CHEMICAL ANALYSES AND STATISTICAL SUMMARIES FOR SAMPLES OF ROCK, MINUS-60-MESH ($0.25-\mathrm{mm}$) STREAM SEDIMENT, AND NONMAGNETIC HEAVY-MINERAL CONCENTRATE, HORSE MEADOW, LOG CABIN-SADDLEBAG, AND TIOGA LAKE ROADLESS AREAS, AND HALL NATURAL AREA, MONO COUNTY, CALIFORNIA by
S. J. Sutley, M. A. Chaffee, D. L. Fey, and R. H. Hill

Open-File Report 83-649
1983

This report has not been reviewed for conformity with U.S. Geological Survey editorial standards. The use of trade names in this report is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

STUDIES RELATED TO WILDERNESS

The Wilderness Act (Public Law 88-577, September 3, 1964) and related acts require the U.S. Geological Survey and the U.S. Bureau of Mines to survey certain areas on Federal lands to determine their mineral resource potential. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results of a geochemical survey of the Horse Meadow (5049), Log Cabin-Saddlebag (5052), and Tioga Lake (5050) Roadless Areas and Hall Natural Area in the Inyo National Forest, Mono County, California. These areas were classified as further planning areas during the Second Roadless Area Review and Evaluation (RARE II) by the U.S. Forest Service, January 1979.
Page
Int roduction 1
Sample collection and preparation- 1
Rock samples 2
Minus-60-mesh ($0.25-\mathrm{mm}$) stream-sediment samples 2
Nonmagnetic heavy-mineral-concentrate samples 2
Chemical analysis 2
Description of tables 1-4 4
Description of tables 5-7 19
Acknowl edgments 23
References 23
ILLUSTRATIONS
Plate 1.--Map showing geochemical sample sites--------------------------In pocket
TABLES
Table 1.--Lower limits of analytical determination- 6
2.--Data for rock samples 7
3.--Data for stream-sediment samples- 10
4.--Data for concentrate samples 16
5.--Summary statistics for rock samples 20
6.--Summary statistics for stream-sediment samples 21
7.--Summary statistics for concentrate samples 22

INTRODUCTION

Geochemical sampling was conducted in the Horse Meadow, Log CabinSaddlebag, and Tioga Lake Roadless Areas and in the Hall Natural Area, Mono County, California, during the summers of 1978 and 1979. This report includes a map showing the locations of all sites sampled for this report (plate 1), a tabulation of the lower limits of detemination used in the various analytical methods (table 1), a tabulation of chemical analyses for samples of rock, minus-60-mesh $(0.25-\mathrm{mm})$ stream sediment, and nonmagnetic heavy-mineral concentrate from stream sediment (tables 2, 3 , and 4 , respectively), and summary statistics for the elements listed in tables 2-4 (tables 5-7). Tables 2-4 and 5-7 list selected data provided by computer programs in the U.S. Geological Survey RASS-STATPAC System (VanTrump and Miesch, 1977).

SAMPLE COLLECTION AND PREPARATION

Chemical analyses for a total of 27 rock samples, 47 stream-sediment samples, and 33 nonmagnetic heavy-mineral-concentrate samples are tabulated in this report (tables 2-4). Included in the rock and stream-sediment data sets are the results of the analyses of 11 rock samples and 13 stream-sediment samples that were collected in or near the present study areas in 1978 for a report on the Minarets Wilderness and adjacent areas, Madera and Mono Counties, California (Huber, 1982). The total number of analyzed samples collected in or near the study areas yields an approximate sample density of 1 sample $/ 1.5 \mathrm{mi}^{2}$ (1 sample $/ 3.9 \mathrm{~km}^{2}$) for the rock samples, $1 \mathrm{sample} / 1.3 \mathrm{mi}^{2}$ (1 sample/3.2 km^{2}) for the stream-sediment samples, and 1 sample/1.8 mi^{2} (1 sample/4.6 km^{2}) for the nonmagnetic heavy-mineral-concentrate samples.

Most of the rock samples are of unaltered material. The analyses of these samples provide background information for elements in rocks that have not been affected by hydrothermal alteration or mineralization. In addition, some altered and(or) mineralized rocks were collected to characterize mineralogically anomalous areas. Al though each rock sample was selected to represent the rocks exposed in the vicinity of the sample site, the actual areal extent of influence of the chemical information provided by a specific sample is not known; the sampling program was designed only to provide some general information on the geochemical nature of the rock units present.

The chemical analyses of the stream-sediment samples reflect the chemistry of rock material eroded from the drainage basin upstream from each sample site and may reveal unusually high concentrations of elements that may be related to mineral deposits.

Concentrate samples were processed from the same active alluvium used to make minus-60-mesh ($0.25-\mathrm{mm}$) stream-sediment samples. The heavy-mineralconcentrate samples provide information about the chemistry of a limited number of minerals present in rock material eroded from the drainage basin upstream from each sample site. Wet panning and a heavy-liquid gravity separation technique were used to remove most of the common rock-foming minerals, such as quartz, feldspars, and clay minerals; and a magnetic separation technique was used to remove the more magnetic minerals, leaving a mineral assemblage potentially rich in minerals commonly associated with many types of mineral deposits. The selective concentration of ore-related minerals permits determination of some elements that are not easily detected
in stream-sediment samples. The chemical composition of a nonmagnetic heavy mineral concentrate may also indicate specific minerals. For example, the barium content in a stream-sediment sample is predominantly the sum of barium in the mineral barite plus barium substituted in feldspars, clay minerals, and possibly other minerals, whereas the barium in a concentrate sample is essentially all in barite.

Rock samples

All rock samples were collected from outcrops that were considered to be representative of exposures in the vicinity of the plotted site location. Wherever possible the samples were hand cobbed to remove any obviously weathered material. All samples were crushed and pulverized to at least minus 100 -mesh $(0.15-\mathrm{mm})$ material before analysis.

Minus-60-mesh ($0.25-\mathrm{mm}$) stream-sediment samples
The material for the stream-sediment samples was collected primarily from first-order (unbranched) and second-order (below the junction of two firstorder) streams as shown on $1: 62,500-$ scale topographic maps. Each sample was composited from active alluvium collected from several locations within an area that may extend as much as $50 \mathrm{ft}(15 \mathrm{~m})$ from the site plotted on the map. The resulting sample was air dried and that portion passing through a screen with $0.25-\mathrm{mm}$ openings (a 60 -mesh screen) was saved and pulverized to at least minus-100-mesh ($0.15-\mathrm{mm}$) material before analysis.

Nonmagnetic heavy-mineral-concentrate samples
The bulk sample of active stream-sediment material was collected and composited in a manner similar to that used for the minus-60-mesh ($0.25-\mathrm{mm}$) stream-sediment samples. Each bulk sample was passed through a 10 -mesh $(2.0-\mathrm{mm})$ screen to remove the coarse material. The sediment passing through the screen was wet-panned until most of the quartz, feldspar, organic material, and clay-sized material was removed. The sample was air dried and passed through an $18-\mathrm{mesh}(1.0-\mathrm{mm})$ sieve; the minus-18-mesh material was saved. Any light material remaining in the concentrate was then removed by allowing the heavier fraction of the sample to settle through bromoform (specific gravity 2.86). The highly magnetic material was next removed with a hand magnet from the cleaned and dried heavy-mineral fraction. The remaining heavy-mineral material was then separated into a magnetic and a relatively nonmagnetic fraction using a Frantz Isodynamic Magnetic Separator set at 0.6 amperes, with a 15° forward setting and a 15° side setting. The resulting nonmagnetic sample was split into two fractions; one fraction was ground in an agate mortar for the analysis and the other fraction was saved for mineralogical studies.

CHEMICAL ANALYSIS

All three types of samples were analyzed for 31 elements ($\mathrm{Ag}, \mathrm{As}, \mathrm{Au}, \mathrm{B}$, $\mathrm{Ba}, \mathrm{Be}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{La}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Nb}, \mathrm{Ni}, \mathrm{Pb,Sb,Sc,Sn}$, $\mathrm{Sr}, \mathrm{Th}, \mathrm{Ti}, \mathrm{V}, \mathrm{W}, \mathrm{Y}, \mathrm{Zn}$, and Zr) using a six-step semiquantitative emission spectrographic method (Grimes and Marranzino, 1968). Because of the limited amount of sample material, the nonmagnetic heavy-mineral concentrates were only analyzed spectrographically. The rock and stream-sediment samples were
also analyzed for arsenic using a colorimetric method (Ward and others, 1963; and for zinc, antimony, cadmium, and bismuth by atomic absorption spectrometry (Ward and others, 1969; Welsch and Chao, 1975; Viets, 1978). A limited number of the rock and stream-sediment samples were al so analyzed by atomic absorption spectrometry for gold (Au-T) by the method of Meier (1980) or for gold (Au-P) by the method of Thompson and others (1968). Only the Minarets Wilderness samples were analyzed for gold by the Thompson method. Of the rock and stream-sediment samples collected specifically for the present report, those samples that showed a silver value above the lower limit of determination of the emission spectrographic method were also analyzed for gold. Analysis for Au-P was done on the Minarets Wilderness samples prior to the development of Meier's gold method. Analysis for all three sample types was done in U.S. Geological Survey laboratories near Golden, Colorado.

The spectrographic analytical values are reported as the approximate geometric midpoints ($0.15,0.2,0.3,0.5,0.7$, and 1.0 or appropriate powers of ten of these values) of concentration ranges whose respective boundaries are $0.12,0.18,0.26,0.38,0.56,0.83$, and 1.2 (or appropriate powers of ten of these values). In general, the precision of the spectrographic method is plus or minus one reporting value of the value given by the analyst approximately 83 percent of the time and plus or minus two reporting values of the value given by the analyst 96 percent of the time (Motooka and Grimes, 1976). Because all of the samples for this report were analyzed by the same analyst using the same spectrographic instrument, our experience indicates that better precision can be expected in this study.

Each spectrographic film includes analytical spectra for up to 22 field samples and one reference standard sample. The reference standard sample is included with each set of field samples to monitor the quality of the analyses from film to film.

For the six elements analyzed by other than spectrographic methods the reporting values vary with the element and with the concentration level for each given element. As was the case for the spectrographic analyses, a reference standard sample was analyzed with each batch of field samples to monitor the quality of the analyses. Precision for these analytical methods is commonly reported as a percent relative standard deviation (\% RSD), and is based on replicate analyses of samples selected to provide information at different concentration levels. In general, the precision for each method tends to be lowest for those samples containing a given element at or near its lower limit of determination. For the six elements discussed here, typical reported ranges of percent relative standard deviation, as determined by replicate analysis of a limited sample set, are as follows:

El ement	Range of \% RSD	Source of data
As	0.0-48.9	Unpublished analyses by R. H. Hill, 1981
Zn	3.4-30.2	Ward and others, 1969, p. 21
Sb	3.7-10.7	Welsch and Chao, 1975
Cd	3.3-18.8	Viets, 1978
Bi	1.4-4.0	Viets, 1978
Au-P	6.5-31.6	From analyses in Thompson and others, 1968
Au-T	0.0-22.8	Meier, 1980

As an example to use in interpreting these ranges one might consider antimony, whose range is shown as $3.7-10.7 \%$ RSD. This range indicates that a reported antimony value listed in table 2 or 3 should be within $\pm 10.7 \%$ (usually much less) of the mean value for that sample.

DESCRIPTION OF TABLES 1-4

Table 1 lists the lower limits of analytical determination for the three types of samples collected for this report. Because of matrix interference problems, the spectrographic technique was modified for the analysis of nonmagnetic heavy-mineral-concentrate samples. As a result, the lower limits of determination for the elements analyzed for this type of sample are all raised two reporting values above the normal lower-limit value.

Tables 2-4 list the chemical analyses for the samples of rock, minus-60-mesh ($0.25-\mathrm{mm}$) stream sediment, and nonmagnetic heavy-mineral concentrate, respectively. For the three sample sets the data are arranged so that column 1 contains the USGS-assigned sample numbers. Field numbers in tables 2, 3, and 4 beginning with "HV" were originally collected for a study of the Hoover Wilderness and adjacent study areas (Chaffee, Banister, and others, 1980). Field numbers beginning with "WL" were originally collected for a study of the Walker Lake $1^{\circ} \times 2^{\circ}$ quadrangle (Chaffee, Hill, and others, 1980). Field numbers beginning with "LC" were collected specifically for the present study. All other samples were originally collected for the study of the Minarets Wilderness and adjacent areas (Huber, 1982). These sample numbers coincide with the numbers on the site location map (plate 1). In tables $2-4$, rock samples are suffixed by RK, stream-sediment samples by SS, and concentrate samples by KN. Columns 2 and 3 list latitude (north) and longitude (west), respectively, for each sample site in degrees, minutes, and seconds. Column headings showing the letter "s" below the element symbol indicate spectrographic analyses. In a similar manner the letters "aa" below the element symbol indicate atomic absorption analyses and "cm" indicates colorimetric analysis for arsenic. All element concentrations are given in parts per million (ppm), except those for $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}$, and Ti , which are given in percent ($p c t$).

If a given element was looked for but not detected in a sample, then the letter " N " was entered in the tables in place of an analytical value. If an element was observed but was below the lowest reporting value, then a "less than" symbol (<) was entered in the tables in front of the lower limit of determination. If an element was observed but was above the highest reporting value, then a "greater than" symbol ($>$) was entered in the tables in front of the upper limit of detemination. If an element was not looked for in a sample, then two dashes (--) are entered in tables 2-4 in place of an analytical value.

Because of the formatting used in the computer program that produced tables 2-4, some of the elements listed in these tables ($\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Ti}, \mathrm{Ag}$ and Be) carry one or more nonsignificant zeroes to the right of the significant digits. The analysts did not determine these elements to the accuracy suggested by the extra zeroes. The last column in table 2 gives the formation name for each rock sample. These names are taken from the units shown on the geologic map of the Horse Meadow, Log Cabin-Saddlebag, and Tioga Lake Roadless Areas and Hall Natural Area (Seitz and others, 1983) and of the Bodie quadrangle (Chesterman and Gray, 1975).

For the semiquantitative spectrographic method used, the elements As, $\mathrm{Bi}, \mathrm{Cd}, \mathrm{Sb}$, and Zn have lower limits of analytical determination that are usually above nomal concentrations for these elements in the selected sample media. To obtain more useful analytical values, these elements were determined by other, more sensitive methods on all of the rock and streamsediment samples (except those from the Minarets study), and the spectrographic values for these five elements have been deleted from the rock and stream-sediment data sets (tables 2 and 3). The spectrographic values for Au, Sn, and Th in the rock samples; for Au in the stream-sediment samples; and for Cd, Sb, and Zn in the concentrate samples were all below the respective lower limits of detemination of these elements. Consequently, these elements have been deleted from tables 2, 3, and 4, respectively. In addition, the atomic absorption analyses for $A u-P$ in the rock and stream-sediment samples were deleted for the same reason.

Table 1.--Lower limits of analytical determination for samples of rock, minus-$60-\mathrm{mesh}(-0.25-\mathrm{mm})$ stream sediment, and nonmagnetic heavy-mineral concentrate, Horse Meadow, Log Cabin-SaddTebag, and Tioga Lake Roadless Areas and Hall Natural Area, California
[(--) indicates not analyzed. "aa" following the element symbol indicates atomic absorption analysis; "cm" indicates colorimetric analysis; no suffix indicates spectrographic analysis. The values listed for $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}$, and Ti are in percent; all others are in parts per million]

El ement	Lower 1 Rock and stream sed iment	it of determination Nonmagnetic heavy-mineral concentrate
Fe	0.05	0.1
Mg	0.02	0.05
Ca	0.05	0.1
Ti	0.002	0.005
Mn	10	20
Ag	0.5	1.0
As	200	500
Au	10	20
B	10	20
Ba	20	50
Be	1	2
Bi	10	20
Cd	20	50
Co	5	10
Cr	10	20
Cu	5	10
La	20	50
Mo	5	10
Nb	20	50
Ni	5	10
Pb	10	20
Sb	100	200
Sc	5	10
Sn	10	20
Sr	100	200
V	10	20
W	50	100
Y	10	20
Zn	200	500
Zr	10	20
Th	200	500
Zn-aa	5	--
Cd-aa	0.05	--
Bi-aa	0.5	--
Sb-aa	1.0	--
Au-P-aa	0.02	--
Au-T-aa	0.005	--
As-cm	10	--

Sample	Latitude			Longitude		Fe-pct.	Mg-pct.	Ca-pct.	Ti-pct.	Mn-ppm	Ag-Dpm	B-ppm	Ba-ppm	Be-ppm	Co-ppm
3K137RK	37		0	119	1127	1.0	. 20	. 70	. 05	500	N	<10	1.500	1.0	5
$3 K 142 R K$	37		58	119	1148	5.0	2.00	3.00	. 50	700	N	<10	1.500	<1.0	5
3K143RK	37	51	16	119	1051	2.0	. 30	2.00	.10	500	N	<10	1.500	2.0	5
3K144RK	37	51	41	119	1050	1.0	. 10	. 50	. 05	200	N	<10	2.000	1.0	5
3K149RK	37	52	24	119	1055	5.0	3.00	.70	. 30	500	N	<10	300	1.0	5
3K152RK	37	50	38	119	1139	3.0	2.00	.10	. 20	200	N	50	1.000	2.0	10
3K157RK	37	52	38	119	1238	3.0	. 50	2.00	- 30	500	N	<10	1.000	2.0	5
3K160RK	37	54	24	119	1326	15.0	3.00	1.00	. 50	1.000	N	<10	1.000	<1.0	10
3K183RK	37	51	22	119	1223	3.0	2.00	.10	.30	300	N	30	1.000	1.0	10
3K185RK	37	51	50	119	1159	1.0	.30	- 20	.10	200	N	10	700	1.0	<5
3K186RK	37	54	52	119	1322	1.5	. 30	. 70	.07	300	N	10	1.000	1.0	<5
HV9108RK	37	57	36	119	1646	5.0	1.00	- 50	. 70	300	<. 5	100	1.000	2.0	15
HV9109RK	37	57	16	119	1536	1.0	1.00	2.00	.10	300	. 5	50	1,000	N	<5
HV9111RK	37	58	55	119	1727	7.0	1.00	5.00	.70	1.500	N	20	2.000	2.0	10
HV9112RK	37	58	40	119	1739	3.0	1.50	3.00	. 50	700	N	30	700	3.0	10
HV9156RK	37	57	49	119	1418	1.5	2.00	2.00	.20	700	<. 5	20	1.500	1.5	7
HV9174RX	37	56	24	119	156	1.0	. 50	<. 05	. 20	200	<. 5	70	1.000	<1.0	5
HV9183RK	37	59	0 .	119	175	3.0	1.50	1.50	. 30	700	1.0	50	700	1.5	10
LCOOSRK	37	56	47 -	119	1055	1.0	. 50	. 70	. 30	300	N	N	500	1.0	7
LCOO6RK	37	59	24	119	838	3.0	1.00	2.00	.30	700	N	10	700	<1.0	15
LCOIORK	37	56	17	119	1520	1.0	3.00	7.00	.20	700	N	\boldsymbol{N}	1.000	N	N
LCO11RK	37	56	12	119	1520	1.5	1.00	. 50	. 20	500	N	50	500	<1.0	15
LCOIGRK	37	56	34	119	1559	-3	.10	. 70	. 05	20	2.0	<10	150	N	N
LCO15RK	37	56	51	119	1625	1.0	. 30	3.00	.15	1.500	N	10	200	1.5	5
LCOI7RK	37	54	35	119	88	. 5	. 15	. 50	.10	200	N	N	500	2.0	N
WLO286RK WLO289RK	38 38	1	31 0	119	14 11 11	3.0 2.0	1.50 1.00	3.00 2.00	.50 .30	500 700	N N	10 10	200 2.000	2.0 3.0	(10

Nb-ppm Ni-ppm
Arear Califorr

$$
\text { 2Ozzo } 20 \text { OOO OOOOO MOOOO NOOOO NO }
$$

Halt

E	
0	
0	
1	n
∞	
∞	
∞	

 MOOOO
MMNM

noooo
－nNo
0000
$<-\infty$
○かんnに！
UNNO
かんのNo
かんのペ $\stackrel{\square}{\sim}$ $\cdots 2 O N O$ nomen
 nomen sooso ode 000
000
0
O 0 0000
000
Non

noodonnono gno
nonno oonco
 NOOO

E
0
0
1
0
α

$\begin{array}{r}98080 \\ \cos 0 \\ \hline 20\end{array}$
OS 080
3
Biopiog 0
0
0

Ti－pct

OOMOに
OOMOO
NNに M 000
0
\cdots
MOO
Mo
M
MOMOO

0
N

000
$\sim-N$
$\cdots 00$ n
のはいへい
$-\cdots$
$\cdots \cdots$
\cdots $へ ゙ い い い ~$ N $\because!$ いNがいに 000
non B．ang － 0000
$0-20$

블․․․․․․
$3 \stackrel{y}{3}$
品が 0 O』Oコ ふ osoon
 －•• fe－pct． \qquad 0 にいい ッルooo

00000
MNNM－
$\cdots 0 \sim n 0$
Mon
$0 n m=0$
ต๓ッに＝
－－－
$=\sim=こ$
$\sim \sim \sim M m$

NNon O－Oの MMONO
∞ N－Nさ nosmoo

n
N
\sim
\sim
\sim
\sim
$n=-$
$2 a=$
m
m
$=0$
-m
里

Latitude
g＝ang in
$\infty 0 \infty \operatorname{mon}$
Movma
nomms

MNNMN
minnm MMMMM

$$
0 \sim 0 n \infty
$$

$$
\hat{n} \sim=0
$$

	¢0気心m
二ッコン	min
のこのこの	のここ

～Mジらか	$n_{m} \approx \approx m$
	沾以－
へへへMべ	

C．COUSS
I．C003SS n n n
n
n
0
0
0
0
0

LC007ss

LC008ss n n | n |
| :--- |
| in |
| E | Lculiss

Hall
s and

$\begin{aligned} & \text { E } \\ & \frac{a}{2} \\ & \frac{1}{2} \end{aligned}$	은ㅇㅇㅇㅇㅇㅇㅇ	Onngo	영ㅇㅇㅇ앙	$\begin{aligned} & \text { 응ㅇㅇㅇㅇ } \\ & \text { 용 } \end{aligned}$	$\begin{aligned} & \text { 응응응 } \\ & \text { 우N } \end{aligned}$	ㅇㅇㅇㅇㅇㅇㅇㅇㅇ	$\begin{aligned} & \text { gingog } \\ & \text { inn } \end{aligned}$	으Nㅇㅇㅇㅇㅇㅇ	옷ㅇㅇㅇㅇ ヘNGOO
$\begin{aligned} & \text { E } \\ & \frac{0}{2} \\ & \text { i } \\ & \text { in } \end{aligned}$	응ㅇㅇ $\because \operatorname{cog}_{2}$	$\begin{aligned} & \text { 옹응 } \\ & \text { N } 0 \text { 은 } \end{aligned}$		OOOOO noogm ール！！－		$\begin{aligned} & \text { 응nㅇㅇ } \\ & n \end{aligned}$		$\begin{aligned} & 00^{\circ}=00 \\ & \text { ng } \end{aligned}$	
$\begin{aligned} & \varepsilon \\ & \frac{1}{2} \\ & 0 \\ & 1 \\ & \text { c } \\ & n \end{aligned}$	$z z z \geq 0$	$\geq 2 \geq 22$	$z \geq 2 \geq 2$	$\geq \geq \geq 22$	$\geq 2 z 22$	$\geq \geq 2 \geq 2$	2 zzz	$z 0_{n} \geq \geq z$	$z_{V} \geq 2 z$

$\begin{aligned} & E \\ & \frac{0}{2} \\ & 1 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	こnのnO	$2 \ln c=2$	$n \geq z n 0$	$n n z \geq n$	nnonn	$z n n \geq n$	がいのいの	$n \sim n \sim n$	nごきミい

$\frac{3}{2}$	유N으N	Nopno	MOMn	ㅇNNㅇN	nngog		$O_{N} \sim M$	~~	$n \approx 0 \overline{=}$
5									

$\stackrel{E}{5}$	은은Nㅡㄴ	$\therefore \frac{C O}{v} \equiv \cong$	능ㅇN	$\text { 튼 } \underset{\sim}{\mathrm{S}} \mathrm{~S}_{\mathrm{m}}$	GNOng		$\mathfrak{i n c}$	$\underset{v}{ } \mathfrak{\sim} \because \cong$	にno inn
\llcorner									

Table 3.--Data for stream-sediment samples, Horse Meadowe Loy Cabin-Saddebag, and tioga Lake Roadiess Areas and Hall
E
a
0_{0}
0
0
Be-ppm
s
5.0
3.0
Ba-ppm
s
1,500
1,000
長い こ ロ
Ag-ppm
in 7
읏웅
Natural Area, California--continued
$-\mu c t$.
.
.30
.20
Ca-pct.
s
2.0
1.5
$\begin{array}{cc}\text { Fe-pct. } & \text { Mg-pct. } \\ \text { s } & \\ 2.0 & 1.00 \\ 2.0 & .50\end{array}$
Longitude

1191259
1191141

Sample
WL0288SS
WLO289SS
and Hall
$\begin{array}{ll}\text { E } & 00 \\ 2 & 0 \\ 0 & 0 \\ 1 & n \\ i n & \end{array}$

ples. Horse Meadow. Log Cabin-Saddle
Natural Area. California--continued
$v-p p m$
s
300
150

${ }_{\frac{E}{2}}^{i}=2$
$\stackrel{2}{2}$
$\begin{array}{ll}E & \sim \\ 0 & \\ 0 & \\ 0 & \\ 0_{2} & \end{array}$
$\begin{array}{ll}E & c \\ \text { E } \\ 10 & \\ 0 & \\ 0 & \end{array}$
5
$\frac{2}{2}$
$\frac{2}{2} n$
3

Sample
WLU288SS
WLO289SS

$\underset{\substack{\text { E } \\ \underset{\sim}{2}}}{ }$ 요
$\sum_{\frac{1}{2}}^{\substack{\sum_{3}}}=2$
Table

Sample	$\underset{s}{w-n p i n}$	$\underset{s}{\gamma-p \mu m}$	$\underset{s}{L r}-\mu \nu!\text { н }$	$\begin{gathered} \text { Ith-ppm } \\ s \end{gathered}$	$\begin{gathered} \text { 2n-ppm } \\ \text { aa } \end{gathered}$	$\begin{gathered} \text { Cd-ppa } \\ \text { a a } \end{gathered}$	$\begin{gathered} \text { Hi-ypm } \\ \text { aa } \end{gathered}$	$\begin{gathered} \mathbf{S b}-\mathrm{p} \boldsymbol{\mu} \mathrm{~m} \\ \text { aa } \end{gathered}$	$\begin{gathered} A u-T-p p m \\ \text { aa } \end{gathered}$	$\begin{gathered} \text { As-ppm } \\ \text { cm } \end{gathered}$
WL0288SS	1	20	150	N	95	1.20	1.0	2	<. 005	<10
WLO289SS	N	20	200	N	50	. 30	< . 5	2	--	N

Sample	latitude			Longitude			Fe-pct.	Ma-bct.	Ca-bct.	Ti-pct.	Mn-pom	Aq-ppm	As-ppm	Au-ppm	$B-p p m$
HV9108KN	37	57	36	119	16	46	. 3	. 50	10.0	>2.0	2.000	1	N	N	500
HV9109KN	37	57	14	119	15	36	5.0	5.00	5.0	. 7	2.00n	1	N	N	2.000
HV9111KN	37	58	55	119	17	$? 7$	3.0	.50	7.0	1.0	3.000	N	N	N	1.000
HV9112KN	37	58	40	119	17	39	. 5	.10	10.0	>2.0	2,000	N	N	N	N
HV9128KN	37	59	15	119	17	12	3.0	5.00	10.0	. 7	1.500	N	N	N	200
HV9154KN	37	57	15	119	13	30	. 7	1.00	3.0	2.0	1.000	N	N	N	20
HV9155kN	17	57	14	119	13	38	1.0	1.00	3.0	1.5	1.000	N	N	N	70
HV9156KN	37	57	49	119	14	18	1.5	5.00	7.0	1.5	3.000	N	N	N	100
HV9157KN	37	57	46	119	14	7	3.0	3.00	7.0	2.0	2.000	N	N	N	100
HV9158KN	37	57	36	119	14	9	2.0	2.00	10.0	1.5	2.000	1	N	N	100
HV9174KN	37	56	24	119	15	6	1.0	1.50	7.0	>2.0	2.000	N	N	N	2.000
HV9183KN	37	59	0	119	17	5	3.0	1.50	5.0	1.5	2.000	7	N	N	1.000
LCOO1KN	37	57	51	119	9	36	. 2	. 20	10.0	2.0	500	N	N	N	20
LCOO3KN	37	54	0	110	8	2	. 2	. 50	10.0	>2.0	1.000	N	N	N	20
l. COO4KN	37	52	17	119	10	16	. 5	1.00	10.0	>2.0	5,000	N	N	N	100
LCOOSKN	37	56	47	119	10	55	. 5	.50	10.0	>2.0	500	N	N	N	<20
lCOO6KN	37	59	24	119	8	38	1.0	1.00	7.0	2.0	1.000	N	N	N	70
LCOO7KN	37	59	47	119	8	57	. 7	2.00	15.0	2.0	2.000	N	N	N	100
I. COO8kN	37	52	18	119	9	47	1.0	. 70	7.0	>2.0	1.000	N	N	N	30
L.COO9KN	37	55	15	119	15	0	1.0	.70	15.0	>2.0	1.500	N	N	N	150
ふ															
LCOIOKN	37	56	17	119	15	20	1.5	2.00	15.0	>2.0	3.000	N	1,000	N	200
LCOITKN	37	56	12	119	15	20	1.5	2.00	20.0	1.0	5.000	N	N	N	200
LCOI2KN	37	52	2	119	9	3	. $?$. 50	10.0	>2.0	1.000	N	N	N	50
LCOI3KN	37	51	13	119	8	21	2.0	2.00	15.0	>2.0	5.000	N	N	N	100
LCO14KN	37	56	34	119	15	59	1.5	2.00	5.0	2.0	1.000	N	N	N	200
LCOISKN	37	56	51	119	16	25	1.0	.20	3.0	>2.0	700	N	N	N	300
LCO16KN	37	55	38	119	9	34	.7	. 30	10.0	>2.0	700	N	N	N	100
LCOITKN	37	54	35	119	8	8	. ?	. 15	. 7	1.0	200	N	N	N	150
LCO18KN	37	55	9	119	15	9	2.0	.70	10.0	2.0	1.500	N	N	N	200
WLO285kN	38	1	12	119	9	36	1.0	. 50	10.0	>2.0	1.500	N	N	N	200
W10786kN	38	1	31	119	14	36	1.5	2.00	5.0	1.5	2.000	2	N	N	500
WL 0287 KN	38	1	25	119	14	33	2.0	.20	5.0	1.0	1.500	10	N	30	200
HLO289KN	38	2	0	119	11	41	2.0	1.00	7.0	1.5	-2,000	N	N	N	300

Hall

		o응№	으№응	응융응	으NOR	응№	ion on
	등응은	$z \geq 0 \frac{0}{v} z^{2}$	$\text { co } \underset{v}{\circ} 00$	$\cdots o n c o$	$\mathfrak{m c o n n}$	우N 으№	Bi^{2}
		$\begin{aligned} & \text { 응ㅇ응 } \\ & \text { minnin } \end{aligned}$				$\begin{gathered} \text { 앙ㅇㅇㅇ } \\ \text { mign } \\ \text { n } \end{gathered}$	$\begin{aligned} & \text { ㅇㅇㅇ } \\ & \text { in } \end{aligned}$
$\begin{aligned} & \text { E } \\ & \text { a } \\ & \text { a } \\ & \vdots \\ & 3 \end{aligned}$	OCOOO	영ㅇNㅇ	$\begin{aligned} & \text { 응든ㄹ } \end{aligned}$	$\underset{v}{c} \operatorname{coc}$	$\cdots n o$	$\mathrm{O}_{\mathrm{N}}^{\mathrm{C}} \mathrm{O} n z z$	으Nn
$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 1_{0} \end{aligned}$	$\begin{gathered} 0 O_{N}=0 \\ \sim \end{gathered}$	응ㅇㅇㅇ	cooic	$\operatorname{cosic}_{\mathrm{m}}^{\mathrm{Cog}}$	응ㅇㅇㅇ	으N으№	옹ㅇ
$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$c_{2} \frac{0}{v} \geq 0$	$\text { 은 } 220$	$z n z e c$	$0 \geq z 0 c$	$n=00 n$	oionco	$0 \geq 2$
$\begin{aligned} & E \\ & E_{0} \\ & 1 \\ & E^{\prime} \end{aligned}$	2 zzz	2 zzz	$z \geq 2 z 2$	$Q^{2 z} e^{z}$	$z z z \mathrm{O}_{\mathrm{N}} \mathrm{z}$	$2 \geq 2 \geq 2$	222

\square
\sim^{n}

~べmnz $m n z m m$. 22 $z z \sim$ v^{2} $\sim \sim \sim$ 500
500
5.000
3.000
1.500 응 등́ㅡㅇ

 1.000
700
1.500
\qquad $2 z$
x
$=$
$=$
$=$
\vdots
x
x HVO128KN
HV9154KN HV9154KN
HV9155KN HV915.KN HV9157KN HV9158KN
 NXE8LGAH LCOOSKN LCOOSKN
L. COOGKN
LCOOTKN
LCOORKN
 LCO1 KN
LCOI KN
 COI4KN LCO15KN LCO1 KKN
LCO17KN LCO18KN
WLO285KN WLO285KN WLO286KN
WLO287KN
WLO289KN

$r h-p p m$
s
1.000
N
<500
700
N

$\begin{aligned} & E \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & > \end{aligned}$	$\begin{aligned} & \text { 응응ㅇㅇㅇ } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { 응ㅇㅇㅇㅇ } \\ & \text { 心in } \end{aligned}$	$\begin{aligned} & \text { 옹으릉ㅇ } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { 응ㅇㅇㅇㅇ } \\ & \text { onnn } \end{aligned}$	$\begin{gathered} \text { 응응응 } \\ \text { 禺 } \end{gathered}$	
$\begin{aligned} & \text { E } \\ & \frac{a}{a} \\ & \frac{1}{2} \\ & \vdots \end{aligned}$	$\underset{\sim}{C}=\underset{\sim}{C}=0$	읏등읏웅			$\underset{\sim}{O_{\sim}} \underset{\sim}{c} \underset{\sim}{C} \underset{\sim}{0}$	$z=z \underset{\sim}{\sim}$	

	$2 \geq 222$	222	2				222
$\stackrel{0}{0}$	$\underset{\infty}{\text { x }} \times \underline{\text { x }}$	¢ \times ¢ \times ¢	x 2 zz	2222	$22 \geq 2 \geq$	$22 \geq 2$	¢
0		ぶ心いいい		心忒忒		¢	－
E		－	cco	－000c	－－－－	－ース～	n
0	のo90\％	かocoo	9occo	응ㅇㅇ	등	OOOOO	
～	$\geq \geq \geq \geq \geq$	ママさミき	$\geq \geq$－	（	－		

DESCRIPTION OF TABLES 5-7

Tables 5, 6, and 7 give summary statistics for the analyses of the samples of rock, minus-60-mesh ($0.25-\mathrm{mm}$) stream sediment, and nonmagnetic heavy-mineral concentrate listed in tables 2, 3, and 4, respectively. A11 values in the Range of values and Percentiles columns are significant to the number of digits shown.

Table 5.--Summary statistics for the analytical values determined for the 27 rock samples in table 2, Horse Meadow, Log Cabin-Saddlebag, and Tioga Lake Roadless Areas and Hall Natural Area, California
[All concentrations are in parts per million except those for $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}$, and Ti , which are in percent. "aa" following the element symbol indicates atomic absorption analysis; the symbol "cm" indicates colorimetric analysis; no element suffix indicates emission spectrographic analysis. "N" means not detected at the lower limit of detemination shown in parentheses. Dashes (--) indicate insufficient unqualified values to derive meaningful statistical information]

El ement	Range of values	Percentiles				
		50	75	90	95	98
Fe	$0.3-15$	2	3	5	7	15
Mg	0.1 - 3	1	2	3	3	3
Ca	$0.1-7$	1	2	3	5	7
Ti	$0.05-0.7$	0.2	0.3	0.5	0.7	0.7
Mn	$20-1500$	500	700	1000	1500	1500
Ag	$N(0.5)-2$	$N(0.5)$	$N(0.5)$	(0.5)	1.0	2
B	$N(10)-100$	10	30	50	70	100
Ba	$150-2000$	1000	1500	2000	2000	2000
Be	$N(1)-3$	1	2	2	3	3
Co	$N(5)-15$	5	10	15	15	15
Cr	$N(10)-100$	10	30	50	70	100
Cu	$N(5)-70$	7	20	30	30	70
La	$N(20)-70$	30	50	50	50	70
Mo	$N(5)-10$	$N(5)$	$N(5)$	5	10	10
Nb	$N(20)-<20$	$N(20)$	$N(20)$	<20	<20	<20
Ni	<5 - 50	5	30	50	50	50
Pb	$N(10)-100$	20	20	50	70	100
Sc	$N(5)-30$	7	15	20	20	30
Sr	$N(100)-700$	150	300	500	700	700
V	$10-500$	100	200	300	300	500
W	$N(50)-<50$	$N(50)$	$N(50)$	$N(50)$	N(50)	$N(50)$
Y	$<10-50$	15	20	30	30	50
Zr	$30-500$	100	100	200	200	500
Zn-aa	10-200	50	80	110	130	200
Cd-aa	$N(0.05)-2.5$	0.15	0.30	0.30	1.55	2.55
Bi-aa	$N(0.5)-1.0$	<0.5	0.5	0.5	1.0	1.0
Sb-aa	$N(1.0)-5.0$	1.0	2.0	3.0	5.0	5.0
Au-T-aa	$N(0.005)-0.007$	--	--	--	--	--
As-cm	$N(10)-40$	$N(10)$	<10	20	20	40

Table 6.--Summary statistics for the analytical values determined for the 47 minus-60-mesh $(0.25-\mathrm{mm})$ stream-sediment samples in table 3, Horse Meadow, Log CabinSaddlebag, and Tioga Lake Roadless Areas, and Hall Natural Area, California
[All concentrations are in parts per million except those for $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}$, and Ti , which are in percent. The symbol "aa" following the element symbol indicates atomic absorption analysis and "cm" indicates colorimetric analysis; no element suffix indicates emission spectrographic analysis. "N" means not detected at the lower limit of detemination shown in parentheses. [Dashes (--) indicate insufficient unqualified values to derive meaningful statistical information]

El ement	Range of values	Percentiles				
		50	75	90	95	98
Fe	$1-7$	2	2	3	5	7
Mg	0.15- 3.0	0.5	1.0	1.5	1.5	3.0
Ca	$0.2-5.0$	0.7	1.0	2.0	2.0	5.0
Ti	0.1 - 1.0	0.2	0.3	0.5	0.5	1.0
Mn	$200-1500$	700	700	1000	1000	1500
Ag	$N(0.5)-3$	$N(0.5)$	0.5	0.7	0.7	3
B	10-200	20	50	100	100	200
Ba	100-2000	300	1000	1000	1500	2000
Be	<1 - 5	2	3	5	5	5
Co	$N(5)-30$	7	10	15	20	30
Cr	$<10-500$	15	30	50	100	500
Cu	$5-150$	20	30	50	70	150
La	$20-150$	50	50	70	100	150
Mo	$N(5)-15$	5	7	10	10	15
Nb	$N(20)-20$	$N(20)$	<20	<20	<20	20
Ni^{N}	$N(5)-50$	10	20	30	30	50
Pb	$10-300$	30	50	70	70	300
Sc	$5-15$	7	10	10	15	15
Sn	$N(10)-50$	N(10)	N(10)	N(10)	<10	50
Sr	$N(100)-1000$	150	200	300	500	1000
V	$10-500$	100	200	300	500	500
W	$N(50)-<50$	$N(50)$	$N(50)$	$N(50)$	<50	<50
Y	10-30	20	20	30	30	30
Zr	50-1000	150	200	300	500	1000
Th	$N(200) ~-~<200 ~$	$N(200)$	$N(200)$	$N(200)$	<200	<200
Zn-aa	15-270	55	85	130	170	180
Cd-aa	0.10-2.15	0.45	0.80	1.25	1.50	2.00
Bi-aa	$N(0.5)-2.0$	<0.5	0.5	1.0	1.0	2.0
Sb-aa	$N(1)-3$	1	2	2	2	3
Au-T-aa	$N(0.005)-3.5$	--	--	--	--	--
As-cm	$N(10)-400$	$N(10)$	10	60	80	80

Table 7.--Summary statistics for the analytical values determined for the 33 nonmagnetic heavy-mineral-concentrate samples in table 4, Horse Meadow, Log CabinSaddlebag, and Tioga Lake Roadless Areas, and Hall Natural Area, California
[All concentrations are in parts per million except those for $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}$, and Ti , which are in percent. All analyses are by emission spectroscopy. "N" means not detected at the lower limit of determination shown in parentheses]

El ement	Range of values	Percentiles				
		50	75	90	95	98
Fe	0.2-5	1	2	3	3	5
Mg	$0.1-5$	1	2	3	5	5
Ca	0.7 - 20	10	10	15	15	20
Ti	$0.7->2$	2	>2	>2	>2	>2
Mn	$200-5000$	1500	2000	3000	5000	5000
Ag	N(1) - 10	N(1)	$N(1)$	1	7	10
As	$N(500)-1000$	$N(500)$	$N(500)$	$N(500)$	$N(500)$	1000
Au	$N(20)-30$	$N(20)$	N(20)	$N(20)$	N(20)	30
B	$N(20)-2000$	150	200	1000	2000	2000
Ba	$<50-5000$	500	1000	1500	3000	5000
Be	$N(2)-5$	<2	2	3	5	5
Bi	$N(20)-100$	$N(20)$	$N(20)$	N(20)	20	100
Co	$N(10)-30$	10	10	20	20	30
Cr	$N(20)-1500$	50	100	100	150	1500
Cu	$N(10)-200$	15	20	70	100	200
La	<50 - >2000	500	1000	1500	>2000	>2000
Mo	$N(10)-100$	15	20	50	50	100
Nb	$N(50)-150$	50	100	100	150	150
Ni	$N(10)-150$	$N(10)$	<10	10	70	150
Pb	$N(20)-1500$	50	70	200	500	1500
Sc	10-150	20	50	70	100	150
Sn	$N(20)-200$	20	50	100	100	200
Sr	$N(200)-1000$	200	700	1000	1000	1000
V	$100-1000$	500	500	700	700	1000
W	$N(100)-700$	<100	100	150	200	700
Y	$50-2000$	200	300	1000	1000	2000
Zr	$500->2000$	2000	>2000	>2000	>2000	>2000
Th	$N(500)-5000$	<500	500	1000	2000	5000

ACKNOWLEDGMENTS

We were assisted in the field and(or) laboratory by C. A. Banister, A. D. McCollaum, J. F. Seitz, and W. S. Speckman.

REFERENCES

Chaffee, M. A., Banister, C. A., Barnard, J. B., Guisso, J. R., Hill, R. H., Keith, W. J., Seitz, J. F., Speckman, W. S., and Sutley, S. J., 1980, Geochemical analyses of samples of rock, stream-sediment and panned heavy-mineral concentrate, Hoover Wilderness and adjacent study areas, California: U.S. Geological Survey Open-File Report 80-70, 39 p., 1 plate.

Chaffee, M. A., Hill, R. H., Speckman, W. S., and Sutley, S. J., 1980, Preliminary data set containing analyses of samples of rock, stream sediment, and nonmagnetic heavy-mineral concentrate, Walker Lake 2° quadrangle, California and Nevada: U.S. Geological Survey Open-File Report 80-881, 235 p., 1 plate.

Chesterman, C. W., and Gray, C. H., Jr., 1975, Geology of the Bodie quadrangle, Mono County, California: California Division of Mines and Geology Map Sheet 21, scale 1:48,000.

Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p.

Huber, N. K., 1982, Part A, Regional setting, geology, and geochemical studies of the Minarets Wilderness and adjacent areas, Madera and Mono Counties, California, p. 5-48, in U.S. Geological Survey and U.S. Bureau of Mines, Mineral resources of the Minarets Wilderness and adjacent areas, Madera and Mono Counties, California: U.S. Geological Survey Bulletin 1516-A-D, 159 p.

Meier, A. L., 1980, Flameless atomic-absorption determination of gold in geological materials: Journal of Geochemical Exploration, v. 13, no. 1, p. 77-85.

Motooka, J. M., and Grimes, D. J., 1976, Analytical precision of one-sixth order semiquantitative spectrographic analysis: U.S. Geological Survey Circular 738, 25 p.

Seitz, J. F., Chaffee, M. A., 01 iver, H. W., Federspiel, F. E., Scott, D. F., Cather, E. E., Zilka, N. T., and Lezcykowski, A. M., 1983, Mineral resource potential map of the Tioga Lake, Hall Natural Area, Log CabinSaddlebag, and Horse Meadows Roadless Area, Mono County, California: U.S. Geological Survey Miscellaneous Field Investigations Map MF-1453-B, scale 1:62,500.

Thompson, C. E., Nakagawa, H. M., and VanSickle, G. H., 1968, Rapid analysis for gold in geologic materials, in Geological Survey research: U.S. Geological Survey Professional Paper 600-B, p. B130-B132.

VanTrump, George, Jr., and Miesch, A. T., 1977, The U.S. Geological Survey RASS-STATPAC system for management and statistical reduction of geochemical data: Computers and Geosciences, v. 3, p. 475-488.

Viets, J. G., 1978, Determination of silver, bismuth, cadmium, copper, lead, and zinc in geological materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride: Analytical Chemistry, v. 50, no. 8, p. 1097-1101.

Ward, F. N., Lakin, H. W., Canney, F. C., and others, 1963, Analytical methods used in geochemical exploration by the U.S. Geological Survey: U.S. Geological Survey Bulletin 1152, 100 p.

Ward, F. N., Nakagawa, H. M., Harms, T. M., and VanSickle, G. H., 1969, Atomic-absorption methods of analysis useful in geochemical exploration: U.S. Geological Survey Bulletin 1289, 45 p.

Wel sch, E. P., and Chao, T. T., 1975, Determination of trace amounts of antimony in geological materials by atomic absorption spectrometry: Analytica Chimica Acta, v. 76, p. 65-69.

