
AT91 ARM
Thumb
Microcontrollers

Application
Note

 6348A–ATARM–06-Jul-09
AT91 USB Integrated Circuit(s) Cards Interface
Devices (CCID) Driver Implementation

1. Introduction
The Integrated Circuit(s) Cards Interface Devices (CCID) class extends the USB
specification in order to provide a standard means of handling Integrated Circuit(s)
Card (ICC) devices such as Smart Cards conforming to ISO/IEC 7816 specifications.

This application note describes how to implement a CCID driver with the AT91 USB
Framework provided by Atmel® for use with its AT91 ARM® Thumb® based
microcontrollers.

• First, generic information about CCID-specific definitions and requirements is
given.

• This document then details how to use the CCID class to communicate with a
Smart Card.

2. Related Documents
1. CCID Device Class: Smart Card, specification for Integrated Circuit(s) Cards

Interface Devices, revision 1.1, April 22, 2005.
2. Identification cards, Integrated circuits cards, part 3: Cards with contacts:

electrical interface and transmission protocols, Version 2.1c2, 2005-06-3.
ISO/IEC FDIS 7816-3: 2005(E)

3. Identification cards, Integrated circuits cards, part 4: Organization, security
and commands for interchange, 2004-10-14. ISO/IEC FDIS 7816-4: 2004(E)

4. Atmel Corp., AT91 USB Framework, 2006, lit ° 6263
5. USB specification 2.0: http://www.usb.org
6. Software ISO 7816 I/O Line Implementation, Atmel Application Note, lit°

1154
7. DWG Smart-Card Integrated Circuit(s) Card Interface Devices

http://www.usb.org

http://www.usb.org/developers/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf
http://www.iso.org/iso/home.htm
http://www.iso.org/iso/home.htm
http://www.atmel.com/dyn/general/advanced_search_results.asp?device=1&tools=1&faqs=1&datasheets=1&appNotes=1&userGuides=1&software=1&press=1&articles=1&flyers=1&checkAll=1&checkAllReference=1&target=doc6263
http://www.usb.org/home
http://www.atmel.com/dyn/general/advanced_search_results.asp?device=1&tools=1&faqs=1&datasheets=1&appNotes=1&userGuides=1&software=1&press=1&articles=1&flyers=1&checkAll=1&checkAllReference=1&target=doc1154
http://www.atmel.com/dyn/general/advanced_search_results.asp?device=1&tools=1&faqs=1&datasheets=1&appNotes=1&userGuides=1&software=1&press=1&articles=1&flyers=1&checkAll=1&checkAllReference=1&target=doc1154
http://www.usb.org/home

3. Abbreviations and Terms

4. CCID Device Class
This section gives generic details on the CCID class, including its purpose, architecture and how
it is supported by various operating systems.

4.1 Purpose
The CCID class has been specifically designed for Smart Card Devices.

4.2 Architecture

4.2.1 Interfaces
A CCID device only needs one interface descriptor. It should have the CCID interface class code
in its bInterfaceClass field. There are special subclass and protocol codes to specify.

4.2.2 Endpoints
The CCID requires three endpoints.

One endpoint BULK IN and one endpoint BULK OUT. They are mandatory and should always
be declared.

APDU Application Protocol Data Unit

ATR Answer to Reset

CCID Integrated Circuit(s) Cards Interface Devices

Cold RESET The sequence starts with the ICC powered off.

ICC Integrated Circuit(s) Card (Used interchangeably with Smart Card)

ICCD Integrated Circuit(s) Card Devices conforming to this specification.Used
interchangeably with USB-ICC.

Interface Device Terminal communication device or machine to which the ICC is electrically
connected during operation [ISO/IEC 7816-3].

Lc Optional part of the body of a command APDU. Its size is 0, 1 or 3 bytes. The
maximum number of bytes present in this body.

Le
Optional part of the body of a command APDU. Its size is 0, 1, 2, or 3 bytes.
The maximum number of bytes expected in the data field of the response
APDU.

P1, P2 INS parameter of a command header.

P3 INS parameter of a command header. P3 contains Lc or Le

RFU Reserved for Future Use

TPDU Transport Protocol Data Unit

USB-ICC USB Integrated Circuit(s) Card. An ICC providing a USB interface [ISO/IEC
7816-12]. Used interchangeably with ICCD.

Warm RESET The sequence starts with the ICC already powered
2
6348A–ATARM–06-Jul-09

Application Note

Application Note
The interrupt pipe is mandatory for a CCID that supports ICC insertion/removal. It is optional for
a CCID with ICCs that are always inserted and are not removable.

Endpoint 0 is used for class-specific requests. In addition, the host can also explicitly request or
send report data through this endpoint.

The Bulk IN and OUT endpoints are used for sending data to the host, and to receive
information.

The Interrupt endpoint is used for Insertion and Removal of the card, and in case of hardware
error.

Figure 4-1. CCID Class Driver Architecture

4.2.3 Class-Specific Descriptors
The smart card device descriptor specifies certain device features or capabilities. Please refer to
the CCID specifications for more information.

4.2.3.1 CCID Descriptor
The CCID descriptor gives information about the CCID specification revision used, the country
for which a device is localized, and lists the number of class-specific descriptors, including their
length and type. The format is described in Table 4-1.

HOST

Control 0 Bulk IN Bulk OUT Interrupt IN

Configuration ISO 7816

Smart Card

T
P

D
U

DEVICE

Table 4-1. CCID Descriptor Format

Field Size (bytes) Description

bLength 1 Total length of the CCID descriptor

bDescriptorType 1 CCID descriptor type (21h)

bcdCCID 2 CCID specification release number in Binary Coded
Decimal (BCD) format.

bMaxSlotIndex 1 Index of the highest available slot.

bVoltageSupport 1 What voltages the CCID can supply to its slots

dwProtocols 4 Supported protocol types
3
6348A–ATARM–06-Jul-09

4.2.4 Class-specific Requests

4.2.4.1 GetDescriptor
While GET_DESCRIPTOR is a standard request (defined in the USB specification 2.0), new
descriptor type values have been added for the CCID class. They make it possible for the host to
request the CCID descriptor, ABORT descriptor, GET_CLOCK_FREQUENCY descriptor and
GET_DATA_RATES descriptor used by the device.

When requesting a CCID-specific descriptor, the wIndex field of the request must be set to the
CCID interface number. For standard requests, this field is either set to 0 or, for String descrip-
tors, to the index of the language ID used.

4.3 Host Drivers
Microsoft® class CCID driver is used to drive the CCID without any vendor-specific software.
usbccid.sys can be found on the installation disk provided by Windows®, or can be downloaded
from the Windows Update web site during the new device installation procedure.

Specific software is used to send the APDU command to the Smart Card.

5. CCID Implementation
This section describes how to implement a Smart Card device using the CCID class and the
AT91 USB framework. For more information about the framework, please refer to the AT91 USB
Framework application note; details about the USB and the CCID class can be found in the USB
specification 2.0 and the CCID specification documents, respectively.

5.1 Architecture
The AT91 USB Framework offered by Atmel makes it easy to create USB class drivers. The
example software described in the current chapter is based on this framework. Figure 5-1 shows
the application architecture.

dwDefaultClock 4 Default ICC clock frequency in KHz

dwMaximumClock 4 Maximum supported ICC clock frequency in KHz

bNumClockSupported 4 Number of clock frequencies that are supported by the
CCID

...

Table 4-1. CCID Descriptor Format

Field Size (bytes) Description
4
6348A–ATARM–06-Jul-09

Application Note

Application Note
Figure 5-1. Application Architecture Using the AT91 USB Framework

5.2 Descriptors

5.2.1 Device Descriptor
The device descriptor of a CCID device is very basic, since the CCID class code is only specified
at the Interface level. Thus, it only contains standard values, as shown below:

static const USBDeviceDescriptor deviceDescriptor = {

 sizeof(USBDeviceDescriptor),

 USBGenericDescriptor_DEVICE,

 USBDeviceDescriptor_USB2_00,

 0,

 0,

 0,

 BOARD_USB_ENDPOINTS_MAXPACKETSIZE(0),

 CCIDDriverDescriptors_VENDORID,

 CCIDDriverDescriptors_PRODUCTID,

 CCIDDriverDescriptors_RELEASE,

 1, // Index of manufacturer description

 2, // Index of product description

 3, // Index of serial number description

 1 // One possible configuration

};

Note that the Vendor ID is a special value attributed by the USB-IF organization. The product ID
can be chosen freely by the vendor.

5.2.2 Configuration Descriptor
Since one interface is required by the CCID specification, this must be specified in the configura-
tion descriptor. There is no other value of interest to put here.
5
6348A–ATARM–06-Jul-09

 {

 sizeof(USBConfigurationDescriptor),

 USBGenericDescriptor_CONFIGURATION,

 sizeof(CCIDDriverConfigurationDescriptors),

 1, // One interface in this configuration

 1, // This is configuration #1

 0, // No associated string descriptor

 BOARD_USB_BMATTRIBUTES,

 USBConfigurationDescriptor_POWER(100)

 },

When the Configuration descriptor is requested by the host (by using the GET_DESCRIPTOR
command), the device must also send all the related descriptors, i.e. Interface, endpoint and
class-specific descriptors. It is convenient to create a single structure to hold all this data, for
sending everything in one chunk. In the example software, a CCIDDriverConfigurationDescrip-
tors structure has been declared for that purpose.

5.2.3 CCID Class Interface Descriptor
The interface descriptor is for the CCID Class Interface. It should specify the Smart Card Class
code (0Bh).

A CCID device needs to send and receive data from the host. This means the CCID needs bulk
IN, bulk OUT and Interrupt IN endpoints. So the bNumEndpoints field will have to be set to 3.
This interface also uses the default Control endpoint, but this is not taken into account here.

Here is the whole Interface descriptor:

{

 sizeof(USBInterfaceDescriptor),

 USBGenericDescriptor_INTERFACE,

 0, // Interface 0

 0, // No alternate settings

 3, // uses bulk-IN, bulk-OUT and interrupt-IN

 SMART_CARD_DEVICE_CLASS,

 0, // Subclass code

 0, // bulk transfers optional interrupt-IN

 0 // No associated string descriptor

 },

5.2.4 CCID Descriptor
An Interface descriptor is followed by the CCID descriptor. The CCID descriptor gives informa-
tion about the number and types of the other defined descriptors.

Example software for the Smart Card.

{

 sizeof(CCIDDescriptor), // bLength: Size of this descriptor in bytes

 CCID_DECRIPTOR_TYPE, // bDescriptorType:Functional descriptor
type
6
6348A–ATARM–06-Jul-09

Application Note

Application Note
 CCID1_10, // bcdCCID: CCID version

 0, // bMaxSlotIndex: Value 0 indicates that one slot
is supported

 VOLTS_5_0, // bVoltageSupport

 PROTOCOL_TO, // dwProtocols

 3580, // dwDefaultClock

 3580, // dwMaxClock

 0, // bNumClockSupported

 9600, // dwDataRate : 9600 bauds

 9600, // dwMaxDataRate : 9600 bauds

 0, // bNumDataRatesSupported

 0xfe, // dwMaxIFSD

 0, // dwSynchProtocols

 0, // dwMechanical

 //0x00010042, // dwFeatures: Short APDU level exchanges

 CCID_FEATURES_AUTO_PCONF | CCID_FEATURES_AUTO_PNEGO |
CCID_FEATURES_EXC_TPDU,

 0x0000010F, // dwMaxCCIDMessageLength: For extended APDU level
the value shall be between 261 + 10

 0xFF, // bClassGetResponse: Echoes the class of the APDU

 0xFF, // bClassEnvelope: Echoes the class of the APDU

 0, // wLcdLayout: no LCD

 0, // bPINSupport: No PIN

 1 // bMaxCCIDBusySlot

 },

5.2.5 Physical Descriptor
A physical descriptor is useless for a CCID device, so there will not be any defined in this
example.

5.2.6 Endpoint Descriptor
Since it has been specified that the CCID interface uses 3 endpoints, corresponding endpoint
descriptors must now be defined. As mentioned previously, there are bulk OUT, bulk IN and
Interrupt IN endpoints.

Addresses 00h and 03h are already taken by the default Control endpoint 0 and the Interrupt IN
notification endpoint (respectively), the bulk OUT and bulk IN endpoints will take addresses 01h
and 02h.

Additionally, an Interrupt endpoint maximum packet size should be as small as possible. The
host must reserve a minimum amount of bandwidth which depends on this value. Defining a
small value minimizes the loss of bandwidth, but is only possible when the data size is known. In
this case, it will always be 3 bytes, so wMaxPacketSize can be set accordingly.

Finally, since a CCID device response latency is not extremely critical, it can be safely set to a
high value. In this example, the endpoint is polled every 16 ms.

// Bulk-OUT endpoint descriptor

{

 sizeof(USBEndpointDescriptor),
7
6348A–ATARM–06-Jul-09

 USBGenericDescriptor_ENDPOINT,

 USBEndpointDescriptor_ADDRESS(USBEndpointDescriptor_OUT,
CCID_EPT_DATA_OUT),

 USBEndpointDescriptor_BULK,

 MIN(BOARD_USB_ENDPOINTS_MAXPACKETSIZE(CCID_EPT_DATA_OUT),

 USBEndpointDescriptor_MAXBULKSIZE_FS),

 0x00 // Does not apply to Bulk endpoints

 },

// Bulk-IN endpoint descriptor

 {

 sizeof(USBEndpointDescriptor),

 USBGenericDescriptor_ENDPOINT,

 USBEndpointDescriptor_ADDRESS(USBEndpointDescriptor_IN,
CCID_EPT_DATA_IN),

 USBEndpointDescriptor_BULK,

 MIN(BOARD_USB_ENDPOINTS_MAXPACKETSIZE(CCID_EPT_DATA_IN),

 USBEndpointDescriptor_MAXBULKSIZE_FS),

 0x00 // Does not apply to Bulk endpoints

 },

 // Notification endpoint descriptor

 {

 sizeof(USBEndpointDescriptor),

 USBGenericDescriptor_ENDPOINT,

 USBEndpointDescriptor_ADDRESS(USBEndpointDescriptor_IN,
CCID_EPT_NOTIFICATION),

 USBEndpointDescriptor_INTERRUPT,

 MIN(BOARD_USB_ENDPOINTS_MAXPACKETSIZE(CCID_EPT_NOTIFICATION),

 USBEndpointDescriptor_MAXINTERRUPTSIZE_FS),

 0x10

 }

5.2.7 String Descriptors
Several descriptors can be commented with a string descriptor. The latter is completely optional
and does not influence the detection of the device by the operating system. Whether or not to
include them is entirely up to the programmer.

5.3 Class-Specific Requests
A number of CCID-only requests are defined in the corresponding specification. They have
already been described in Section 4.2.4 on page 4. This section details their implementation
regarding the current example of a CCID device.

A driver request handler should first differentiate between class-specific and standard requests
using the corresponding bits in the bmRequestType field. In most cases, standard requests can
be immediately forwarded to the standard request handler method; class-specific methods must
be decoded and treated by the custom handler.
8
6348A–ATARM–06-Jul-09

Application Note

Application Note
5.3.1 Get Descriptor
Three values have been added by the CCID specification for the GET_DESCRIPTOR request.
The high byte of the wValue field contains the type of the requested descriptor; in addition to the
standard types, the CCID specification adds the ABORT (01h), GET_CLOCK_FREQUENCY
(02h) and GET_DATA_RATES (03h) types.

A slight complexity of the GET_DESCRIPTOR and SET_DESCRIPTOR requests is that those
are standard requests, but the standard request handler (USBDDriver_RequestHandler) must
not always be called to treat them (since they may refer to CCID descriptors). The solution is to
first identify GET/SET_DESCRIPTOR requests, treat the CCID-specific cases and, finally, for-
ward any other request to the standard handler.

In this case, a GET_DESCRIPTOR request for the physical descriptor is first forwarded to the
standard handler, and STALLed there because it is not recognized. This is done because the
device does not have any physical descriptors, and thus, does not need to handle the associ-
ated request.

5.3.2 Set Descriptor
This request is optional and is never issued by most hosts. It is not implemented in this example.

5.4 ISO7816
The ISO7816 software provided in this example is used to transform APDU commands to TPDU
commands for the smart card.

The ISO7816 implemented is for the protocol T = 0 only.

The send and the receive of a character is made under polling.

In the ISO7816_Init file 3 pins of the card are defined. The user must change these pins accord-
ing to the specific environment.

See paragraph “ISO7816 Mode Overview” in the corresponding Atmel product datasheet.

3 or 4 PIO pins are used, see Section 6.1 for the Pin connections:

PIN_ISO7816_RSTMC: for 7816_RST

PINS_ISO7816: which defines USART pin, CLOCK pin and the RSTMC pin

PIN_SMARTCARD_CONNECT: Smartcard detection pin (if present)

The driver is compliant with cases 1, 2, 3 of the ISO7816-4 specification.

5.4.1 USART Configuration
First, configure the USART in mode 7816, mode T=0, 1 stop bit, 8 chars, parity even.

Refer to the corresponding Atmel product datasheet, paragraph “Baud Rate in ISO7816 Mode” for
more explanations.

The ISO7816 specification defines the bit rate with the following formula:

B = (Di / Fi) x f

where:

• B is the bit rate
• Di is the bit-rate adjustment factor
9
6348A–ATARM–06-Jul-09

• Fi is the clock frequency division factor
• f is the ISO7816 clock frequency (Hz)

We use the most common: (Fi = 372, Di = 1).

The USART is programmed to operate in synchronous mode, so the selected clock is simply
divided by the field CD in US_BRGR.

BaudRate = SelectedClock / CD

So, CD = SelectedClock / BaudRate

and BaudRate = FiDi x Baud= 372 x 9600 (in our case)

CD = 48MHz / (372 x 9600) = 13, to be programmed in US_BRGR

We use a transmitter timeguard of 5.

5.4.2 Cold Reset
Activation by cold reset (see Reference [2]: ISO7816-3) needs a timer. For the cold reset, the
device must wait a minimum of 400 smart card clock cycles.

It is needed to receive the ATR. See Reference [2]: ISO7816-3 paragraph 5.4.2.

The programmer needs to program the correct value in the US_BRGR (Baud Rate Generator
Register) and US_FIDI (FI_DI_Ratio Register). The timeguard register is the US_TTGR (Trans-
mitter Time-guard Register).

In order to initiate an interaction with a mechanically connected card, the interface device acti-
vates the electrical circuits according to a class of operating conditions. See: Reference [2]:
ISO7816-3 paragraph 5.2.1 and 5.2.2 for more details.

Figure 5-2. Cold Reset

Ta = 200 / f

Tb = 400 / f

400 / f < Tc < 40 000 / f

There are two different modes for the smart card after a cold receive or a warm reset.

After a Cold Reset, the Smart Card answers by the “Answer to Reset”, and then goes in a spe-
cific mode or a negotiable mode. The only way to leave theses modes is to make a Warm Reset.

VCC

CLK

RST

I/O
undefined

ANSWER

Ta

Tb

Tc
10
6348A–ATARM–06-Jul-09

Application Note

Application Note
More details can be found in the ISO7816-3 specification.

5.4.3 Send and Receive Character

5.4.3.1 Send a character to the Smart Card
The function ISO7816_SendChar is used to send a character to the Smart Card.

The function waits for the USART to be ready to transmit and then transmits the character on the
USART.

5.4.3.2 Receive a char from the Smart Card
The function ISO7816_GetCharis used for receive a character from the Smart Card.

The function waits for the USART to be ready to receive, and then reads the character from the
USART.

5.4.4 Answer To Reset
The card answers to any reset and the information exchange begins with the answer to the cold
reset.

Figure 5-3. Answer To Reset (ATR):

TA1

TB1

TC1

T0

TD1

TA2

...

TCK

Format Character TO (mandatory) (encode Y1 and K)

TA1 (encodes FI and DI)

TC1 (encode N)

TDi (encode Yi and T)

Check character TCK (conditional)
11
6348A–ATARM–06-Jul-09

Useful bits:

K : encode the number of historical bytes,

Y1: each bit set to 1 indicates the presence of a further interface byte

TA1 encodes:
• FI, the reference to a clock rate conversion factor over bits 8 to 5
• DI, the reference to a baud rate adjustment factor over bits 4 to 1

Useful for read and change the clock and the baud rate of the device according to the smart card
possibility.
TC1 encodes N, the reference to compute the extra guard time over the eight bits.
TD1: If TDi is present, then TAi+1, TBi+1, TCi+1 and TDi+1 are also present.
TCK: Check byte TCK. If only T=0 is indicated, possibly by default, then TCK is absent

5.4.5 APDU Commands
The APDU protocol, as specified in ISO 7816-4, is an application-level protocol between a smart
card and a host application.

There are four structures of APDU commands:

• A command APDU in case 1 consists of one field: a header.
• A command APDU in case 2 consists of two consecutive fields: a header and a Le field.
• A command APDU in case 3 consists of three consecutive fields: a header, a Lc field and a

data field.
• A command APDU in case 4 consists of four consecutive fields: a header, a Lc field, a data

field and a Le field. A case 4 is a case 3 followed by a case 2.

5.4.6 APDU and TPDU Commands
APDU: Application Protocol Data Units

TPDU: Transmission Protocol Data Units

APDU are transmitted by the next-level protocol (the transport protocol) defined in ISO 7816-3.
The data structures exchanged by a host and a card using the transport protocol are called
transport protocol data units (TPDU).

The two transport protocols that are in primary use in smart card systems are the T=0 protocol
and the T=1 protocol. The T=0 protocol is byte-oriented, which means that the smallest unit pro-
cessed and transmitted by the protocol is a single byte. In this exemple, only T=0 protocol is
used.

The different cases that follow correspond to different APDU and TPDU commands.

5.4.6.1 Case 1:
No data is transferred to or from the card

Command APDU: CLA INS P1 P2

Command TPDU: CLA INS P1 P2 {P3 set to '00'}

Response TPDU: SW1 SW2
12
6348A–ATARM–06-Jul-09

Application Note

Application Note
5.4.6.2 Case 2
No data is transferred to the card, but data is returned from the card

Command APDU: CLA INS P1 P2 {Le field = C(5)}

Command TPDU: CLA INS P1 P2 {P3 = C(5)}

Response: TPDU: Na data bytes SW1 SW2

5.4.6.3 Case 3
Data is transferred to the card, but no data is returned from the card as a result of processing the
command

Command APDU: CLA INS P1 P2 {Lc field = C(5)} Nc data bytes

Command TPDU: CLA INS P1 P2 {P3 = C(5)} Nc data bytes

Response TPDU: SW1 SW2

More explanation can be found in the specification of the ISO 7816-3.

All cases are treated in ISO7816_XfrBlockTPDU_T0 function.

5.5 Main Application
The main function of the application has to perform two actions: Enumeration and the APDU
transfer command.

5.6 Example Software Usage

5.6.1 File Architecture
The software example associated with this application note is divided into six files:

• cciddriver.c: source file for the CCIDdriver
• cciddriver.h: header file with generic CCID definitions
• cciddriverdescriptors.h: header file for the CCID device descriptor
• Iso7816_4.h: header file for the ISO 816-4
• Iso7816_4.c: source file for the ISO7816 commands

5.6.2 Compilation
The software is provided with a Makefile to build it. It requires the GNU make utility, which is
available on www.GNU.org. Refer to the Atmel AT91 USB Device Framework application note
for more information on general options and parameters of the Makefile.

To build the USB CCID example just run “make” in directory usb-device-ccid-project, and two
parameters may be assigned in command line, the CHIP= and BOARD=, the default value of
these parameters are “at91sam7se512” and “at91sam7se-ek”:

make CHIP=at91sam7se512 BOARD=at91sam7se-ek

In this case, the resulting binary will be named usb-device-ccid-project-at91sam7se-ek-
at91sam7se512-flash.bin and will be located in the usb-device-ccid-project/bin directory.

5.7 Host-side Application
This section explains how to program a PC application to communicate with the custom CCID
device driver described previously. This example is targeted at a Microsoft Windows platform.
13
6348A–ATARM–06-Jul-09

http://www.gnu.org/software/make/

On Microsoft Windows, the standard USB CCID driver is named usbccid.sys.

5.7.1 Using the Driver
When a new device is plugged in for the first time, Windows looks for an appropriate specific or
generic driver to use. If it does not find one, the user is asked what to do.
In this application the device is enumerated as a Smart Card Device implementing CCID class.
The host uses the CCID device driver (usbccid.sys) as the functionnal driver.

5.7.2 Smart Access
Smart Access is software made by Atmel. (Contact an Atmel sales representative to find out
more about this product.
14
6348A–ATARM–06-Jul-09

Application Note

http://www.atmel.com/contacts/

Application Note
• Software Environment to Execute Smart Card ISO7816 Command Script Through Any
Reader

• PC/SC or Transparent Readers Supported
• Meta-instructions Interpreter to Write Complex Validation Scripts
• Ergonomic Environment with Real-time
• Trace Window
• External Software Modules for More Flexibility

6. Hardware Requirement
On some Atmel boards, the Smart Card reader is not implemented. The user must use the
RS232 in ISO mode and connect the card reader to it. The Smart Card has useful pins.

6.1 Pin Connection:
When the card is inserted into the reader, the contacts in the reader sit on the plates. According
to ISO7816 standards the PIN connections are shown below:
15
6348A–ATARM–06-Jul-09

C1: Vcc: 7816_3V5V C5 : Gnd C4 : RFU

C2 : Reset: 7816_RST C6 : Vpp C8 : RFU

C3 : Clock: 7816_CLK C7 : 7816_IO

Another pin must be connected on the card reader for detecting insertion and removal:
7816_IRQ.

On Atmel’s boards, all these pins can be easily connected with jumpers.

7816_RST is on PIO PIN_ISO7816_RSTMC

7816_CLK is on PIO PIN_USART0_SCK

7816_IO is on PIO PIN_USART0_TXD

7816_IRQ is on PIO PIN_SMARTCARD_CONNECT

C1

C2

C3

C4

C5

C6

C7

C8
16
6348A–ATARM–06-Jul-09

Application Note

Application Note
Revision History

Doc. Rev Date Comments Change Request Ref.

6348A 02-Jul-09 First issue
17
6348A–ATARM–06-Jul-09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com
www.atmel.com/AT91SAM

Technical Support
AT91SAM Support
Atmel techincal support

Sales Contacts
www.atmel.com/contacts/

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. ARM® and Thumb® are registered trademarks of ARM Ltd. Windows® and others are registered
trademarks or trademarks of Microsoft Corporation in U.S. and/or other countries. Other terms and product names may be trademarks of others.

6348A–ATARM–06-Jul-09

http://www.atmel.com/
www.atmel.com
http://www.atmel.com/products/AT91CAP/
http://www.atmel.com/products/AT91/
http://www.atmel.com/dyn/products/ip_blocks.asp?family_id=615
http://www.atmel.com/products/PowerManage/
http://www.atmel.com/products/Dream/
http://www.atmel.com/products/Dream/
http://support.atmel.no/bin/customer
http://support.atmel.no/bin/customer
mailto:info@dream.fr <info@dream.fr>
mailto:asic@atmel.com <asic@atmel.com>
http://www.atmel.com/dyn/products/support.asp
http://www.atmel.com/contacts/
http://www.atmel.com/contacts/

	1. Introduction
	2. Related Documents
	3. Abbreviations and Terms
	4. CCID Device Class
	4.1 Purpose
	4.2 Architecture
	4.2.1 Interfaces
	4.2.2 Endpoints
	4.2.3 Class-Specific Descriptors
	4.2.3.1 CCID Descriptor

	4.2.4 Class-specific Requests
	4.2.4.1 GetDescriptor

	4.3 Host Drivers

	5. CCID Implementation
	5.1 Architecture
	5.2 Descriptors
	5.2.1 Device Descriptor
	5.2.2 Configuration Descriptor
	5.2.3 CCID Class Interface Descriptor
	5.2.4 CCID Descriptor
	5.2.5 Physical Descriptor
	5.2.6 Endpoint Descriptor
	5.2.7 String Descriptors

	5.3 Class-Specific Requests
	5.3.1 Get Descriptor
	5.3.2 Set Descriptor

	5.4 ISO7816
	5.4.1 USART Configuration
	5.4.2 Cold Reset
	5.4.3 Send and Receive Character
	5.4.3.1 Send a character to the Smart Card
	5.4.3.2 Receive a char from the Smart Card

	5.4.4 Answer To Reset
	5.4.5 APDU Commands
	5.4.6 APDU and TPDU Commands
	5.4.6.1 Case 1:
	5.4.6.2 Case 2
	5.4.6.3 Case 3

	5.5 Main Application
	5.6 Example Software Usage
	5.6.1 File Architecture
	5.6.2 Compilation

	5.7 Host-side Application
	5.7.1 Using the Driver
	5.7.2 Smart Access

	6. Hardware Requirement
	6.1 Pin Connection:

	Revision History

