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Abstract 

OpenSAF and VMware from the Perspective of High Availability 

Ali Nikzad 

 

Cloud is becoming one of the most popular means of delivering computational services to 

users who demand services with higher availability. Virtualization is one of the key 

enablers of the cloud infrastructure. Availability of the virtual machines along with the 

availability of the hosted software components are the fundamental ingredients for 

achieving highly available services in the cloud. There are some availability solutions 

developed by virtualization vendors like VMware HA and VMware FT. At the same time 

the SAForum specifications and OpenSAF as a compliant implementation offer a 

standard based open solution for service high availability.  Our work aims at comparing 

virtualization solutions, VMware, with OpenSAF from the high availability perspective, 

and proposes appropriate combinations to take advantage of the strengths of both 

solutions. To conduct our evaluations, we established metrics, selected a video streaming 

application and conducted experiments on different architectures covering OpenSAF in 

physical and virtual machines, the VMware HA and VMware FT. Based on the analysis 

of the initial measurements, we proposed other architectures that combine OpenSAF high 

availability and the virtualization provided by VMware. Our proposal included 

architectures targeting two types of hypervisors, non-bare-metal and bare-metal. In both 

of these proposed architectures we used OpenSAF to manage the availability of the VM 
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and the case study application running in the VM. The management of the availability of 

the VM is slightly different in these architectures because of the types of the hypervisors. 

In these architectures we used the libraries and the mechanisms which are available in 

many other hypervisors. Our work compared to other works on high availability in virtual 

environments has the important advantage of covering the application/service failure.  
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Chapter 1 

 

 

 

1. Introduction 

This chapter introduces topics discussed throughout this thesis, the motivations behind it 

and its contributions. We also introduce the organization of the thesis. 

The world relies more and more on computers and the services that computer 

applications provide. This growth has led to higher demand and new requirements from 

the customers. They expect services to be available and in reach anytime, in other words, 

services that are highly available. Service or system availability is defined as a function 

of failure rate or Mean Time Between Failures (MTBF) and Mean Time To Repair [1] . 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
   

Equation 1 - System Availability 
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In many domains where downtime is catastrophic and not acceptable like air traffic 

control systems, life support, safety and security, service high availability is demanded. 

High availability is defined as at least 99.999% of availability [1]. This allows for a 

maximum of 5.26 minutes of downtime in a year. To tackle the problem a consortium of 

software and telecommunication companies, the Service Availability Forum (SAForum) 

[2] was created. This consortium has defined and standardized a set of middleware 

services. 

AIS (Application Interface Specification) [3] is a set of middleware services defined by 

the SAForum to enable the development of highly available applications. The 

Availability Management Framework (AMF) [4] is one of the most important services 

defined in AIS. AMF manages the high availability of the services by managing the 

redundant software entities providing these services and shifting the workload from 

faulty entities to healthy ones at runtime. OpenSAF [5] is an open source SAForum 

compliant middleware implementation of some of the SAForum services like AMF, etc.   

On the other hand, the computing world is moving toward cloud services and cloud 

computing, which mostly are based on virtual machines (VMs) and virtual resources. 

“The term virtualization broadly describes the separation of a resource or request for a 

service from the underlying physical delivery of that service” [6]. It is a mechanism for 

emulating hardware and software so that it would function exactly like a physical 

machine. The virtualization techniques can also be applied to other infrastructural layers 

like network, storage and memory.  
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Virtual machine is software implementation of a machine which is hosted by a software 

called hypervisor or Virtual Machine Manager/Monitor (VMM). The physical machine 

which hosts the hypervisor is the machine which provides the hardware resources to the 

VMs running in the hypervisor.  

There are many advantages of using virtualization: 

 Cost efficiency 

 Testing and development purposes 

 Increased resource utilization  

 Green computing 

 Increased scalability  

 Portability of the VM images  

 Legacy applications  

1.1 Thesis motivations and contributions 

Existing works related to availability in virtual environments suffer from the lack of the 

application level failure detection and recovery. These availability solutions in virtualized 

environments just address hardware and VM failures and cannot detect the application 

level failures. For example, consider a video streaming application running in a virtual 

machine that provides video service to clients. If such a video streaming application fails, 

current availability management solutions in virtualized environments will not detect the 

failure of this application and the provision of the video service to the clients will be 

stopped.  
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This lack of availability management described in the previous example provides the 

motivation for this thesis to introduce a solution supporting application failure detection 

and recovery within virtualized environments. As described earlier, SAForum 

specifications define a middleware for providing service high availability, and OpenSAF 

implements many of the services defined in SAForum specifications. VMware is one of 

the largest providers of virtualization environments supporting two different approaches 

for availability. One of our motivations in this research is to test and evaluate the 

qualitative and quantitative aspects of the existing availability solutions in VMware, and 

compare them to the comparable results from the OpenSAF based architectures. For this 

reason, first we evaluate OpenSAF high availability solution, VMware two availability 

solutions and a basic combination of both. For the purpose of our experiments we used 

VMware as an example of virtualization solutions and OpenSAF as a SAForum 

compliant middleware implementation.  We compared the solutions qualitatively and 

defined some metrics so that we can have numeric analysis of different solutions. We set 

up experiments to evaluate the different solutions with respect to different types of 

failures. The experiments, measurements, comparisons and the analysis in the first step 

motivated us to propose new architectures supporting application level failures along 

with VM and physical node level failures in virtual environments.  

We proposed two more architectures combining OpenSAF and virtualization for two 

different types of hypervisors. Thus, in these architectures we should benefit from both 

service high availability provided by OpenSAF and virtualization provided by VMware 

or other virtualization solutions. For measurement and comparison purposes, we 
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deployed one of the proposed architectures to evaluate the new method of handling the 

VM life cycle.  

These architectures will certainly be useful in cloud environments for managing the 

availability of the VMs and the applications running within VMs. This work can lead to 

improve the availability management in virtual environments and cloud systems.  

1.2 Thesis organization  

The rest of the thesis is organized into four chapters.  The second chapter is devoted to 

the background and the topics which make the building blocks of this manuscript. It will 

introduce AMF and OpenSAF as well as virtualization and the VMware solutions, 

specifically the availability related solutions.  In chapter 3, we introduce and discuss our 

baseline architectures, test-bed, the case study and corresponding measurements. In this 

chapter we also analyze the measurements and consider the advantages and 

disadvantages of each solution. Chapter 4 elaborates our proposed architectures which are 

designed according the lessons learned from the analysis of the baseline architectures. 

These architectures benefit from the virtualization along with the high availability that 

OpenSAF provides. This chapter also discusses the deployment of one of the 

architectures with its measurements. In Chapter 5 we conclude our work and discuss 

some potential future investigations. 
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Chapter 2 

 

 

 

2. Background on AMF, OpenSAF and 

VMware 

In this chapter we will introduce the SAForum and its specifications, specifically AMF 

and one of its implementations, OpenSAF, which we have used in our deployments. We 

will also introduce VMware’s solutions for virtualization. VMware has two approaches 

for providing availability in its VMware vSphere platform, VMware HA (High 

Availability) and VMware FT (Fault Tolerance) which we will also review in detail. 

2.1 SAForum and high availability 

There is a lot of work related to availability of systems. A summary of the concepts and 

definitions can be found in [7]. As mentioned before, SAForum is a consortium of 

telecommunication and computing companies developing standards for enabling highly 

available services and applications.  

SAForum specifications are classified into two categories, Application Interface 

Specification (AIS) [4] and Hardware Platform Interface (HPI) [8]. AIS defines a set of 
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interfaces that guide the application developers to create highly available software and 

services, where HPI provides application and middleware with accessing and managing 

hardware components via a standardized interface. 

Figure 1 shows the services, frameworks and interfaces that the SAForum specifications 

offer. 

In this thesis we will focus on the Availability Management Framework (AMF) since it is 

the AMF which enables the service availability within a cluster. 

2.1.1 Availability Management Framework (AMF)  

AMF plays the key role of keeping the services provided by an application highly 

available by managing and coordinating its redundant resources, and performing 

recovery/repair in case of a failure. For this purpose AMF detects the failure of 

application components and recovers their services according to the configuration 

 

Figure 1 - Overview of AIS and HPI Services architecture [3] 
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provided with the application. This configuration represents the application from the 

AMF perspective and describes the different entities composing it and their relations.  

2.1.1.1 AMF Logical Entities 

There is a set of logical entities defined in the AMF specification [4]. These logical 

entities are as follows: 

 AMF Node 

The AMF node is a logical entity that represents a complete inventory of all AMF 

entities on a cluster node [4].  

 Cluster Node 

A cluster node is the logical representation of all software running on a single 

operating system instance. 

 AMF Cluster 

The set of AMF nodes in an AMF configuration is considered as the AMF cluster.  

 Component 

The smallest entity which AMF can detect errors and carry out the appropriate 

recovery and repair actions. Components contain a set of software and/or hardware 

resources. There are two main component categories defined in AMF, Service 

Availability Aware (SA-Aware) and Non Service Availability Aware (Non-SA-

Aware). 

o SA-Aware 

SA-Aware components are controlled directly by AMF and they are firmly 

integrated with the framework. The SA-Aware component registers itself 
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using the API function provided in AMF. The SA-Aware component also 

needs to implement the interfaces and callback functions which are the 

communications means between AMF and the components.    

o Non-SA-Aware 

The Non-SA-Aware components are not directly registered with AMF. 

These types of components sometimes are indirectly linked to AMF 

through another component called a proxy component. By using the 

proxy, Non-SA-Aware component becomes a proxied component. The 

proxy itself is SA-Aware. When we do not have a proxy component to act 

as the mediator between the component and AMF, AMF is only able to 

control the life cycle of the component. The life cycle is controlled by the 

instantiation and termination of the Non-SA-Aware component. 

As we mentioned before, AMF directly controls the life cycle of the non-proxied 

components through a set of command line interfaces. From the life cycle of the 

component’s perspective there are two categories of components: 

o pre-instantiable components:  

These types of components have the ability to stay idle after getting 

instantiated by AMF. This is for speeding up the recovery action so that 

the component would be ready to take over the responsibility of providing 

service whenever it is instructed by AMF. All of the SA-Aware 

components are pre-instantiable. 

o non-pre-instantiable components: 
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These components provide the service as soon as they are instantiated. All 

non-proxied non-SA-Aware components are non-pre-instantiable. A 

proxied component can be pre-instantiable or non-pre-instantiable. 

The life cycle of components which require environments different from the 

operating system accessible for AMF, cannot be controlled by AMF. The 

component inside the special environment is called contained and the 

environment itself is called container. In this case, the container acts as a 

mediator. 

 Component Service Instance (CSI)  

CSI is the workload which AMF assigns to a component at runtime.  

 Service Unit (SU)  

SU is composed of a set of components combining their individual functionalities 

to provide a higher level service. The SU is the smallest redundancy unit in AMF. 

SU can take the HA active, the HA standby or no HA state on behalf of a Service 

Instance (SI). 

 Service Instance (SI)  

SI aggregates all CSIs which should be assigned to a SU in order to provide a 

higher level service.  

 Service Group (SG) 

An SG is a group of one or more SUs protecting a set of SIs according to a 

redundancy model. All the components in the SUs should support the capabilities 

required by the redundancy model. AMF manages the service availability by 

assigning active and standby workloads to redundant SUs of each SG. The 
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redundancy models defined by the AMF specification differ on the number of 

SUs that can be active and standby for the SIs and on how these assignments are 

distributed among the SUs. There are five different redundancy models defined in 

AMF: 

o 2N redundancy model 

In the 2N redundancy model, there is at most one SU with active HA state 

and at most one SU with standby HA state. If there are other SUs present 

in the model, they will be considered as spares which have no SI assigned 

to them. For each SI, there is at most one active and at most one standby 

service unit (Figure 2.a). 

o N+M redundancy model 

This redundancy model supports N service units with the active HA state 

and M service units with the standby HA state. The 2N redundancy model 

is a special type of N+M where N and M are 1 (1+1). For each SI, there 

will be at most one active service unit and at most one standby service unit 

(Figure 2.b). 

o N-Way redundancy model 

Here the SG will contain N SUs and each SU can take the active HA state 

for some SIs and the standby HA state for some other. However, each SI 

can be assigned active to only one SU while it can be assigned standby to 

several SUs (Figure 2.c). 

o N-Way active redundancy model 
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As the name implies, in this redundancy model, all N service units are 

assigned just as active and there is no SU with the standby HA state. 

Though, each SI can be assigned to more than one SU (Figure 2.d). 

o No-Redundancy redundancy model 

Like the N-Way active redundancy model, this model does not support 

standby HA states assigned to the SUs. The difference is the one to one 

relationship between the SU and SI, meaning that in the No-Redundancy 

redundancy model, each SI is assigned to at most one SU and each SU 

protects at most one SI. There are no standby assignments in this 

redundancy model for the SIs (Figure 2.e). 

The different redundancy models are displayed in Figure 2. 

Figure 2 - Defined redundancy models in AMF 
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 Application  

An application is a logical entity comprising one or more SGs and SIs protected by 

those SGs. Each SG belongs to only one application. Application provides AMF with 

a higher scope for fault isolation and recovery.  

2.1.1.2 Component Monitoring in AMF 

For ensuring that the component is alive, AMF has defined three different methods for 

monitoring the component’s health. 

 Passive monitoring 

In this type of monitoring, the component is not involved and the operating system 

features are used to monitor the health of the component. One of these features is the 

processes of the components. For example the passive monitor checks the processes 

of the software component to see whether the process is still up and running or not. 

 External active monitoring 

In this method, an external entity, called “monitor”, is responsible for assessing the 

health of the target component by sending some service request and checking if it is 

responding in a timely manner.   

 Internal active monitoring 

In internal active monitoring the component includes some code to monitor its own 

health. The health check is triggered by the component itself or by AMF. 
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2.1.2 OpenSAF 

As mentioned before, OpenSAF is an open source project focused on Service 

Availability. It implements the SAForum service specifications [3], among others AMF 

[4], SMF [9] and IMM [10].     

Figure 3 shows the overall architecture of OpenSAF middleware. OpenSAF has 

implemented the following SAForum services. 

 AMF  

 Checkpoint service (CKPT): provides a mechanism that can be used to replicate 

the state of application so that the service which application is providing, can 

continue after a failure.  

 Cluster Membership Service (CLM): is the core for any clustered system. CLM 

decides whether the node is a member of the cluster or not. It monitors and 

provides the membership information of nodes in the cluster like joining or 

leaving the cluster. It also maintains a consistent view of the operational nodes in 

the cluster. Each cluster consists of a set of nodes with unique node name. CLM 

implements two logical entities: Cluster and Cluster node. 

 Event service (EVT): provides standardized means to publish events and 

subscribe to events in the cluster. 

 Lock service (LCK): provides a mean to manage access to shared cluster 

resources. 

 Information Model Management (IMM) service: In this service, the different 

entities of the AIS services such as components, execution environments, 
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checkpoints and message queues are presented as managed objects in the 

information model (IM). IMM acts as the repository for these objects. It also 

provides an interface for the configuration and runtime management functions of 

the managed objects.   

 Notification service (NTF): provides a mechanism to applications and services for 

notifying and explaining an incident or change of status to external entities. The 

notification service is based on publish/subscribe paradigm. The notification is 

done using three different interfaces, producer API, subscriber API and the reader 

interface. 

 Log service (LOG): provides logging for alarms, notifications and 

system/application relevant log records 

 Message service (MSG): provides service for inter-process communication 

Figure 3 - OpenSAF 4.0 architecture [5] 
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system based on message queuing concept. 

 Platform management service (PLM): The PLM Service provides a logical view 

of the hardware and low-level software of the system. Low-level software in this 

sense comprises the operating system and virtualization layers that provide 

execution environments for all kinds of software [11]. 

 Software Management Framework (SMF): complements AMF by providing a 

framework for delivering and upgrading software and hardware.  

2.2 Virtualization and VMware 

2.2.1 Virtualization 

Virtualization separates resources or requests for a service from the underlying physical 

source of delivering the service and provides an abstraction of computing resources[6]. 

Virtualization is a term for the technology of creating a virtual or emulated version of 

software, hardware and resources. In this thesis we refer to virtual machine (VM) as a 

virtualized form of a physical node. A VM emulates the hardware resources needed for a 

node like RAM, CPU, etc., to function just like a physical machine. In virtualized 

systems, the physical resources are shared between the VMs running on the same 

physical node.  

By using virtualization, the resource utilization can be increased because multiple VMs 

can run on just one host machine. It can also help the elasticity of the system by creating 

the VMs as needed. Virtualization is one of the key enablers of the cloud. 

The advantages of virtualization include [12], [13]:  
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1.  Cost efficiency: 

Having servers on the VMs instead of having a physical machine for each server 

2. Testing and development purposes: 

The VMs can be used for trying and testing a new environment, software or OS.     

3. Increased resource utilization:  

By providing a unified integrated operating platform for users and applications based 

on aggregation of heterogeneous and autonomous resources [12].  

4. Green computing:  

Since we can have many VMs in a physical machine, the power consumption would 

be equal to one computer.  

5. Increased scalability:  

VMs can be created according to the need and availability of the resources. 

6. Portability of the VM images:  

VM images are actually file(s) on the storage device and these files can be ported and 

used on other machines with compatible software. These images can be kept as 

backups as well. 

7. Legacy applications: 

Legacy applications can be kept within the VMs even if the organizations decide- to 

migrate to another platform. 

The VMs are hosted on a specific software called hypervisor or Virtual Machine 

Manager or Monitor (VMM) and the machine which hosts the hypervisor and the VMs 

is called host machine where each VM is called guest machine [12]. 

There are two types of hypervisors:  
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 Native (bare metal)  

The hypervisor is installed and run directly on the host hardware. Examples of the 

bare metal hypervisors include: VMware ESX/ESXi [14], KVM [15], Microsoft 

Hyper-V [16] and Citrix XenServer [17].   

 Hosted (non-bare metal) 

The hypervisor runs in a conventional operating system (the host) like Windows, 

Linux, FreeBSD, etc. Examples of this type of hypervisor include: VMware 

Workstation [18], VirtualBox [19], etc. 

The two different types of hypervisors are illustrated in Figure 4. 

2.2.2 Cloud computing 

Cloud computing is a new paradigm for enabling access to a shared pool of configurable 

computing resources. It provides on demand service to its customers by delivering 

different types of resources as service. Cloud systems most often use virtualization for 

sharing the resources and utilization of the available resources. 

Figure 4 - Types of hypervisors 
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Cloud services are offered based on three basic models (Figure 5). These service models 

include: 

 Infrastructure as a Service (IaaS), refers to providing VMs, network and storage 

resources as service to the end users.  

 Platform as a Service (PaaS), the operating system, programming language execution 

environment and web server are provided as service to the end users. 

 Software as a Service (SaaS), the end users are provided with software and 

applications as services.  

As mentioned before cloud computing is responsible for the delivery of the infrastructure, 

platform or software as service to the user. Virtualization forms the underlying 

infrastructure of the cloud as shown in Figure 5 and provides virtual computing, storage 

and networking for the cloud services.  

Cloud computing offers different types of services to the users and then, availability of 

the services is an essential requirement.  Each of the underlying layers of the cloud which 

 

 

Figure 5 - Cloud service models 
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are shown in Figure 5, are subject to failure. The failure of any of these layers may cause 

the unavailability of the service to the user, emphasizing the importance of providing 

service high availability in cloud computing. From the redundancy models perspective all 

of the redundancy models can be deployed in the cloud. It is interesting to investigate 

how to achieve a service high availability management mechanism that provides 

availability in different layers. 

2.2.3 VMware virtualization solutions 

VMware [20] is one of the leading companies in providing virtualization solutions. 

VMware has a wide range of products including: 

 VMware workstation is VMware’s non-bare metal hypervisor. 

 VMware Player is intended to run existing VM images. It also provides the basic 

means for creating a VM. 

 VMware ThinApp is an application virtualization solution for Microsoft 

Windows which virtualizes the resources such as environment variables, files 

and Windows registry keys.  

 VMware View provides remote desktop capabilities to users. It is mainly used for 

maintenance and administration purposes. 

 VMware vFabric is an approach to building applications and running them on 

virtualized and cloud-based infrastructure. It includes the open source Spring 

Framework, VMware version of Tomcat, etc. 

 VMware vShield includes security services for securing virtual environments and 

cloud environments at all levels -host, network, application, data and endpoint. 
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 VMware vSphere is a cloud operating system. It virtualizes and aggregates the 

underlying physical hardware. 

 VMware ESX and VMware ESXi are bare-metal hypervisors used in VMware 

vSphere.  

 VMware vCenter Server provides unified management of all vSphere hosts and 

virtual machines in the datacenter from a single console.  

Most of the VMware products are illustrated in Figure 6. 

2.2.4 VMware solutions for availability 

VMware offers two solutions for availability, VMware HA [21] and VMware FT [22].  

Both solutions are part of the VMware vSphere.  

Figure 6 - VMware products [20] 
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2.2.4.1 VMware HA 

VMware HA can be enabled in a cluster created in the VMware vCenter Server. VMware 

HA detects failed physical hosts or failed VMs. It uses a software agent deployed on each 

host, along with a network heartbeat to identify when a host is not responsive. If VMware 

HA detects that a host is not available, it restarts the VM(s) on another host in the cluster.  

VMware HA uses the vCenter server to deploy the necessary software agent; but after 

hosts are enabled for VMware HA, the heartbeat and failure detection are completely 

independent from the vCenter server. 

When hosts are added to a vSphere cluster with VMware HA enabled, two agents are 

activated on the host. These agents help detecting the failures in hosts by periodically 

sending information. Therefore, when VMware HA does not receive these information, it 

detects the failure. One of these agents is called the Fault Domain Manager (FDM). It is 

responsible for many tasks like communicating the host resource information, the VM 

states and HA properties with other hosts in the cluster. It also handles the heartbeat 

mechanisms, the virtual machine placements, the virtual machine restarts, the logging and 

much more. The other agent in the host is called ‘hostd’. This agent is responsible for 

many tasks like powering on VMs and providing information about the VMs registered 

on the host to FDM. FDM talks directly to hostd and vCenter server [23]. Figure 7 shows 

a deployment example of VMware HA. 

In a VMware HA enabled cluster, there are two types of hosts, master and slave. The 

master is selected through an election and the other nodes become the slaves. The 

election takes place when: VMware HA is enabled, the master host fails, becomes 
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network partitioned, disconnected from vCenter server or put into maintenance or 

standby mode. The election takes about 15 seconds. After the election, the slaves do not 

communicate with each other. 

The master’s main responsibility is to check the state of the VMs it is responsible for, and 

to take action when the VM fails. It is also responsible for exchanging the state 

information with vCenter server and initiating the restart of VMs when the host has 

failed. 

A slave has fewer responsibilities compared to the master. A slave monitors the state of 

the virtual machines it is running and informs the master about any changes in this state. 

It also monitors the health of the master by monitoring the heartbeats. If the master is not 

available, the slaves initiate and participate in a new election. 

Detecting the fault in VMware HA is done by heartbeat mechanisms. There are two types 

of heartbeating in vSphere: network heartbeating and datastore heartbeating. 

 

Figure 7 - VMware HA 
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In network heartbeating, each of the slaves sends a heartbeat to the master and the master 

sends a heartbeat to each of the slaves. This is done by default every second.  When a 

slave does not receive any heartbeat from the master, it will try to determine whether it is 

isolated or not. 

Datastore heartbeating helps to distinguish between isolation/network partitioning and 

failure of the host, if a host has lost its connectivity with the management network. If the 

master loses the network connectivity with the slaves, the “poweron” file, is updated by 

the isolated host while this does not happen when a host fails. Based on the results of the 

check, the master takes the appropriate action which is if the host has failed, then the 

master initiates a restart on the host. However, if the master determines that the slave is 

isolated, the action can be configured to power off, leave powered on or shut down 

through VMware tools installed on the VMs. By default, VMware HA picks two 

heartbeat datastores which are available for all hosts. 

VMware HA can also detect VM failures using VM monitoring. It restarts the VM if its 

VMware tools heartbeat is not received within a set time. Occasionally, VMs or 

applications that are still functioning properly stop sending heartbeats. To avoid 

unnecessary resets, the VM Monitoring service also monitors a VM's I/O activity. If no 

heartbeats are received within the failure interval, the I/O stats interval is checked. The 

I/O stats interval is a cluster level attribute which determines if any disk or network 

activity has occurred for the virtual machine. If there is no activity the VM is reset. This 

interval is configurable between 30, 60 and 120 seconds.    
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VMware HA does not use any redundancy meaning there is no standby unit to take over 

when a failure happens; instead, as mentioned before, it restarts the VM in one of the 

hosts of the cluster. So the restart of the VM and other delays described in this section are 

included in the recovery time of the service. Also because of the VM’s restart after the 

failure, the service is not necessarily continuous once the VM is recovered from the 

failure. 

Application failures which are one of the aspects of this thesis are not fully covered in 

VMware HA. VMware introduced the application monitoring API in ESXi 5.0 for 

detecting the application failures but made it available to a limited number of vendors 

like Symantec. This API helps the detection of the failures, however for recovering from 

the failure, VMware HA restarts the whole VM which causes the time delays 

corresponding with the restart of an operating system. 

2.2.4.2 VMware Fault Tolerance  

VMware FT creates an exact replica of the protected VM and keeps this replica as 

secondary, ready to be brought into use upon a failure of the primary VM (similar to 2N 

redundancy model). VMware FT is built on the ESXi host platform using the vLockstep 

technology. The instruction executions of the primary VM are recorded and sent to the 

secondary through a network connection called logging channel and then replayed in the 

secondary (see Figure 8). Also, additional information is transmitted to ensure that 

secondary VM executes non-deterministic operations in the same way as the primary 

VM. Secondary replays all the operations except the outputs are dropped by the 

hypervisor [24].  
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In case of a failure the redundancy is restored by starting a new secondary VM in another 

host in the cluster. It only deals with fail-stop failures, which are server failures that can 

be detected before the failing server causes an incorrect externally visible action. 

Figure 9 illustrates a timeline of events in VMware FT on the primary and secondary 

VMs. The arrows going from the primary line to the secondary line represent the transfer 

of log entries, and the arrows going from the secondary line to the primary line represent 

acknowledgements. As shown in the figure, an output to the outside world is delayed 

 

Figure 8 - VMware FT logging channel 

 

 

Figure 9 - Synchronization in VMware FT 
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until the primary VM has received an acknowledgement from the secondary VM. 

For detecting failures, FT uses UDP heartbeating between hosts. A failure is declared if 

heartbeating or logging traffic has stopped for longer than a specific timeout. 

Because there is one secondary VM along with the primary VM, we consider this 

mechanism as a 2N redundancy. In the event of Hardware failures or VM failures, the 

primary VM fails over to secondary, and secondary resumes the operating system where 

it stopped. So, if the failure can be detected by VMware FT, the service will be 

continuous after the recovery.  

Unlike VMware HA, VMware FT does not have any kind of application failure detection 

mechanism. If the application fails VMware FT does not detect it and the VM continues 

as is.  

2.2.4.3 VMware availability solutions summary 

VMware, as one of the main providers of virtualization products, have introduced two 

solutions for availability. The previous sections focused on how these solutions function. 

As one of the motivations in this thesis we analyze their responsiveness to different kinds 

of faults in chapter 3. VMware also provides solutions for cloud management which is 

one of the targets and scopes of this thesis.     

2.3 Related work 

 In the next sub-sections we will review research works on availability in virtual 

environments and also the other commercial virtual solutions supporting availability. 
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First we will discuss two of the works which are more related and then we will have a 

review on the other works. 

2.3.1 A Case for High Availability in a Virtualized Environment (HAVEN) [25] 

In this work, the states and the state transitions of the VM images are classified and 

extended. The original states defined by the Distributed Management Task Force in [26] 

include: 

 Defined: The virtual system is defined but the virtual resources are not 

instantiated by the virtual platform. 

 Active: The virtual system is instantiated and the virtualized resources are enabled 

to perform tasks.   

 Paused: The virtual resources are instantiated like active but the virtual system 

and virtual resources are not enabled.  

 Suspended: The state of the virtual system and virtual resources are stored on a 

non-volatile storage. Similar to Paused, the system and its resources are not 

enabled. 

Accordingly for switching between these states, there are state transitions defined in [26] 

which include: define, activate, deactivate, pause, suspend, shut down, reboot, reset.  

HAVEN (High Availability in a Virtualized Environment) [25] classifies the states of 

virtual machines into two more general states.   

 Active: The active state is divided into two different states. 

o Operational: An operational virtual system provides service delivery 
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o Gemini: It is a clone of the operational virtual system. Gemini performs 

the same operations as Operational but manages the output and results 

similar to VMware FT.  

 Inactive: The state that the VM is not able to perform tasks.  

o Planned: The VM is intentionally disabled or it is in an intermediate state 

to become operational. The planned inactive state is further categorized 

into: Latent, Defined, Alpha, Delta, Paused and Suspended. In which 

Latent, Alpha and Delta are the extensions to the original VM states. 

Latent is the image which does not exist yet. Alpha is created by taking 

checkpoint of a defined image. Delta is created by taking the checkpoint 

of an active image.  

Figure 10 - VM life cycles defined in [25] 
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o Unplanned: An error has occurred causing service outage. When an error 

occurs and is detected while being in the active state, the image transitions 

to the Omega state.  

They defined different levels of availability ranging HAVEN1 to HAVEN4.  

However, in this work they just focused on the states and transitions when an error is 

detected. They did not discuss how they are detecting the hardware or software failures.  

2.3.2 Remus: High Availability via Asynchronous Virtual Machine Replication 

[27] 

This work which is implemented based on XEN hypervisor [17], is an attempt to provide 

high availability for virtual machines by replicating the host. Their goal is to recover 

from fail-stop failures of a single physical machine, “the failed process stops working and 

all data associated with the failed process are lost” [28]. The backup host, asynchronously 

updates its state slightly after the active replica. It can be classified as 2N redundancy 

model since there is a backup or standby replica taking over in the event of failure.  

Remus used speculative execution for increasing the system performance; it means the 

Figure 11 - Speculative execution and asynchronous replication in Remus[27] 
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active host continues its execution and producing output while the replicated host is 

synchronized asynchronously by buffering output at the primary host as shown in Figure 

11.  

The high availability is achieved by propagating frequent pipelined checkpoints of the 

active VM to the backup physical host. Figure 12 shows the high level architecture of 

Remus illustrating the active and backup hosts and their communication.  

 

2.3.3 Other related works 

In nearly all the works the focus is on the host or VM failures and generally they use 

similar techniques like restarting the VM or using hot, warm and cold standbys [29] for 

replication of the VMs. Checkpointing is one of the common ways to maintain the state 

as discussed in HAVEN [25] and Remus [27].  

In [30] an approach for providing high availability to the request of cloud clients is 

proposed. Similar to the previous works, the failover mechanism is done by 

checkpointing. There is a request manager defined who gets the requests from the clients. 

Figure 12 - Remus high-level architecture [27] 
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It uses a global checkpoint to manage the status of sub-clouds where the jobs are 

distributed. To decrease the checkpointing overheads they used multilevel checkpointing. 

In the case of failure in one of the nodes, the jobs are migrated to the failed node’s 

secondary node.  

Loveland et al [31] used virtualization for cost reduction and resource consolidation of 

the traditional HA approaches like active/active active/cold-standby and active/passive. 

They used LPAR for logically partitioning the physical host and create the replicas on a 

logical partition. They considered three different types of failures: crash, hang and loop.     

In [32], Braastad introduced a solution for providing high availability using 

virtualization. In this work, an add-on to Heartbeat – an open source software package 

used to create high availability clusters – is developed, allowing Heartbeat to be able to 

seamlessly migrate the VMs between the physical nodes, when shut down gracefully. As 

mentioned, the emphasis is on graceful failures meaning the solution does not support 

uncontrolled failures like power, hardware or network failures.  

One of the big advantages of our work in comparison to the other works is focusing on 

the availability of the service rather than only covering the availability of the VMs.   

2.3.4 Virtualization solutions supporting availability  

With improvements in hypervisors and virtualization because of the increase in computer 

performance, and the demand for high availability, virtualization solution vendors started 

to support availability as part of their products. Hypervisors like VMware ESXi, 

embedded HA and FT techniques in their products which we already discussed. The other 

virtualization solution to embed the availability support is Windows Azure [33], which is 
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the Microsoft’s cloud platform. Windows Azure clustering solution also has the same 

approach of active/passive architecture but the replication is limited to the replication of 

the physical node.  

They manage the availability of the application that uses multiple virtual machines by 

adding the machines to an availability set. Availability sets are directly related to fault 

domains and update domains. In fact, a fault domain is closely equivalent to a rack of 

physical servers. Figure 13 shows a sample configuration of availability management in 

Windows Azure.  

Xen is another hypervisor which supports availability management. Xen uses Remus 

which is described in 2.3.2. 

 

  

Figure 13 - Availability management in Windows Azure 



 
34 

 

Chapter 3 

 

 

 

3. The baseline architectures for availability, 

metrics and measurements 

This chapter covers the baseline architectures for availability including OpenSAF and 

VMware solutions. We will introduce our qualitative criteria and the metrics. This 

chapter also covers the measurements for the defined metrics and finally we analyze 

these measurements and results. First we will describe the environment used and the 

infrastructure on which we ran our experiments followed by the application case study.  

3.1 Hardware test-bed 

For experimenting with VMware and OpenSAF we configured a cluster of 5 nodes with 

identical hardware (see Figure 14). All the nodes are Dell Power Edge 1950 [34]. There 

are also two switches of type Summit X450a-48t [35]. We also built a VLAN on the ports 

of the switch for our experiments. All the nodes are connected to both switches for 

redundancy. The first switch is connected to the outside world by an uplink connection. 

All the nodes are capable of connecting to internet when it is needed (i.e. installing 

software or upgrading), but not otherwise. 
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3.2 Case study application 

As the case study application, we selected the VLC media player [36]. There are many 

reasons for selecting VLC as our case study application. One of the reasons is that VLC 

has been already modified to work with OpenSAF as a SA-Aware component [37]. 

Streaming or playing multimedia helps us visually view the behavior of the HA solutions 

when facing failures. Service continuity after failure is an important feature in our 

experiments. 

In our experiments we used the streaming functionality of VLC to stream a video across 

the network. The clients can view the video. We experimented with different failures on 

the streaming node to see the behavior and to measure different metrics defined in a 

following section.    

To make VLC an SA-Aware component Kanso et al [37] made some changes to its code 

including checkpointing the media stream to enable service continuity. An IP component 

Summit X450a-48t

Summit X450a-48t

Dell Power edge 1950

Dell Power edge 1950

Dell Power edge 1950

Dell Power edge 1950

Dell Power edge 1950

Uplink

Figure 14 - The Magic Cluster (Ericsson’s cluster in Concordia University) 
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is also added which is responsible for keeping the streaming IP address live. In the SA-

Aware version, VLC component is a pre-instantiable component meaning that VLC is 

initialized before the SU takes the active assignment. On the other hand the IP component 

is a non-pre-instantiable meaning it is only instantiated when the SU gets the active 

assignment. This is described extensively and in more detail in [1] as well. In addition to 

the existing SA-Aware version of VLC, we used the original code as a Non-SA-Aware 

version where the VLC code was not changed. In both of the versions, we need a standby 

component because if any of the streaming component or node fails, the standby 

component takes over for having a better recovery time for the service. In our case study 

application, the SG is configured to be 2N redundancy model. The No-Redundancy 

redundancy model and N-Way active redundancy models are not applicable because they 

do not support the standby assignments. Our components do not support 

x_active_and_y_standby capability model which is the requirement of N-Way 

redundancy model, so N-Way is not a good match either. In our case study we have one 

SI with one active and one standby assignments. If the N+M is used with just one SI, it 

would be equivalent to the 2N redundancy model and could have been used as well. 2N is 

a special form of N+M redundancy model. 

In our architectures, VLC can be used as an application in VMware HA, or as a non-SA-

Aware or an SA-Aware component managed by OpenSAF. 
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3.3 Deployed architectures 

We designed and configured three different architectures to experiment with. Following 

subsections are for the description of our architectures. In all of the architectures we used 

Ubuntu 10.04 as the operating system.  

3.3.1 Architecture 1: OpenSAF on the physical nodes 

In this architecture the operating system is installed directly on two of the physical nodes 

of our cluster. We installed OpenSAF on both of them and also compiled and installed 

our SA-aware version of VLC 1.1 on top of the operating system.  

Figure 15 shows the SUs containing two components in the physical nodes. Since we are 

using a 2N redundancy model, a possible active assignment performed at runtime by 

OpenSAF is shown with solid line and the standby with the dashed line.  

 

Figure 15 - OpenSAF on the physical nodes 
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3.3.2 Architecture 2: Availability using VMware HA 

In this architecture we created a vSphere cluster using two ESXi nodes and enabled 

VMware HA on the cluster using VMware vCenter. We added a VM with Ubuntu and 

installed the original VLC media player application. We put the VM image as shown in 

Figure 16 on a Network File System (NFS) shared storage so that it is accessible from all 

ESXi nodes in the cluster. The reason is that when a failure happens on the host or the 

VM, the VM can be restarted on the other ESXi node.  

3.3.3 Architecture 3: Availability using VMware FT 

VMware FT has stringent hardware requirements. Our test-bed at Concordia University 

does not meet these requirements. For this reason we used three blades in another test-

bed from a provincial project called ‘ÉcoloTIC’[38].  

Figure 16 - Virtual machine running the original VLC managed by VMware HA 
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The configuration is very similar to the configuration we had in VMware HA 

architecture, but the difference is that we enabled the FT on one of the VMs in our 

cluster. This architecture uses ESXi as its hypervisor and the VM is placed on a shared 

NFS storage. VMware FT creates a second VM running as secondary in another node 

(See Figure 17) 

3.3.4 Architecture 4: OpenSAF deployed in VMs  

VMware HA does not detect the application failures. It is a solution for recovering from 

hardware and VM failures. OpenSAF is designed for making application services highly 

available. To take advantage of the VMware virtualization and the service high 

availability management of OpenSAF we combined these two solutions.  

In this first combination we deployed the OpenSAF cluster on virtual nodes rather than 

on physical nodes. We used this architecture with both VMware HA enabled and 

disabled. 

 

Figure 17- Virtual machine running the original VLC managed by VMware FT 
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Figure 18 shows this architecture where the OpenSAF configuration used in the physical 

nodes was applied in the VMs. We put the VM images on a shared storage so that they 

would be accessible for both ESXi nodes. 

3.3.5 VMware HA settings on the cluster 

Here we will describe the settings applied when creating the VMware cluster. During the 

establishment of the cluster we turned the vSphere HA on.  

In VMware HA settings we also enabled the “host monitoring” so that the ESXi hosts 

would be able to exchange network heartbeats to make sure that the host is alive. We 

disabled admission control so that the cluster capacity would not be reserved for VM 

failovers. This feature reduces the number of VMs that can be run and might cause the 

failover not to happen after a failure. In the VM monitoring status we turned the VM 

 

Figure 18 - OpenSAF deployed in VMs 
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monitoring on and set the VMs restart priority to high so that VMware HA can detect the 

VM failure as soon as possible. 

We also added two NFS shared storages to our cluster to host the VM images and to 

be used for datastore heartbeat. 

3.4 Qualitative criteria  

Our first step for comparing different solutions is comparing them from their general 

characteristics and their functionality. In this section we look at the criteria of the 

different solutions.  

3.4.1 Complexity of using the high availability solution 

This is related to how much effort and time are needed to make the availability 

solution functional.    

o OpenSAF provides many solutions for providing different levels of high 

availability and some of them do not require making changes to the source 

code (Non-SA-Aware). If the application wants to support the middleware 

APIs and support some features like service continuity, the source code 

should be changed to use the advanced features of OpenSAF. 

OpenSAF installation needs some configurations to make it run correctly.  

o VMware HA & FT: There is no need to change anything. Application 

needs to be installed in the VM and VMware HA takes care of hardware 

and VM failures. VMware monitors the health of the node and the VM as 

described before. So the only complexity we face is the setting up and 

configuring the environment which is straight forward. VMware HA in 
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vSphere 5.0 introduced the application monitoring API for detecting the 

application failures. Using these APIs also beg for altering the application 

source code. 

3.4.2 Redundancy Models 

This section discusses which redundancy models are supported in each of the 

technologies. 

o OpenSAF supports five different types of redundancy models which gives 

the user more options. As discussed earlier, the redundancy models which 

OpenSAF supports are: No-Redundancy, 2N, N+M, N-Way, and N-Way 

active. The applications can use any of these redundancy models 

according to their specifications and requirements. 

o VMware HA & FT: VMware has not defined any redundancy model 

specifically, but in comparison to the redundancy models defined in 

OpenSAF we can say that VMware HA is similar to the No-Redundancy 

redundancy model and VMware FT is similar to 2N, since in VMware FT 

there is a standby replica of the VM ready to take over if a failure happens. 

3.4.3 Scope of failure 

The range of failures that the availability solution can detect and recover. The 

failures can range from application level failures to hardware and VM failures.  

o OpenSAF can detect a wide range of failures like hardware, operating 

system and application failures.  
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o VMware HA & FT, detect hardware level and VM failures with limited 

failure detection of the operating system. VMware FT does not support the 

application failures at all. In VMware vSphere 5.0, VMware released the 

application monitoring API, supporting application level failure detection, 

to a limited third party vendors like Symantec (Symantec ApplicationHA 

[39]). 

3.4.4 Service continuity 

Service continuity is the continuation of the service after a failure from the point 

where the failure occurred.  For instance, in the case of the failure of the VLC 

service, the streaming of the video continues from the point where the failure 

happened. 

o OpenSAF: we can achieve service continuity by using services like 

checkpointing in OpenSAF. Using checkpoint service if the active 

application component fails, the redundant component takes over and 

continues from the point where the failure happened.  

o VMware HA & FT, act differently in this context. 

 VMware HA restarts the failed VM so the service would be 

available after the restart. There is no continuation of the service.  

 VMware FT creates an exact replica of the VM on another host. 

Primary and secondary nodes are synchronized as described 

before, so if there is a hardware or virtual machine failure on the 

primary VM, the secondary VM will take over and continue the 
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service. Problem arises when there is a software failure. VMware 

FT is not capable of detecting software failures.  

3.4.5 Supported operating systems:  

This section describes the types of the operating systems supported by these 

technologies.  

o OpenSAF is implemented only on Linux so it can provide high 

availability only for Linux based applications. 

o VMware HA & FT are independent of the operating system running in 

the VM. So these solutions are operating system independent.     

3.4.6 Summary 

Table 1 shows a summary of the qualitative criteria in different architectures. 

3.5 Metrics 

To evaluate and compare the two solutions and their combinations from an availability 

perspective, we defined a set of metrics. We selected these metrics in a way that they can 

be measured uniformly in all of the architectures. 

 

Table 1 - Summary of the evaluation of the architectures with respect to qualitative criteria 

 

OpenSAF VMware HA VMware FT

Complexity of using the 
high availability Solution 

Needs many initial configurations
(More complex)

Not much configuration Not much configuration

Redundancy models
Five different types of 
redundancy models

No redundancy Primary-Backup (2N)

Scope of failure detection Hardware - OS - application
Hardware - VM

(very limited application)
Hardware - VM

Service continuity
Yes (using SA-Aware components 

and checkpointing)
No Yes

Supported operating 
systems

Linux Platform independent Platform independent
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In the following subsections, we will introduce the metrics and discuss how they can be 

measured in different solutions. 

3.5.1 Reaction Time 

Reaction time is the duration from the time when the failure happens until the time of the 

first reaction seen from the availability solution. The first reaction is different in different 

types of architectures. The details are described in sections 3.7 and 3.8. The failures are 

generated by a user command or executing a script. So in some cases from the execution 

of the command until the real failure there is a delay which is included in the reaction 

time. But since in the compared metrics the same delay is included, we consider them as 

comparable.  

3.5.2 Repair Time  

It is the duration of time that the availability solution repairs the failure. For example, in 

the 2N redundancy model, although the service is recovered by failing over to the 

standby unit, the faulty component needs to be repaired for acting as the new standby for 

the new active unit. So this metric shows how much time it takes for the faulty unit to 

become operational again.   

3.5.3 Recovery time 

 Recovery time is the time of the first reaction until the service has been recovered. This 

time shows how much it takes for the availability solution to recover from the failure and 

resume/start over the service to the end user.  
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3.5.4 Outage time 

It is the period of time the service is not available to the user. Basically, outage time is 

from the occurrence of the failure until the user gets the service again. So it can be 

considered as ‘Reaction Time’ + ’Recovery Time’. This is one of the most important 

metrics because minimizing the outage time is one of the factors to keep the service more 

available.  

Figure 19 illustrates the defined metrics and their relations. 

3.5.5 Memory consumption  

With this metric we want to determine the amount of the memory overhead induced by 

each solution. Memory is one of the resources that impacts the performance of the service 

so the memory overhead of each solution plays an important role in the overall 

performance of the service.  

Using Linux commands, ‘vmstat’ and ‘pmap’, we can get the amount of memory 

consumed. VMware has monitoring functionality that displays the memory consumption. 

 

Figure 19 - Time related metrics 
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3.6 Types of failures  

For the experiments we considered different failures.  

 VLC component failure 

This failure is achieved by “killing” the VLC component process in the operating 

system. 

This kind of failure causes reaction only on architectures using OpenSAF because 

neither VMware HA nor VMware FT can detect application failures. 

 Physical node failure:  

For simulating the node failure, we used force-rebooting the physical node. In the 

measurements associated with force-rebooting, there is some immeasurable time, 

from the reboot command until the real restart. But since this is the case for all 

node failure measurements, the results are comparable. So for our measurements, 

we used the time of issuing the force-rebooting command. 

 VM failure:  

VMs have process IDs in the bare-metal hypervisors and in case of non-bare-

metal hypervisors in the host OS. Killing this process can be used for simulating 

the VM failure in our experiments.  

Some of these failures are not applicable on all architectures. For instance VM failure is 

not applicable when OpenSAF is installed on a physical machine. Also, component 

failure cannot be detected where the only availability solution is VMware HA or 

VMware FT. Table 2 summarizes the baseline architectures and the respective applicable 

failure types. 



 
48 

 

 

Table 2 - Baseline architectures and applicable failure experiments 

3.7 Measurements in OpenSAF related architectures 

When a failure happens, AMF detects the failure and tries to clean up, instantiate and 

register the related component(s) if they are pre-instantiable and SA-Aware. Meanwhile, 

the active assignment is failed over to the standby SU. If the assignment is successful, the 

new active component will provide the service.  

In our case, as described before, there are two components VLC and IP where VLC is a 

SA-Aware component and is pre-instantiable, and IP is a non-SA-Aware component. 

Applying our defined metrics to the sequence of actions taking place in the event of a 

failure, the reaction time is from the time of the failure until the component is cleaned up.  

Recovery time is from the time of the component clean-up until the active assignment is 

assigned to the standby SU. The clean-up time until the registration of the failed 

component is considered as the repair time and the time of the failure until the 

assignment of the active assignment would be the outage time.  

The reaction time is measured differently when there is a node or VM failure. We 

considered the first reaction as the instantiation of the IP component on the second node 
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because AMF cannot clean-up the components and the first reaction to the failure is 

starting the IP component on the other node.  

Figure 20 shows the sequence of actions when a component fails and the assignment fails 

over to the standby. It also shows the ranges of the times that are measured. For the 

measurements we added some timestamps in the Component Life Cycle Command Line 

Interface (CLC-CLI) scripts and in the source code of the SA-Aware VLC media player. 

This is done to extract the exact and appropriate times. The timestamps include the time 

of the registration of the VLC component to AMF and getting the active assignment.  

The following lines are added to the shell scripts of the CLC-CLI commands to show and 

record the exact moment of executing the scripts: 

 myTime=$(date +%T+%N) 

 logger “X is being started|terminated|cleaned up at:$myTime” 

 

 

Figure 20- The sequence of actions done during the failure of a SA-Aware component  

 

AMF COMP1 COMP2Component 
Failure

Clean upReaction

OK

CSI assignment

Instantiate

Assignment OK

Registration

Repair

Outage

Recovery
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Where X can be the VLC or IP components. Using this command we can keep track of 

the time the scripts are executed. “date +%T+%N” returns the exact time of timestamp 

in nanoseconds and logger command logs that time with the description to the log of 

the system so we would be able to retrieve it later. 

Since the quality of our measurements depends highly on time synchronization, we used 

the Network Time Protocol (NTP) [40] and Precision Time Protocol daemon (PTPd) 

[41]. PTPd is an implementation of Precision Time Protocol (PTP) the IEEE 1588 

standard [42].  

3.8 Measurements in VMware based architectures 

Since VMware is a proprietary software and we do not have the options to put the 

timestamps in the code, we used the times logged by VMware and scripts added to the 

guest operating system. 

As described before, there are two types of nodes, slave and master. When a host fails, 

depending on the type of the node, the sequence of actions is different. When a slave 

node fails, after three seconds the master begins monitoring the datastore heartbeat for 15 

seconds to make sure this is not a split brain (Split brain happens when a node is 

functional but has lost connection with the other nodes). On the 10th second when no 

network or datastore heartbeats have been detected, the host is declared as “unreachable”.  

The master will also start pinging the management network of the failed host at the 10th 

second and will continue that for 5 seconds. The host is declared dead at 18th second and 

the VMs on the failed host are restarted on other hosts. Figure 21 shows the described 

procedure. 
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The steps taken after the failure of the master node is slightly different because there 

needs to be a master before any restart can be initiated. It means there should be an 

election among the slaves to select a new master.  

Since the slaves get the network heartbeat from the master, if the slaves stop receiving the 

network heartbeats the master is declared as unreachable. This happens in the 10th second 

after the master’s failure, which is the time the election starts. The election takes 15 

seconds. From 25th second to 35th, the new master reads the HA protected virtual 

machines. In the 35th second, master initiates the restart of all VMs which are not 

currently running [23].  This is shown in Figure 22. 

Figure 23 shows the correlation of our defined metrics according to the VMware HA 

failure recovery procedure.  

 
Master 

Failure T0 
Master declared 
unreachable T10 

New master elected, 
it reads protected 

list T25 

Restart all protected and 
not running VMs T35 

Figure 22 - Sequence of actions after failure of a Master node in VMware HA 

 
Slave Failure 

T0 

Master begins monitoring 
datastore heartbeats T3 

Continues 
ping T10 

Host declared dead 
T18 

Figure 21 - Sequence of actions after failure of a slave node in VMware HA 
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We considered the first reaction to the failure as the initiation of the restarts of the VM 

because before that there is no reaction seen from VMware HA side. So as illustrated, the 

reaction time would be from the time of failure until the time VMware initiates a restart 

on the failed VM. This time can be retrieved from the logs on the ESXi hypervisor.  

In this architecture, there is no secondary or standby VM so the recovery would be 

achieved by repairing the failed VM. Repairing means restarting the failed VM in the 

 

Figure 24 - The sequence of actions during a VM failure in VMware HA 

 

 

Failure

Reaction
I/O stats interval time out 
(no activity on VM side)

Restart Virtual Machine

Virtual Machine is up

Outage

Recovery & Repair

VMware HA VM

I/O stats interval is set

 

 

Figure 23 - The sequence of actions during a node failure in VMware HA 
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same or another ESXi host. The outage of the service is calculated from the time of the 

failure until the failed VM is up and running. 

Figure 23 and Figure 24 show the overall sequence of events in the VMware HA 

architecture for node and VM failures. Those figures also show the ranges of time 

measurements corresponding to the defined metrics. 

For VMware HA, we used the VMware official documents to review what happens after 

a failure, but in the case of VMware FT, less documentation is available. For this reason 

we used the log files to follow the sequence of events. Also we used the log for all 

measurements except the outage time that we used an intrusive method. We simulate the 

failure of the VM by killing the process of the primary VM and then logging the time as 

the failure time. For the other times we dug in the logs of the ESXi hypervisors to find 

the notifications of the reaction and repair of the VM(s). The first log entry we found as 

the reaction to the failure was ‘Destroyed hbResponseWorldlet’. So we considered the 

period from the failure time until this timestamp as the reaction time. The log entry 

 

Figure 25 - The Sequence of actions after the failure of the primary VM in VMware FT 

Secondary VM
Failure

Reaction
Destroyed hbResponseWorldlet

Failover

The new primary starts functioning 

Outage

VMware FT Primary VM New 
secondary VM

Create

Secondary sending health info

New primary VM Repair

Recovery
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showing the repair was: ‘Secondary sending health info’. This log entry along with its 

timestamp shows the time that the secondary VM is created somewhere in the cluster and 

it is ready.  

For the outage time we did not actually find the appropriate log record for the time the 

new primary is ready to continue the service. In the related log, the recorded time 

conflicted with our experiments in section 3.10.5. Because of this, we used an intrusive 

method to measure the outage time. We created a script to log a timestamp with the 

frequency of 10 milliseconds. We started the script in the VM and then triggered the 

failover by killing the VM process. The time difference in the log from the time of the 

failure until the time of the new timestamp after the failover would be the outage time in 

VMware FT. Because of using the intrusive method, the recovery time is assumed as the 

difference from reaction to the calculated outage time. The sequence of actions and 

events after the failure of the primary VM are shown in Figure 25. 

3.9 Measurements from our experiments 

In the previous section, we defined the details of how to measure the defined metrics in 

our baseline architectures. Here we will show the measurements of our defined metrics in 

different tables for each failure type. The measurements were taken in each architecture 

for each applicable failure type. We repeated each experiment 10 times and we 

determined the average. By repeating the experiments we make sure that the results can 

be replicated and stay the same after many repeats.  



 
55 

 

The first three rows in the following tables represent the measurements for the SA-Aware 

VLC component in the three different deployments. The next three rows represent the 

measurements for the Non-SA-Aware component in the same deployments. 

Note that all the time measurements are in seconds. 

3.9.1 Component failure measurements 

As described before VMware HA does not detect component failures so the rows for 

VMware HA and VMware FT have no values. Also the Non-SA-Aware version of VLC 

does not support the repair of the failed component. We simulated the failure of the 

component by killing the VLC process in the OS and keeping the exact killing time for 

measurement purposes. 

According to Table 3, we created a bar chart (Figure 26) to show the differences in the 

outages. We selected outage because from the service availability point of view, this is 

the most important aspect.   

 
Reaction Repair Recovery Outage 

SA Aware - stand alone 0.009 0.136 0.046 0.055 

SA Aware - VM 0.013 0.243 0.068 0.081 

SA Aware - VM - HA enabled 0.013 0.243 0.068 0.081 

non-SA Aware - stand alone 0.429 
 

0.069 0.499 

non-SA Aware - VM 0.489 
 

0.103 0.592 

non-SA Aware - VM - HA enabled 0.489 
 

0.103 0.592 

VMware FT 
    

VMware HA     
 

Table 3 - VLC component failure measurements 
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The application and component failure detection and recovery is our focus throughout the 

thesis which VMware HA and VMware FT do not support on their own and this is the 

reason we used a baseline combined architecture.  

3.9.2 Virtual machine failure measurements 

This failure is only applicable where we have used VMs in the deployment. This type of 

failure is not applicable in OpenSAF on the stand-alone node architectures. The VM 

failure is simulated by killing the VM process on the hypervisor and recording the time of 

failure for the measurements. Table 4 shows the corresponding numerical values.  

It should be noted that there is no repair when VMware HA is not enabled in VMware 

vSphere. This means that the VM is not restarted when a VM failure occurs and VMware 

HA is not enabled. VMware HA can detect VM failures and restarts the failed VM in the 

same host if the host is available or on another host in the cluster. As shown in the table 

 

Figure 26 - Outage due to VLC component failure 
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when we have OpenSAF in the VM, the service is recovered much faster than just using 

the VMware HA. This is because when a VM fails, OpenSAF detects the failure of the 

cluster node and fails over the active assignment to the standby SU.  

The VM failure measurements show that the VMware FT performs better in both outage 

 
Reaction Repair Recovery Outage 

SA Aware - stand alone 
    

SA Aware - VM  1.906 
 

0.048 1.954 

SA Aware - VM - HA enabled 1.906 107.9 0.048 1.954 

non-SA Aware - stand alone 
    

non-SA Aware - VM 2.651 
 

0.057 2.707 

non-SA Aware - VM - HA enabled 2.651 104.2 0.057 2.707 

VMware FT 0.024 10.63 1.29 1.314 

VMware HA 72.166 27.166 99.332 

 

Table 4 - Virtual Machine Failure measurements 

 

Figure 27 - Outage due to Virtual Machine failure 
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time and the repair time compared to other architectures. 

Figure 27 shows the big difference between the VMware HA outage time and the other 

architectures. From high availability perspective it is a huge difference when we demand 

99.999% availability, which is only about 5 minutes a year.  So if our VMware HA 

solution fails more than 3 times a year we cannot call it highly available anymore. 

3.9.3 Physical node failure measurements 

Node failure is simulated by forcing the shutdown of the physical node. This was done 

through the command line interface of the architectures where we had Ubuntu installed 

directly on the physical node, or by using the SSH client command on the ESXi nodes.     

As shown in Table 5, repair of the failed node is not supported in the OpenSAF based 

stand-alone architectures and VM based architectures without HA enabled. There is also 

a big difference in the outage time between VMware HA and the other architectures as 

shown in Figure 28.  

Although we used the force shut down command, but still there was a delay from issuing 

 
Reaction Repair Recovery outage 

SA Aware - stand alone 2.046 
 

0.019 2.065 

SA Aware - VM  2.169 
 

0.046 2.215 

SA Aware - VM - HA enabled 2.169 105 0.046 2.215 

non-SA Aware - stand alone 2.702 
 

0.060 2.762 

non-SA Aware - VM 2.874 
 

0.051 2.926 

non-SA Aware - VM - HA enabled 2.874 105 0.051 2.926 

VMware FT 0.024 10.63 1.29 1.31 

VMware HA 61.1 28.3 89.4 

 

Table 5 - Node failure measurements 
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the command until the actual shutting down of the node. We could not measure this delay 

because we could not log the actual failure time. So the reaction and outage times of this 

measurement include this delay.   

 

Figure 29 - Outage due to node failure without considering VMware HA 
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Figure 28 - Outage due to node failure 
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For a better comparison in the node failures, we created another chart, but this time 

without considering the VMware HA so that the differences of the other architectures can 

be more visible. The chart in Figure 29 shows that the VMware FT again has the least 

outage time comparing to other architectures.  

3.9.4 Memory overheads 

For measuring the memory overhead of different availability solutions, we recorded the 

total memory usage before and after enabling or running our availability solutions. For 

example in OpenSAF we started the middleware with the basic imm.xml file which 

contains the basic configuration of the nodes of the cluster. So we make sure that the 

memory consumption of the component would not be counted. In VMware we did the 

same experience with enabling and disabling VMware HA and calculating the difference. 

Since there are two types of nodes in VMware HA, we ran the experiment in both master 

and slave nodes.  

As shown in Figure 30, the memory consumption of OpenSAF is approximately 15 MB 

 

Figure 30 - Memory overhead (VMware FT is left out) 
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which is similar to the memory consumption of VMware HA in a slave node. The chart 

also shows that VMware HA in the master node uses almost twice the memory compared 

to the slave node in the same cluster. The overheads of the high availability mechanisms 

in the slave node of VMware HA and OpenSAF are close, but it should be considered 

that the hypervisor itself has a memory overhead which we did not measure. 

The memory overhead in VMware FT is one of its weakest points. Since VMware FT 

runs a whole VM in parallel with the primary VM as the secondary VM, it doubles the 

memory consumption. It means if the VM is set to consume 1GB of memory, the overall 

consumption of the memory in the cluster for that VM is twice and is 2GB. There would 

be 1GB of overhead just for a single VM in this case. This amount of overhead is much 

higher than the memory overhead of the other solutions and that is why the VMware FT 

memory consumption is left out in Figure 30.  

3.10 Analysis 

After experimenting on the baseline architectures and trying different failure types, we 

learned a lot about the different solutions. The analysis on data can show us the 

advantages and disadvantages of each architecture. This analysis will lead to other 

combined architectures that we will introduce in the next chapter.   

3.10.1 SA-Aware vs. Non-SA-Aware component 

One of the clear differences in the charts (Figure 26 and Figure 29) is the difference of 

outage between SA-Aware and Non-SA-Aware components when the architecture is the 

same. This difference varies from 444 milliseconds to 711 milliseconds. The first reason 

of the difference is in the way the fault is detected. The SA-Aware components have a 
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very tight coupling with AMF; they link to the AMF library which results in faster failure 

detection. In the Non-SA-Aware component, there is only a passive monitor which is 

implemented to check the process ID of the VLC process in the OS. The second reason is 

related to the recovery, which is faster in the SA-Aware version. The standby SA-Aware 

VLC is pre-instantiated on the other node so that it only needs to take over the active 

assignment. For the Non-SA-Aware component, the instantiation is done when it is 

assigned as active.  

3.10.2 Overhead due to the VM 

The other variance in the charts is where we add a VM layer. For example in Figure 

26, the SA-Aware component failure in the stand-alone physical machine has less outage 

than the same component failure in a VM. This applies to Non-SA-Aware component as 

well. It indicates a 15% to 30% overhead for the VM layer. Huber et al also report in [43] 

that the performance of the application running in VMs is worse compared to the 

application running directly on physical host. This supports the assumption that the delay 

we experienced is the result of the difference in the performance of a VM and a physical 

machine, and this is inevitable.  

3.10.3 OpenSAF vs. VMware HA 

The difference in service outage between the VMware HA and OpenSAF based 

deployments is quite obvious from Figure 27 and Figure 28. In VMware HA there is no 

standby and it can only restart the failed node on the same or another ESXi host. One of 

the important factors in VMware HA outage time is the way that it handles failures which 

is described in 2.2.4.1. The physical node failure detection and recovery times and 
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mechanisms are different in master and slave. One of the advantages of VMware HA 

over OpenSAF is the detection of network isolation which is covered in VMware HA. 

The datastore heartbeat can detect whether the host is unavailable because of the physical 

failure or network isolation. This mechanism is also one of the reasons that VMware HA 

recovery takes longer than OpenSAF related architectures take. 

3.10.4 Repair of the failed element 

One of the measurements that we did not cover in the previous charts is the repair time. 

The repair of the failed component/application is possible when we are using OpenSAF 

based architectures. The VM availability can be managed by VMware HA so in the 

architectures where VMware HA is enabled, the failed VM can be repaired. In the case of 

physical node failure, since VM images are placed on a shared storage, VMware HA can 

restart the VMs on the failed host, on other hosts.  

Table 6 shows the differences in the repair capabilities of the different deployments. 

Accordingly only the combined architecture supports the repair of all failure types. The 

repair of a failed SA-Aware component on standalone and virtual nodes takes 

respectively 0.136 and 0.243 seconds, while the repair of a VM or node takes around 100 

Table 6 - Repair of the failed element in different deployments 
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seconds in the VMware HA enabled deployments. Repairing a failed element is 

important for high availability because during this time the service is not protected and 

there is a possibility of failure. Hence it would be nice to reduce the repair time as well. 

The table also indicates that the repair of the failed VM is not applicable in OpenSAF 

installed on a physical machine without virtualization. 

3.10.5 Combining VMware FT and OpenSAF 

Our case study application as described before uses a 2N redundancy model and for that 

we need two nodes (physical or virtual). On the other hand, VMware FT creates a 

secondary copy of a VM which runs in lockstep with the primary node. An architecture 

which combines the VMware FT and OpenSAF can be considered as enabling VMware 

FT for each of the VMs containing the OpenSAF nodes. In this combination OpenSAF 

takes care of the application failures and VMware FT does the recovery for VM and 

physical node failures. As experimented, VM/node failure does not trigger OpenSAF 

availability mechanism to react because the outage time of VMware FT is less than the 

timeout of the Transparent Inter-Process Communication (TIPC) protocol. TIPC is the 

protocol used in OpenSAF for the inter-cluster communications. The timeout of TIPC, 

which is a timer setting, causes OpenSAF to react as the node failure. 

The advantage of this combination is lower repair and outage times for VM/node failures 

while taking advantage of fast application failure detection and recovery with OpenSAF.  

As mentioned before, VMware FT has many hardware requirements and the limitation of 

using just one virtual CPU per each VM. The double usage of memory and CPU is 
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another VMware FT disadvantage. The two VMs with VMware FT enabled, will use as 

much as four VMs memory and CPU.   

3.10.6 Fault propagation in VMware FT 

We already mentioned that VMware FT has a secondary VM which uses lockstep to 

synchronize with the primary. This synchronization causes problems for VMware FT and 

the architectures or applications using VMware FT as their availability mechanism. The 

problem arises when the operating system, or application running in the VM crashes for 

any reason. In these cases, the failure of the operating system or failure of the application 

is propagated to the secondary VM.   

To show this problem, we added a thread in the VLC code that halts the operating system 

after a random amount of time when the video started streaming. The thread waits 

between 10 to 20 seconds and then executes the ‘halt’ command which causes the 

operating system to halt. According to the hypervisor log, after the operating system 

inside the primary VM halts, there is an attempt to failover to the secondary VM 

“Waiting for ack from secondary” and then “Secondary didn’t ack data in 8000 ms”. The 

second log record mentioned here shows that the secondary VM is not available for 

failover. The reason is the propagation of the failure to the secondary VM. After the halt 

command in the primary, the same command is synchronized with the secondary VM and 

because it is running in sync with the primary VM, the secondary VM halts too. Fault 

propagation is one of the main problems of VMware FT.  
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3.10.7 Validity of the measurements  

Throughout our experiments, one of our main concerns was the comparability of the 

architectures, measurements and the experimental environments. The CPU speed and 

amount of memory of the node play important roles in this context. The underlying 

hardware were the same in all of the experiments except for the experiments on VMware 

FT, which were done on the ÉcoloTIC nodes because of the hardware requirements of 

VMware FT. For minimizing the effect of hardware differences, we assigned the same 

amount of memory and the number of CPU cores to all VMs in all our experiments.  

One of the key points that should be considered when comparing the virtual environment 

and the non-virtual environment is the inevitable overhead due to the virtualization layer, 

discussed in detail within section 3.10.2.  

The repair in VMware HA is different from the repair in VMware FT. In VMware HA 

there is no backup VM so the repair is done by restarting a VM, which its image is 

located on a shared storage. But in VMware FT, instead of starting a VM from scratch, 

the runtime data of the new primary VM is copied to the new secondary VM. Usually 

data to be copied for runtime data is less so it will function faster. Reading and running a 

VM image on a shared storage or copying the runtime data of a VM, is done through the 

communication network. The bandwidth of the network infrastructure has a big impact 

on these network dependent operations. The links used between the hosts in our first 

experiments were 100 Mbps links and the links used for VMware FT experiments were 

gigabit Ethernet links. The faster link in VMware FT, causes a better performance in the 

startup of the VM and the synchronization of the primary VM with its secondary VM. 
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These links are used for connecting the hosts to each other and the hosts to the shared 

storage(s).  

From the software environment perspective, all of our experiments were based on the 

Ubuntu 10.04 operating system. We used VLC version 1.1 and OpenSAF version 4.2.1 in 

all of our experiments. The virtualization environment was VMware vSphere 5.0 

(VMware ESXi 5.0) in all of our experiments.    

Like any other experimental research, our work is subject to validity threats. One of our 

concerns is the time synchronization between the nodes. While we used time 

synchronization protocols, given that our measurements are in the milliseconds range, our 

results might be affected by the inevitable small differences in system times among the 

nodes.   

In calculating the outage time for VMware FT, we used an intrusive method. If a related 

log record was used, the outage time conflicted with the experiment in section 3.10.5. 

This conflict is the reason of selecting an intrusive way described in section 3.8 for 

measuring the outage time for VM failure in VMware FT.  

3.10.8 Conclusion 

According to the definition of high availability which allows for at most 5.26 minutes of 

down time per year, it is unlikely that the VMware HA solution can be considered highly 

available if the VM needs to be restarted at least four times a year, it would already use 

up this time budget. Furthermore, it cannot detect the application failures. On the other 

hand, VMware FT supports very limited hardware and it does not support VMs with 

multiple processors. According to our measurements, one can conclude that the VMware 
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HA alone cannot compete with the service high availability management provided by 

OpenSAF. 

Our last architecture, which combined OpenSAF and VMware HA, has covered most of 

the shortcomings of each solution. For example by using OpenSAF on physical node we 

could not benefit from the advantages of the virtualization. Furthermore, VMware HA by 

its own does not cover the detection and recovery of the component failure.   

Although this initial combination of OpenSAF and VMware HA was better than each 

solution by its own, it still suffered some problems. The first problem was the very long 

repair time of the failed VM. If the service provider (VM or component) fails again 

during those 100 seconds, there would be no service provider to fail over to. The second 

problem which is also the problem of VMware FT is, VMware HA and VMware FT are 

proprietary solutions and not all virtualization solution providers support VM availability 

management. 

VMware FT in our measurements had lowest outage and repair time for VM and physical 

node failures. But VMware FT has its own disadvantages and problems. Considering that 

a secondary VM is created for each VM, the memory and CPU usages are doubled. The 

secondary VM is in continuous synchronization with the primary which consumes the 

network bandwidth as well. VMware FT does not cover any application failure support 

and in the case of OS or application failure, the failure is propagated to the secondary 

VM too. VMware FT also has many hardware requirements which might not necessarily 

be fulfilled with the hardware used in a cluster. As an instance our first test-bed cluster 

did not support these requirements. That being said, although VMware FT performs 
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better in some of the time measurements, it has many disadvantages. The combination of 

VMware FT and OpenSAF is not recommended for systems with many VMs because the 

duplication of memory and CPU will reduce the performance of the system. But in 

environments with limited number of VMs and the need for both application and VM 

failure detection/recovery support, this combination can be a good solution.  

In the next chapter, we will propose two new architectures which address the problems 

from our previous architectures.     
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Chapter 4 

 

 

 

4. New architectures combining OpenSAF and 

virtualization 

Our previous virtualization based deployments used VMware HA to manage the 

availability of VMs. With respect to service outage we saw that it was outperformed by 

OpenSAF, but using OpenSAF alone in the VMs without VMware HA enabled, did not 

cover repair for the failed VMs. In addition not all virtualization solutions provide similar 

mechanism for managing the VM’s life cycle. Hence, based on the results of our analysis, 

in this chapter we propose architectures, taking further advantage of the different 

solutions’ strength and fix their weaknesses.  For this we try to use tools and libraries 

available in other virtualization solutions as well, so that they can be used with other 

virtualization solutions. In these architectures the main goal is to manage the life cycle of 

the VM by OpenSAF to reduce not only the outage, but also the repair time in case of 

failures, while the services running in the VMs are protected by another OpenSAF 

cluster. The first architecture targets non-bare-metal hypervisors while the second one 

targets bare-metal hypervisors. Both of the proposed architectures include the same two 
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virtual machines running our case study application. The main difference is that we added 

a second OpenSAF cluster to manage the life cycle of these two VMs. 

The contribution of these proposed architectures is improving the service availability in 

application level and improved repair time in the case of VM/node failures. The proposed 

architectures allow for the detection and recovery of failures at application, VM and 

physical node level. 

This chapter also includes the experiments with the first proposed architecture, which has 

been deployed using VMware workstation. We measured the same defined metrics to see 

whether our new architecture improved the shortcomings of the previous combined 

architecture or not.   

4.1 VM availability management in non-bare-metal hypervisor 

Most of the hypervisor vendors provide APIs and CLI commands. They can be used to 

develop tools to control some of the functions the hypervisor provides like managing the 

VM life cycle. For example VMware provides the VIX APIs. Using these CLI commands 

and APIs we can start, stop, pause and resume the VMs in the hypervisor. Also, the non-

bare-metal hypervisors (e.g. VMware Workstation) expose a process ID for each VM 

running in the host operating system. So, the main idea behind the first architecture is to 

make OpenSAF to use the hypervisor CLI commands to control the lifecycle of the VMs 

and to use OpenSAF passive monitoring to monitor the VM process in the operating 

system. The passive monitoring is started using the CLI script where OpenSAF uses to 

instantiate the VM component. Figure 31 illustrates this architecture. 
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There are two different and independent OpenSAF clusters in this configuration. The 

VMs are considered as Non-SA-Aware non-proxied components in the first cluster. The 

started VMs form a second OpenSAF cluster for protecting the target application. When a 

VM fails, the VM process dies and OpenSAF of the first cluster detects the failure 

through the passive monitoring. When a failure is detected OpenSAF runs the cleanup 

CLI script associated with the VM component and if successful, it re-starts the VM. In 

the second cluster, OpenSAF detects the VM failure as a node failure, so it fails over any 

active assignment served by the VM to the standby. 

From the redundancy model perspective, the SG in the first cluster where the components 

are the VMs, is configured with the No-Redundancy redundancy model and in the second 

cluster, which is the same configuration as we had in our previous architectures, it is 

configured with 2N redundancy model. The 2N redundancy model is the optimum model 

for our case study. The No-Redundancy redundancy model and N-Way active 

Figure 31 - VM availability management in non-bare-metal hypervisor 
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redundancy models are not applicable because they do not support the standby 

assignments. Our components do not support x_active_and_y_standby capability model 

which is the requirement of N-Way redundancy model, so N-Way is not a good match 

either. 2N redundancy model is a special case of N+M where N and M are one, so N+M 

can be used too. The choice of No-Redundancy redundancy model for the first cluster is 

because the service provided from the second cluster where the 2N redundancy model is 

used, already has the redundant unit and the service will resume when there is a failure at 

any level.  

This architecture can be configured with any number of VMs and any AMF configuration 

inside the VMs in the second cluster. Furthermore, since OpenSAF is using the CLI 

interface of the hypervisor, any hypervisor with the CLI support can be used. In this 

architecture we did not consider the migration of the VMs or OpenSAF failing over the 

VMs to other hosts. The VMs are stored on the local disk of the physical machines. 

4.1.1 Experiments with VM availability management in non-bare-metal 

hypervisor 

We deployed the VM availability management using VMware Workstation 9.1 as the 

non-bare-metal hypervisor and installed it on two of our test-bed cluster nodes running 

Ubuntu 10.04. We also installed OpenSAF 4.2.1 on the same nodes so that it could 

control the life cycle of the VMs running in the VMware Workstation on the nodes.  

Inside the VMs we installed the same Ubuntu 10.04 operating system along with 

OpenSAF 4.2.1 and the SA-Aware version of our case study application, the VLC media 
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player. We configured two different and independent OpenSAF clusters because of the 

easier manageability for the implementation, which were not aware of each other.  

In this deployment, OpenSAF controls the life cycle of the VMs using the “vmrun” 

command included in the VIX API libraries [44]. We used the start and stop commands 

respectively for instantiating and terminating a VM, which is configured with these CLC-

CLI commands as a Non-SA-Aware non-proxied component. When the cluster on the 

physical nodes is started, OpenSAF starts the VMs and when the VMs are up, OpenSAF 

of the second cluster inside the VMs starts the VLC components and assigns them the 

active and standby states. The CSI in the first cluster is configured with the address of the 

images of the VMs. 

In this setup we experimented with component failure as described earlier by killing the 

active VLC component as well as with VM failure. In the latter case we killed the process 

of the VM which hosted the active VLC component. This was perceived as a component 

failure in the first cluster and resulted in the restart of the failed VM. On the other hand, 

in the second cluster it was detected as a node (VM) failure and OpenSAF failed over the 

service to the standby VLC component, which resumed the service. Once the failed node 

was restarted, AMF assigned the standby assignment to its VLC component. 

We took the same measurements as we did in the baseline architectures. 

Table 7 shows that the VM repair time is reduced drastically from more than 100 seconds 

with VMware HA to 3.73 seconds. This table shows that the delay is mainly because of 

the reaction time. Since the reaction time in VM failure is defined as the time when the 

VM process is killed until the time when the first CLC-CLI command is called on the 
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other node, the delay because of the underlying host operating system can be an 

important reason. Note that without OpenSAF it takes VMware HA about 60 seconds to 

detect the failure and 30 to repair the VM, while with OpenSAF, it is OpenSAF which 

reacts to the failure and hence reduces the outage. When OpenSAF performs the VM 

restart as well, the repair time is improved considerably. In this architecture we had 

tremendous improvement in the repair time in comparison to the previous combined 

architecture. 

Reviewing the results from VMware FT, the outage time with VMware FT is less than 

the outage time of our new deployed architecture. The recovery and repair of the new 

deployment takes less time than VMware FT. Our new deployment suffers from the long 

reaction time. As mentioned in the previous paragraph, one of the reasons can be the 

delays caused by the underlying host operating system. In similar experiments with ESXi 

where we had the VM with OpenSAF installed and the same case study application 

settings, the reaction time was 1.905 seconds as shown in Table 7. So we can assume that 

using the bare-metal hypervisor can potentially reduce the reaction time as low as two 

seconds and ultimately cause the reduction of the outage time. 

 

Table 7 - Comparison of measurements for VM failure in different architectures 

Reaction Repair Recovery Outage

Bare-metal hypervisor (ESXi)

Only HA enabled
72.166 27.166 99.332

VMware FT 0.024 10.63 1.29 1.314

OpenSAF with VMware HA 
managing the VMs

1.905 107.90 0.047 1.953

OpenSAF and VMware workstation
(non-bare-metal hypervisor)
VMs managed by OpenSAF

3.449 3.73 0.056 3.505
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Table 8 shows the measurements of the failure of the SA-Aware VLC media player in the 

different architectures. In this table the same issue of the increased outage time because 

of the non-bare-metal architecture is visible. The next architecture addresses this issue by 

proposing a new architecture, using the ESXi as the bare-metal hypervisor. 

The drawback of this architecture is the increased service outage which we attribute to 

the additional layer of the host operating system and also the difference between the 

hypervisors used (ESXi vs. Workstation). We assume that if we could use ESXi, the 

delay introduced in this deployment would disappear and we would have the same 

functionality and better repair time. Hence, we came up with the next architecture. 

4.2 VM availability management in bare-metal hypervisor 

In this architecture we have the same two VM images on a shared storage and the two 

ESXi hypervisors as we had in our baseline architecture of OpenSAF in virtual nodes 

(see Figure 18). The VMs provide the video streaming service so we will call them 

“Service VMs”. 

 

Table 8 - Comparison of measurements for failure of the SA-Aware VLC component in different architectures 
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The previous combined architecture suffered longer delay in service outage for 

component failure than our baseline architectures. In this architecture we created two new 

VMs which we call “Manager VMs”, which run OpenSAF that manages the following 

configuration: We defined two SIs each with a CSI which corresponds to the one of the 

”Service VMs”. So there are four components configured in two different SGs with the 

2N redundancy model where each SG holds the active and standby components of one of 

the “Service VMs”. We selected the 2N redundancy model because if the hypervisor 

running the VM fails, its standby component can restart the VM on the other node instead 

of waiting for the hypervisor to be available again before starting the VM. This improves 

the repair time of the VM in the failed hypervisor.  

Each component resides in a different SU meaning we have four SUs (see Figure 32). 

The SUs are ranked so that the SI assignments are distributed evenly between the two 

Figure 32 - VM availability management in bare-metal hypervisor 
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nodes. In AMF, a service unit with higher ranking standby for that service instance is 

preferred over a service unit with a lower ranking. We propose using ranking in our 

architecture so that the active assignments are balanced between the nodes. By setting the 

auto adjust attribute of the SG, the SI assignments to the service units in the service group 

are transferred back to the most preferred SI assignments in which the highest-ranked 

available service units are assigned. The components are sets of scripts for starting and 

stopping the “Service VMs” using the “virsh” command of the libvirt library. Hence, they 

are non-SA-aware-non-proxied components. The health of the “Service VMs” is checked 

by external active monitors running in the “Manager VM”s started with the VMs. They 

use libvirt library to get the health status of the VM. The “Manager VMs” form a separate 

cluster from the “Service VMs”. In this architecture VMs are associated with CSIs so a 

VM failure, is a failure of the active SU containing the VM component. For the 

components we configure the component restart than fail-over in the event of failures 

which reduces the need for potential switch overs because of auto-adjusting. It means if 

just the VM fails VM is restarted on the same node instead of failing over to the other 

node. A possible runtime arrangement is shown in Figure 32. Manager VM1 contains 

SU1 with VM1 component having the active assignment for Service VM1 and SU2 with 

VM2 component having the standby assignment for Service VM2. Manager VM2 

contains the SU3 with VM1 component with standby assignment for Service VM1 and 

SU4 with VM2 component having the active assignment for Service VM2. At the same 

time the VLC component in Service VM1 has the active assignment and the one in 

Service VM2 the standby.  The Service VMs are started in the hypervisor, which also 

runs the Manager VMs.  
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Consider a scenario that the Service VM1 dies (Figure 33). The external active monitor 

reports it to AMF, where AMF first clean-ups the VM1 component in SU1 by calling its 

clean-up script, and then tries to restart the failed component. The same component gets 

restarted and instantiates the Service VM1 again by calling its instantiation script. 

Meanwhile since Service VM1 hosted the active VLC component (Figure 32) for the 

streaming service it is failed over to the VLC component in Service VM2 because the 

second OpenSAF cluster detects the node failure; so the service continues. 

Figure 34 shows this scenario and illustrates the sequence of actions after the VM1 fails. 

The arrow pointing down shows the service. 

Figure 33 - VM failure in the proposed bare-metal architecture 
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Consider another scenario where the node ESXi hypervisor 1 node fails (Figure 35). In 

this case, AMF fails over its CSI to the standby VM in SU 3 which causes the restart of 

the failed VM on ESXi hypervisor 2. As a result both Service VMs are hosted in ESXi 

hypervisor 2. Once VM1 component becomes available OpenSAF will switch back the SI 

representing Service VM1 to its preferred node. This way we avoid the situation that one 

Figure 35 - Node failure in the proposed bare-metal architecture 

 

Figure 34 - Sequence of actions for VM failure in the bare-metal based architecture 
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ESXi node holds both Service VMs for extended period of time. The balancing of the 

VMs on the VMware HA is not supported. Figure 36 shows the sequence of actions.  

An added benefit of this architecture is that it is not limited to VMware ESXi and can be 

deployed in the hypervisors which support libvirt library like Linux KVM, Xen, etc.  

In this architecture we expect that the long delays for reaction time in the VM failure for 

the previous architecture to be fixed. In Table 9, the last row shows our expectations from 

this architecture compared to other architectures. The service VMs are the same as the 

VMs in the first combined architecture (OpenSAF with VMware HA managing the 

VMs). In the case of component or VM failures, it is the OpenSAF cluster in the service 

VMs which takes care of the service availability and failover the service to the standby 

component. So that is why for the outage of component and VM failures we estimate the 

same time as the first combined architecture. But repair of the VM in the VM failure is 

done by the OpenSAF cluster in the manager VMs, so we estimated its repair time 

 
Figure 36 - Sequence of actions for physical node failure in the bare-metal based architecture 

ESXi Hypervisor 1 ESXi Hypervisor 2

VM1 component
VM2 component 

(standby)
VM1 component

VM2 component 
(active)

Failover of the VLC

Failure of the ESXi hypervisor

Service is provided 
from VM1

Service is continued 
from VM2 

ESXi node starts again

Standby

Active

Standby

Active

Switch over

Active
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according to the first proposal in this chapter for non-bare-metal hypervisor which is 

deployed.   

Comparing the estimated values with our previous architectures shows that the new 

proposed architecture not only covers the application failure detection and recovery but 

also has a lower outage and repair time than most of other architectures. The only case 

which the new proposed architecture does not have the lowest value is the outage time in 

VM failure. Although VMware FT has lower outage time in that case, it does not support 

application failures which is one of our key motivations. It also has many disadvantages 

which was covered in 3.10.8.       

4.3 Conclusion 

In this chapter, we introduced two new architectures for bare-metal and non-bare-metal 

hypervisors. The aim of these architectures is to focus on service high availability along 

with enhancing the repair time of failed VM by managing the life cycle of the VMs using 

OpenSAF. Deployment of the first proposed architecture showed that the concept of 

managing the life cycle of VMs using OpenSAF is valid and the repair time enhanced 

 

Table 9 - Timing expectations from our bare-metal hypervisor based proposal 

 

 

* Time are in seconds
Outage Repair

Component failure VM failure Component failure VM failure

VMware FT -- 1.314 -- 10.63

VMware HA -- 99.332 -- 27.166

OpenSAF with 
VMware HA managing the VMs 

0.081 1.953
0.243

100

OpenSAF and VMware workstation
(non-bare-metal hypervisor)
VMs managed by OpenSAF

0.592 3.505
0.848

3.73

OpenSAF and ESXi ( bare-metal 
hypervisor) VMs managed by OpenSAF

~0.1 ~2 ~0.250 ~3
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greatly compared to our baseline combined architecture. Comparing the results also 

showed that the outage in VMware FT for VM and node failures is less than our first 

proposed architecture. Assuming the delay was caused by the non-bare-metal hypervisor 

used, the second proposed architecture aims at fixing this shortcoming by using a bare-

metal hypervisor. One of the limitation we faced in proposing the bare-metal approach 

was that the bare-metal hypervisor does not have an operating system so we could not 

have OpenSAF directly on the hypervisor. This is the reason we considered two other 

VMs as the manager VMs. Also for the same reason we could not use the hypervisor as a 

container, to contain the VMs. 

Because virtualization is one of the key components in cloud computing, this study 

potentially opens the doors for improving high availability in cloud computing by using 

OpenSAF in virtualized environments. Supporting application failure detection and 

recovery is the key advantage of our approach compared to other existing solutions.    

From the scalability perspective, both proposed architectures are limited by the scalability 

of VMware and OpenSAF.  

One of the shortcomings of our second proposed architecture is that we do not consider 

the availability of the manager VMs. This means if the manager VM fails there is no 

mechanism defined for repairing it. This does not cause any problem as long as the 

second manager VM continues working. As a solution we can use the virtualization 

availability mechanisms like VMware HA to manage the availability of the manager 

VMs.  
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Chapter 5 

 

 

 

5. Conclusion 

The overall goal of this thesis was to find a solution for availability in virtual 

environments focusing on application failures. As mentioned before, virtual 

environments are becoming more popular particularly in cloud services where the 

availability of the provided services is important. The aim of this work was to evaluate 

OpenSAF high availability solution and VMware virtualization considering VMware HA 

and VMware FT. We also compared the different solutions and architectures and 

proposed new architectures taking advantage of the strength of experimented solutions 

and architectures. VMware HA which was the focus of our study is a VMware solution 

for managing the availability of the virtual machines. We started the experiments on four 

baseline architectures to study their behaviors qualitatively. The metrics were the other 

form of investigating and studying these architectures. The measurements were 

conducted based on the defined metrics. The results from the measurements and 

specifically the analysis of the results helped us to recognize the weaknesses and strength 

of those architectures.  
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Our initial experiments showed that VMware HA was not as responsive to failures as 

OpenSAF, which is essential for service high availability. Also, the two solutions handle 

different sets of failures.   

In our investigations we used an initial combination of these solutions which benefited 

from the advantages of both solutions. This first combined architecture had some 

shortcomings i.e. the long repair time of the failed unit and being dependent on the 

virtualization product which was VMware HA. To combine their features, take advantage 

of their strengths and to fix these problems, we devised two new architectures that used 

non-bare-metal and bare-metal hypervisors. In these architectures we used OpenSAF for 

two purposes: to manage the availability of the VMs and to make the service running in 

the VMs highly available.  

We implemented the first proposed architecture and had some experiments on it. The 

results showed some improvement in comparison to the baseline architectures, but other 

characteristics suffered from using the non-bare-metal hypervisor. Believing that the 

shortcomings of the first proposed architectures can be fixed using the bare-metal 

hypervisor, we proposed the second architecture. To make these architectures more open 

to other virtualization solutions we proposed the use of the libvirt library which is 

supported in some other virtualization solutions like VMware, XEN and Linux KVM.       

The biggest advantage of our proposal is covering the application failure. This type of 

failure is not supported in other related architectures. Our work also takes advantage of 

the fast failure detection of OpenSAF which implements one of the most advanced high 

availability solutions. High availability provided by OpenSAF plus the presence of 



 
86 

 

virtualization in our proposed architectures can be a very good fit for the next high 

availability solutions in the cloud. 

Beside the advantages, our research also has limitations. Our proposed architectures rely 

on the commands which VMware supports. These commands are also supported by some 

other virtualization solutions but not all. So these proposals cannot be used in the 

hypervisors which do not support libvirt library or vmrun command like ‘Virtual PC’ 

from Microsoft.   

5.1 Future works 

From our two proposed architectures we deployed and experimented with the first 

architecture which was based on non-bare-metal hypervisors. As the next step, the second 

proposed architecture can be deployed and experimented using the defined metrics. The 

measurements of our bare-metal hypervisor solution will result in a better comparison 

with the other architectures.  

Moreover, as a future work, the proposed architectures especially the second one can be 

generalized to adapt to the cloud. This generalization should include the study of 

scalability of the work. Scalability can be discussed in two directions, the provided 

services and the number of physical machines/VMs.  In the 2N redundancy model, the 

number of machines/VMs is always two, one can investigate the scalability in terms of 

provided services.  As for the No-redundancy redundancy model, one can investigate 

variation in terms of services and machines/VMs.  
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Other redundancy models, if required, can be investigated for scalability in a similar 

manner. That being said, the overall scalability of the system will certainly be dependent 

of VMware and OpenSAF scalabilities.  
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