Forget everything you knew about Swift Rings

(HERE'S EVERYTHING YOU NEED TO KNOW ABOUT RINGS)

Your Ring Professors

- Christian Schwede
 - Principal Engineer @ Red Hat
 - \circ Stand up guy
- CLAY GERRARD
 - Programmer @ SwiftStack
 LOUD & ANNOYING

Rings 201

- Why Rings Matter
- What are Rings
- How Rings Work

- HOW TO USE RINGS
- NINJA SWIFT RING TRICKS
- MOAR AWESOME STUFF

Swift 101

Looking for more general intro to Swift?

- Swift 101: https://youtu.be/vAEU0Ld-GIU
- Building webapps with Swift: <u>https://youtu.be/4bhdqtLLCiM</u>
- Stuff to read: <u>https://www.swiftstack.com/docs/introductio</u> <u>n/openstack_swift.html</u>

Swift Dpeoptors

CAN BE A WILD RIDE

RING <u>MASTERS</u>

Ring Features

- DEVICES & SERVERS
- ZONES
- REGIONS
 - o MULTI-REGION
 - o CROSS-REGION
 - LOCAL-REGION
- STORAGE POLICIES

Swift's Rings use Simple Concepts

Consistent Hashing introduced by Karger et al. at MIT in 1997

THE SAME YEAR HTTP/1.1 IS SPECIFIED IN RFC 2616

Consistent what?

- Just remember the distribution function
- No growing lookup tables!
- Easy to distribute!

Partitions in Swift

- Object namespace is mapped to a number of **partitions**
- Each partitions holds one or more objects

replica2part2dev_id

	Replica # 1	Replica # 2	Replica # 3
Part # 0	Device # 0	Device # 1	Device # 3
Part # 1	Device # 3	Device # 0	Device # 1
Part # 2	Device # 3	Device # 4	Device # 2
Part # 3	Device # 2	Device # 0	Device # 1
Part # 4	Device # 1	Device # 4	Device # 3
Part # 5	Device # 0	Device # 2	Device # 4
Part #			

1

How to lookup partition

get_nodes(part)

Part # 2	Device # 3	Device # 4	Device # 2

HANDOFF

PRIMARY

get_more_nodes(part)

What makes a good ring

- A good ring has good
- Dispersion
- Balance
- Low overload (SOME, BUT NOT TOO MUCH!)

PC LOAD LETTER

Fundamental Constraints

- Devices (disks) A FAILURE DOMAIN
- Servers FAILS TOGETHER
- Zones (racks)
- Regions (datacenters)

THESE ARE TTERS

Dispersion

MEASUREMENT THAT THE FAILURE DOMAIN OF EACH REPLICA OF A PART IS UNIQUE AS POSSIBLE

Fundamental Constraints

BALANCE

The Rebalance Process

"RINGS ARE NOT PIXIE DUST THAT MAGIC DATA OFF OF HARD DRIVES"

Fundamental Constraints

min_part_hours

ONLY MOVE ONE REPLICA OF A PARTITION

PER REBALANCE

Monitoring Replication Cycle

ONLY REBALANCE AFTER A FULL REPLICATION CYCLE
 SWIFT-DISPERSION-REPORT IS YOUR FRIEND

Queried 8192 objects for dispersion reporting, ... There were 3190 partitions missing 0 copy. There were 5002 partitions missing 1 copy. 79.65% of object copies found (19574 of 24576)

PATITIONS ASSIGNED

Rebalance Status

Account & Container Rebalance

OVERLOAD

Balance vs. Dispersion

The decimal fraction of one replicas worth of partitions

Overload

Not Enough => CORRELATED DISASTER

JUST USE 10% (HOPEFULLY IT WAS CAT PICS?) IT'LL PROBABLY BE FINE

PARTITION POWER

BALANCING THE UNKNOWNS

- How to distribute objects of unknown size well-balanced?
 - \circ Objects vary between 0 bytes and 5 GiB in size
- => Store more than one partition per disk
- => Aggregation of random sizes balances out

DISK FILL LEVEL VS. PARTITION COUNT

CHOOSING PARTITION POWER

- Number of partition is fixed
- More disks => less partitions per disk
- Choose a part power with a ~ thousand partitions per disk
 Based on today's need, not an imaginary future growth
- It is highly unlikely that your partition power is >> 20, and definitely not 32

https://gist.github.com/clayg/6879840

YOU BECAME AN UNICORN

- Skyrocketing growth? Congrats!
- We're working on increasing partition power for you to keep your cluster balanced
 - https://review.openstack.org/#/c/337297/
- Decreasing won't be possible at least not without a serious downtime

WRAPPING UP

Questions?

