CLTP4: Structures and Deployables

Hiraku Sakamoto, Ph.D. Tokyo Institute of Technology

Deep Space Solar Sail Demonstrator

IKAROS

ARLISS at Nevada, USA

Scope of this lecture

Structures and deployables: Roles

◆ The structures mechanically supports all other spacecraft subsystems from manufacture to the end of the mission.

Typical CanSat subsystems

Environment:

- ✓ Static loading
- ✓ Vibrational loading
- ✓ Shock loading
- ✓ Heating (not covered today)

Structures and deployables: Roles

- ◆ The structures mechanically supports all other spacecraft subsystems from manufacture to the end of the mission.
- The deployables (a.k.a. deployable structures) are compactly stored in a launch vehicle, and deployed after separation.

© Keio Univ.

Mission Example

Hybrid CanSat, Space Crawler (2009)

Structures and deployables: Agenda

- Requirement analysis
- Strength and stiffness
 - Vibration test
 - Landing test
- Packaging configurations
 - Volume/mass constraints
 - Producibility, accessibility
 - Interaction between subsystems
- Deployables (parachutes)
- Design example

Mission sequence of Space Crawler

CanSat mission sequence (1)

- Launch and ascent
- Separation, deployment of appendages
- Descending
- Landing
- Separation of appendages

Running

Design process

Design process

✓ Prototyping!! Identify requirements Mass/volume constraints Configuration design Producibility, Design for strength Accessibility, Interactions between subsystems, Verification: test and analysis etc. No Meet requirements? Yes Detailed design

Requirements in mission sequence (1) -Strength and stiffness

- Launch and ascent
 - Static load: Strength
 - Vibration: Stiffness
- Separation, deployment of appendages
 - Shock load: Strength
- Landing
 - Shock load: Strength

Basic mechanics (1/4) -axial deformation

Stress: $\sigma = \frac{P}{A}$

$$\sigma = \frac{P}{A}$$

Strain: $\varepsilon = \frac{\Delta L}{L}$

Young's modulus:
$$E = \frac{\sigma}{\varepsilon}$$

Stress-strain relation:

- Brittle materials:
 - → Watch ultimate stress
- ✓ Ductile materials:
 - → Watch yield stress
- ✓ Factor of safety = material strength / design stress
 - \rightarrow 1.25 1.5
- ✓ In fact, axial deformation is **not** a big problem for small sat.

Basic mechanics (2/4) -buckling

Euler's buckling formula:

Bending stiffness

$$P_{cr} = \frac{\pi^2 ED}{L^2}$$

E: Young's modulus

I: Second moment of area

$$I = \iint_A y^2 \, dx dy$$

$$I = \frac{bh^3}{12}$$

$$\checkmark P_{cr} \propto b$$

$$\checkmark P_{cr} \propto h^3$$

Basic mechanics (3/4) -bending

Euler-Bernoulli beam theory:

Bending stiffness

Basic mechanics (4/4) -stress concentration

Smaller

Large

Stress concentration factor

$$\frac{\sigma_{\text{max}}}{\sigma_0} = 1 + 2\sqrt{\frac{c}{\rho}}$$

Basic dynamics (1/2) –vibration modes

Euler-Bernoulli beam theory (eigenvalue analysis):

Basic dynamics (2/2) –frequency response

- ✓ Make ω_1 as high as possible
 - ⇒ Stiff structure
- ✓ Structure should not break even at resonance
 - ⇒ Stiff, strong, and highly damped structure

Vibration tests (1/3)

Launch vehicle specifies the test conditions:

- Quasi-static load
- 1st mode frequency
- Sinusoidal vibration
- Random vibration
- Shock load

ARLISS's rocket:

- Static load: 10G
- Random vibration: 25Grms

© JAXA

Vibration test (2/3)

- ✓ CanSat is small: Satisfying stiffness & strength requirements for global structures is relatively easy. But...
- ✓ Need: Identification of failure mode due to "local resonance"
- Local vibration may break structures/devices
 - Soldering
 - Cables/connectors
 - Volts/joints
 - Motors/gear boxes
 - ✓ etc...

Vibration test (3/3) -Vibration test setup for CanSat

Landing test

Verify strength for shock loading

Dropping test

Balloon test

Structures and deployables: Agenda

- Requirement analysis
- Strength and stiffness
 - Vibration test
 - Landing test
- Packaging configurations
 - Volume/mass constraints
 - Producibility, accessibility
 - Interaction between subsystems
- Deployables (parachutes)
- Design examples

Design process

CanSat mission sequence (2)

- Manufacture
- Testing
- Maintenance
- Preflight operation

Impose requirements regarding producibility and accessibility

- Separation, deployment of appendages
- Descending
- Landing
- Separation of appendages
- Running

Design methods

- Hand drawing
- Prototyping (mockups)
- 3D CAD

Prototyping (1/3)

- ✓ Cardboard
- ✓ Plastic plates (acryl, ...)
- ✓ Styrene foam
- ✓ Wood etc...

Prototyping (2/3)

Prototyping (3/3)

Total 20 models.

3D CAD

Very helpful to consider configurations

Various commercial/free software (e.g. SolidWorks,

Creo Elements/Pro, CATIA)

Producibility

- Simple shape
 - Combination of plate, rods,...
- Materials
 - Aluminum alloy facilitates machining
 - CFRP is light, stiff, strong, but difficult for machining
- You should be familiar with your machining facility!

Lathe

Milling machine

Drill

Accessibility

- Maintenance: Many subsystems break during testing.
 - Need easy access, replacement
- Prelaunch operation: All subsystems should be checked, and maybe replaced quickly

Structural designer should be aware of the maintenance methods for all subsystems in CanSat.

Interaction between subsystems

- GPS receiver structure
- ◆ Communication antenna structure
- Crystal oscillator GPS receiver
- Magnetic compass motor
 etc...

Mass budget (1/2)

Mass budget (2/2)

- ◆ For a reliable design, start with ~20% mass margin and gradually enhance precision.
- ◆ 3D CAD is very useful for mass estimation.
 - Try several lightening methods: thinning, making holes
- Do not forget the mass of screws! They are heavy.

Structures and deployables: Agenda

- Requirement analysis
- Strength and stiffness
 - Vibration test
 - Landing test
- Packaging configurations
 - Volume/mass constraints
 - Producibility, accessibility
 - Interaction between subsystems
- Deployables (parachutes)
- Design examples

Deployables (parachute)

- Sizing
- Design and manufacture
- Storage
- Deployment/separation system
- Deployment shock –strength

Other deployables:

Design process

1. Sizing

Velocity During Recovery

Glenn Research Center

Cd = drag coefficient of parachute

Cd = 1.75 (typical)

r = air density

r = 1.229 kg/cu m

A = parachute area

V = velocity

Drag Equation:

$$D = Cd \frac{r V^2}{2} A$$

During recovery, drag=weight.

$$D = Cd \frac{r V^{2}}{2} A = W$$

Solve for Velocity:

$$V = sqrt \left(\frac{2 W}{Cd r A} \right)$$

http://www.grc.nasa.gov

2. Design and manufacture

- # of lines, with/without a hole
- Material: ripstop nylon, etc.
- Use sewing machine

3. Storage

- Folding pattern is very important for reliable deployment.
- Remove wrinkles, entanglement of cables
- ◆ Test, test! (Stored configuration should be repeatable.)

4. Deployment/separation system

• In most of CanSats, parachute is stored right above a CanSat, and deployed at the separation from a launch vehicle.

• "Flight pin (kill switch)" is pulled.

◆ Some CanSats use deployment system or separation system, such as Nichrome wire cutter.

Para glider

Bottom

Flight pins

Para glider/Cover separations of Space Crawler

5. Deployment shock

- When the parachute is deployed, shock load is applied especially at the cable connecting points on a CanSat.
- Design for strength, and test!

Free fall at the 1st flight

Students test strength of connection for 2nd flight

Structures and deployables: Agenda

- Requirement analysis
- Strength and stiffness
 - Vibration test
 - Landing test
- Packaging configurations
 - Volume/mass constraints
 - Producibility, accessibility
 - Interaction between subsystems
- Deployables (parachutes)
- Design examples

Structural design of Space Crawler

Design example (1): Requirements

Mass/volume constraints

Configuration design

Producibility,
Accessibility,
Interactions between subsystems, etc.

Verification: test and analysis

No

Meet requirements?

Yes

Detailed design

- CanSat should be crawler type.
- CanSat should tolerate launch load, parachute deployment shock, landing shock. (quantify!)
- CanSat should be able to run on a rough terrain.
 (quantify!)

Design example (2): Verification methods

Mass/volume constraints

Configuration design

Producibility, Accessibility, Interactions between subsystems, etc.

Verification: test and analysis

Meet requirements?

No

Meet requirements?

 Consider how you can verify the requirement specification when you design!

Design example (3): Design iteration

Mass/volume constraints

Configuration design

Producibility, Accessibility, Interactions between subsystems, etc.

Verification: test and analysis

Meet requirements?

No

- Prototyping and testing were repeated.
- For designing flight model, 3D CAD model was made.

Failure mode

Detailed design

Lessons learned

- Murphy's law: "Anything that can go wrong, will go wrong."
- ☐ If any function of CanSat is left untested, that function will fail during the flight.

Free fall

Cover not separated

References

- [1] W. J. Larson, J. R. Wertz (ed.), Space Mission Analysis and Design Third Edition (SMAD III), Microcosm Press, 1999.
- [2] L. Meirovitch, *Principles and Techniques of Vibrations*, Prentice Hall, 1997.
- [3] Yasuyuki Miyazaki, *Making of Satellites from Design to Launch*, Ohmsha, 2011, (written in Japanese).