this case, there is no access code was used. Finally, the video
data will broadcast to different kind of device to play. For high speed and real time
video transmission, UDP protocol was chosen in this project, so for the destinations
of video data, we assigned three “UPD Sink” block with correspond IP address and port
to broadcast to three different clients. A desktop computer with Ubuntu 12.10, a laptop
using Windows 7 and a mobile phone with android 4.0 were tested in this project. And
certainly, a file sink which for create a file with “.ts” extension would record the final
data was set as another destination for the video stream. The GRC setup for the

receiver as below.

66

Ref Level (dB): 0

Ref Scale (p2p): 2

FFT Size: 1.024k
Refresh Rate: 15
MNotebook: notebook, 0
Freq Set Varname: None

Ref Scale (p2p): 2

FFT Size: 1.024k

FFT Rate: 15

‘Window: Flattop
Notebook: notebook, 2
Freq Set Varname: None

Options Variable Variable WX GUI Notebook WX GUI Slider
1D: ofdm_rx ID: samp_rate 1D: freg 1D: notebook 1D: rfgain
Title: Video Receiver (OFDM) Value: 8M Value: 474M Tab Orientation: Top Label: RF
Generate Options: WX GUI Labels: FFT, SCOPE, WATERFALL Default Value: 0
WX GUI Scope Sink a
Title: Scope Plot Maximum: 100 UDP Sink
Sample Rate: 8M Converter: Float e Destination IP Address: 192.168.0.5... 51
Neotebook: notebook, 1 L \l pire T
Trigger Mode: Auto Payload Size: 1472k
¥ Axis Label: Counts Send Null Pkt as EOF: True
UHD: USRP Source Sampi:z::b:r:';d UDP Sink
Samp Rate (Sps): 8M Gain Mu: 175m Packet Decoder Destination IP Address: 192.168.0.5...54
ChO: Center Freq (Hz): 474M Mus 500m out in | Access Code: E =E Destination Port: 1.234k
ChO: Gain (dB): 0 Omega Relative Limit: 5m Threshold: -1 Payload Size: 1.472k
ChO: Antenna: TX/RX Send Null Pkt as EOF: True
Freq Error: 0
WX GUI FFT Sink WX GUI Waterfall Sink
Title: FFT Plot Title: Waterfall Plot File Sink UDP Sink
Sample Rate: 8M Sample Rate: BM in | File: ..untu/Desktopftest.ts Destination IP Address: 138.100.50.7....72
Baseband Freq: 474M Baseband Freq: 0 Unbuffered: Off —.-E Destination Port: 1.234k
Y per Div: 10 dB Dynamic Range: 100 Payload Size: 1.472k
_b'm Y Divs: 10 —"@ Reference Level: 0 Send Null Pkt as EOF: True

Figure 4.4.3 Receiver GNU Radio block diagram
Configuring VLC
In this project we choose UDP protocol as we discussed in the GNU Receiver

setup, UDP is a better choice for real-time video transmission because of it's high

transmit speed and “no ACK” mechanism which save much network resources .

So in this case, open VLC player. Click on “Media” and select “Open network

stream... " . In the “ Network Protocol” enter a network URL as the format:

“‘udp://:@port number’ like the figure 4.4.2 shows. the port number is the port of client

to receive the TS stream and delivery to VLC media player.

67

= Open Media

3 File € Disc |5 Network Capture Device

| | Network Protocol
Please enter a network URL:

| udp://@:1234| v

| Show more options

Play ||~ Cancel

Figure 4.4.4 UDP client setup

When all of the steps above finished, click the “play” bottom, VLC will set to
listen mode to listen the stream will flow from the assigned port in “udp://:@port

number”.

Note that if the receiver side need to play with broadcast clients or more clients
require the video broadcast, just add another “UDP Sink” and type their own IP address

and opened port as above setting.

4.4.3. Simulation

For evaluate the impact of noise for the transmission. The block diagram below
introduced a simulation in GNU Radio companion. It makes the modulated signal add a

Gaussian noise which can control the value by “WX GUI Slider” block.

68

Options
1D: gmisk_sim
Title: DVB Simulator
Author: Lei
Generate Options: WX GUI

File Sink

Unbuffered: Off

File: ..ubuntwDesktop/x.ts

GMSK Mod
[in] samples/Symbol: 2

Packet Encoder

Variable
1D: samp _rate
Value: 6M

File Source

Samples/Symbol: 2
Bits/Symbol: 1
Access Code:
Pad for USRP: Yes

WX GUI Slider
1D: noise
Label: Noise

Payload Length: 0

ki
Multiply Const
Constant: 500
Throttle
Sample Rate: 6M

WX GUI FFT Sink
Title: Transmitter Side
Sample Rate: 6M
Baseband Freq: 0
Y per Div: 10 dB
Y Divs: 10
Ref Level (dB): D
Ref Scale (p2p): 2
FFT Size: 512
Refresh Rate: 15
notebook, O

Default Value: 10
Minimum: 0
Maximum: 1k
Converter: Float

‘Omega Relative Limit: 5m

WX GUI Slider Freq Error: 0
1D: signal
Label: Signal WX GUI FFT Sink
Default Value: 500 Noise Soume. Title: Receiver Side
Minimum: 0 Noise Type: Gaussian Sample Rate: 6M
Maximum: 1k Amplitude: 10 Baseband Freq: 0
Converter: Float Seed: 42 ¥ per Div: 10 dB

GMSK Demod
Samples/Symbol: 2
Gain Mu: 175m
Mu: 500m

Throttle
Sample Rate: 6M

WX GUI Notebook
1D: notebook:

Tab Orientation: Top
Labels: Tx, RX

WX GUI Static Text
1D: variable_static_text 0
Label: SNR.

Default Value: 50
Converter: Flost
Grid Position: 0,0, 1. 1

¥ Divs: 10

Ref Level (dB): 0

Ref Scale (p2p): 2

FFT Size: 512

Refresh Rate: 15
Notebeook: notebook, 1
Freq Set Varname: None

>

File Sink
File: ...ntu/Desktop/test2 ts
Unbuffered: Off

B
N
N

Freq Set Varname: None

UDP Sink
Destination IP Address: 138.100.50.7....70
Destination Port: 1.234k
Payload Size: 1.472k
Send Null Pkt as EOF: True

UDP Sink
Destination IP Address: 138.100.50.7...72
Destination Port: 1.234k
Payload Size: 1472k
Send Null Pkt as EOF: True

UDP Sink
Destination IP Address: 138.100.50.7...73
Destination Port: 1.234k
Payload Size: 1472k
Send Null Pkt as EOF: True

UDP Sink
Destination IP Address: 138.100.50.7...74
Destination Port: 1.234k
Payload Size: 1.472k
Send Null Pkt as EOF: True

® Result

Figure 4.4.5 DVB simulation block diagram

Based on the previous introduction and preparation, One existed video file and

a real-time captured video stream by VLC media player were tested in this project.

After executing the GNU Radio companion and we obtained the result below.

udp://:1234 - VLC media player

00:00

Howmw EH =X

00:00

= g

Transmitter Side

Trace Optlans
Peak Hold

M

Mg
e

B Average
Avg Alpha: 0.1333

Persistence

TraceA Store
TraceB | Store
Axis Options

dB/Div: '

Autoscale

L) o
Frequency (MHz)

Stop

Ref Level: + -

Figure 4.4.6 Video transmission when SNR=50

69

When the transmission in condition of every parameters set in the default value
and the network works stable, the SNR equal to 50 as the right window shows in figure
4.4.5, the video broadcasting very good and the GMSK spectrum of transmitter and
receiver almost the same which is a gently undulating waveform, and the receiver side
almost has no delay and the quality playing on clients seems well too. Figure 4.4.6
shows the broadcasting video played on three different clients. Synchronization was

excellent when the network environment is stable.

Figure 4.4.7 Broadcasting video on three different clients

After a period of steady test, make the value of Gaussian noise which add with
modulated signal slowly began to increase. When the SNR=10 which is the 1/5 the
default value, the quality of video transmission decreased dramatically. The video
playing on clients Appeared a large number of blocky noise, image and sound have
some degree of non-smooth. And the GMSK spectrum become to a rapid undulating
waveform like figure 4.4.7 shows. Additionally, the video playing on mobile phone even

stoped.

70

udp://:1234 - VLC media player

NR: 10

gnnl‘ S00
™| RX
Receiver Side I [TECEOpthgE
a0 Peak Hold
35 | Average
30
25 Persistence
E 0
g
" Trace A Store
< TraceB | Store
y Axis Options
of} defoiv:
= Ref Level:
i Autoscale
Stop

oise: | 50

Figure 4.4.8 Video transmission when SNR=10

The similar experiment has done on webcamera mode. The video captured by
VLC in real-time transmitted well, but when we increased the noise like the previous
test, the same situation which was the bad transmission quality occurred as the figure
4.4.8 shows. When the noise value continue to increased, the video playing on receiver
side and other clients will stoped.

= udp:/f:1234 - VLC media player
SNR: 9.25926 —
signal: | 500 |

B e Options
Peak Hold

Average

i T
Frequency: 5T4818kHz

| 1 Persistence
Amolitude: 20,2617]

Amplitude (d8)
s 8

=

TraceB Stare

U | 0TI
||‘ | “‘ l“ll]::;s‘?puum ==
i

|
|
|
[
|
gl] ‘ TraceA |store
|

| RefLevel

Autoscale

2 & oo w

Fraguancy (MHI) Stop

00:00
i |0 wmm s e o) il

Figure 4.4.9 VLC captured video transmission when SNR<10

4.4.4. Problems

During the experiment, there are some problems can not be ignored as follow:

71

® Delay:

There is a 5~6 seconds delay during the video transmission in webcam mode.
In order to exclude the reason like the format of video file or network delay, the video
file which captured by the webcam was stored and transmitted in the file mode which
was in the same network environment. Through the observation on the receiver side, it
was found that there was no apparent delay on three different client devices. So the
reason should related with the UNIX pipe. The camera capturing, the encoding and
multiplexing by the VLC player, and the routing to GNU Radio jointly caused the delay.

But 5~6 second normally can be accepted in real-time transmission.

® Network:

First, if the IP address for the destination of “UDP Sink” block was a privacy IP
address which need a access code. The clients use this kind of IP addresses can’t
receive any video stream. The transmission in public wireless network environment
worked as normal. Second, when the network was unstable or poor quality, there will
be a considerable amount of erroneous packets receiving or packets loss which

coursed the video can not play or play sluggish.

® Device:

At the first beginning, this experiment was test on a laptop as the transmitter
which has a “AMD A4” processor inside. And there is always a very serious delay and
slow playback on the client device. When the simulation move to a computer which has
a “Intel i5” processor, this kind of problem was solved. Additionally, the VLC player for
mobile phone was just a beta version, some android phone can’t receive the video
stream by UDP protocol. When there was serious noise or bad network, the playing on

the phone may stop.
® Obstacle:
The last problem is not considered in this project, but based on wireless

communication principle. The obstacle and distance would be a very serious problem

which should be test and verify in the further experiment.

72

5 Conclusion and

Future Work

5.1. Conclusion

Software Defined Radio is bound to bring about a technological revolution for
the current wireless communication system. Excellent software GNU Radio and
outstanding hardware USRP family products composed of a combination of ease of
use, saving time, low cost but powerful Software Defined Radio platform. Through this
thesis, SDR as a new concept combined with some popular modulation and
demodulation techniques in wireless communication system are introduced, then some
actual project was implemented based on GNU Radio and USRP: GSM scanning,
Stereo FM radio receiver, OFDM signal transmission and observations and Real-time
digital video broadcasting were achieved on a unified platform. More versatile and
lower cost SDR platform will certainly be developed to apply to more practical

applications in the wireless communications.

5.2. Future Work

Software Radio is the future trend of communication systems. So there is a
great scope for improving the current project of wireless communication projects. The

effective area of research and development work includes :

1. As the development of SDR platform, extending the project to increase the
spectral efficiency and decrease BER based on advanced algorithms of channel coding

and other novel communication concepts.

2. The cognitive radio represents an SDR with not only the ability to adapt to
spectrum availability, protocols, and waveforms but the capability to learn waveforms
and protocols, to adapt to local spectrum activity, and to learn the current needs of its
user. And CR will also be capable of sensing, responding,and determining optimal

responses to network and geographic operating conditions.

3. Implementation for more communication standards such as DVB-T, IEEE
802.11 a/g/p and LTE.

74

6 Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Tuttlebee W H W. Software-defined radio: facets of a developing technology[J].
Personal Communications, IEEE, 1999, 6(2): 38-44.

Dillinger M, Madani K, Alonistioti N. Software defined radio: Architectures,

systems and functions[M]. Wiley, 2005.

Ettus M. Universal software radio peripheral (USRP)[J]. Ettus Research LLC
http://www. ettus. com, 2008.

Chapman E, ElI Choueiry R, Jackson J, et al. Software defined
radio[C]//Proceeding of KGCOE-MD2004: Multi-Disciplinary Engineering Design
Conference. 2004.

Rondeau T W, Le B, Maldonado D, et al. Cognitive radio formulation and
implementation[C]//Cognitive = Radio Oriented Wireless Networks and

Communications, 2006. 1st International Conference on. IEEE, 2006: 1-10.

Li Z, Xu W, Miller R, et al. Securing wireless systems via lower layer
enforcements[C]//Proceedings of the 5th ACM workshop on Wireless security.
ACM, 2006: 33-42.

Watermeyer K. Design of a hardware platform for narrow-band Software Defined

Radio applications[D]. University of Cape Town, 2007.

Mate A, Lee K H, Lu I T. Spectrum sensing based on time covariance matrix
using GNU radio and USRP for cognitive radio[C]//Systems, Applications and
Technology Conference (LISAT), 2011 IEEE Long Island. IEEE, 2011: 1-6.

Sarijari M A, Marwanto A, Fisal N, et al. Energy detection sensing based on GNU
radio and USRP: An analysis study[C]//Communications (MICC), 2009 IEEE 9th
Malaysia International Conference on. IEEE, 2009: 338-342.

Zivkovic M, Auras D, Mathar R. OFDM-based dynamic spectrum access[C]//New
Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on. IEEE, 2010: 1-2.

Braun M, Muller M, Fuhr M, et al. A USRP-based Testbed for OFDM-based Radar

and Communication Systems[J].

Selim A, Doyle L. Real-time interference reduction for OFDM-based dynamic
spectrum access networks[C]//Dynamic Spectrum Access Networks (DYSPAN),
2012 IEEE International Symposium on. IEEE, 2012: 268-269.

Mitola J. Software Radio: Wireless Architecture for the 21st Century[J]. Mitola’s
STATISfaction, ISBN 0-9671233-0-5.

HPSDR Website: http://openhpsdr.org/.

76

[15]
[16]
[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]
[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]
[34]
[35]
[36]
[37]

WebSDR Website: http://websdr.org/.

Chirp Signals analyzed using SDR http://websdr.ewi.utwente.nl:8901/chirps/
Ettus M. USRP User’s and Developer’s Guide[J]. Ettus Research LLC, 2005.
“Using Open Source and Open Hardware Technologies”:
http://statist.h16.ru/how_build_interceptor.html.

Raghavendra Rao, Qi Cheng, Aditya Kelkar, Dhaval Chaudhri, “Cooperative
Cognitive Radio Network Testbed”, 2011.

Blossom, Eric. Exploring GNU Radio. 2009.

Ettus Research LLC. URL http://www.ettus.com/order. October 2011.
Wikipedia Cellular network: http://en.wikipedia.org/wiki/Cellular_network
OpenBTS Website: http://www.openbts.org/

Ggrx SDR receiver Website:
http://www.0z9aec.net/index.php/gnu-radio/gqrx-sdr

OSMOSDR Website: http://sdr.osmocom.org

lan Poole. “What is GMSK Modulation - Gaussian Minimum Shift Keying”.
Louis Litwin and Michal Pugel. "The Principles of OFDM".

Mohamed Essam Khedr. EC74 4 Wireless Communication ,2008.

David P. Reed. RFC 768 p1.

Kurose J. F.; Ross K. W. Computer Networking: A Top-Down Approach (5th ed.).
Boston, MA: Pearson Education. ISBN 978-0-13-136548-3, 2010.

Clark, M.P. Data Networks IP and the Internet, 1st ed. West Sussex, England:
John Wiley & Sons Ltd, 2003.

John Carbone, “Speed Communications for Selected Applications with UDP”.
November, 2012.

GNU Radio official website. http://gnuradio.org/.

C++ Language tutorial. http://www.cplusplus.com/doc/tutorial/

Python. Website: http://www.python.org/.

Alex Verduin, “GNU Radio wireless protocol analysis approach”. October, 2008.

BBN Technologies Corp. “GNU Radio Architectural Changes”.

71

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[49]

Dawei Shen, “Tutorial 8: Getting Prepared for Python in GNU Radio by Reading
the FM Receiver Code Line by Line - Part II”. July, 2005.

Firas Abbas ,Simple User Manual for Gnuradio 3.1.1.Free Software Foundation,
Inc. 2007.

A. Marwanto, M.A. Sarijari, N. Fisal, S.K.S. Yusof, and R.A. Rashid, Experimental
study of OFDM implementation utilizing GNU Radio and USRP - SDR,"
Communications (MICC), IEEE 9th Malaysia International Conference on , vol.,
no., pp.132-135, 15-17 Dec. 2009.

L. Yang, W. Hou, L. Cao, B. Y. Zhao, and H. Zheng, "Supporting demanding
wireless applications with frequency-agile radios," in Proceeding of the 7th NSDI,
2010.

Isla Hernandez, Sergio. Simulation and Evaluation of a DVB system using
simulink (Vol I). 2005

Alexandru Csete,Simple DVB with Gstreamer and GNU Radio:
http://www.0z9aec.net.
Asha Mariam lype and Shashanka C. D. Video transmission using USRP. 2011.

Video LAN team tutorial, “Chapter 3. Advanced streaming using the command

line.”

78

http://www.oz9aec.net/index.php/gnu-radio/gnu-radio-blog/361-simple-dvb-with-gstreamer-and-gnu-radio
http://www.oz9aec.net/

APPENDIX A

USRP B100 Datasheet:

Research

USRP B100
BUS SERIES

FEATURES:
Lisi weff GMLI Pz
Miochutar Brchibeotire: DC6 GHz

. Soarian 341400 FPGA
¢ Dual B} MS5, L2068 ADC

Sunnorted by Free Xilino Desgn Toods
Aypiary Digial and Analog 170

2.5 ppm TCXO Freguency Referenca
Coerligurable Raference Clock Freguency
1 PP5 ang 10 MHz Reference Inpuls

Doial L2 WiS/s 1401 DAC
DECaCADUC w15 prilz Ressolubson:
UEE 2.0 Inleriace b Host

B100 PRODUCT OVERVIEW:

The Etius Research LISRP™ BIOD s & member of the USFP ™ {Unhersal Softwane oo Perpheral) family of products.
which anables enginedrs to mpsdy design and implement powerlul, Nasibss soltwane fadio syskems. The B100

hardwanm provicis Imcost BF Drocessag capanity, and up b 16 M5/s of signal streaming trvough the USE 2.0
host interface

Thiz USFP BL00 & an adoal model Tor wsers thal reguine an enbnddeve] softwane delined radas dewice dor cost-sensitie
appdealions. Ulilizng tha USE 2.0 intesface, cSers can get the B100 up and ninaeng Quickly. A reconfguiable
cloci also Jlows wsers fomone gasily target specilic apnlcatons.

Thia USFE® Hardwane Drser™ & the ofliciad dower for of Eftus Ressanch products, and supports rapd ceslopment in
a compeehenssse gnsironment. The USAP Hardware Drisver sufoorts Linuy, Mac 05K and Windows. UHD allowss

portability across e entee USAP product line. enabing apalacation migraton 1o higher peronmance platonms
suth &% the USEFP N2ODSN2 EQ.

79

USRP " B100
BUS SERIES

SPECIFICATIONS

FF PERFORMAMNCE [W/ Wilx]
ESELO :
Frsp Moise (1.8 Gha)

10 Kz
100 | dBoiHz
Ture 337 | dBoive
Prwer Coizu
[ADC Widetana 5FDR [E] 3 P3
DAC Sample Rate 128 ME/c || Feceive ficise Figus
[DAC Rescbution 14 il PHYSICAL

DaC Widehand SF0R Bz dEc Dperating Temperature
Fraquency ACcuracy 5

¥ Al poaxiicwivns e szbyeci @ conge aitout e

- g i

o k
- -]
i u b e] =

B s]
S S—
|
e o —
090

Ettus o -
bl 49 Research”
G ':l A e e) O,

ABCQUT ETTUS RESEARCH:

Ebfon Memaarsh [y @ rmcsass wrovce o solwes defred i evdvare, ccising e
zrigimal Linsamal Sofsars Aecio Perichesl [USAF) iy of predicis. Eies Rt

1047 Feorts Shoswirs e
prochacts mussian wpeort o s saety o acBaars fremescto. rciedng GHL Asdia

Baatw 100
LHion Penunrch iv mbascsr in S GRL S open-soarsd comeanity) anc ansbias usemn Wirarinin dam CL 2S04
v idwicis o sSdreas & wsse ronge of resssrch, edunkry snd defs-as sppicatione. The
sormipary . unciad in 2004 snd (8 baesd in Mouerisn Ves, Cabdoreis 82 =1 2000, PREOPET AT wewm iiyecors
EHon Penaarch i 5 wholly cersd scbaidisrg of Messoral Iretrumeres AR AT O

80

APPENDIX B

Python code for Stereo FM receiver:

#!/usr/bin/env python

HHHHB R R
Gnuradio Python Flow Graph

Title: Stereo FM Receiver

Description: WFM receiver

Generated: Thu Jun 27 17:39:45 2013
R

from gnuradio import audio

from gnuradio import blks2

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import uhd

from gnuradio import window

from gnuradio.eng_option import eng_option
from gnuradio.gr import firdes

from gnuradio.wxgui import fftsink2

from gnuradio.wxgui import forms

from gnuradio.wxgui import scopesink2

from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser

import wx

class wfm_rx_pll(grc_wxgui.top_block_gui):

def __init__(self):
grc_wxgui.top_block_gui.__init__(self, title="Stereo FM Receiver")
_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
self.Setlcon(wx.lcon(_icon_path, wx.BITMAP_TYPE_ANY))

B R R R

Variables

B R R R

self.decim = decim = 128

self.xlate_tune = xlate_tune =0

self.usrp_freq = usrp_freq = 91e6

self.samp_rate = samp_rate = 64e6/decim

self.rx_freq = rx_freq = usrp_freq+xlate_tune

self.rf_gain = rf_gain = 15

self filter_taps = filter_taps = firdes.low_pass(1, samp_rate, 250000, 20000, firdes.WIN_HAMMING,
6.76)

self.af_gain = af_gain =3

R R
Blocks
R
_xlate_tune_sizer = wx.BoxSizer(wx.VERTICAL)
self._xlate_tune_text_box = forms.text_box(

parent=self.GetWin(),

sizer=_xlate_tune_sizer,

value=self.xlate_tune,

callback=self.set_xlate_tune,

label="Fine frequency",

converter=forms.float_converter(),

proportion=0,

self._xlate_tune_slider = forms.slider(
parent=self.GetWin(),
sizer=_xlate_tune_sizer,
value=self.xlate_tune,
callback=self.set_xlate_tune,
minimum=-250e3,
maximum=250e3,
num_steps=500,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)
self.GridAdd(_xlate_tune_sizer, 7, 0, 1, 5)

81

_usrp_freq_sizer = wx.BoxSizer(wx.VERTICAL)

self._usrp_freq_text_box = forms.text_box(
parent=self.GetWin(),
sizer=_usrp_freq_sizer,
value=self.usrp_freq,
callback=self.set_usrp_freq,
label="USRP frequency",
converter=forms.float_converter(),
proportion=0,

self._usrp_freq_slider = forms.slider(
parent=self.GetWin(),
sizer=_usrp_freq_sizer,
value=self.usrp_freq,
callback=self.set_usrp_freq,
minimum=76e6,
maximum=108e6,
num_steps=200,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)

self.GridAdd(_usrp_freq_sizer, 6, 0, 1, 5)

_rf_gain_sizer = wx.BoxSizer(wx.VERTICAL)

self._rf_gain_text_box = forms.text_box(
parent=self.GetWin(),
sizer=_rf_gain_sizer,
value=self.rf_gain,
callback=self.set_rf_gain,
label="RF",
converter=forms.float_converter(),
proportion=0,

self._rf_gain_slider = forms.slider(
parent=self.GetWin(),
sizer=_rf_gain_sizer,
value=self.rf_gain,
callback=self.set_rf_gain,
minimum=0,
maximum=50,
num_steps=50,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)
self.GridAdd(_rf_gain_sizer, 8, 0, 1, 2)
self.nbook = self.nbook = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
self.nbook.AddPage(grc_wxgui.Panel(self.nbook), "Receiver")
self.nbook.AddPage(grc_wxgui.Panel(self.nbook), "Demod")
self.nbook.AddPage(grc_wxgui.Panel(self.nbook), "Scope")
self.GridAdd(self.nbook, 0, 0, 5, 5)
_af_gain_sizer = wx.BoxSizer(wx.VERTICAL)
self._af_gain_text_box = forms.text_box(

parent=self.GetWin(),

sizer=_af_gain_sizer,

value=self.af_gain,

callback=self.set_af_gain,

label="AF",

converter=forms.float_converter(),

proportion=0,

self._af_gain_slider = forms.slider(
parent=self.GetWin(),
sizer=_af_gain_sizer,
value=self.af_gain,
callback=self.set_af_gain,
minimum=0,
maximum=10,
num_steps=100,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)

self.GridAdd(_af_gain_sizer, 8, 2, 1, 2)

self.xlating_fir_filter = gr.freq_xlating_fir_filter_ccc(1, (filter_taps), -xlate_tune, samp_rate)
self.wxgui_scopesink2_0 = scopesink2.scope_sink_f(

82

self.nbook.GetPage(2).GetWin(),
titte="Scope Plot",
sample_rate=samp_rate/2,
v_scale=0,

v_offset=0,

t_scale=0,

ac_couple=False,
xy_mode=False,

num_inputs=1,
trig_mode=gr.gr_TRIG_MODE_AUTO,
y_axis_label="Counts",

)
self.nbook.GetPage(2).Add(self.wxgui_scopesink2_0.win)

self.wxgui_fftsink2_0 = fftsink2.fft_sink_f(
self.nbook.GetPage(1).GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate/2,
fft_size=512,
fft_rate=15,
average=False,
avg_alpha=None,
titte="Demod",
peak_hold=False,

)

self.nbook.GetPage(1).Add(self.wxgui_fftsink2_0.win)

self.wfm_rcv_pll = blks2.wfm_rcv_pli(
demod_rate=samp_rate,
audio_decimation=10,

self.uhd_usrp_source_0 = uhd.usrp_source(
device_addr="",
stream_args=uhd.stream_args(
cpu_format="fc32",
channels=range(1),

),

self.uhd_usrp_source_0.set_samp_rate(samp_rate)
self.uhd_usrp_source_0.set_center_freq(usrp_freq, 0)
self.uhd_usrp_source_0.set_gain(rf_gain, 0)
self.uhd_usrp_source_0.set_antenna("TX/RX", 0)
self._rx_freq_static_text = forms.static_text(
parent=self.GetWin(),
value=self.rx_freq,
callback=self.set_rx_freq,
label="Receive",
converter=forms.float_converter(),

)
self.GridAdd(self._rx_freq_static_text, 5, 3, 1, 1)
self.rr_stereo_right = blks2.rational_resampler_fff(
interpolation=48,
decimation=50,
taps=None,
fractional_bw=None,

self.rr_stereo_left = blks2.rational_resampler_fff(
interpolation=48,
decimation=50,
taps=None,
fractional_bw=None,

)

self fftsink_rf = fftsink2.fft_sink_c(
self.nbook.GetPage(0).GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=13490.0,
sample_rate=samp_rate/2,
fft_size=512,
fft_rate=10,
average=True,
avg_alpha=0.5,

83

titte="Baseband",
peak_hold=False,
size=(1120,527),

)

self.nbook.GetPage(0).Add(self.fftsink_rf.win)
self.audio_sink = audio.sink(48000, "", True)
self.af_gain_stereo_right = gr.multiply_const_vff((af_gain,))
self.af_gain_stereo_left = gr.multiply_const_vff((af_gain,))

R
Connections
R
self.connect((self.xlating_fir_filter, 0), (self.fftsink_rf, 0))
self.connect((self.xlating_fir_filter, 0), (self.wfm_rcv_pll, 0))
self.connect((self.af_gain_stereo_right, 0), (self.audio_sink, 1))
self.connect((self.rr_stereo_right, 0), (self.af_gain_stereo_left, 0))
self.connect((self.rr_stereo_left, 0), (self.af_gain_stereo_right, 0))
self.connect((self.wfm_rcv_pll, 0), (self.rr_stereo_right, 0))
self.connect((self.wfm_rcv_pll, 1), (self.rr_stereo_left, 0))
self.connect((self.uhd_usrp_source_0, 0), (self.xlating_fir_filter, 0))
self.connect((self.af_gain_stereo_left, 0), (self.audio_sink, 0))
self.connect((self.wfm_rcv_pll, 1), (self.wxgui_fftsink2_0, 0))
self.connect((self.wfm_rcv_pll, 0), (self.wxgui_scopesink2_0, 0))

def get_decim(self):
return self.decim

def set_decim(self, decim):
self.decim = decim
self.set_samp_rate(64e6/self.decim)

def get_xlate_tune(self):
return self.xlate_tune

def set_xlate_tune(self, xlate_tune):
self.xlate_tune = xlate_tune
self._xlate_tune_slider.set_value(self.xlate_tune)
self._xlate_tune_text_box.set_value(self.xlate_tune)
self.set_rx_freq(self.usrp_freq+self.xlate_tune)
self.xlating_fir_filter.set_center_freq(-self.xlate_tune)

def get_usrp_freq(self):
return self.usrp_freq

def set_usrp_freq(self, usrp_freq):
self.usrp_freq = usrp_freq
self.set_rx_freq(self.usrp_freg+self.xlate_tune)
self.uhd_usrp_source_0.set_center_freq(self.usrp_freq, 0)
self._usrp_freq_slider.set_value(self.usrp_freq)
self._usrp_freq_text_box.set_value(self.usrp_freq)

def get_samp_rate(self):
return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self fftsink_rf.set_sample_rate(self.samp_rate/2)
self.wxgui_scopesink2_0.set_sample_rate(self.samp_rate/2)
self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)
self.wxgui_fftsink2_0.set_sample_rate(self.samp_rate/2)
self.set_filter_taps(firdes.low_pass(1, self.samp_rate, 250000, 20000, firdes.WIN_HAMMING, 6.76))

def get_rx_freq(self):
return self.rx_freq

def set_rx_freq(self, rx_freq):
self.rx_freq = rx_freq
self._rx_freq_static_text.set_value(self.rx_freq)

def get_rf_gain(self):
return self.rf_gain

def set_rf_gain(self, rf_gain):

self.rf_gain = rf_gain
self._rf_gain_slider.set_value(self.rf_gain)

84

self._rf_gain_text_box.set_value(self.rf_gain)
self.uhd_usrp_source_0.set_gain(self.rf_gain, 0)

def get_filter_taps(self):
return self.filter_taps

def set_filter_taps(self, filter_taps):
self filter_taps = filter_taps
self.xlating_fir_filter.set_taps((self filter_taps))

def get_af_gain(self):
return self.af_gain

def set_af_gain(self, af_gain):
self.af_gain = af_gain
self._af_gain_slider.set_value(self.af_gain)
self._af_gain_text_box.set_value(self.af_gain)
self.af_gain_stereo_left.set_k((self.af_gain,))
self.af_gain_stereo_right.set_k((self.af_gain,))

if _name__ =='_main_’

parser = OptionParser(option_class=eng_option, usage="%prog: [options]")

(options, args) = parser.parse_args()

tb = wfm_rx_pll()

tb.Run(True)

85

APPENDIX C

Python code for OFDM simulation:

#!/usr/bin/env python
TR R R
Gnuradio Python Flow Graph

Title: OFDM simulation

Author: Lei

Generated: Tue Jun 25 20:44:45 2013

T T

from gnuradio import analog

from gnuradio import blocks

from gnuradio import digital

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import window

from gnuradio.eng_option import eng_option
from gnuradio.gr import firdes

from gnuradio.wxgui import fftsink2

from grc_gnuradio import blks2 as grc_blks2
from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser

import numpy

import wx

class sim_ofdm(grc_wxgui.top_block_gui):

def __init__(self):
grc_wxgui.top_block_gui.__init__(self, titte="OFDM simulation")
_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
self.Setlcon(wx.lcon(_icon_path, wx.BITMAP_TYPE_ANY))

B R R R
Variables

B R R R
self.samp_rate = samp_rate = 500e3

B R R R
Blocks
R R R
self.wxgui_fftsink2_0_0 = fftsink2.fft_sink_c(

self.GetWin(),

baseband_freq=0,

y_per_div=10,

y_divs=10,

ref_level=0,

ref_scale=2.0,

sample_rate=samp_rate,

fft_size=1024,

fft_rate=15,

average=True,

avg_alpha=None,

title="FFT Plot",

peak_hold=False,

)
self. Add(self.wxgui_fftsink2_0_0.win)
self.wxgui_fftsink2_0 = fftsink2.fft_sink_c(
self.GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=1024,
fft_rate=15,
average=True,
avg_alpha=None,
title="FFT Plot",
peak_hold=False,

86

self. Add(self.wxgui_fftsink2_0.win)
self.random_source_x_0 = gr.vector_source_s(map(int, numpy.random.randint(0, 2, 1000)), True)
self.gr_short_to_float_0 = gr.short_to_float(1, 1)
self.gr_float_to_short_0 = gr.float_to_short(1, 1)
self.gr_file_sink_1 = gr.file_sink(gr.sizeof_short*1, "/home/ubuntu/Desktop/ofdm1.txt")
self.gr_file_sink_1.set_unbuffered(False)
self.gr_add_xx_0 = gr.add_vcc(1)
self.digital_ofdm_mod_0 = grc_blks2.packet_mod_f(digital.ofdm_mod(
options=grc_blks2.options(
modulation="qgpsk",
fft_length=1024,
occupied_tones=100,
cp_length=128,
pad_for_usrp=True,
log=None,
verbose=None,

)
)
payload_length=0,

self.digital_ofdm_demod_0 = grc_blks2.packet_demod_f(digital.ofdm_demod(
options=grc_blks2.options(
modulation="qgpsk",
fft_length=512,
occupied_tones=200,
cp_length=128,
snr=10,
log=None,
verbose=None,
)
callback=lambda ok, payload: self.digital_ofdm_demod_0.recv_pkt(ok, payload),

),

self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate)
self.analog_noise_source_x_0 = analog.noise_source_c(analog.GR_GAUSSIAN, 0, 0)

R

Connections
R
self.connect((self.random_source_x_0, 0), (self.gr_short_to_float_0, 0))
self.connect((self.gr_short_to_float_0, 0), (self.digital_ofdm_mod_0, 0))
self.connect((self.blocks_throttle_0, 0), (self.wxgui_fftsink2_0, 0))
self.connect((self.digital_ofdm_mod_0, 0), (self.blocks_throttle_0, 0))
self.connect((self.blocks_throttle_0, 0), (self.gr_add_xx_0, 0))
self.connect((self.analog_noise_source_x_0, 0), (self.gr_add_xx_0, 1))
self.connect((self.gr_add_xx_0, 0), (self.digital_ofdm_demod_0, 0))
self.connect((self.digital_ofdm_demod_0, 0), (self.gr_float_to_short_0, 0))
self.connect((self.gr_float_to_short_0, 0), (self.gr_file_sink_1, 0))
self.connect((self.gr_add_xx_0, 0), (self.wxgui_fftsink2_0_0, 0))

def get_samp_rate(self):
return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self.blocks_throttle_0.set_sample_rate(self.samp_rate)
self.wxgui_fftsink2_0.set_sample_rate(self.samp_rate)
self.wxgui_fftsink2_0_0.set_sample_rate(self.samp_rate)

if _name__ =='__main

parser = OptionParser(option_class=eng_option, usage="%prog: [options]")

(options, args) = parser.parse_args()

tb = sim_ofdm()

tb.Run(True)

87

APPENDIX D

Python code for Real-time DVB simulation:

#!/usr/bin/env python

HHHHE R R
Gnuradio Python Flow Graph

Title: DVB Simulator

Author: Lei

Generated: Thu Jun 27 17:38:51 2013
R

from gnuradio import digital

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import window

from gnuradio.eng_option import eng_option
from gnuradio.gr import firdes

from gnuradio.wxgui import fftsink2

from gnuradio.wxgui import forms

from grc_gnuradio import blks2 as grc_blks2
from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser

import wx

class gmsk_sim(grc_wxgui.top_block_gui):

def __init__(self):
grc_wxgui.top_block_gui.__init__ (self, tittle="DVB Simulator ")
_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png
self.Setlcon(wx.lcon(_icon_path, wx.BITMAP_TYPE_ANY))

R R R
Variables

B R R R
self.signal = signal = 500

self.noise = noise = 10

self.variable_static_text_0 = variable_static_text_0 = signal/noise
self.samp_rate = samp_rate = 8e6

R
Blocks
R
_signal_sizer = wx.BoxSizer(wx.VERTICAL)
self._signal_text_box = forms.text_box(

parent=self.GetWin(),

sizer=_signal_sizer,

value=self.signal,

callback=self.set_signal,

label="Signal",

converter=forms.float_converter(),

proportion=0,

self._signal_slider = forms.slider(
parent=self.GetWin(),
sizer=_signal_sizer,
value=self.signal,
callback=self.set_signal,
minimum=0,
maximum=1000,
num_steps=1000,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

self.Add(_signal_sizer)
self.notebook = self.notebook = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "Tx")
self.notebook.AddPage(grc_wxgui.Panel(self.notebook), "RX")
self.Add(self.notebook)
_noise_sizer = wx.BoxSizer(wx.VERTICAL)
self._noise_text_box = forms.text_box(

parent=self.GetWin(),

88

sizer=_noise_sizer,
value=self.noise,
callback=self.set_noise,
label="Noise",
converter=forms.float_converter(),
proportion=0,

self._noise_slider = forms.slider(
parent=self.GetWin(),
sizer=_noise_sizer,
value=self.noise,
callback=self.set_noise,
minimum=0,
maximum=1000,
num_steps=1000,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

self. Add(_noise_sizer)
self.wxgui_fftsink2_0_0_0 = fftsink2.fft_sink_c(
self.notebook.GetPage(0).GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=512,
fft_rate=15,
average=False,
avg_alpha=None,
titte="Transmitter Side",
peak_hold=False,

)
self.notebook.GetPage(0).Add(self.wxgui_fftsink2_0_0_0.win)
self.wxgui_fftsink2_0_0 = fftsink2.fft_sink_c(
self.notebook.GetPage(1).GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=512,
fft_rate=15,
average=False,
avg_alpha=None,
title="Receiver Side",
peak_hold=False,

)
self.notebook.GetPage(1).Add(self.wxgui_fftsink2_0_0.win)
self._variable_static_text_0_static_text = forms.static_text(
parent=self.GetWin(),
value=self.variable_static_text_0,
callback=self.set_variable_static_text_0,
label="SNR",
converter=forms.float_converter(),

)
self.GridAdd(self._variable_static_text_0_static_text, 0, 0, 1, 1)
self.gr_udp_sink_0_2_1_0 = gr.udp_sink(gr.sizeof_char*1, "138.100.50.70", 1234, 1472, True)
self.gr_udp_sink_0_2_1 = gr.udp_sink(gr.sizeof_char*1, "138.100.50.72", 1234, 1472, True)
self.gr_udp_sink_0_2_0 = gr.udp_sink(gr.sizeof_char*1, "138.100.50.74", 1234, 1472, True)
self.gr_udp_sink_0_2 = gr.udp_sink(gr.sizeof_char*1, "138.100.50.73", 1234, 1472, True)
self.gr_throttle_0_0 = gr.throttle(gr.sizeof_char*1, samp_rate)
self.gr_throttle_0 = gr.throttle(gr.sizeof_gr_complex*1, samp_rate)
self.gr_noise_source_x_0 = gr.noise_source_c(gr.GR_GAUSSIAN, noise, 42)
self.gr_multiply_const_vxx_0 = gr.multiply_const_vcc((signal,))
self.gr_file_source_0 = gr.file_source(gr.sizeof_char*1, "/home/ubuntu/Desktop/tx.ts", True)
self.gr_file_sink_1 = gr.file_sink(gr.sizeof _char*1, "/home/ubuntu/Desktop/test2.ts")
self.gr_file_sink_1.set_unbuffered(False)
self.gr_file_sink_0 = gr.file_sink(gr.sizeof_char*1, "/home/ubuntu/Desktop/tx.ts")
self.gr_file_sink_0.set_unbuffered(False)
self.gr_add_xx_0 = gr.add_vcc(1)
self.digital_gmsk_mod_0 = digital.gmsk_mod(

samples_per_symbol=2,

89

payload),

bt=0.35,
verbose=False,
log=False,

)

self.digital_gmsk_demod_0 = digital.gmsk_demod(
samples_per_symbol=2,
gain_mu=0.175,
mu=0.5,
omega_relative_limit=0.005,
freq_error=0.0,
verbose=False,
log=False,

)
self.blks2_packet_encoder_0 = grc_blks2.packet_mod_b(grc_blks2.packet_encoder(
samples_per_symbol=2,
bits_per_symbol=1,
access_code="",
pad_for_usrp=True,

),
payload_length=0,

)

self.blks2_packet_decoder_0 = grc_blks2.packet_demod_b(grc_blks2.packet_decoder(
access_code="",
threshold=-1,

callback=lambda ok, payload: self.blks2_packet_decoder_0.recv_pkt(ok,

)

R

Connections
R
self.connect((self.gr_multiply_const_vxx_0, 0), (self.gr_throttle_0, 0))
self.connect((self.gr_add_xx_0, 0), (self.digital_gmsk_demod_0, 0))
self.connect((self.gr_noise_source_x_0, 0), (self.gr_add_xx_0, 1))
self.connect((self.gr_throttle_0_0, 0), (self.gr_file_sink_1, 0))
self.connect((self.blks2_packet_encoder_0, 0), (self.digital_gmsk_mod_0, 0))
self.connect((self.digital_gmsk_demod_0, 0), (self.blks2_packet_decoder_0, 0))
self.connect((self.gr_throttle_0, 0), (self.gr_add_xx_0, 0))
self.connect((self.gr_add_xx_0, 0), (self.wxgui_fftsink2_0_0, 0))
self.connect((self.gr_file_source_0, 0), (self.blks2_packet_encoder_0, 0))
self.connect((self.gr_file_source_0, 0), (self.gr_file_sink_0, 0))
self.connect((self.blks2_packet_decoder_0, 0), (self.gr_throttle_0_0, 0))
self.connect((self.gr_throttle_0, 0), (self.wxgui_fftsink2_0_0_0, 0))
self.connect((self.digital_gmsk_mod_0, 0), (self.gr_multiply_const_vxx_0, 0))
self.connect((self.gr_throttle_0_0, 0), (self.gr_udp_sink_0_2, 0))
self.connect((self.gr_throttle_0_0, 0), (self.gr_udp_sink_0_2_0, 0))
self.connect((self.gr_throttle_0_0, 0), (self.gr_udp_sink_0_2_1, 0))
self.connect((self.gr_throttle_0_0, 0), (self.gr_udp_sink_0_2_1_0, 0))

0
0
,0

def get_signal(self):
return self.signal

def set_signal(self, signal):
self.signal = signal
self.gr_multiply_const_vxx_0.set_k((self.signal,))
self.set_variable_static_text_0(self.signal/self.noise)
self._signal_slider.set_value(self.signal)
self._signal_text_box.set_value(self.signal)

def get_noise(self):
return self.noise

def set_noise(self, noise):
self.noise = noise
self.gr_noise_source_x_0.set_amplitude(self.noise)
self.set_variable_static_text_0(self.signal/self.noise)
self._noise_slider.set_value(self.noise)
self._noise_text_box.set_value(self.noise)

def get_variable_static_text_0(self):
return self.variable_static_text_0

def set_variable_static_text_0(self, variable_static_text_0):
self.variable_static_text_0 = variable_static_text_0

90

self._variable_static_text_0_static_text.set_value(self.variable_static_text_0)

def get_samp_rate(self):
return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self.wxgui_fftsink2_0_0.set_sample_rate(self.samp_rate)
self.gr_throttle_0.set_sample_rate(self.samp_rate)
self.wxgui_fftsink2_0_0_0.set_sample_rate(self.samp_rate)

self.gr_throttle_0_0.set_sample_rate(self.samp_rate)

if _name__ =='_main_’
parser = OptionParser(option_class=eng_option, usage="%prog: [options]")
(options, args) = parser.parse_args()
tb = gmsk_sim()
tb.Run(True)

91

	Objectives
	GeneralObjective
	SpecificObjectives

	Structure
	RelatedWork
	SoftwareDefinedRadio
	UniversalSoftwareRadioPeripheral
	2.2.1.Themotherboard
	2.2.2.Thedaughterboard
	2.2.3.RelativeProjects
	2.2.3.1.OpenBTSProject
	2.2.3.2.GqrxSDRReceiver

	RadioBasic
	2.3.1.GMSK
	2.3.2.OFDM
	2.3.3.UDP

	GNURadioArchitecture
	GNURadioCompanion
	BasicBlocks
	3.3.1.UHDBlocks
	3.3.2.WXGUIBlocks

	Pythoncodesexplanation
	3.4.1.wfm_rcv_pll.py
	3.4.2.gmsk.py
	3.4.3.ofdm.py

	GSMScanning
	FMReceiver
	BenchmarkOFDM
	Real-timeDigitalVideoBroadcasting
	Conclusion
	FutureWork

