Academia.eduAcademia.edu
Materials Science & Engineering; and Polymer Science The Polymeric Biomaterials 2-Volume Set, Third Edition Dumitriu Popa The Polymeric-Biomaterials 2-Volume Set, Third Edition Structure and Function This volume, Polymeric Biomaterials: Structure and Function, contains 25 authoritative chapters written by experts from around the world. Contributors cover the following topics: • The structure and properties of synthetic polymers including polyesters, polyphosphazenes, and elastomers • The structure and properties of natural polymers such as mucoadhesives, chitin, lignin, and carbohydrate derivatives • Blends and composites—for example, metal–polymer composites and biodegradable polymeric/ceramic composites • Bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, electrospinning for regenerative medicine, and more Completely revised and expanded, this state-of-the-art reference presents recent developments in polymeric biomaterials: from their chemical, physical, and structural properties to polymer synthesis and processing techniques and current applications in the medical and pharmaceutical fields. Structure and Function Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers have provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a 2-volume set. The Polymeric Biomaterials 2-Volume Set, Third Edition VOLUME 1 Structure and Function VOLUME 1 Founding Editor Severian Dumitriu 9470X VOLUME 1 Editor Valentin Popa Structure and Function VOLUME 1 Polymeric Biomaterials Polymeric Biomaterials: Structure and Function, Volume 1 Polymeric Biomaterials: Medicinal and Pharmaceutical Applications, Volume 2 Structure and Function VOLUME 1 Founding Editor Severian Dumitriu Editor Valentin Popa Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120726 International Standard Book Number-13: 978-1-4200-9471-8 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface...............................................................................................................................................ix Acknowledgments..............................................................................................................................xi Editors............................................................................................................................................. xiii Contributors...................................................................................................................................... xv Chapter 1 Synthesis and Fabrication of Polyesters as Biomaterials..............................................1 Philippe Lecomte and Christine Jérôme Chapter 2 Hydrogels Formed by Cross-Linked Poly(Vinyl Alcohol).......................................... 37 Gaio Paradossi Chapter 3 Development and Evaluation of Poly(Vinyl Alcohol) Hydrogels as a Component of Hybrid Artificial Tissues for Orthopedics Surgery Application......... 57 Masanori Kobayashi Chapter 4 Polyphosphazenes as Biomaterials.............................................................................. 83 Meng Deng, Cato T. Laurencin, Harry R. Allcock, and Sangamesh G. Kumbar Chapter 5 Biodegradable Polymers as Drug Carrier Systems................................................... 135 Abraham J. Domb and Wahid Khan Chapter 6 Bioresorbable Hybrid Membranes for Bone Regeneration....................................... 177 Akiko Obata and Toshihiro Kasuga Chapter 7 Mucoadhesive Polymers: Basics, Strategies, and Future Trends.............................. 193 Andreas Bernkop-Schnürch Chapter 8 Biodegradable Polymeric/Ceramic Composite Scaffolds to Regenerate Bone Tissue............................................................................................................... 221 Catherine Gkioni, Sander Leeuwenburgh, and John Jansen Chapter 9 Amphiphilic Systems as Biomaterials Based on Chitin, Chitosan, and Their Derivatives................................................................................................ 243 Jacques Desbrieres Chapter 10 Biomaterials of Natural Origin in Regenerative Medicine....................................... 271 Vijay Kumar Nandagiri, Valeria Chiono, Piergiorgio Gentile, Franco Maria Montevecchi, and Gianluca Ciardelli v vi Contents Chapter 11 Natural Polymers as Components of Blends for Biomedical Applications...............309 Alina Sionkowska Chapter 12 Metal–Polymer Composite Biomaterials.................................................................. 343 Takao Hanawa Chapter 13 Evolution of Current and Future Concepts of Biocompatibility Testing.................. 377 Menno L.W. Knetsch Chapter 14 Biocompatibility of Elastomers................................................................................. 415 Dominique Chauvel-Lebret, Pascal Auroy, and Martine Bonnaure-Mallet Chapter 15 Preparation and Applications of Modulated Surface Energy Biomaterials.............. 495 Blanca Vázquez, Luis M. Rodríguez-Lorenzo, Gema Rodríguez-Crespo, Juan Parra, Mar Fernández, and Julio San Román Chapter 16 Electrospinning for Regenerative Medicine.............................................................. 539 Toby D. Brown, Cedryck Vaquette, Dietmar W. Hutmacher, and Paul D. Dalton Chapter 17 Polymeric Nanoparticles for Targeted Delivery of Bioactive Agents and Drugs..... 593 Cesare Errico, Alberto Dessy, Anna Maria Piras, and Federica Chiellini Chapter 18 Polymeric Materials Obtained through Biocatalysis................................................ 617 Florin Dan Irimie, Csaba Paizs, and Monica Ioana Tosa Chapter 19 Polymer-Based Colloidal Aggregates as a New Class of Drug Delivery Systems.......659 Cesare Cametti Chapter 20 Photoresponsive Polymers for Control of Cell Bioassay Systems............................. 683 Kimio Sumaru, Shinji Sugiura, Toshiyuki Takagi, and Toshiyuki Kanamori Chapter 21 Lignin in Biological Systems.................................................................................... 709 Valentin I. Popa Chapter 22 Carbohydrate-Derived Self-Crosslinkable In Situ Gelable Hydrogels for Modulation of Wound Healing............................................................................ 739 Lihui Weng, Christine Falabella, and Weiliam Chen vii Contents Chapter 23 Dental and Maxillofacial Surgery Applications of Polymers................................... 783 E.C. Combe Chapter 24 Biomaterials as Platforms for Topical Administration of Therapeutic Agents in Cutaneous Wound Healing................................................................................... 837 Rhiannon Braund and Natalie J. Medlicott Chapter 25 Polymers for Artificial Joints.................................................................................... 851 Masayuki Kyomoto, Toru Moro, and Kazuhiko Ishihara Index............................................................................................................................................... 885 Preface The field of biomaterials has developed rapidly because of the continuous and ever-expanding ­practical needs of medicine and health-care practice. There are currently thousands of medical devices, diagnostic products, and disposables on the market, and the range of applications continues to grow. In addition to traditional medical devices, diagnostic products, pharmaceutical preparations, and health-care disposables, the list of biomaterials applications includes smart delivery ­systems for drugs, tissue cultures, engineered tissues, and hybrid organs. Undoubtedly, biomaterials have had a major impact on the practice of contemporary medicine and patient care, resulting in both saving and improving the quality of lives of humans and animals. Modern biomaterials practice is continuing to develop into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians. It also takes advantage of developments in the traditional, nonmedical materials field, and much progress has been made since the beginning of the research in biomaterials that made possible the creation of a high-quality and much improved variety of devices, implants (permanent or temporary), and drug carrier devices. All of these now display a greater than ever biocompatibility and biofunctionality. The variety of chemical substances used in these materials is currently very broad, and most biomedical applications are associated with various polymers and materials based on them. The pace of research in the field of polymeric biomaterials is so fast that two editions of Polymeric Biomaterials have already been edited by Severian Dumitriu. Due to the interest generated and the success of these books, Severian was working on a third edition. Unfortunately, he passed away before this could be finalized. Many of the scientists who accepted his invitation to cooperate for this new edition agreed to contribute to the book in memory of the contribution that Severian made to the field of polymeric biomaterials. Together with Daniela, his beloved daughter, and Barbara Glunn and Jessika Vakili from Taylor & Francis Group, we decided to continue the work and finalize this book. This book is organized in two volumes consisting of 53 chapters that systematically provide the latest developments in different aspects of polymeric biomaterials. Thus, we can mention contributions to the field of synthesis and applications of polymers such as polyesters, poly(vinyl alcohol), polyphosphazenes, elastomers, bioceramics, blends or composites, enzymatic synthesis, along with natural ones such as mucoadhesives, chitin, chitosan, lignin, carbohydrates derivatives, heparin, etc. Drugs carriers and delivery systems, gene and nucleic acids delivery represent other subjects of some chapters, dealing with both supports (biodegradable and biocompatible) and techniques (nanoparticles, electrospinning, photo- and pH responsive polymers, hydrogels, lipid-core micelles, biomimetic systems, medical devices) aspects. In some cases, biomaterials can be synthesized, modified, and processed by different methods to ensure biocompatibility and biodegradability to be used as membranes, composites, scaffolds, and implants. Some examples of specific utilizations of polymeric biomaterials are presented, such as orthopedic surgery, bone regeneration, wound healing, dental and maxillofacial surgery applications, artificial joints, diabetes, anticancer agents and cancer therapy, modification of living cells, myocardial tissue engineering—repair and reconstruction, and bioartificial organs. Publishing this book was accomplished with the contributions of renowned scientists from all over the world. They are all experts in their particular field of biomaterials research and have made high-level contributions to various fields of research. We are very grateful to these scientists for their willingness to contribute to this reference work as well as for their engagement. Without their commitment and enthusiasm, it would not have been possible to compile such a book. ix x Preface I am also grateful to the publisher for recognizing the demand for such a book, for taking the risk to bring out such a book, and for realizing the excellent quality of the publication. I would like to thank Daniela for her inestimable help and assistance. I dedicate this book to memory of Severian, one of my best friends. Last but not least, I would like to thank my family for their patience. I sincerely apologize for the many hours I spent in the preparation of this book, which kept me away from them. This book is a very useful tool for many scientists, physicians, pharmacists, engineers, and other experts in a variety of disciplines, both in academe and industry. It may not only be useful for research and development but may also be suitable for teaching. This book has a companion CD that contains color figures as noted at the applicable text figures. Valentin I. Popa Acknowledgments My father was passionate about polymeric biomaterials. He was very happy when this project was planned with Taylor & Francis Group. He had worked tirelessly toward this. He would have loved to have seen this book published, but destiny willed otherwise. I am extremely grateful to Professor Popa for accepting to serve as the editor, to all the authors for their precious contributions, and to the staff at Taylor & Francis Group. The positive response from the authors to pursue their contribution to this book was amazing and is testimony of their appreciation for the scientific contribution that my father made to the field of polymeric biomaterials. I trust the book is of great quality and reflects the efforts and dedication that have been put into it by my father and all the contributors. My small contribution to this book is dedicated to the memory of my parents, Severian and Maria, for their unconditional love and for being the best teachers ever. And to finish on a positive note, I want to cite one quote of Dr. Seuss that I particularly like: “Don’t cry because it’s over. Smile because it happened”. Daniela Dumitriu xi Editors Severian Dumitriu (deceased) was a research professor, Department of Chemical Engineering, University of Sherbrooke, Quebec, Canada. He edited several books, including Polymeric Biomaterials, second edition, Polysaccharides in Medicinal Applications, and Polysaccharides: Structural Diversity and Functional Versatility (all three titles were published by Taylor & Francis Group [previously Marcel Dekker]), and authored or coauthored over 190 professional papers and book chapters in the fields of polymer and cellulose chemistry, polyfunctional initiators, and bioactive polymers. He also held 15 international patents. Professor Dumitriu received his BSc (1959) and MS (1961) in chemical engineering and his PhD (1971) in macromolecular chemistry from the Polytechnic Institute of Jassy, Romania. Upon completing his doctorate, he worked with Professor G. Smets at the Catholic University of Louvain, Belgium, and was a research associate at the University of Pisa, Italy; the Hebrew University Medical School, Jerusalem, Israel; and the University of Paris, South France. Valentin I. Popa earned his BSc and MSc in chemical engineering (1969) and PhD in the field of polysaccharide chemistry (1976) from Polytechnic Institute of Iasi, Romania. He was awarded the Romanian Academy Prize for his contributions in the field of seaweed ­chemistry (1976). He has published more than 500 papers in the following fields: wood chemistry and biotechnology, biomass complex processing, biosynthesis and biodegradation of natural compounds, allelochemicals, bioadhesives, and bioremediation. He is also the author or coauthor of 37 books or book chapters. Dr. Popa holds six patents and has been involved in many Romanian and European research projects as scientific manager. He was visiting scientist or visiting professor at Academy of Sciences (Seoul, Korea, 1972), Technical University of Helsinki (Finland, 1978), Institute of Biotechnology (Vienna, Austria, 1995), Research Institute for Pulp and Paper (Braila, Romania, 1976), “Petru Poni” Institute of Macromolecular Chemistry (Iasi, Romania, 1985, 1986), Université de Sherbrooke and University McGill (Canada, 2003), STFI–Packforsk (now known as Innventia, Stockholm, Sweden, 2008), and Institute of Wood Chemistry (Riga, Latvia, 2009). Dr. Popa is a member of the International Lignin Institute, International Association of Scientific Papermakers, International Academy of Wood Science, Romanian Academy for Technical Sciences, and American Chemical Society. He is also a professor of wood chemistry and biotechnology in “Gheorghe Asachi” Technical University of Iasi, PhD supervisor (30 students defended their theses), and editor-inchief of Cellulose Chemistry and Technology. xiii Contributors Harry R. Allcock Department of Chemistry The Pennsylvania State University University Park, Pennsylvania Pascal Auroy Université d’Auvergne Clermont-Ferrand, France Andreas Bernkop-Schnürch Institute of Pharmacy University of Innsbruck Innsbruck, Austria Martine Bonnaure-Mallet UFR Odontologie Equipe de Microbiologie EA 1254 Université Européenne de Bretagne Rennes, France Rhiannon Braund School of Pharmacy University of Otago Dunedin, New Zealand Toby D. Brown Institute for Health and Biomedical Innovation Queensland University of Technology Brisbane, Queensland, Australia Cesare Cametti Department of Physics University of Rome “La Sapienza” and CNR-INFM-SOFT Rome, Italy Dominique Chauvel-Lebret Université Européenne de Bretagne UFR d’Odontologie-UMR CNRS 6226 Sciences Chimiques de Rennes-UR1, CHU-pole d’Odontologie et de chirurgie Buccale Rennes, France Weiliam Chen Department of Surgery Division of Wound Healing and Regenerative Medicine School of Medicine New York University New York, New York Federica Chiellini Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Application (BIOLab) Department of Chemistry and Industrial Chemistry University of Pisa Pisa, Italy Valeria Chiono Department of Mechanical and Aerospace Engineering Politecnico di Torino Torino, Italy Gianluca Ciardelli Department of Mechanical and Aerospace Engineering Politecnico di Torino Torino, Italy E.C. Combe School of Dentistry University of Minnesota Minneapolis, Minnesota Paul D. Dalton Institute for Health and Biomedical Innovation Queensland University of Technology Brisbane, Queensland, Australia Meng Deng Institute for Regenerative Engineering Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences The University of Connecticut Storrs, Connecticut xv xvi Jacques Desbrieres Department of Physics and Chemistry of Polymers Pau and Adour Countries University Pau, France Alberto Dessy Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Application (BIOLab) Department of Chemistry and Industrial Chemistry University of Pisa Pisa, Italy Abraham J. Domb Faculty of Medicine School of Pharmacy Institute of Drug Research The Hebrew University of Jerusalem Jerusalem, Israel Cesare Errico Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Application (BIOLab) Department of Chemistry and Industrial Chemistry University of Pisa Pisa, Italy Christine Falabella Department of Biomedical Engineering Stony Brook University State University of New York New York, New York Mar Fernández Institute for Health and Biomedical Innovation Queensland University of Technology Kelvin Grove, Queensland, Australia Piergiorgio Gentile Department of Mechanical and Aerospace Engineering Politecnico di Torino Torino, Italy Contributors Catherine Gkioni Department of Periodontology and Biomaterials Radboud University Nijmegen Medical Center Nijmegen, the Netherlands Takao Hanawa Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University Tokyo, Japan Dietmar W. Hutmacher Institute for Health and Biomedical Innovation Queensland University of Technology Brisbane, Queensland, Australia Florin Dan Irimie Department of Biochemistry and Biochemical Engineering “Babeş-Bolyai” University Cluj-Napoca, Romania Kazuhiko Ishihara Department of Materials Engineering and Department of Bioengineering School of Engineering The University of Tokyo Tokyo, Japan John Jansen Department of Periodontology and Biomaterials Radboud University Nijmegen Medical Center Nijmegen, the Netherlands Christine Jérôme Center for Education and Research on Macromolecules University of Liège Liège, Belgium Toshiyuki Kanamori National Institute of Advanced Industrial Science and Technology Tsukuba, Japan Toshihiro Kasuga Graduate School of Engineering Nagoya Institute of Technology Nagoya, Japan xvii Contributors Wahid Khan Institute of Drug Research (IDR) School of Pharmacy-Faculty of Medicine The Hebrew University of Jerusalem Jerusalem, Israel Menno L.W. Knetsch Department of Biomedical Engineering/Biomaterials Science Maastricht University Maastricht, the Netherlands Masanori Kobayashi Department of Biomedical Engineering Daido University Nagoya, Japan Sangamesh G. Kumbar Department of Orthopaedic Surgery, Chemical, Materials and Biomolecular Engineering Institute for Regenerative Engineering Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences The University of Connecticut Storrs, Connecticut Masayuki Kyomoto Department of Materials Engineering School of Engineering and Science for Joint Reconstruction Graduate School of Medicine The University of Tokyo and Research Department Kyocera Medical Corporation Tokyo, Japan Cato T. Laurencin Connecticut Institute for Clinical and Translational Science and Institute for Regenerative Engineering Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences The University of Connecticut Storrs, Connecticut Philippe Lecomte Center for Education and Research on Macromolecules University of Liège Liège, Belgium Sander Leeuwenburgh Department of Periodontology and Biomaterials Radboud University Nijmegen Medical Center Nijmegen, the Netherlands Natalie J. Medlicott School of Pharmacy University of Otago Dunedin, New Zealand Franco Maria Montevecchi Department of Mechanical and Aerospace Engineering Politecnico di Torino Torino, Italy Toru Moro Science for Joint Reconstruction Graduate School of Medicine The University of Tokyo Tokyo, Japan Vijay Kumar Nandagiri Department of Mechanical and Aerospace Engineering Politecnico di Torino Torino, Italy Akiko Obata Graduate School of Engineering Nagoya Institute of Technology Nagoya, Japan Csaba Paizs Department of Biochemistry and Biochemical Engineering “Babeş-Bolyai” University Cluj-Napoca, Romania Gaio Paradossi Department of Chemical Sciences and Technologies University of Rome Tor Vergata Rome, Italy xviii Juan Parra Institute for Health and Biomedical Innovation Queensland University of Technology Kelvin Grove, Queensland, Australia Anna Maria Piras Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Application (BIOLab) Department of Chemistry and Industrial Chemistry University of Pisa Pisa, Italy Valentin I. Popa Department of Natural and Synthetic Polymers Faculty of Chemical Engineering and Environmental Protection “Gheorghe Asachi” Technical University of Iasi Iasi, Romania Gema Rodríguez-Crespo Institute for Health and Biomedical Innovation Queensland University of Technology Kelvin Grove, Queensland, Australia Luis M. Rodríguez-Lorenzo Institute for Health and Biomedical Innovation Queensland University of Technology Kelvin Grove, Queensland, Australia Julio San Román Institute for Health and Biomedical Innovation Queensland University of Technology Kelvin Grove, Queensland, Australia Contributors Alina Sionkowska Faculty of Chemistry Nicolaus Copernicus University Torun, Poland Shinji Sugiura National Institute of Advanced Industrial Science and Technology Tsukuba, Japan Kimio Sumaru National Institute of Advanced Industrial Science and Technology Tsukuba, Japan Toshiyuki Takagi National Institute of Advanced Industrial Science and Technology Tsukuba, Japan Monica Ioana Tosa Department of Biochemistry and Biochemical Engineering “Babeş-Bolyai” University Cluj-Napoca, Romania Cedryck Vaquette Institute for Health and Biomedical Innovation Queensland University of Technology Brisbane, Queensland, Australia Blanca Vázquez Institute for Health and Biomedical Innovation Queensland University of Technology Kelvin Grove, Queensland, Australia Lihui Weng Department of Radiology University of Minnesota Minneapolis, Minnesota 1 Synthesis and Fabrication of Polyesters as Biomaterials Philippe Lecomte and Christine Jérôme CONTENTS 1.1 1.2 1.3 Introduction...............................................................................................................................1 Step-Growth Polymerization.....................................................................................................2 Ring-Opening Polymerization of Cyclic Esters........................................................................3 1.3.1 Anionic Polymerization.................................................................................................4 1.3.2 Coordination Polymerization.........................................................................................6 1.3.3 Metal-Free Ring-Opening Polymerization....................................................................8 1.3.4 Enzymatic Ring-Opening Polymerization.................................................................. 13 1.3.5 Polymerization of Substituted and Functionalized Cyclic Esters................................ 14 1.4 Radical Ring-Opening Polymerization of Cyclic Ketene Acetals..........................................25 1.5 Macromolecular Engineering of Aliphatic Polyesters.............................................................26 1.5.1 Copolymerization........................................................................................................26 1.5.2 Modification of the Architecture................................................................................. 27 1.6 Conclusions..............................................................................................................................28 Acknowledgments.............................................................................................................................28 References.........................................................................................................................................28 1.1 INTRODUCTiON Nowadays, biomaterials are produced from a wide range of polymers. Among them, biodegradable and biocompatible aliphatic polyesters occupy a key position. Their chemical structure can be easily modified, which allows the tailoring of important properties such as bioadherence, mechanical properties, and kinetics of biodegradation. Aliphatic polyesters are thus widely used in biomedical applications as implants, as scaffolds in tissue engineering, and as carriers for drug delivery. This chapter aims at reviewing the most important techniques used for the synthesis of aliphatic polyesters in biomedical applications. The simplest approach relies on step-growth polymerization (Figure 1.1, routes a and b). Nevertheless, the control imparted to the polymerization is limited by this technique, and the synthesis of high molar mass polyesters is difficult. These drawbacks can be tackled by implementing another technique, the ring-opening polymerization of cyclic esters (Figure 1.1, route c). Under appropriate conditions, this polymerization is living and enables the synthesis of controlled high molar mass aliphatic polyesters. The chemical structure of the chainends can be controlled and it is thus possible to functionalize them on demand. Besides, aliphatic polyesters are produced by the ring-opening polymerization of cyclic esters at the industrial scale. Moreover, the livingness of the ring-opening polymerization of cyclic esters opens up the possibility to prepare various architectures such as star-shaped, comb-shaped, hyperbranched polymers and networks. The versatility of the ring-opening polymerization of cyclic esters thus allows fine tailoring of the properties of aliphatic polyesters in view of biomedical applications. A very important section of this chapter will thus be dedicated to this technique. It must be noted that other polymerization 1 2 Polymeric Biomaterials: Structure and Function, Volume 1 O HO R OH + HO O R OH O HO R O OH O a b c R O O O R O n d R FigURE 1.1 Main techniques for the synthesis of aliphatic polyesters. techniques were investigated even though they were not so popular. In this regard, special attention will be paid to the ring-opening polymerization of cyclic ketene acetals (Figure 1.1, route d). For biomedical applications, it is mandatory that aliphatic polyesters exhibit a very high purity and are not contaminated by potentially toxic impurities. Unfortunately, usual polymerization techniques are based on catalysts and initiators made up of toxic metals such as tin and aluminum, especially as far as the ring-opening polymerization of cyclic esters is concerned. Special attention will thus be paid to the recent advances in the implementation of polymerization processes based on less toxic metals or, even better, on metal-free processes. 1.2 STEP-GROWTH POLYMERiZATiON A straightforward approach for the synthesis of aliphatic polyesters is based on the step-growth polymerization of a mixture of diacids and diols or, more directly, of hydroxy acids, by implementing an esterification reaction. This technique allows the synthesis of a very wide range of aliphatic polyesters because of the easy synthesis of various diols, diacids, and hydroxy acids. Some of these can even be obtained from renewable resources, and bio-based aliphatic polyesters can then be ­produced. Step-growth polymerization has been in use for a long time, and hence we will not develop further the theory of polycondensation. It is just worth noting that, recently, Kricheldorf revised the concept of kinetically controlled (Kricheldorf and Schwarz 2003) and thermodynamically controlled (Kricheldorf 2003) step-growth polymerization. The main limitation of all step-growth polymerizations remains the difficult synthesis of high molar masses. Indeed, the synthesis of high molar mass polyesters by step-growth polymerization requires to reach high conversions very close to 100% and to stay close to the ideal 1/1 stoichiometry between alcohol and acid functions. The synthesis of polyhydroxyalkanoates (PHAs) by step-growth polymerization is a naturally occurring process (Lu et al. 2009). These aliphatic polyesters are produced by microorganisms as an intracellular reserve of carbon storage compounds and energy (Lu et al. 2009). Poly(3-(R)hydroxybutyrate) (PHB) is a typical example, but PHAs with a huge variety of chemical structures can be synthesized from a very wide range of hydroxyalkanoates. The potential of PHAs has been assessed for several biomedical applications such as controlled release, tissue engineering, surgical sutures, and wound dressings (Williams et al. 1999). The limitations of step-growth polymerization urged chemists to search for more efficient techniques for the synthesis of high molar mass aliphatic polyesters with a fine control of the chemical structure and the molar mass. This goal was achieved by implementing the ring-opening polymerization of cyclic esters, as will be shown in the next section. 3 Synthesis and Fabrication of Polyesters as Biomaterials 1.3 RiNg-OPENiNg POLYMERiZATiON Of CYCLiC ESTERS Ring-opening polymerization is a very popular technique to synthesize aliphatic polyesters in view of biomedical applications. The main reason for its success lies in the very easy synthesis of aliphatic polyesters with high and controlled molar masses (Stridsberg et al. 2002, Penczek et al. 2007). The main limitation remains, for the time being, the scarcity of cyclic esters, despite the recent progresses being made in the last few years, especially compared to diacids, diols, and hydroxyacids used in step-growth polymerization. The ring-opening polymerization of cyclic esters has been in use for a long time. van Natta et al. (1934) already reported in 1934 the ring-opening polymerization of ɛ-caprolactone (ɛCL). Nowadays, polylactide (PLA) and poly(ɛ-caprolactone) (PCL) are produced at the industrial scale (Figure 1.2). PCL is a semicrystalline biodegradable and biocompatible polyester (Tm = 60°C; Tg = −60°C) (Woodruff and Hutmacher 2010). Nevertheless, the degradation of PCL is slow, making it suitable in the field of drug delivery applications for long-term applications (Sinha et al. 2004). PLA and copolymers of lactide and glycolide (PLGA) have the advantage to be more hydrophilic than PCL and thus to degrade faster. Polylactide contains a chiral center (R or S), and its properties depend on tacticity. It is indeed well known that isotactic PLA is semicrystalline, whereas atactic PLA is amorphous. Semicrystalline PLA exhibits interesting mechanical properties but at the expense of biodegradability. Isotactic PLLA is synthesized by the polymerization of enantiomerically pure l-lactide, whereas atactic PLLA is obtained from a racemic mixture of l- and d-lactides. The ring-opening polymerization of ɛCL and LA is carried out at the industrial level. Interestingly enough, PLA is a bio-based polyester produced from agricultural renewable resources such as starch, whereas biodegradable PCL is produced from oil. Although ɛCL, GA, and LA are very important monomers, other cyclic esters can be polymerized by ring-opening depending on their size. First, there is an important question to determine whether a cyclic ester can be polymerized or not. The answer to this question can be found by considering thermodynamic data. According to the microreversibility rule, there is a competition between polymerization and depolymerization. Table 1.1 shows the values of the enthalpy (ΔHp) and entropy (ΔSp) of polymerization, the monomer concentration at equilibrium ([M]eq), and the ceiling temperature (Tc) (Duda et al. 2005). Table 1.1 shows that the polymerization of low-membered cyclic esters is an enthalpy-driven process (Penczek et al. 2000, Duda et al. 2005). The release of the ring strain is obviously a key parameter in favor of polymerization. Nevertheless, the behavior of five-membered lactones is completely different, as shown by the high-ceiling temperature, because depolymerization is faster than polymerization. Although the ring-opening polymerization of γBL is difficult, it is possible to O O O O n Poly(ε-caprolactone) (PCL) ε-Caprolactone O R O O O O R R n O R = H: glycolide R = Me: lactide R = H: polyglycolide (PGA) R = Me: polylactide (PLA) FigURE 1.2 Polymerization of ɛ-caprolactone (ɛCL) and lactide (LA) and glycolide (GA). 4 Polymeric Biomaterials: Structure and Function, Volume 1 TABLE 1.1 Thermodynamics for the Polymerization of Cyclic Esters Monomer βPL γBL LA GA VL εCL Ring Size Monomer Polymer States ΔHp (kJ/mol) ΔSp (J/mol K)p [M]eq (mol/L) Tc (K) 4 5 6 6 6 7 1c 1c 88 11 Lc 1c −82.3 5.1 −22.9 −13.8 −27.4 −28.8 −74 −29.9 −41 −45 −65 −53.9 3.9 × 10−10 3.3 × 10−3 5.5 × 10−2 2.5 3.9 × 10−1 5.3 × 10−2 1112 −171 914 520 — 534 TABLE 1.2 Nomenclature of Cyclic Esters Ring Size βPL γBL δVL LA GA εCL 4 5 6 6 6 7 IUPAC Name Usual Name oxetan-2-one dihydrofuran-2(3H)-one tetrahydro-2H-pyran-2-one lactide glycolide oxepan-2-one β-propionolactone γ-butyrolactone δ-valerolactone 3,6-dimethyl-1,4-dioxane-2,5-dione 1,4-dioxane-2,5-dione ε-caprolactone obtain low molar mass oligomers under suitable conditions and also to copolymerize γBL with other cyclic esters (Penczek et al. 2000). It is worth noting that lactide, caprolactone, and glycolide are not the names recommended by IUPAC. Table 1.2 shows the usual and official names for several cyclic esters. For the sake of simplicity, the usual names will be mentioned in this review to avoid confusion. So many initiators and catalysts have been used for the ring-opening polymerization of cyclic esters for the last few years that it is impossible to list all. This review will thus focus on the most popular processes with special attention being paid to the livingness and kinetics of polymerization, and the contamination of aliphatic polyesters by toxic residues not tolerated in the frame of biomedical applications. 1.3.1 ANIONIC POLYMERIZaTION Metal alkoxides are nucleophilic species prone to initiate the ring-opening polymerization of cyclic esters. Polymerization takes place usually by the cleavage of the acyl-oxygen bond. Figure 1.3 shows the initiation and propagation steps in the case of polymerization of ɛCL. O O R O – + RO O O O O Initiation O – Propagation FigURE 1.3 Anionic ring-opening polymerization of ɛCL. RO O 5 n 5 O – O 5 Synthesis and Fabrication of Polyesters as Biomaterials The mechanism shown in Figure 1.3 assumes that polymerization is living and takes place only by initiation and propagation reactions according to Szwarc (1956), which means that no ­termination and transfer reactions are present. This view is unfortunately oversimplified because termination and transfer reactions are often observed. Indeed, anionic species are deactivated by traces of water or by other protic substances, which is nothing but a termination reaction. It is thus necessary to perform these anionic polymerizations with carefully purified monomers under strictly anhydrous conditions. Besides, although metal alkoxides react as nucleophiles, they react also as bases. For instance, potassium tert-butoxide reacts with ɛCL to form the corresponding potassium enolate. Transfer reactions by transesterification reactions are commonly observed and are at the origin of loss of control of polymerization (Figures 1.4 and 1.5). Indeed, alkoxides are often too reactive to be selective, and they can react not only with the ester functions of monomers but also with the ester functions present all along the polymer chains. Depending upon whether alkoxide and ester are located on the same chain or not, transesterification reaction can be intramolecular or intermolecular. Intramolecular transesterification reactions result in a decrease of the molar mass and in the formation of cyclic oligomers (Figure 1.4). Conversely, intermolecular transesterification does not result in a decrease of the number-average molar mass but rather results in the reshuffling of the length of chains and thus in the modification of the polydispersity index (Figure 1.5). For the sake of simplicity, the mechanism of ɛCL is shown in Figures 1.4 and 1.5, but it can be extended to other cyclic esters as well. Special attention has to be paid to the four-membered lactones because of their unusual behavior. Indeed, polymerization of β-lactones by the mechanism based on the cleavage of the acyl-oxygen bond is disfavored, which was accounted for by stereo-electronic effects (Coulembier et al. 2006a). Another mechanism based on the scission of the alkyl-oxygen bond is then observed (Figure 1.6). O O O O 5 n O O– O 5 Cyclic oligomer 5 m + O O FigURE 1.4 Intramolecular transesterification reactions during the polymerization of ɛCL. O O O – O O + 5 n O O O 5 5 m 5 p O O O O O 5 n 5 O O FigURE 1.5 + 5 p 5 m O O Intermolecular transesterification reactions during the polymerization of ɛCL. O O R FigURE 1.6 – O O R O O– O– Ring-opening polymerization of β-lactones by cleavage of the alkyl-oxygen bond. 5 n O– 6 Polymeric Biomaterials: Structure and Function, Volume 1 R O O O– O n + R O R R=H, Me O– O OH O n + O R Intramolecular elimination reaction O RHC O– FigURE 1.7 Transfer reaction for the polymerization of β-lactones. Interestingly enough, ring-opening affords a carboxylate anion rather than an alkoxide. This polymerization can thus also be initiated by carboxylic salts even though they are less nucleophilic than alkoxides (Penczek 2007). It is worth noting that another transfer reaction mechanism shown in Figure 1.7 is reported as far as β-lactones are concerned (Penczek 2007). 1.3.2 COORDINaTION POLYMERIZaTION Anionic metal alkoxides are too reactive to be selective and transfer transesterification reactions are very difficult to get rid of, at the expense of control of polymerization. In order to improve the control of polymerization, it is mandatory to use less reactive initiators. This can be achieved by playing with steric and electronic effects (Lecomte and Jérôme 2004). The use of cumbersome ligands is the first possible route to obtain more selective species. The most common approach relies on the use of less electrophilic metals. The works of Teyssié and coworkers who used bimetallic μ-oxo-alkoxides as initiators have to be mentioned (Hamitou et al. 1973, Ouhadi et al. 1976). Since then, a wide range of transition metals have been investigated. Aluminum alkoxides occupy a key position because of the very good control imparted to the polymerization of cyclic esters. Commercially available aluminum triisopropoxide is a widely used aluminum alkoxide. Firstly, the three alkoxide bonds initiate polymerization. Nevertheless, the behavior of aluminum triisopropoxide is complicated due to its aggregation in solution. Indeed, aluminum isopropoxide exists as a mixture of trimers (A3) and tetramers (A4; Ropson et al. 1995). As long as polymerization of ɛCL is carried out by aluminum isopropoxide in toluene at 0°C, only A3 is prone to initiate polymerization. The interconversion of A4 into A3 is slow compared to the kinetics of polymerization, and A4 does not initiate polymerization under these conditions. Conversely, polymerization of lactide is carried out at a higher temperature, typically at 70°C. The interconversion of A4 into A3 is faster, and all species initiate polymerization. It is thus very important to take into account the equilibrium between A3 and A4 species to determine the theoretical molar mass on the basis of the monomer-to-initiator molar ratio. Last but not least, it is worth ­noting that aluminum alkoxides can be prepared in the laboratory by the reaction of any alcohol with ­triethylaluminum or aluminum isopropoxide (Dubois et al. 1989). The mechanism of polymerization is quite similar to that of anionic polymerization. Nevertheless, one has to take into account the coordination of the metal with oxygen atoms. The mechanism shown in Figure 1.8 is referred in the state of the art as the coordination–insertion mechanism. Firstly, the alkoxide (RO-M) coordinates with the carbonyl of the cyclic ester, followed by the nucleophilic addition of the alkoxide onto the electrophilic C=O bond. Thereafter, ring-opening takes place by an elimination reaction, resulting in the cleavage of the acyl-oxygen bond and in the formation of a new alkoxide. The initiator can contain one functional group, provided it is tolerated by aluminum alkoxide species (Dubois et al. 1989). 7 Synthesis and Fabrication of Polyesters as Biomaterials M O O RO M O O R O R O O OM + O O O M O O 5 5 O n OR M O O OR M O O OR n FigURE 1.8 Coordination–insertion mechanism for the ring-opening polymerization of cyclic esters. During the propagation of the ring-opening polymerization of cyclic esters initiated by aluminum alkoxides, aggregation can again take place depending upon stereoelectronic factors, as shown by NMR spectroscopy and kinetic studies (Duda and Penczek 1991). For instance, during the polymerization of ɛCL, the three-arm growing species is a unimer when initiated by A3 and is a trimer when initiated by Et2AlOR (Ropson et al. 1995). Although aluminum alkoxides exerted an excellent control to the polymerization of cyclic esters, they are suspected to be involved in Alzheimer’s disease. Moreover, catalytical remnants are very difficult to withdraw and these toxicity issues are thus a huge limitation for biomedical applications. Many researchers used tin(II) bis-(2-ethylhexanoate), also commonly referred to as tin octoate, instead of aluminum alkoxides because of its recognition by the American Food and Drug Administration (FDA). Another reason for the popularity of tin(II) bis-(2-ethylhexanoate) is its lower sensitivity to water and other impurities. It is thus easier to achieve polymerization in laboratories or in industry. Nevertheless, it was found that tin(II) bis-(2-ethylhexanoate) is also cytotoxic and should ideally be avoided for the synthesis of biomaterials. Tin(II) bis-(2-ethylhexanoate) does not contain any alkoxide bond, and the mechanism remained unclear for a long time and several proposals were reported. In 1998, Penczek and coworkers reported that tin alkoxides are formed in the polymerization medium by the reaction of tin(II) bis(2-ethylhexanoate) with traces of water or with any other protic impurities. Polymerization thus takes place by the usual coordination–insertion mechanism at least as long as it is carried out in THF at 80°C (Kowalski et al. 1998). This proposal was substantiated by kinetic measurements (Kowalski et al. 1998, 2000a), analysis of the chain-ends by MALDI-TOF (Kowalski et al. 2000b), and proton-trapping agent experiments (Majerska et al. 2000). It is worth noting that other tin-based initiators are also used. Hedrick and coworkers proposed to use tin trifluoromethanesulfonate to improve the kinetics of polymerization (Möller et al. 2000). Another possibility relies on the use of Sn(II) alkoxides (Duda et al. 2000, Kowalski et al. 2000c) and Sn(IV) alkoxides (Kricheldorf and Eggerstedt 1998, Kricheldorf et al. 2001, Kricheldorf 2004). Penczek and coworkers reported that the polymerization of lactide, initiated by Sn(OBu)2, is under control in a range of molar masses up to 106 g/mol (Duda et al. 2000, Kowalski et al. 2000c). Nevertheless, whatever the tin derivative used to initiate polymerization, toxicity remains an issue. Albertsson and coworkers proposed a smart approach to extract tin derivatives (Stjerndahl et al. 2007). They initiated the polymerization of cyclic esters by tin(IV) alkoxides before adding 1,2-ethanedithiol to the polymerization medium to afford a sulfur-containing dibutyltin derivative, which can be extracted because of its high solubility in organic solvents. For example, this process allowed synthesizing a sample of PCL contaminated by only 23 ppm of tin residues (Stjerndahl et al. 2007). If ring-opening polymerization can be carried out in bulk and in organic solvents, supercritical carbon dioxide is also a valuable medium. The technology based on supercritical carbon dioxide is 8 Polymeric Biomaterials: Structure and Function, Volume 1 particularly interesting in the field of biomaterials because of the remarkable extraction properties of this medium with the prospect to purify aliphatic polyesters. Ring-opening polymerization of ɛCL in supercritical carbon dioxide was first reported by Mingotaud and coworkers (Mingotaud et al. 1999, 2000). Then, Jérôme and coworkers observed that tin(IV) alkoxides initiate the controlled ring-opening polymerization of ɛCL in supercritical CO2 (Stassin et al. 2001). Slow kinetics was accounted for by the reversible reaction of tin alkoxides and carbon dioxide (Stassin and Jérôme 2002). PCL is not soluble in supercritical carbon dioxide, and the polymerization of ɛCL is thus heterogeneous. Nevertheless, in the presence of a suitable surfactant, nanoparticles can be obtained (Stassin and Jérôme 2004). Last but not least, supercritical CO2 was used to withdraw quantitatively unconverted monomer and metallic remnants. The issues related to the toxicity of tin and aluminum derivatives urged researchers to initiate the polymerization of cyclic esters by alkoxides based on less toxic metals. In this regard, bismuth (Kim et al. 2004), magnesium (Shueh et al. 2004, Yu et al. 2005b), and calcium (Zhong et al. 2001, Westerhausen et al. 2003) alkoxides are reported. The mechanism remains the usual coordination– insertion mechanism. The kinetics and control of polymerization depend on the nature of the metal and on its ligands. So many metallic derivatives have been used to initiate or catalyze the ring-opening polymerization of cyclic esters that it is almost impossible to list all. Among these derivatives, zinc octoate (Libiszowki et al. 2002, Kowalski et al. 2007), aluminum acetyl acetonate (Kowalski et al. 2007), scandium trifluoromethanesulfonate (Möller et al. 2000, Nomura et al. 2000), and scandium trifluoromethanesulfonimide [Sc(NTf2)3] (Oshimura and Takasu 2010) can be mentioned. Special attention has to be paid to lanthanides alkoxides (Metal = Er, Sm, Dy, La) as initiators because of the very fast kinetics of polymerization (McLain and Drysdale 1992). Shen et al. (1996) showed that the increase of steric hindrance of the ligand disfavors transesterification reactions. Yasuda and coworkers polymerized ɛCL by SmOEt(C5Me5)2(OEt2), [YOMe(C5H5)2]2, and YOMe(C5Me5)2(THF) (Yamashita et al. 1996). In 1996, yttrium isopropoxide was obtained “in situ” by the reaction of isopropanol and yttrium tris(2,6-di-tert-butylphenolate (Stevels et al. 1996a,b). Then, a similar approach was implemented by Jérôme and Spitz who synthesized Y(OiPr)3 (Martin et al. 2000, 2003a) and Nd(OiPr)3 (Tortosa et al. 2001) by the reaction of isopropanol with Y[N(SiMe3)2]3 and Nd[N(SiMe3)2]3, respectively. In 2003, the polymerization of ɛ-caprolactone was carried out by La(OiPr)3 (Save et al. 2002) and M(BH4)3(THF)3 (M = Nd, La, Sm) (Guillaume et al. 2003, Palard et al. 2005). Cyclic esters other than ɛCL can be polymerized by the same family of lanthanide alkoxides (Yamashita et al. 1996). Last but not least, Jérôme and coworkers grafted yttrium isopropoxide onto a porous silica surface (Martin et al. 2003b,c). Two methods of immobilization were reported. Firstly, the hydroxyl groups located on the surface of silica were allowed to react with an excess of Y[N(SiMe3)2]3 into silylamido groups, which were finally allowed to react with 2-propanol to obtain yttrium alkoxides. Secondly, Y[N(SiMe3)2]3 was made to react with less than three equivalents of 2-propanol into an yttrium alkoxide, which was then grafted onto the surface. Hamaide and coworkers supported alkoxides based on other metals (Al, Zr, Sm, and Nd) onto silica and alumina (Miola-Delaite et al. 2000). 1.3.3 METaL-FREE RING-OpENING POLYMERIZaTION Aluminum and tin alkoxides being too toxic for biomedical applications, chemists investigated original metal-free processes for the ring-opening polymerization of cyclic esters. Their strategy relies on the initiation of the polymerization by nucleophilic species such as alcohols and amines. Nevertheless, these species are in general not nucleophilic enough to react with cyclic esters. Nevertheless, there are exceptions to this general rule. For instance, highly reactive β-lactones are polymerized by nucleophilic amines in the absence of any catalyst. Polymerization initiated by tertiary amines is known as zwitterionic polymerization in the literature (Löfgren et al. 1995). The mechanism shown in Figure 1.9 is based on the reaction of tertiary amines and cyclic esters 9 Synthesis and Fabrication of Polyesters as Biomaterials O O O + R΄ R΄ N R΄ R΄ O– N+ R΄ O O R΄ O– R΄ N+ O O O n R΄ R΄ Zwitterion FigURE 1.9 Zwitterionic polymerization of pivalolactone. H O O n H+ O H RO O O R + O _H+ n OH n FigURE 1.10 Ring-opening polymerization of cyclic esters catalyzed by acids and initiated by alcohols. with a zwitterionic species made up of an ammonium cation and a carboxylate anion. Interestingly enough, Kricheldorf et al. (2005) mentioned the possibility that chain extension takes place by stepgrowth polycondensation at least at some stage of polymerization. As a rule, alcohols and amines are in general not nucleophilic enough to react with cyclic esters and the reaction has thus to be catalyzed. In order to do so, two main strategies might be implemented. They rely on the activation of either the monomer or the initiator. Last but not least, some processes combine both mechanisms of activation. Cyclic esters can be activated by either acids or nucleophiles to allow their reaction with alcohols and amines in the frame of a polymerization process. As far as acids are concerned as catalysts, the mechanism of ring-opening polymerization relies on the activation of cyclic esters by protonation of the exocyclic oxygen of cyclic diesters, which facilitates the reaction with the nucleophilic species, that can be the initiator during initiation or the hydroxyl-end capped chain during propagation (Figure 1.10). Polymerization takes place by the scission of the oxygen-acyl bond. In 2000, an example of ring-opening polymerization of ɛCL and δVL was reported by Endo and coworkers by using alcohol as an initiator and HCl.Et2O as a catalyst (Shibasaki et al. 2000). Polymerization was under control but the molar mass did not exceed 15,000 g/mol. It is worth noting that, later on, Jérôme and coworkers reported that molar masses up to 50,000 g/mol were obtained as far as PVL was polymerized (Lou et al. 2002a). Recently, the process was extended to a wider range of acids. Trifluoromethanesulfonic is an efficient catalyst for the controlled ring-opening polymerization of lactide (Bourissou et al. 2005) and ɛ-caprolactone (Basko and Kubisa 2006). Later, Bourrissou showed that trifluoromethanesulfonic acid can be substituted for less acidic methanesulfonic acid for the polymerization of ɛCL (Gazeau-Bureau et al. 2008). Polymerization of δVL was catalyzed by trifluoromethanesulfonimide according to Kakuchi et al. (2010). Interestingly enough, polymerization was under control and various functionalized alcohols were used as initiators. Very recently, Takasu and coworkers extended this strategy to nonafluorobutanesulfonimide for the polymerization of ɛCL (Oshimura et al. 2011). Interestingly enough, organic catalysts such as lactic acid (Casas et al. 2004, Persson et al. 2006), citric acid (Casas et al. 2004), fumaric acid (Sanda et al. 2002, Zeng et al. 2005), and amino acids (Casas et al. 2004) were also used. In addition, the acid catalyst can be supported on silica (Wilson and Jones 2004). Amino acids exhibit a particular behavior because they both catalyze and initiate polymerization (Liu and Liu 2004). In the absence of any nucleophilic species such as an alcohol, the only nucleophilic species remaining in the system is the cyclic ester. This is the typical case of cationic ring-opening polymerization of cyclic esters, which has been in use for a long time. The cationic polymerization can be catalyzed not only by Bronsted acids but also by alkylating agents, acylating agents, and Lewis acids. 10 Polymeric Biomaterials: Structure and Function, Volume 1 O C O + O O O O + C O + O R O O R 5 + R n FigURE 1.11 Mechanism for cationic ring-opening polymerization based on the reaction of the endocyclic oxygen. For instance, in 1984, Penczek reported the cationic polymerization of ɛCL and βPL by acylating agents (Hofman et al. 1984). For a long time it was accepted that cationic ring-opening polymerization mediated by alkylating agents takes place by the mechanism shown in Figure 1.11, which is based on the reaction of the cation with the endocyclic oxygen followed by the cleavage of the acyloxygen bond. In 1984, Penczek (Hofman et al. 1984) and Kricheldorf et al. (1986) proposed that the cation reacts with the exocyclic oxygen rather than the endocyclic oxygen to afford a dialkoxycarbocationic species, which finally reacts by cleavage of the alkyl-oxygen bond (Figure 1.12). It is worth noting that both mechanisms shown in Figures 1.12 and 1.13 are observed when acylating agents are used (Slomkowski et al. 1985). In recent years, the ring-opening polymerization of cyclic esters by nucleophilic catalysts has emerged as a very promising process under the impulse given by the group of Hedrick (Kamber et al. 2007). Table 1.3 shows several nucleophiles known to activate cyclic esters and thus prone to catalyze the ring-opening polymerization of cyclic esters initiated by alcohols by the mechanism shown in Figure 1.13. Among nucleophilic species, N-heterocyclic carbenes (Table 1.3, entries 1–7), amines (Table 1.3, entries 8–11), and phosphines (Table 1.3, entries 12–17) can be mentioned. Depending upon the cyclic ester that has to be polymerized, the nucleophilic catalyst must be carefully selected because its nucleophilicity and thus the kinetics of this ring-opening is influenced by steric and electronic effects. Interestingly enough, polymerization is under control. Although this approach is very promising, more work is needed to assess the impact of these catalysts on the biocompatibility of aliphatic polyesters. Another mechanism relies on the activation of the initiator. Bases that are able to activate nucleophilic alcohols and catalyze the ring-opening polymerization of cyclic esters are shown in Table 1.4. TBD and DBU catalyze the ring-opening polymerization of cyclic esters (Table 1.4, entries 1, 2). R O R+ + R O C+ O O O O O O O C+ O FigURE 1.12 Mechanism for cationic ring-opening polymerization based on the reaction of the exocyclic oxygen. O Nu + O O + Nu FigURE 1.13 Activation of cyclic esters by nucleophiles. O– 5 R O OH RO 5 OH 11 Synthesis and Fabrication of Polyesters as Biomaterials TABLE 1.3 Nucleophilic Catalysts for the Ring-Opening Polymerization of Lactones Entry Organocatalyst 1 N 2 N 3 N C C N N N C 4 N 5 Initiator Reference l-lactide εCL βBL rac-lactide meso-lactide εCL δVL EtOH, pyrenebutanol EtOH, pyrenebutanol EtOH, pyrenebutanol — — PhCH2OH PhCH2OH Connor et al. (2002) βBL δVL εCL εCL PhCH2OH PhCH2OH PhCH2OH PhCH2OH Nyce et al. (2003) l-lactide MeOH, pyrenebutanol, PEO-OH pyrenebutanol Coulembier et al. (2005) Dove et al. (2006) Dove et al. (2006) Nyce et al. (2003) Nyce et al. (2003) N C Ph N Ph Monomer C N N 6 βBL Ph N N Coulembier et al. (2006b) l-lactide — Connor et al. (2002) rac-lactide meso-lactide — — Dove et al. (2006) rac-lactide meso-lactide — — Dove et al. (2006) OR 7 Ph Ph N 7 C Ph Me H Ph N C Ph 8 N N N H Ph Me N Lactide EtOH, PhCH2OH Nederberg et al. (2001) Lactide EtOH, PhCH2OH Nederberg et al. (2001) Lactide Pyrenebutanol Pratt et al. (2006) and Lohmeijer et al. (2006) Lactide Pyrenebutanol Lohmeijer et al. (2006) DMAP 9 N N 10 N N N MTBD 11 N N DBU (continued) 12 Polymeric Biomaterials: Structure and Function, Volume 1 TABLE 1.3 (continued) Nucleophilic Catalysts for the Ring-Opening Polymerization of Lactones Entry 12 13 14 15 Organocatalyst Monomer PBu3 PPhMe2 PPh3 Initiator Reference Lactide Lactide Lactide Lactide PhEtOH PhEtOH PhEtOH PhEtOH Myers et al. (2002) Myers et al. (2002) Myers et al. (2002) Myers et al. (2002) Lactide PhEtOH Myers et al. (2002) Lactide PhEtOH Myers et al. (2002) Lactide PhEtOH Myers et al. (2002) P P 16 Et P Et Fe Et P Et 17 Pipr2 Fe Pipr2 18 PCy2 PCy2 Fe The mechanism is pseudoanionic and is based on the activation of the alcohol by attracting the ­proton. Phosphazene bases are also prone to catalyzing the ring-opening polymerization of cyclic esters (Zhang et al. 2007a). In particular, 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydrdro-1,3,2-diazaphosphorine (BEMP) is efficient (Table 1.4, entry 3). It is worth noting that BEMP exhibits a higher basicity (pKBH+ = 27.6) compared to DBU (pK BH+ = 24.3) and MTBD (pK BH+ = 25.4). As long as a dimeric phosphazene is used to catalyze the polymerization of racemic lactide (Table 1.4, entry 4), isotactic polylactide is obtained (Zhang et al. 2007b). Several catalysts have the ability to activate both the monomer and the initiator at the same time (Table 1.5). 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) is an efficient organocatalyst for the ring-opening polymerization of cyclic esters initiated by alcohols (Table 1.5, entry 1), and the polymerization takes place by dual activation of both the monomer and the initiator. The activation of the monomer can take place either by an acyl transfer mechanism or by a mechanism based on hydrogen bonding. This last mechanism was preferred as far as the polymerization of l-lactide is concerned (Chuma et al. 2008). As long as 1,8-diaza[5.4.0]bicycloundec-7-ene (DBU) and N-methylated TBD (MTBD) were used as catalysts instead of TBD, the polymerization of lactide was slower. Polymerization of CL and VL did not take place. Indeed, these experimental data can be easily understood if one takes into account that these catalysts can only activate the alcohol but not cyclic esters (Lohmeijer et al. 2006). However, a possible trick to overcome this issue relies on the addition of a thiourea activating cyclic esters by hydrogen 13 Synthesis and Fabrication of Polyesters as Biomaterials TABLE 1.4 Basic Catalysts for the Ring-Opening Polymerization of Lactones Entry Organocatalyst 1 Monomer N Initiator Reference Lactide 1-Pyrenebutanol Pratt et al. (2006) and Lohmeijer et al. (2006) Lactide 1-Pyrenebutanol Lohmeijer et al. (2006) l-lactide δVL εCL 1-Pyrenebutanol 1-Pyrenebutanol 1-Pyrenebutanol Zhang et al. (2007a) Zhang et al. (2007a) Zhang et al. (2007a) l-lactide 1-Pyrenebutanol Zhang et al. (2007a) N N MTBD 2 N N DBU 3 N Et2N N P N tBu 4 N N P N N N P N tBu N bonding (Table 1.5, entry 2). Interestingly enough, both catalytical species can be combined in a single molecule. Indeed, Hedrick and coworkers reported that the polymerization of cyclic esters is efficiently catalyzed by 1-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(dimethylamino)cyclohexyl]thiourea with a very good control of the molecular parameters (Table 1.5, entry 3; Dove et al. 2005). Polymerization takes place also in the presence of both 1-[3,5-bis(trifluoromethyl) phenyl]-3-cyclohexylthiourea and N,N-dimethylcyclohexanamine (Table 1.5, entry 4; Dove et al. 2005). Whenever only one of these is present, no polymer was obtained, in agreement with a dual activation mechanism. 1.3.4 ENZYMaTIC RING-OpENING POLYMERIZaTION Enzymes are very promising nontoxic catalysts for the preparation of biomaterials. They are green catalysts obtained from renewable resources and are easily separated from polyesters. Among enzymes, lipases are known to catalyze the hydrolysis reaction of esters. Chemists used these natural enzymes to catalyze the reverse reaction, for example, the esterification reaction. The ring-opening polymerization of cyclic esters can be catalyzed by lipases as independently discovered in 1993 by the groups of Kobayashi (Uyama and Kobayashi 1993) and Knani et al. (1993). Since then, a wide variety of cyclic esters of different size were polymerized. Several reviews have been published on this topic (Gross et al. 2001, Varma et al. 2005, Albertsson and Srivastava 2008, Kobayashi and Makino 2009). Among the different lipases, Candida antarctica (lipase CA, CALB or Novozym 435) is widely used. An alcohol can purposely be added in the reaction medium to initiate polymerization. The course of polymerization is influenced by water. 14 Polymeric Biomaterials: Structure and Function, Volume 1 TABLE 1.5 Dual Catalysts for the Ring-Opening Polymerization of Lactones Entry Organocatalyst 1 N N N TBD 2 CF3 N N 3 S + N H F3C DBU Reference Lactide δVL εCL Pyrenebutanol Pyrenebutanol Pyrenebutanol Pratt et al. (2006) Lohmeijer et al. (2006) Lohmeijer et al. (2006) δVL εCL Pyrenebutanol Pyrenebutanol Lohmeijer et al. (2006) Lohmeijer et al. (2006) Lactide Pyrenebutanol Dove et al. (2005) Lactide Pyrenebutanol Dove et al. (2005) rac N H N H F3C Initiator N H CF3 S Monomer NMe2 4 CF3 S F3C N H + N H NMe2 Indeed, a minimum amount of water needs to be bound to the surface of the enzyme to maintain its conformational flexibility and catalytic activity (Gross et al. 2001). Nevertheless, water also initiates this polymerization. The synthesis of high molar mass aliphatic polyesters by enzymatic ring-opening polymerization is thus difficult because it is not possible to carry out polymerization in strictly anhydrous conditions. In terms of the control of polymerization, enzymatic polymerization cannot compete with coordination or organocatalytic polymerization. Nevertheless, enzymatic polymerization has some practical interests. Polymerization proceeds under mild conditions in terms of pH, temperature, and pressure and can be carried out in bulk, in organic media, and even in supercritical carbon dioxide (Takamoto et al. 2001, Loeker et al. 2004). Moreover, enzymes are able to catalyze the ring-opening polymerization of large-membered cyclic esters, which are very difficult to polymerize by chemical catalysts and initiators such as metal alkoxides and organocatalysts (Duda et al. 2002). The mechanism of enzymatic polymerization is based on the activation of the monomer and is very similar to the one already shown for nucleophilic organocatalysts. Briefly, a complex is formed between the enzyme and cyclic esters. The hydroxyl group of a serine residue of the active site of the enzyme reacts with cyclic esters affording an activated open form of the monomer. This activated intermediate then reacts with an alcohol, which can be the initiator or a hydroxyl-end capped chain. This mechanism is summarized in Figure 1.14. 1.3.5 POLYMERIZaTION Of SUBsTITUTED aND FUNCTIONaLIZED CYCLIC EsTERs Although PCL, PLA, and PGA are widely used for biomedical applications, it is highly desirable to synthesize a wider range of aliphatic polyesters in view of the development of novel biomedical applications. Two main routes were investigated for this application: the first one relies on the direct 15 Synthesis and Fabrication of Polyesters as Biomaterials O Lipase Lipase-OH O Lipase/OH complex O n R n OH OR OH – Lipase-OH FigURE 1.14 O O n OH Enzymatic polymerization of cyclic esters. chemical modification of aliphatic polyesters, and the second one is based on the synthesis and polymerization of substituted and/or functionalized cyclic esters. The direct functionalization of aliphatic polyesters is the most straightforward route. Vert and coworkers functionalized PCL by a two-step process. Firstly, the metallation of PCL was carried out by lithium diisopropylamide in order to obtain a poly(enolate), which was then reacted with any electrophile such as naphthoyl chloride (Ponsart et al. 2000), benzylchloroformate (Ponsart et al. 2000), acetophenone (Ponsart et al. 2000), benzaldehyde (Ponsart et al. 2000), carbon dioxide (Gimenez et al. 2001), tritiated water (Ponsart et al. 2001), α-bromoacetoxy-ω-methoxy-poly(ethylene oxide) (Ponsart et al. 2002), and iodine (Nottelet et al. 2006; Figure 1.15). This approach is very simple, and many functionalized PCL can be synthesized just by changing the nature of the electrophile. Moreover, the absence of any potentially toxic catalyst is a huge advantage. Unfortunately, this strategy is very touchy because degradation of aliphatic polyesters by nucleophilic enolates always takes place at a significant level. Under optimized conditions, degradation can only be limited. Although the process was extended to the functionalization of PLA, degradation is even more difficult to limit, this polymer being more sensitive than PCL. Moreover, the content of functionalization is quite low (<30%) even under optimized conditions. O 4 O x LDA OLi 4 O x Cl H MeI Cl Ph O 4 O FigURE 1.15 O O 4 x HO OBn O O O O Ph O 4 x O O OBn Functionalization of PCL according to Vert and coworkers. 4 x O O x 16 Polymeric Biomaterials: Structure and Function, Volume 1 The important limitations of the process shown in Figure 1.15 prompted chemists to investigate a less direct approach based on the synthesis and polymerization of functionalized cyclic esters (Lou et al. 2003). For that sake, two strategies can be applied. The first one relies on the insertion of the functional group inside the ring, and the second one is based on the substitution of the cyclic ester by a pendent functionalized group. Table 1.6 shows the conditions used for the polymerization of cyclic esters bearing, inside the ring, functional groups such as an ether (Table 1.6, entries 1–3), a protected amine (Table 1.6, entries 4,5), an unsaturation (Table 1.6, entries 6,7), a ketone (Table 1.6, entry 8), and an amide (Table 1.6, entries 9–12) are present. Table 1.7 shows cyclic esters bearing a substituent, functionalized or not. As functional groups, aromatics (Table 1.7, entry 1), chloride (Table 1.7, entries 2,3), bromide (Table 1.7, entries 4–6), iodide (Table 1.7, entry 7), alkyne (Table 1.7, entries 8, 9), alkene (Table 1.7, entries 10–15), and epoxide (Table 1.7, entry 16) can be mentioned. Cyclic esters reported in Tables 1.6 and 1.7 are usually polymerized by tin and aluminum alkoxides. It is worth noting that 6,7-dihydro-2(3H)-oxepinone is an unusual case because this monomer can be polymerized by another mechanism, the ring-opening metathesis polymerization (ROMP) process by using the Schrock’s catalyst (Figure 1.16; Lou et al. 2002c). In terms of chemoselectivity, enzymes are appealing catalysts because they tolerate a wide range of functional groups and even epoxides (Table 1.7, entry 16). Unfortunately, tin and aluminum alkoxides are less tolerant and do not tolerate the presence of alcohols, carboxylic acids, and epoxides. Noteworthily, ketones are tolerated by tin (IV) alkoxides but not by aluminum alkoxides for reasons which still remain unclear (Latere et al. 2002). This issue was overcome by protecting these functional groups prior to polymerization. Table 1.8 shows lactones substituted by protected ketones (Table 1.8, entry 1), alcohols (Table 1.8, entries 2–6), diols (Table 1.8, entry 7), carboxylic acids (Table 1.8, entries 8–15), and amines (Table 1.8, entries 16–19). The choice of the protection group is essential for the success of this strategy. One the one hand, the protected functional groups have to be stable enough to avoid any degradation prior to polymerization and to allow obtaining the monomer in a very high purity, which is a prerequisite to achieve polymerization, at least as far as sensitive initiators are concerned, such as aluminum alkoxides. On the other hand, the protection group has to be removed after polymerization under conditions that prevent degradation from occurring. For this reason, benzylic alcohols and carboxylic esters are widely used because they can be deprotected under neutral conditions rather than in acidic conditions. As a rule, these two conditions are contradictory and it is not always that easy to find a satisfactory compromise between the stability of the monomer and the easy deprotection. Many of the cyclic esters shown in Tables 1.6 through 1.8 are chiral and possess at least one chiral carbon (R or S). Although the stereoselective polymerization of lactide (Zhong et al. 2004) and β-butyrolactone (Amgoune et al. 2006, Carpentier 2010) is reported in the literature, the stereoselectivity of their polymerization is in general not discussed and racemic mixtures are polymerized. Obviously, more attention should be paid to these aspects in the future because stereoselective polymerization allows the synthesis of aliphatic polyesters with different tacticities, and thus of different properties. Last but not least, it must be noted that substituted cyclic esters can sometimes be expensive because their synthesis can require several steps from commercially available compounds at the expense of the global yield, which can be low. It is beyond the scope of this chapter to describe all the syntheses of these functionalized cyclic esters, and the reader is invited to read the references given in Tables 1.6 through 1.8. Another limitation relies on the necessity to synthesize a new cyclic ester for any new functional aliphatic polyester. The functionalization of aliphatic polyesters opens up new avenues in the field of biomaterials. The presence of functional groups allows modifying the biodegradation rate by changing the crystallinity and hydrophilicity or by adding functional groups such as carboxylic acids prone to catalyze the degradation. Interestingly enough, pH-sensitive aliphatic polyesters can be obtained by grafting carboxylic acids or amines along aliphatic polyesters. These groups can be under a neutral or an 17 Synthesis and Fabrication of Polyesters as Biomaterials TABLE 1.6 Ring-Opening of Cyclic Monoesters Functionalized inside the Ring Entry Monomer 1 O Initiator Bu2SnO, Sn(Oct)2 O Reference Al(OiPr)3 Mathisen and Albertsson (1989) and Mathisen et al. (1989) Löfgren et al. (1994) Et3Al, H2O Shirahama et al. (1993, 1996) Zn(II) l-lactate Al (OiPr)3 Kricheldorf and Damrau (1998) and Raquez et al. (2000) ROH/Sn(Oct)2 Trollsas et al. (2000) DBU Kudoh et al. (2009) Al(OiPr)3 Lou et al. (2001) Al(OiPr)3 Schrock’s catalyst Lou et al. (2002b) Lou et al. (2002c) O 2 O O Me 3 R O O O O 4 O O N O CF3 5 O O N 6 O Ph O 7 O O (continued) 18 Polymeric Biomaterials: Structure and Function, Volume 1 TABLE 1.6 (continued) Ring-Opening of Cyclic Monoesters Functionalized inside the Ring Entry Monomer 8 O Initiator Reference l-Phenyl-2-propanol, Sn(Oct)2 Latere et al. (2002) Feng et al. (1999a, 2000) Feng et al. (1999a,b) O Porcine pancreatic lipase lipase type XIII from Pseudomonas species lipase from Pseudomonas cepacia lipase type VII from Candida rugosa porcine pancreatic lipase O porcine pancreatic lipase Feng et al. (2000) O porcine pancreatic lipase Feng et al. (2000) O O 9 O O 10 N O O 11 12 Feng et al. (1999b) Feng et al. (2000) N O O Feng et al. (1999a,b) N O O O N ionic form depending upon the pH and their pKa, which affects their solubility in water. Another application relies on the use of these functional groups for the covalent grafting of biologically active molecules, drugs, targeting units, and other functional groups. For that sake, very efficient reactions have to be used under nondegrading conditions. It is not very easy to find a reaction that meets these criteria (Lecomte et al. 2006). Recently, it turned out that the click copper-catalyzed alkyne-azyde Huisgen’s cycloaddition reaction (CuAAC) is particularly efficient (Parrish et al. 2005, Riva et al. 2007, Lecomte et al. 2008) in the presence of limited degradation (Lecomte et al. 2008). Moreover, the reaction can take place in water and in organic solvents. Nevertheless, the use of copper salts as catalysts is a severe limitation for biomedical applications. Although they are not as efficient as the CuAAC reaction, several other metal-free reactions have been used such as the esterification reaction between alcohols and carboxylic acids (Renard et al. 2003, Parrish and Emrick 2004), the ring-opening of epoxides by thiols (Lou et al. 2002b), the thiol-ene reaction (Rieger et al. 2005), and the coupling of ketones and oxyamines (Taniguchi et al. 2005, van Horn et al. 2008). 19 Synthesis and Fabrication of Polyesters as Biomaterials TABLE 1.7 Ring-Opening Polymerization of Functionalized Cyclic Esters Entry Monomer 1 O Initiator Reference 4-tBu-C6H4-CH2OH, Sn(Oct)2 Simmons and Baker (2001) Sn(Oct)2 Al(OiOr)3 Pyridine, Et3N CF3CO2H Liu et al. (1999) Liu et al. (1999) Liu et al. (1999) Liu et al. (1999) 2,2-Dibutyl-2-stanna-1,3dioxepane Lenoir et al. (2004) Al(OiPr)3 Mecerreyes et al. (1999) Al(OiPr)3 Detrembleur et al. (2000) Al(OiPr)3 (copolymerization with εCL) Wang et al. (2005) O O O 2 Cl O O 3 O Cl O 4 O O O O Br 5 O O Br 6 Br O O (continued) 20 Polymeric Biomaterials: Structure and Function, Volume 1 TABLE 1.7 (continued) Ring-Opening Polymerization of Functionalized Cyclic Esters Entry 7 Monomer O I Initiator Reference MeOH, Sn(Oct)2 El Habnouni et al. (2009) EtOH, Sn(OTf)2 Parrish et al. (2005) 4-tBu-C6H4-CH2OH, Sn(Oct)2 Jiang et al. (2008) Al(OiPr)3 Mecerreyes et al. (2000a) PhCH2OH, Sn(Oct)2 Mecerreyes et al. (2000b) MeO-[Y] (copolymerization with βBL) Ajellal et al. (2009) O 8 O O 9 O O O O 10 O O O O 11 O O 12 O O 21 Synthesis and Fabrication of Polyesters as Biomaterials TABLE 1.7 (continued) Ring-Opening Polymerization of Functionalized Cyclic Esters Entry Monomer 13 Initiator O Reference PhCH2OH, Sn(Oct)2 Leemhuis et al. (2008) 2,2-Dibutyl-2-stanna-1,3dioxepane (block copolymerization with εCL) Li et al. (2006) Novozym 435 Veld et al. (2007) Novozym 435 Veld et al. (2007) O O O 14 O O O O 15 O O O 16 O O O O CH3(CF3)2OC O N Mo CMe2Ph OC(CF3)2CH3 O ROMP FigURE 1.16 Polymerization of 6,7-dihydro-2(3H)-oxepinone by ROMP. O n 22 Polymeric Biomaterials: Structure and Function, Volume 1 TABLE 1.8 Ring-Opening Polymerization of Cyclic Esters Bearing Protected Functional Groups Entry Monomer 1 O Initiator Reference Al(OiPr)3 Tian et al. (1997) Sn(Oct)2 (copolymerization with δVL and a dilactone) Pitt et al. (1987) Al(OiPr)3 (copolymerization with εCL and TOSUO) Stassin et al. (2000) ROH, Sn(Oct)2 Trollsas et al. (2000) O O O 2 O O TBDMSO 3 O O Et3SiO 4 O O PhCH2O 5 O Leemhuis et al. (2006) N O O O Zn iPrOH, O 6 OBn O O O O iPrOH, O Leemhuis et al. (2006) N OBn Zn 23 Synthesis and Fabrication of Polyesters as Biomaterials TABLE 1.8 (continued) Ring-Opening Polymerization of Cyclic Esters Bearing Protected Functional Groups Entry Monomer 7 O Initiator Reference ROH, Sn(Oct)2 Trollsas et al. (2000) ROH, Sn(Oct)2 Trollsas et al. (2000) ROH, Sn(Oct)2 Trollsas et al. (2000) Al(OiPr)3 (copolymerization with εCL) Lecomte et al. (2000) Tetraethylammonium benzoate Bizzari et al. (2002) O O O O O Ph 8 O O O OBn 9 O O O OtBn 10 O O O OTBDMS 11 O O O OBn (continued) 24 Polymeric Biomaterials: Structure and Function, Volume 1 TABLE 1.8 (continued) Ring-Opening Polymerization of Cyclic Esters Bearing Protected Functional Groups Entry 12 Monomer Initiator O Reference Tetraethylammonium benzoate Barbaud et al. (2004) PEO-OH, Sn(Oct)2 Mahmud et al. (2006) PhCH2OH, Sn(Oct)2 Gerhardt et al. (2007) Al(OiPr)3, Sn(Oct)2, Et2zn Kimura et al. (1988) Tetrabutylammonium acetate Flétier et al. (1990) iPrOH, Sn(Oct)2 Blanquer et al. (2010) O OBn O 13 O O OBn O 14 O O O O n O 15 OBn n = 1,2 O O O O O 16 O O O TrN 17 O O O HN OBn O 25 Synthesis and Fabrication of Polyesters as Biomaterials TABLE 1.8 (continued) Ring-Opening Polymerization of Cyclic Esters Bearing Protected Functional Groups Entry 18 Monomer Initiator O Reference Sn(Oct)2 (copolymerization with εCL) Yan et al. (2010) PhCH2OH, Sn(Oct)2 Gerhardt et al. (2007) O HN OBn O 19 O O H N O OBn 4 O O 1.4 RADiCAL RiNg-OPENiNg POLYMERiZATiON Of CYCLiC KETENE ACETALS Although the ring-opening polymerization of cyclic esters is a very widely used technique to prepare aliphatic polyesters, special attention has to be paid to a less common process based on the ring-opening polymerization of cyclic ketene acetals (Bailey 1985, Sanda and Endo 2001, Agarwal 2010). For instance, the polymerization of ɛCL and 2-methylidene-1,3-dioxepane affords an aliphatic polyester with the same chemical structure. Nevertheless, the polyester obtained from ɛCL is semicrystalline and the polyester obtained from 2-methylidene-1,3-dioxepane is completely amorphous due to a high degree of branching (Jin and Gonsalves 1997, Undin et al. 2010). The degradation rate of amorphous polymers being faster compared to semicrystalline polymers, the synthesis of amorphous aliphatic polyesters is promising in terms of biomedical applications. The mechanism of the polymerization of 2-methylidene-1,3-dioxepane is shown in Figure 1.17. Radicals add onto the double bond to afford a new radical. This radical rearrange by ring-opening of the ketal into a new radical, which then propagate. The new C=O double bond is approximately more stable than 50 kcal than the starting C=C double bond. This energy gain, combined with the release of the ring-strain, is the driving force of polymerization (Bailey 1985). Another possible mechanism is the direct radical polymerization without any ring-opening (Figure 1.18). The polymerization selectivity (ring-opening versus direct polymerization) depends on several parameters such as ring size, substituents, and temperature. As far as the seven-membered cyclic acetal 2-methylene-1,3-dioxepane is concerned, polymerization takes place with 100% of ring-opening at room temperature (Bailey et al. 1982). Conversely, ring-opening is accompanied by direct vinyl polymerization whenever five- and six-membered cyclic acetals are polymerized (Bailey 1985). It is also worth noting that the presence of substituents can affect the selectivity of polymerization. Indeed, substituents able to stabilize the radical formed after the ring-opening step disfavor the direct vinyl polymerization. For instance, polymerization of 2-methylidene-4-phenyl1,3-dioxolane is fully selective with 100% ring-opening, whereas polymerization of unsubstituted five-membered cycles is usually not selective (Bailey 1985). 26 Polymeric Biomaterials: Structure and Function, Volume 1 O R + O R R R C O O O O O O O O O C C O FigURE 1.17 Polymerization of 2-methylidene-1,3-dioxepane. R R R + O O O C Ringopening O O O O C O R O O O C O Direct polymerization O R C O FigURE 1.18 O O Polymerization of six-membered cyclic ketene acetals. This technique of polymerization is not very popular because of its poor selectivity and the very difficult synthesis and purification of cyclic ketene acetals with moderate or even low yields. 1.5 MACROMOLECULAR ENgiNEERiNg Of ALiPHATiC POLYESTERS The properties of aliphatic polyesters have to be tailored on demand to develop novel biomedical applications. The previous sections of this review dealt with the main processes of polymerization and the examples given were limited to homopolymerizations. It was already shown that the functionalization of aliphatic polyesters is a first tool allowing the extension of the range of their properties. A second possible approach is based on copolymerization or in the modification of the architecture in the frame of macromolecular engineering. 1.5.1 COpOLYMERIZaTION The simplest technique of copolymerization is the polymerization of a mixture of, at least, two comonomers. The distribution of the two comonomers in the final polymer depends on their reactivity ratios. As far as copolymerization is random, the so-obtained copolyesters exhibit averaged properties of the corresponding homopolymers. The sequential polymerization of comonomers provides block copolymers, provided that the polymerization is living. In this review, it was shown that a plethora of initiators and catalysts allows the ring-opening polymerization of cyclic esters to be living. Accordingly, the literature reports a large number of examples dealing with the synthesis of block copolymers by this technique. Interestingly enough, block copolymers exhibit brand new properties compared to the corresponding homopolymers, and thus not just averaged properties as is the case for random copolymers. In many examples, the ring-opening polymerization of cyclic esters is just used to synthesize one block and the other block is obtained by another technique. Synthesis and Fabrication of Polyesters as Biomaterials 27 For example, PCL-b-PEO diblock copolymers are synthesized by successive polymerization of ethylene oxide and ɛCL (Kim et al. 2004, Bednarek and Kubisa 2005). These polymers are amphiphilic, PEO being soluble in water, which is not in the case of PCL. The self-association of these amphiphilic copolymers in water affords micelles or hollow spheres, which are used as drug carriers in drug delivery applications. It is worth recalling that PEO is not biodegradable but is biocompatible and bioresorbable provided its molar mass is low enough. A plethora of other works describes examples of fully degradable block copolyesters synthesized by ring-opening polymerization. 1.5.2 MODIfICaTION Of THE ARCHITECTURE The synthesis of aliphatic polyesters with various architectures is achieved by using the ­ring-­opening polymerization of cyclic esters, this technique being living under appropriate conditions. A first example is given by star-branched polyesters, which show particular properties such as lower melt viscosities, lower crystallinity, and smaller hydrodynamic volume. Interestingly enough, star-shaped copolyesters contain a higher number of chain-ends compared to linear polymers. Whenever chemists desire to graft a drug, a targeting unit, or a probe, the use of star-shaped polyesters rather than linear polyesters is thus an easy trick to increase their number. Two main techniques allow synthesizing star-shaped copolyesters. In the frame of the arm-first technique, living chains are coupled onto multifunctional (>3) electrophiles (Tian et al. 1994). Conversely, the initiation of the ring-opening polymerization by multifunctional initiators is known as the core-first technique. The most usual conditions are based on the initiation of the polymerization of cyclic esters by polyols in the presence of tin octoate (Trollsas et al. 1998, Lang et al. 2002, Kricheldorf 2004, Choi et al. 2005). Another approach less commonly used relies on the initiation of the polymerization by a spirocyclic initiator (Kricheldorf and Lee 1996, Li et al. 2008). Finally, the arm-first and core-first techniques can be combined to synthesize star-shaped copolymers in order to increase further the range of properties of star-shaped copolymers (Van Butsele et al. 2006, Riva et al. 2011). Graft polymers are other examples of polymers with a branched architecture (Dai et al. 2009). These polymers can be synthesized by three main methods. The polymerization of chains end-capped by a polymerizable unit, i.e., a macromonomer, is known as the “grafting through approach.” The “grafting onto” process is based on the coupling of chains functionalized at one chain-end onto a backbone bearing several complementary functions. The last process, the “grafting from” technique, relies on the initiation of the polymerization by a macroinitiator bearing several initiating units. Hyperbranched aliphatic polyesters are obtained by the polymerization of ABx inimers made up of an initiator and a polymerizable group. Typical examples are lactones substituted by unprotected alcohols (Liu et al. 1999a, Trollsas et al. 1999, Tasaka et al. 2001, Yu et al. 2005a, Parzuchowski et al. 2006). The crystallinity, biodegradation rate, and the mechanical properties of biomaterials made up of aliphatic polyesters can be modified by implementing cross-linking reactions. For instance, Hedrick and coworkers reported the cross-linking of PCL bearing pendant acrylates (Mecerreyes et al. 2001). An intramolecular cross-linking takes place under diluted conditions and nanoparticles are then prepared. As far as the cross-linking is carried out at higher concentration, intermolecular cross-linking affords three-dimensional networks. The cross-linking can be carried out in the presence of radicals (Mecerreyes et al. 2001) or photochemically (Riva et al. 2007, Vaida et al. 2008). The cross-linking of linear or star-shaped aliphatic polyesters bearing an unsaturation at least at two chain-ends is also possible (Turunen et al. 2001, Kweon et al. 2003). The cross-linking can be carried out by processes based exclusively on ring-opening polymerization. In this respect, Albertsson and coworkers reported on the ring-opening polymerization of tetrafunctional bis-(ɛ-caprolactones) (Palmgren et al. 1997, Albertsson et al. 2000). Other cross-linking agents are made up of other polymerizable heterocycles, such as bis-carbonates (Grijpma et al. 1993) or lactones substituted by epoxides (Lowe et al. 2009). All these processes are based on the ring-opening polymerization ­technique. Nevertheless, networks can also be obtained by the polycondensation of comonomers, one of them being at least trifunctional (Kricheldorf and Fechner 2002, Theiler et al. 2010). 28 Polymeric Biomaterials: Structure and Function, Volume 1 Finally, the cross-linking can be carried out by the coupling of telechelic polymers with polyesters bearing along the chains the complementary functional groups. Several coupling reactions are reported for that sake such as the Michael addition of amines onto acrylates (Theiler et al. 2010), the coupling of ketones and oxyamines (van Horn and Wooley 2007), the click copper(II) catalyzed azide-alkyne cycloaddition (Zednik et al. 2008), and the esterification reaction (Kricheldorf and Fechner 2001, Kricheldorf 2004, Theiler et al. 2010). Finally, it is worth noting that other examples of architectures such as macrocycles (Li et al. 2006, Jeong et al. 2007, Lang et al. 2002, Hiskins and Grayson 2009, Misaka et al. 2009, Xie et al. 2009) can be found in the literature. Nevertheless, their impact on the field of biomaterial is quite limited and they will not be reported in this review. As far as macrocycles are concerned, the lack of applications as biomaterials can be accounted for by their difficult synthesis even though some recent progresses have been made in this field (Laurent and Grayson 2009). 1.6 CONCLUSiONS The importance of biodegradable and biocompatible aliphatic polyesters as biomaterials and as environmentally friendly thermoplastics prompted researchers to develop efficient processes for their synthesis, mainly by step-growth polymerization and ring-opening polymerization of cyclic esters. Nowadays, owing to the impressive progresses achieved in this field, it is possible to synthesize ­aliphatic polyesters with high and controlled molar masses, to control the functionalities at the chain-ends and to graft functional groups all along the chains. The architecture of aliphatic ­polyesters can also be modified on demand in the frame of macromolecular engineering. Remarkably, ring-­opening polymerization can be carried out by a very wide range of polymerization techniques such as anionic, cationic, coordination, organocatalytic, enzymatic, and radical polymerizations. The synthesis of aliphatic polyesters can thus be considered as a mature field. Currently, the challenge for a chemist remains to develop efficient processes for the synthesis of ultrapure aliphatic polyesters, thus noncontaminated by toxic catalytical residues. In this regard, tin(II) bis-(2-ethylhexanoate) is still widely used despite its known toxicity and very difficult extraction. Obviously, more work needs to be done despite the very important progresses being reported in the last few years. In the future, special attention will have to be paid to implement green processes, for instance, by avoiding organic solvents and to the synthesis of a wider range of biobased aliphatic polyesters from new monomers produced from renewable resources. ACkNOWLEDgMENTS CERM is indebted to the “Belgian Science Policy” for general support in the frame of the “Interuniversity Attraction Poles Programme (IAP 6/27)—Functional Supramolecular Systems.” P.L. is research associate by the “Fonds National pour la Recherche Scientifique” (FRS-FNRS). REfERENCES Agarwal, S. 2010. Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym. Chem. 1: 953–954. Ajellal, N., C.M. Thomas, and J.F. Carpentier. 2009. Functional syndiotactic poly(β-hydroxyalkanoate)s via stereoselective ring-opening copolymerization of rac-β-butyrolactone and rac-allyl-β-butyrolactone. J. Polym. Sci. A Polym. Chem. 47: 3177–3189. Albertsson, A.C., U. Edlund, and K. Stridsberg. 2000. Controlled ring-opening polymerization of lactones and lactides. Macromol. Symp. 157: 39–46. Albertsson, A.C. and R.K. Srivastava. 2008. Recent developments in enzyme-catalyzed ring-opening polymerization. Adv. Drug Deliv. Rev. 60: 1077–1093. Amgoune, A., C.M. Thomas, S. Ilinca, T. Roisnel, and J.-F. Carpentier. 2006. Highly active, productive, and syndiospecific yttrium initiators for the polymerization of racemic β-butyrolactone. Ang. Chem. Int. Ed. 45: 2782–2784. Bailey, W.J. 1985. Free-radical ring-opening polymerization. Polymer J. 17: 85–95. Synthesis and Fabrication of Polyesters as Biomaterials 29 Bailey, W.J., Z. Ni, and S.R. Wu. 1982. Synthesis of poly-ɛ-caprolactone via a free radical mechanism. Free radical ring opening polymerization of 2-methylene-1,3-dioxepane. J. Polym. Sci. A Polym. Chem. 20: 3021–3030. Barbaud, C., F. Fay, F. Abdillah, S. Randriamahefa, and P. Guérin. 2004. Synthesis of new homopolyester and copolyesters by anionic ring-opening polymerization of α,α′,β-trisubstituted β-lactones. Macromol. Chem. Phys. 205: 199–207. Basko, M. and P. Kubisa. 2006. Cationic copolymerization of ɛ-caprolactone and l,l-lactide by an activated monomer mechanism. J. Polym. Sci. A Polym. Chem. 44: 7071–7081. Bednarek, M. and P. Kubisa. 2005. Copolymerization with the feeding of one of the comonomers: Cationic activated monomer copolymerization of ɛ-caprolactone with ethylene oxide. J. Polym. Sci. A Polym. Chem. 43: 3788–3796. Bizzari, R., F. Chiellini, R. Solaro, E. Chiellini, S. Cammas-Marion, and P. Guerin. 2002. Synthesis and characterization of new malolactonate polymers and copolymers for biomedical applications. Macromolecules 35: 1215–1223. Blanquer, S., J. Tailhades, V. Darcos, M. Amblard, J. Martinez, B. Nottelet, and J. Coudane. 2010. Easy synthesis and ring-opening polymerization of 5-Z-Amino-δ-valerolactone: New degradable amino-functionalized (co)polyesters. J. Polym. Sci. A Polym. Chem. 48: 5891–5898. Bourissou, D., B. Martin-Vaca, A. Dumitrescu, M. Graullier, and F. Lacombe. 2005. Controlled cationic polymerization of lactide. Macromolecules 38: 9993–9998. Carpentier, J.-F. 2010. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones. Macromol. Rapid Commun. 31: 1696–1705. Casas, J., P.V. Persson, T. Iversen, and A. Cordova. 2004. Direct organocatalytic ring-opening polymerizations of lactones. Adv. Synth. Catal. 346: 1087–1089. Choi, J., I.K. Kim, and C.Y. Kwak. 2005. Synthesis and characterization of a series of star-branched poly(ɛcaprolactone)s with the variation in arm numbers and lengths. Polymer 46: 9725–9735. Chuma, A., H.W. Horn, W.C. Swope, R.C. Pratt, L. Zhang, B.G.G. Lohmeijer, C.G. Wade et al. 2008. The reaction mechanism for the organocatalytic ring-opening polymerization of l-Lactide using a guanidinebased catalyst: Hydrogen-bonded or covalently bound? J. Am. Chem. Soc. 130: 6749–6754. Connor, E.F., G.W. Nyce, M. Myers, A. Möck, and J.L. Hedrick. 2002. First example of N-heterocyclic carbenes as catalysts for living polymerization: Organocatalytic ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 124: 914–915. Coulembier, O., P. Degée, J.L. Hedrick, and P. Dubois. 2006a. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives. Prog. Polym. Sci. 31: 723–747. Coulembier, O., A.P. Dove, R.C. Pratt, A.C. Sentman, D.A. Culkin, L. Mespouille, P. Dubois et al. 2005. Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. Ang. Chem. Int. Ed. 44: 4964–4968. Coulembier, O., B.G.G. Lohmeijer, A.P. Dove, R.C. Pratt, L. Mespouille, D.A. Culkin, S.J. Benight et al. 2006b. Alcohol adducts of N-heterocyclic carbenes: Latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules 39: 5617–5628. Dai, W., J. Zhu, A. Shangguan, and M. Lang. 2009. Synthesis, characterization and degradability of the combtype poly(4-hydroxyl-ɛ-caprolactone-co-ɛ-caprolactone)-g-poly(l-lactide). Eur. Polym. J. 45: 1659–1667. Detrembleur, C., M. Mazza, O. Halleux, P. Lecomte, D. Mecerreyes, J.L. Hedrick, and R. Jérôme. 2000. Ringopening polymerization of γ-bromo-ɛ-caprolactone: A novel route to functionalized aliphatic polyesters. Macromolecules 33: 14–18. Dove, A.P., H. Li, R.C. Pratt, B.G.G. Lohmeijer, D.A. Culkin, R.M. Waymouth, and J.L. Hedrick. 2006. Stereoselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chem. Commun. 2006: 2881–2883. Dove, A.P., R.C. Pratt, B.G.G. Lohmeijer, R.M. Waymouth, and J.L. Hedrick. 2005. Thiourea-based bifunctional organocatalysis: Supramolecular recognition for living polymerization. J. Am. Chem. Soc. 127: 13798–13799. Dubois, P., R. Jérôme, and P. Teyssié. 1989. Macromolecular engineering of polylactones and polylactides. I. End-functionalization of poly-ɛ-caprolactone. Polym. Bull. 22: 475–482. Duda, A., A. Kowalski, S. Penczek, H. Uyama, and S. Kobayashi. 2002. Kinetics of the ring-opening polymerization of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones. Comparison of chemical and enzymatic polymerizations. Macromolecules 35: 4266–4270. Duda, A., J. Libiszowski, J. Mosnacek, and S. Penczek. 2005. Copolymerization of cyclic esters at the living polymer-monomer equilibrium. Macromol. Symp. 226: 109–119. Duda, A. and S. Penczek. 1991. Anionic and pseudoanionic polymerization of ɛ-caprolactone. Macromol. Symp. 42/43: 135–143. 30 Polymeric Biomaterials: Structure and Function, Volume 1 Duda, A., S. Penczek, A. Kowalski, and J. Libiszowski. 2000. Polymerization of ɛ-caprolactone and l,l-dilactide initiated with stannous octoate and stannous butoxide—A comparison. Macromol. Symp. 153: 41–53. El Habnouni, S., V. Darcos, and J. Coudane. 2009. Synthesis and ring-opening polymerization of a new functional lactone, α-iodo-ɛ-caprolactone: A novel route to functionalized aliphatic polyesters. Macromol. Rapid Commun. 30: 165–169. Feng, Y., D. Klee, H. Keul, and H. Höcker. 2000. Lipase-catalyzed ring-opening polymerization of morpholine2,5-dione derivatives: A novel route to the synthesis of poly(ester amide)s. Macromol. Chem. Phys. 201: 2670–2675. Feng, Y., J. Knüfermann, D. Klee, and H. Höcker. 1999a. Enzyme-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol. Rapid Commun. 20: 88–90. Feng, Y., J. Knüfermann, D. Klee, and H. Höcker. 1999b. Lipase-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol. Chem. Phys. 200: 1506–1514. Flétier, I., A. Le Borgne, and N. Spassky. 1990. Synthesis of functional polyesters derived from serine. Polym. Bull. 24: 349–353. Gazeau-Bureau, S., D. Delcroix, B. Martin-Vaca, D. Bourissou, C. Navarro, and S. Magnet. 2008. Organocatalyzed ROP of ɛ-caprolactone: Methanesulfonic acid competes with trifluoromethanesulfonic acid. Macromolecules 41: 3782–3784. Gerhardt, W.W., D.E. Noga, K.I. Hardcastle, A.J. Garcıa, D.M. Collard, and M. Weck. 2007. Functional lactide monomers: Methodology and polymerization. Biomacromolecules 8: 1735–1742. Gimenez, S., S. Ponsart, J. Coudane, and M. Vert. 2001. Synthesis, properties and in vitro degradation of carboxyl-bearing PCL. J. Bioact. Compat. Polym. 16: 32–46. Grijpma, D.W., E. Kroeze, A.J. Nijenhuis, and A.J. Pennings. 1993. Poly(l-lactide) crosslinked with spirobis-dimethylene-carbonate. Polymer 34: 1496–1503. Gross, R.A., A. Kumar, and B. Kalra. 2001. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 101: 2097–2124. Guillaume, S.M., M. Schappacher, and A. Soum. 2003. Polymerization of ɛ-caprolactone by Nd(BH4)3(THF)3: Synthesis of hydroxytelechelic poly(ɛ-caprolactone). Macromolecules 36: 54–60. Hamitou, A., R. Jérôme, A.J. Hubert, and P. Teyssié. 1973. A new catalyst for the ring-opening polymerization of lactones to polyesters. Macromolecules 6: 651–652. Hiskins, J.N. and J.M. Grayson. 2009. Synthesis and degradation behavior of cyclic poly(ɛ-caprolactone). Macromolecules 42: 6406–6413. Hofman, A., R. Szymanski, S. Slomkowski, and S. Penczek. 1984. Structure of active species in the cationic polymerization of β-propiolactone and ɛ-caprolactone. Makromol. Chem. 185: 655–667. van Horn, B.A., R.K. Iha, and K.L. Wooley. 2008. Sequential and single-step, one-pot strategies for the transformation of hydrolytically degradable polyesters into multifunctional systems. Macromolecules 41: 1618–1626. van Horn, B.A. and K.L. Wooley. 2007. Cross-linked and functionalized polyester materials constructed using ketoxime ether linkages. Soft Matter 3: 1032–1040. Jeong, W., J.L. Hedrick, and R.M. Waymouth. 2007. Organic spirocyclic initiators for the ring-expansion polymerization of β-lactones. J. Am. Chem. Soc. 129: 8414–8415. Jiang, X., E.B. Vogel, M.R. Smith III, and G.L. Baker. 2008. “Clickable” polyglycolides: Tunable synthons for thermoresponsive, degradable polymers. Macromolecules 41: 1937–1944. Jin, S. and K.E. Gonsalves. 1997. A study of the mechanism of the free-radical ring-opening polymerization of 2-methylene-1,3-dioxepane. Macromolecules 30: 3104–3106. Kakuchi, R., Y. Tsuji, K. Chiba, K. Fuchise, R. Sakai, T. Satoh, and T. Kakuchi. 2010. Controlled/living ringopening polymerization of δ-valerolactone using triflylimide as an efficient cationic organocatalyst. Macromolecules 43: 7090–7094. Kamber, N.E., W. Jeong, R.M. Waymouth, R.C. Pratt, B.G.G. Lohmeijer, and J.L. Hedrick. 2007. Organocatalytic ring-opening polymerization. Chem. Rev. 107: 5813–5840. Kim, M.S., K.S. Seo, G. Khang, S.H. Cho, and H.B. Lee. 2004. Preparation of methoxy poly(ethylene glycol)/ polyester diblock copolymers and examination of the gel-to-sol transition. J. Polym. Sci. A Polym. Chem. 42: 5784–5793. Kimura, Y., K. Shirotani, H. Yamane, and T. Kitao. 1988. Ring-opening polymerization of 3(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: A new route to a poly(α-hydroxy acid) with pendant carboxyl groups. Macromolecules 21: 3338–3340. Knani, D., A.L. Gutman, and D.H. Kohn. 1993. Enzymatic polyesterification in organic media. Enzymecatalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyester. II. Ringopening polymerization of ɛ-caprolactone. J. Polym. Sci. A Polym. Chem. 31: 1221–1232. Synthesis and Fabrication of Polyesters as Biomaterials 31 Kobayashi, S. and A. Makino. 2009. Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chem. Rev. 109: 5288–5353. Kowalski, A., A. Duda, and S. Penczek. 1998. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 1 Polymerization of ɛ-caprolactone. Macromol. Rapid Commun. 19: 567–572. Kowalski, A., A. Duda, and S. Penczek. 2000a. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 3. Polymerization of l,l-dilactide. Macromolecules 33: 7359–7370. Kowalski, A., A. Duda, and S. Penczek. 2000b. Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33: 689–695. Kowalski, A., J. Libiszowski, A. Duda, and S. Penczek. 2000c. Polymerization of l,l-dilactide initiated by tin(II) butoxide. Macromolecules 33: 1964–1971. Kowalski, A., J. Libiszowski, K. Majerska, A. Duda, and S. Penczek. 2007. Kinetics and mechanism of ɛ-caprolactone and l,l-lactide polymerization coinitiated with zinc octoate or aluminum acetylacetonate: The next proofs for the general alkoxide mechanism and synthetic applications. Polymer 48: 3952–3960. Kricheldorf, H.R. 2003. Macrocycles. 21. Role of ring-ring equilibria in thermodynamically controlled polycondensations. Macromolecules 36: 2302–2308. Kricheldorf, H.R. 2004. Biodegradable polymers with variable architectures via ring-expansion polymerization. J. Polym. Sci. A Polym. Chem. 42: 4723–4742. Kricheldorf, H.R., K. Ahrensdorf, and S. Rost. 2004. Star-shaped homo- and copolyesters derived from ɛ-caprolactone, l,l-lactide and trimethylene carbonate. Macromol. Chem. Phys. 205: 1602–1610. Kricheldorf, H.R. and D.O. Damrau. 1998. Zn l-lactate-catalyzed polymerizations of 1,4-dioxan-2-one. Macromol. Chem. Phys. 199: 1089–1097. Kricheldorf, H.R. and S. Eggerstedt. 1998. Macrocycles 2. Living macrocyclic polymerization of ɛ-caprolactone with 2,2-dibutyl-2-stanna-1,3-dioxepane as initiator. Macromol. Chem. Phys. 199: 283–290. Kricheldorf, H.R. and B. Fechner. 2001. Polylactones. 51. Resorbable networks by combined ring-expansion polymerization and ring-opening polycondensation of ɛ-caprolactone or dl-lactide. Macromolecules 34: 3517–3521. Kricheldorf, H.R. and B. Fechner. 2002. Polylactones. 59. Biodegradable networks via ring-expansion polymerization of lactones and lactides. Biomacromolecules 3: 691–695. Kricheldorf, H.R., M. Garaleh, and G. Schwarz. 2005. Tertiary amine-initiated zwitterionic polymerization of pivalolactone—A reinvestigation by means of MALDI-TOF mass spectrometry. J. Macromol. Sci. A Pure Appl. Chem. 42: 139–148. Kricheldorf, H.R., J.M. Jonte, and R. Dunsing. 1986. Polylactones. 7. The mechanism of cationic polymerization of β-propiolactone and ɛ-caprolactone. Makromol. Chem. 187: 771–785. Kricheldorf, H.R. and S.R. Lee. 1996. Polylactones. 40. Nanopretzels by macrocyclic polymerization of lactones via a spirocyclic tin initiator derived from pentaerythritol. Macromolecules 29: 8669–8695. Kricheldorf, H.R. and G. Schwarz. 2003. Cyclic polymers by kinetically controlled step-growth polymerization. Macromol. Rapid Commun. 24: 359–381. Kricheldorf, H.R., A. Stricker, and D. Langanke. 2001. Polylactones, 50. The reactivity of cyclic and noncyclic dibutyltin bisalkoxides as initiators in the polymerization of lactones. Macromol. Chem. Phys. 202: 2525–2534. Kudoh, R., A. Sudo, and T. Endo. 2009. Synthesis of eight-membered lactone having tertiary amine moiety by ring-expansion reaction of 1,3-benzoxazine and its anionic ring-opening polymerization behavior. Macromolecules 42: 2327–2329. Kweon, H., M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H.S. Lee, J.S. Oh et al. 2003. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24: 801–808. Lang, M., R.P. Wong, and C.C. Chu. 2002. Synthesis and structural analysis of functionalized poly(ɛcaprolactone)-based three arm star polymers. J. Polym. Sci. A Polym. Chem. 40: 1127–1141. Latere, J.P., P. Lecomte, P. Dubois, and R. Jérôme. 2002. 2-Oxepane-1,5-dione: A precursor of a novel class of versatile semicrystalline biodegradable (co)polyester. Macromolecules 21: 7857–7859. Laurent, B.A. and S.M. Grayson. 2009. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 38: 2202–2213. Lecomte, P., V. D’Aloia, M. Mazza, O. Halleux, S. Gautier, C. Detrembleur, and R. Jérôme. 2000. Synthesis of new hydrophilic γ-substituted poly-ɛ-caprolactones. Polymer Preprints. Am. Chem. Soc. 41(2): 1534–1535. Lecomte, P. and R. Jérôme. 2004. Recent developments in controlled/living ring opening polymerization. In Encyclopedia of Polymer Science and Technology, ed. J. Kroschwitz, pp. 547–565. Hoboken, NJ: Wiley. Lecomte, P., R. Riva, C. Jérôme, and R. Jérôme. 2008. Macromolecular engineering of biodegradable polyesters by ring-opening polymerization and click chemistry. Macromol. Rapid Commun. 29: 982–997. 32 Polymeric Biomaterials: Structure and Function, Volume 1 Lecomte, P., R. Riva, S. Schmeits, J. Rieger, K. Van Butsele, C. Jérôme, and R. Jérôme. 2006. New prospects for the grafting of functional groups onto aliphatic polyesters. Ring-opening polymerization of α- or γ-substituted ɛ-caprolactone followed by chemical derivatization of the substituents. Macromol. Symp. 240: 157–165. Leemhuis, M., N. Akeroyd, J.A.W. Kruijtzer, C.F. van Nostrum, and W.E. Hennink. 2008. Synthesis and characterization of allyl functionalized poly(α-hydroxy)acids and their further dihydroxylation and epoxidation. Eur. Polym. J. 44: 308–317. Leemhuis, M., C.F. van Nostrum, J.A.W. Kruijtzer, Z.Y. Zhong, M.R. ten Breteler, P.J. Dijkstra, J. Feijen et al. 2006. Functionalized poly(α-hydroxy acid)s via ring-opening polymerization: Toward hydrophilic polyesters with pendant hydroxyl groups. Macromolecules 39: 3500–3508. Lenoir, S., R. Riva, X. Lou, C. Detrembleur, R. Jérôme, and P. Lecomte. 2004. Ring-opening polymerization of α-chloro-ɛ-caprolactone and chemical modification of poly(α-chloro-ɛ-caprolactone) by atom transfer radical processes. Macromolecules 37: 4055–4061. Li, H., A. Debuigne, R. Jérôme, and P. Lecomte. 2006. Synthesis of macrocyclic poly(ɛ-caprolactone) by intramolecular cross-linking of unsaturated end groups of chains precyclic by the initiation. Ang. Chem. Int. Ed. 45: 2264–2267. Li, H., R. Riva, H.R. Kricheldorf, R. Jérôme, and P. Lecomte. 2008. Synthesis of eight and star-shaped poly(ɛcaprolactone)s and their amphiphilic derivatives. Chem. Eur. J. 14: 358–368. Libiszowki, J., A. Kowalski, A. Duda, and S. Penczek. 2002. Kinetics and mechanism of cyclic esters polymerization initiated with covalent metal carboxylates, 5. End-group studies in the model ɛ-caprolactone and l,l-dilactide/tin(II) and zinc octoate/butyl alcohol systems. Macromol. Chem. Phys. 203: 1694–1701. Liu, J. and L. Liu. 2004. Ring-opening polymerization of ɛ-caprolactone initiated by natural amino acids. Macromolecules 37: 2674–2676. Liu, M., N. Vladimirov, and J.M.J. Fréchet. 1999a. A new approach to hyperbranched polymers by ring-opening polymerization of an AB Monomer: 4-(2-hydroxyethyl)-ɛ-caprolactone. Macromolecules 32: 6881–6884. Liu, X.Q., M.X. Wang, Z.C. Li, and F.M. Li. 1999b. Synthesis and ring-opening polymerization of α-chloromethyl-α-methyl-β-propiolactone. Macromol. Chem. Phys. 200: 468–473. Loeker, F.C., C.J. Duxbury, R. Kumar, W. Gao, R.A. Gross, and S.M. Howdle. 2004. Enzyme-catalyzed ring-opening polymerization of ɛ-caprolactone in supercritical carbon dioxide. Macromolecules 37: 2450–2453. Löfgren, A., A.C. Albertsson, P. Dubois, and R. Jérôme. 1995. Recent advances in ring-opening polymerization of lactones and related compounds. J. Macromol. Sci. C Rev. Macromol. Chem. Phys. 35: 379–418. Löfgren, A., A.C. Albertsson, P. Dubois, R. Jérôme, and P. Teyssié. 1994. Synthesis and characterization of biodegradable homopolymers and block copolymers based on 1,5-dioxepan-2-one. Macromolecules 27: 5556–5562. Lohmeijer, B.G.G., R.C. Pratt, F. Leibfarth, J.W. Logan, D.A. Long, A.P. Dove, F. Nederberg, J. Choi, C. Wade, R.M. Waymouth, and J.L. Hedrick. 2006. Guanidine and amidine organocatalysts for ringopening polymerization of cyclic esters. Macromolecules 39: 8574–8583. Lou, X., C. Detrembleur, and R. Jérôme. 2002a. Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules 35: 1190–1195. Lou, X., C. Detrembleur, and R. Jérôme. 2003. Novel aliphatic polyesters based on functional cyclic (di)esters. Macromol. Rapid Commun. 24: 161–172. Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2001. Living ring-opening (co)polymerization of 6,7-dihydro-2(5H)-oxepinone into unsaturated aliphatic polyesters. Macromolecules 34: 5806–5811. Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2002b. Controlled synthesis and chemical modification of unsaturated aliphatic (co)polyesters based on 6,7-dihydro-2(3H)-oxepinone. J. Polym. Sci. A Polym. Chem. 40: 2286–2297. Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2002c. Novel unsaturated ɛ-caprolactone polymerizable by ring-opening metathesis mechanisms. e-polymers 34: 1–12. Lowe, J.R., W.B. Tolman, and M.A. Hillmyer. 2009. Oxidized dihydrocarvone as a renewable multifunctional monomer for the synthesis of shape memory polyesters. Biomacromolecules 10: 2003–2008. Lu, J., R.C. Tappel, and C.T. Nomura. 2009. Mini-review: Biosynthesis of poly(hydroxyalkanoates). J. Macromol. Sci. C Polym. Rev. 49: 226–248. Mahmud, A., X.B. Xiong, and A. Lavasanifar. 2006. Novel self-associating poly(ethylene oxide)-block-poly(ɛcaprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules 39: 9419–9428. Majerska, K., A. Duda, and S. Penczek. 2000. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 4. Influence of proton trapping agents on the kinetics of ɛ-caprolactone and l,ldilactide polymerization. Macromol. Rapid Commun. 21: 1327–1332. Synthesis and Fabrication of Polyesters as Biomaterials 33 Martin, E., P. Dubois, and R. Jérôme. 2000. Controlled ring-opening polymerization of ɛ-caprolactone promoted by “in situ” formed yttrium alkoxides. Macromolecules 33: 1530–1535. Martin, E., P. Dubois, and R. Jérôme. 2003a. “In situ” formation of yttrium alkoxides: A versatile and efficient catalyst for the ROP of ɛ-caprolactone. Macromolecules 36: 5934–5941. Martin, E., P. Dubois, and R. Jérôme. 2003b. Preparation of supported yttrium alkoxides as catalysts for the polymerization of lactones and oxirane. J. Polym. Sci. A Polym. Chem. 41: 569–578. Martin, E., P. Dubois, and R. Jérôme. 2003c. Polymerization of ɛ-caprolactone initiated by Y alkoxide grafted onto porous silica. Macromolecules 36: 7094–7099. Mathisen, T. and A.C. Albertsson. 1989. Polymerization of 1,5-dioxepan-2-one. 1. Synthesis and characterization of the monomer 1,5-dioxepan-2-one and its cyclic dimer 1,5,8,12-tetraoxacyclotetradecane-2,9dione. Macromolecules 22: 3838–3842. Mathisen, T., K. Masus, and A.C. Albertsson. 1989. Polymerization of 1,5-dioxepan-2-one. 2. Polymerization of 1,5-dioxepan-2-one and its cyclic dimer, including a new procedure for the synthesis of 1,5-dioxepan2-one. Macromolecules 22: 3842–3846. McLain, S.J. and N.E. Drysdale. 1992. Living ring-opening polymerization of ɛ-caprolactone by yttrium and lanthanide alkoxides. Polymer Preprints. Am. Chem. Soc. 33(1): 174–175. Mecerreyes, D., B. Atthoff, K.A. Boduch, M. Trollsas, and J.L. Hedrick. 1999. Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 16: 5175–5182. Mecerreyes, D., J. Humes, R.D. Miller, J.L. Hedrick, P. Lecomte, C. Detrembleur, and R. Jérôme. 2000a. First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol. Rapid Commun. 21: 779–784. Mecerreyes, D., V. Lee., C.J. Hawker, J.L. Hedrick, A. Wursch, W. Volksen, T. Magbitang et al. 2001. A novel approach to functionalized nanoparticles: Self-crosslinking of macromolecules in ultradilute solution. Adv. Mater. 13: 204–208. Mecerreyes, D., R.D. Miller, J.L. Hedrick, C. Detrembleur, and R. Jérôme. 2000b. Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone: Novel biodegradable copolymers containing allyl pendent groups. J. Polym. Sci. A Polym. Chem. 38: 870–875. Mingotaud, A.-F., F. Cansell, N. Gilbert, and A. Soum. 1999. Cationic and anionic ring-opening polymerization in supercritical CO2. Preliminary results. Polym. J. 31: 406–410. Mingotaud, A.-F., F. Dargelas, and F. Cansell. 2000. Cationic and anionic ring-opening polymerization in supercritical CO2. Macromol. Symp. 153: 77–86. Miola-Delaite, C., E. Colomb, E. Pollet, and T. Hamaide. 2000. Anionic ring-opening polymerization of oxygenated heterocycles with supported zirconium and rare earth alkoxides as initiators in protic conditions towards a catalytic heterogeneous process. Macromol. Symp. 153: 275–286. Misaka, H., R. Kakuchi, C. Zhang, R. Sakai, T. Satoh, and T. Kakuchi. 2009. Synthesis of well-defined macrocyclic poly(δ-valerolactone) by “click cyclization.” Macromolecules 42: 5091–5096. Möller, M., F. Nederberg, L.S. Lim, R. Kange, C.J. Hawker, J.L. Hedrick, Y. Gu et al. 2000. Sn(OTf)2 and Sc(OTf)3: Efficient and versatile catalysts for the controlled polymerization of lactones. J. Polym. Sci. A Polym. Chem. 38: 2067–2074. Myers, M., E.F. Connor, T. Glauser, A. Möck, G. Nyce, and J.L. Hedrick. 2002. Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J. Polym. Sci. A Polym. Chem. 40: 844–851. van Natta, F.J., J.W. Hill, and W.H. Carothers. 1934. Studies of polymerization and ring formation. XXIII. ɛ-Caprolactone and its polymers. J. Am. Chem. Soc. 56: 455–457. Nederberg, F., E.F. Connor, M. Möller, T. Glauser, and J.L. Hedrick. 2001. New paradigms for organic catalysts: The first organocatalytic living polymerization. Ang. Chem. Int. Ed. 40: 2712–2715. Nomura, N., A. Taira, T. Tomioka, and M. Okada. 2000. A catalytic approach for cationic living polymerization: Sc(OTf)3-catalyzed ring-opening polymerization of lactones. Macromolecules 33: 1497–1499. Nottelet, B., J. Coudane, and M. Vert. 2006. Synthesis of an x-ray opaque biodegradable copolyester by chemical modification of poly (ɛ-caprolactone). Biomaterials 27: 4948–4954. Nyce, G.W., T. Glauser, E.F. Connor, A. Möck, R.M. Waymouth, and J.L. Hedrick. 2003. In situ generation of carbenes: A general and versatile platform for organocatalytic living polymerization. J. Am. Chem. Soc. 125: 3046–3056. Oshimura, M. and A. Takasu. 2010. Controlled ring-opening polymerization of ɛ-caprolactone catalyzed by rare-earth perfluoroalkanesulfonates and perfluoroalkanesulfonimides. Macromolecules 43: 2283–2290. Oshimura, M., T. Tang, and A. Takasu. 2011. Ring-opening polymerization of ɛ-caprolactone using perfluoroalkanesulfonates and perfluoroalkanesulfonimides as organic catalysts. J. Polym. Sci. A Polym. Chem. 49: 1210–1218. 34 Polymeric Biomaterials: Structure and Function, Volume 1 Ouhadi, T., A. Hamitou, R. Jérôme, and P. Teyssié. 1976. Soluble bimetallic μ-oxoalkoxides. 8. Structure and kinetic behavior of the catalytic species in unsubstituted lactone ring-opening polymerization. Macromolecules 9: 927–931. Palard, I., A. Soum, and S.M. Guillaume. 2005. Rare earth metal tris(borohydride) complexes as initiators for ɛ-caprolactone polymerization: General features and IR investigations of the process. Macromolecules 36: 54–60. Palmgren, R., S. Karlsson, and A.C. Albertsson. 1997. Synthesis of degradable crosslinked polymers based on 1,5-dioxepan-2-one and crosslinker of bis-1-caprolactone type. J. Polym. Sci. A Polym. Chem. 35: 1635–1649. Parrish, B., R.B. Breitenkamp, and T. Emrick. 2005. PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127: 7404–7410. Parrish, B. and T. Emrick. 2004. Aliphatic polyesters withy pendant cyclopentene groups: Controlled synthesis and conversion to polyester-graft-PEG copolymers. Macromolecules 37: 5863–5865. Parzuchowski, P.G., M. Grabowska, M. Tryznowski, and G. Rokicki. 2006. Synthesis of glycerol based hyperbranched polyesters with primary hydroxyl groups. Macromolecules 39: 7181–7186. Penczek, S., T. Biela, and A. Duda. 2000. Living polymerization with reversible chain transfer and reversible deactivation: The case of cyclic esters. Macromol. Rapid Commun. 21: 941–950. Penczek, S., M. Cypryk, A. Duda, P. Kubisa, and S. Slomkowski. 2007. Living ring-opening polymerizations of heterocyclic monomers. Prog. Polym. Sci. 32: 247–282. Persson, P.V., J. Casas, T. Iversen, and A. Cordova. 2006. Direct organocatalytic chemoselective synthesis of a dendrimer-like star polyester. Macromolecules 39: 2819–2822. Pitt, C.G., Z.H. Gu, P. Ingram, and R.W. Hendren. 1987. The synthesis of biodegradable polymers with functional side chains. J. Polym. Sci. A Polym. Chem. 25: 955–966. Ponsart, S., J. Coudane, J. McGrath, and M. Vert. 2002. Study of the grafting of bromoacetylated α-hydroxy-ωmethoxypoly(ethyleneglycol) onto anionically activated poly(ɛ-caprolactone). J. Bioact. Compat. Polym. 17: 417–432. Ponsart, S., J. Coudane, J.L. Morgat, and M. Vert. 2001. Synthesis of 3H and fluorescence-labelled poly (dlLactic acid). J. Labelled Comp. Radiopharm. 44: 677–687. Ponsart, S., J. Coudane, and M. Vert. 2000. A novel route to poly(ɛ-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules 1: 275–281. Pratt, R.C., B.G.G. Lohmeijer, D.A. Long, R.M. Waymouth, and J.L. Hedrick. 2006. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 128: 4556–4557. Raquez, J.M., P. Degée, R. Narayan, and P. Dubois. 2000. “Coordination-insertion” ring-opening polymerization of 1,4-dioxan-2-one and controlled synthesis of diblock copolymers with ɛ-caprolactone. Macromol. Rapid Commun. 21: 1063–1071. Raquez, J.M., P. Degée, R. Narayan, and P. Dubois. 2001. Some thermodynamic, kinetic, and mechanistic aspects of the ring-opening polymerization of 1,4-dioxan-2-one initiated by Al(OiPr)3 in bulk. Macromolecules 34: 8419–8425. Renard, E., C. Ternat, V. Langlois, and P. Guérin. 2003. Synthesis of graft bacterial polyesters for nanoparticles preparation. Macromol. Biosci. 3: 248–252. Rieger, J., K. Van Butsele, P. Lecomte, C. Detrembleur, R. Jérôme, and C. Jérôme. 2005. Versatile functionalization and grafting of poly(ɛ-caprolactone) by Michael-type addition. Chem. Commun. 274–276. Riva, R., W. Lazzari, L. Billiet, F. Du Prez, C. Jérôme, and P. Lecomte. 2011. Preparation of pH-sensitive starshaped aliphatic polyesters as precursors of polymersomes. J. Polym. Sci. A Polym. Chem. 49: 1552–1563. Riva, R., S. Schmeits, C. Jérôme, R. Jérôme, and P. Lecomte. 2007. Combination of ring-opening polymerization toward functionalization and grafting of poly(ɛ-caprolactone). Macromolecules 40: 796–803. Ropson, N., P. Dubois, R. Jérôme, and P. Teyssié. 1995. Macromolecular engineering of polylactones and polylactides. 20. Effect of monomer, solvent, and initiator on the ring-opening polymerization as initiated with aluminum alkoxides. Macromolecules 28: 7589–7598. Sanda, F. and T. Endo. 2001. Radical ring-opening polymerization. J. Polym. Sci. A Polym. Chem. 39: 265–276. Sanda, F., H. Sanada, Y. Shibasaki, and T. Endo. 2002. Star polymer synthesis from ɛ-caprolactone utilizing polyol/protonic acid initiator. Macromolecules 35: 680–683. Save, M., M. Schappacher, and A. Soum. 2002. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide. I. General aspects and kinetics. Macromol. Chem. Phys. 203: 889–899. Shen, Y., Z. Shen, Y. Zhang, and K. Yao. 1996. Novel rare earth catalysts for the living polymerization and block copolymerization of ɛ-caprolactone. Macromolecules 29: 8289–8295. Synthesis and Fabrication of Polyesters as Biomaterials 35 Shibasaki, Y., H. Sanada, M. Yokoi, F. Sanda, and T. Endo. 2000. Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules 33: 4316–4320. Shirahama, H., K. Mizuma, Y. Kawaguchi, M. Shomi, and H. Yasuda. 1993. Development of new biodegradable polymers. Kobunshi Ronbunshu 50: 821–835. Shirahama, H., M. Shomi, M. Sakane, and H. Yasuda. 1996. Biodegradation of novel optically active polyesters synthesized by copolymerization of (R)-MOHEL with lactones. Macromolecules 29: 4821–4828. Shueh, M.L., Y.S. Wang, B.H. Huang, C.Y. Kuo, and C.C. Lin. 2004. Reactions of 2,2′-methylenebis(4-chloro-6isopropyl-3-methylphenol) and 2,2′-ethylenebis(4,6-di-tert-butylphenol)with MgnBr2: Efficient catalysts for the ring-opening polymerization of ɛ-caprolactone and l-lactide. Macromolecules 37: 5155–5162. Simmons, T.L. and G.L. Baker. 2001. Poly(phenyllactide): Synthesis, characterization and hydrolytic degradation. Biomacromolecules 2: 658–663. Sinha, V. R., K. Bansal, R. Kaushik, R. Kumria, and A. Trehan. 2004. Poly-ɛ-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm. 278: 1–23. Slomkowski, S., R. Szymanski, and A. Hofman. 1985. Formation of the intermediate cyclic six-membered oxonium ion in the cationic polymerization of β-propiolactone initiated with CH 3CO + SbF6− . Makromol. Chem. 186: 2283–2290. Stassin, H., O. Halleux, P. Dubois, C. Detrembleur, P. Lecomte, and R. Jérôme. 2000. Ring-opening copolymerization of ɛ-caprolactone, γ-triethylsilyloxy-ɛ-caprolactone and γ-ethylene ketal- ɛ-caprolactone: A route to hetero-graft copolyesters. Macromol. Symp. 153: 27–39. Stassin, F., O. Halleux, and R. Jérôme. 2001. Ring-opening polymerization of ɛ-caprolactone in supercritical carbon dioxide. Macromolecules 34: 775–781. Stassin, F. and R. Jérôme. 2002. Effect of pressure and temperature upon tin alkoxide-promoted ring-opening polymerisation of ɛ-caprolactone in supercritical carbon dioxide. Chem. Commun. 232–233. Stassin, F. and R. Jérôme. 2004. Contribution of supercritical CO2 to the preparation of aliphatic polyesters and materials thereof. Macromol. Symp. 217: 135–146. Stevels, W.M., M.J.K. Ankoné, P.J. Dijkstra, and J. Feijen. 1996a. A versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols. Macromolecules 29: 3332–3333. Stevels, W.M., M.J.K. Ankoné, P.J. Dijkstra, and J. Feijen. 1996b. Kinetics and mechanism of ɛ-caprolactone polymerization using yttrium alkoxides as initiators. Macromolecules 29: 8296–8303. Stjerndahl, A., A.F. Wistrand, and A.C. Albertsson. 2007. Industrial utilization of tin-initiated resorbable polymers: Synthesis on a large scale with a low amount of initiator residue. Biomacromolecules 8: 937–940. Stridsberg, K.M., M. Ryner, and A.-C. Albertsson. 2002. Controlled ring-opening polymerization: Polymers with designed macromolecular architecture. Adv. Polym. Sci. 157: 42–139. Szwarc, M. 1956. Living polymers. Nature 178: 1168–1169. Takamoto, T., H. Uyama, and S. Kobayashi. 2001. Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. e-polymers 4:1–6. Taniguchi, I., A.M. Mayes, E.W.L. Chan, and L.G. Griffith. 2005. A chemoselective approach to grafting biodegradable polyesters. Macromolecules 38: 216–219. Tasaka, F., Y. Ohya, and T. Ouchi. 2001. One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalonolactone. Macromol. Rapid Commun. 22: 820–824. Theiler, S., M. Teske, H. Keul, K. Sternberg, and M. Möller. 2010. Synthesis, characterization and in vitro degradation of 3D-microstructured poly(ɛ-caprolactone) resins. Polym. Chem. 1: 1215–1225. Tian, D., P. Dubois, C. Grandfils, and R. Jérôme. 1997. Ring-opening polymerization of 1,4,8-trioxaspiro[4.6]9-undecanone: A new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 30: 406–409. Tian, D., P. Dubois, R. Jérôme, and P. Teyssié. 1994. Macromolecular engineering of polylactones and polylactides. 18. Synthesis of star-branched aliphatic polyesters bearing various functional end-groups. Macromolecules 27: 4134–4144. Tortosa, K., T. Hamaide, C. Boisson, and R. Spitz. 2001. Homogeneous and heterogeneous polymerization of ɛ-caprolactone by neodymium alkoxides prepared in situ. Macromol. Chem. Phys. 202: 1156–1160. Trollsas, M., C.J. Hawker, J.F. Remenar, J.L. Hedrick, M. Johansson, H. Ihre, and A. Hult. 1998. Highly branched radial block copolymers via dendritic initiation of aliphatic polyesters. J. Polym. Sci. A Polym. Chem. 36: 2793–2798. Trollsas, M., V.Y. Lee, D. Mecerreyes, P. Löwenhielm, M. Möller, R.D. Miller, and J.L. Hedrick. 2000. Hydrophilic aliphatic polyesters: Design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules 33: 4619–4627. 36 Polymeric Biomaterials: Structure and Function, Volume 1 Trollsas, M., P. Löwenhielm, V.Y. Lee, M. Möller, R.D. Miller, and J.L. Hedrick. 1999. New approach to hyperbranched polyesters: Self-condensing cyclic ester polymerization of bis(hydroxymethyl)-substituted ɛ-caprolactone. Macromolecules 32: 9062–9066. Turunen, M.P.K., H. Korhonen, J. Tuominen, and J.V. Seppälä. 2001. Synthesis, characterization and crosslinking of functional star-shaped poly(ɛ-caprolactone). Polym. Int. 51: 92–100. Undin, J., P. Plikk, A. Finne-Wistrand, and A.C. Albertsson. 2010. Synthesis of amorphous aliphatic polyesterether homo- and copolymers by radical polymerization of ketene acetals. J. Polym. Sci. A Polym. Chem. 48: 4965–4973. Uyama, H. and S. Kobayashi. 1993. Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem. Lett. 7: 1149–1150. Vaida, C., P. Mela, H. Keul, and M. Möller. 2008. 2D- and 3D-Microstructured biodegradable polyester resins. J. Polym. Sci. A Polym. Chem. 46: 6789–6800. Van Butsele, K., F. Stoffelbach, R. Jérôme, and C. Jérôme. 2006. Synthesis of novel amphiphilic and pHsensitive ABC miktoarm star terpolymers. Macromolecules 39: 5652–5656. Varma, I.K., A.C. Albertsson, R. Rajkhowa, and R.K. Srivistava. 2005. Enzyme catalyzed synthesis of polyesters. Prog. Polym. Sci. 30: 949–981. Veld, M.J., A.R.A. Palmans, and E.W. Meijer. 2007. Selective polymerization of functional monomers with Novozym 435. J. Polym. Sci. A Polym. Chem. 45: 5968–5978. Wang, G., Y. Shi, Z. Fu, W. Yang, Q. Huang, and Y. Zhang. 2005. Controlled synthesis of poly(ɛ-caprolactone)graft-polystyrene by atom transfer radical polymerization with poly(ɛ-caprolactone-co-α-bromo-ɛcaprolactone) copolymer as macroinitiator. Polymer 46: 10601–10606. Westerhausen, M., S. Schneiderbauer, A.N. Kneifel, Y. Söltl, P. Mayer, H. Nöth, Z. Zhong, P.J. Dijkstra, and J. Feijen. 2003. Organocalcium compounds with catalytic activity for the ring-opening polymerization of lactones. Eur. J. Inorg. Chem. 2003: 3432–3439. Williams, S.F., D.P. Martin, D.M. Horowitz, and O.P. Peoples. 1999. PHA applications: Addressing the price performance issue I. Tissue engineering. Int. J. Biol. Macromol. 25: 111–121. Wilson, B.C. and C.W. Jones. 2004. A recoverable, metal-free catalyst for the green polymerization of ɛ-caprolactone. Macromolecules 37: 9709–9714. Woodruff, M.A. and W. Hutmacher. 2010. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 35: 1217–1256. Xie, M., J. Shi, L. Ding, J. Li, H. Han, and Y. Zhang. 2009. Cyclic poly(ɛ-caprolactone) synthesized by combination of ring-opening polymerization with ring-closing metathesis, ring closing enyne metathesis, or “click” reaction. J. Polym. Sci. A Polym. Chem. 47: 3022–3033. Yamashita, M., Y. Takemoto, E. Ihara, and H. Yasuda. 1996. Organolanthanide-initiated living polymerization of ɛ-caprolactone, δ-valerolactone, and β-propiolactone. Macromolecules 29: 1798–1806. Yan, J., Y. Zhang, Y. Xiao, Y. Zhang, and M.D. Lang. 2010. Novel poly(ɛ-caprolactone)s bearing amino groups: Synthesis, characterization and biotinylation. React. Funct. Polym. 70: 400–407. Yu, X.H., J. Feng, and R.X. Zhuo. 2005a. Preparation of hyperbranched aliphatic polyester derived from functionalized 1,4-dioxan-2-one. Macromolecules 38: 6244–6247. Yu, T.L., C.C. Wu, C.C. Chen, B.H. Huang, J. Wu, and C.C. Lin. 2005b. Catalysts for the ring-opening polymerization of ɛ-caprolactone and l-lactide and the mechanistic study. Polymer 46: 5909–5917. Zednik, J., R. Riva, P. Lussis, C. Jérôme, R. Jérôme, and P. Lecomte. 2008. pH-responsive biodegradable amphiphilic networks. Polymer 49: 697–702. Zeng, F., H. Lee, M. Chidiac, and C. Allen. 2005. Synthesis and characterization of six-arm star poly(δvalerolactone)-block-methoxy poly(ethylene glycol) copolymers. Biomacromolecules 6: 2140–2149. Zhang, L., F. Nederberg, J.M. Messman, R.C. Pratt, R.M. Waymouth, J.L. Hedrick, and C.G. Wade. 2007b. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J. Am. Chem. Soc. 129: 12610–12611. Zhang, L., F. Nederberg, R.C. Pratt, R.M. Waymouth, J.L. Hedrick, and C.G. Wade. 2007a. Phosphazene bases: A new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40: 4154–4158. Zhong, Z., P.J. Dijkstra, C. Birg, M. Westerhausen, and J. Feijen. 2001. A novel and versatile calcium-based initiator system for the ring-opening polymerization of cyclic esters. Macromolecules 34: 3863–3868. Zhong, Z., P.J. Dijkstra, and J. Feijen. 2004. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single site stereoselective polymerization initiators. J. Biomater. Sci. Polymer Ed. 15: 929–946. References 1 Chapter 1. Synthesis and Fabrication of Polyesters as Biomaterials Agarwal, S. 2010. Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym. Chem. 1: 953–954. Ajellal, N., C.M. Thomas, and J.F. Carpentier. 2009. Functional syndiotactic poly(β-hydroxyalkanoate)s via stereoselective ring-opening copolymerization of rac-β-butyrolactone and rac-allyl-β-butyrolactone. J. Polym. Sci. A Polym. Chem. 47: 3177–3189. Albertsson, A.C., U. Edlund, and K. Stridsberg. 2000. Controlled ring-opening polymerization of lactones and lactides. Macromol. Symp. 157: 39–46. Albertsson, A.C. and R.K. Srivastava. 2008. Recent developments in enzyme-catalyzed ring-opening polymerization. Adv. Drug Deliv. Rev. 60: 1077–1093. Amgoune, A., C.M. Thomas, S. Ilinca, T. Roisnel, and J.-F. Carpentier. 2006. Highly active, productive, and syndiospeci�c yttrium initiators for the polymerization of racemic β-butyrolactone. Ang. Chem. Int. Ed. 45: 2782–2784. Bailey, W.J. 1985. Free-radical ring-opening polymerization. Polymer J. 17: 85–95. Bailey, W.J., Z. Ni, and S.R. Wu. 1982. Synthesis of poly-ɛ-caprolactone via a free radical mechanism. Free radical ring opening polymerization of 2-methylene-1,3-dioxepane. J. Polym. Sci. A Polym. Chem. 20: 3021–3030. Barbaud, C., F. Fay, F. Abdillah, S. Randriamahefa, and P. Guérin. 2004. Synthesis of new homopolyester and copolyesters by anionic ring-opening polymerization of α,α′,β-trisubstituted β-lactones. Macromol. Chem. Phys. 205: 199–207. Basko, M. and P. Kubisa. 2006. Cationic copolymerization of ɛ-caprolactone and l,l-lactide by an activated monomer mechanism. J. Polym. Sci. A Polym. Chem. 44: 7071–7081. Bednarek, M. and P. Kubisa. 2005. Copolymerization with the feeding of one of the comonomers: Cationic activated monomer copolymerization of ɛ-caprolactone with ethylene oxide. J. Polym. Sci. A Polym. Chem. 43: 3788–3796. Bizzari, R., F. Chiellini, R. Solaro, E. Chiellini, S. Cammas-Marion, and P. Guerin. 2002. Synthesis and characterization of new malolactonate polymers and copolymers for biomedical applications. Macromolecules 35: 1215–1223. Blanquer, S., J. Tailhades, V. Darcos, M. Amblard, J. Martinez, B. Nottelet, and J. Coudane. 2010. Easy synthesis and ring-opening polymerization of 5-Z-Amino-δ-valerolactone: New degradable amino-functionalized (co)polyesters. J. Polym. Sci. A Polym. Chem. 48: 5891–5898. Bourissou, D., B. Martin-Vaca, A. Dumitrescu, M. Graullier, and F. Lacombe. 2005. Controlled cationic polymerization of lactide. Macromolecules 38: 9993–9998. Carpentier, J.-F. 2010. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones. Macromol. Rapid Commun. 31: 1696–1705. Casas, J., P.V. Persson, T. Iversen, and A. Cordova. 2004. Direct organocatalytic ring-opening polymerizations of lactones. Adv. Synth. Catal. 346: 1087–1089. Choi, J., I.K. Kim, and C.Y. Kwak. 2005. Synthesis and characterization of a series of star-branched poly(ɛcaprolactone)s with the variation in arm numbers and lengths. Polymer 46: 9725–9735. Chuma, A., H.W. Horn, W.C. Swope, R.C. Pratt, L. Zhang, B.G.G. Lohmeijer, C.G. Wade et al. 2008. The reaction mechanism for the organocatalytic ring-opening polymerization of l-Lactide using a guanidinebased catalyst: Hydrogen-bonded or covalently bound? J. Am. Chem. Soc. 130: 6749–6754. Connor, E.F., G.W. Nyce, M. Myers, A. Möck, and J.L. Hedrick. 2002. First example of N-heterocyclic carbenes as catalysts for living polymerization: Organocatalytic ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 124: 914–915. Coulembier, O., P. Degée, J.L. Hedrick, and P. Dubois. 2006a. From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives. Prog. Polym. Sci. 31: 723–747. Coulembier, O., A.P. Dove, R.C. Pratt, A.C. Sentman, D.A. Culkin, L. Mespouille, P. Dubois et al. 2005. Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. Ang. Chem. Int. Ed. 44: 4964–4968. Coulembier, O., B.G.G. Lohmeijer, A.P. Dove, R.C. Pratt, L. Mespouille, D.A. Culkin, S.J. Benight et al. 2006b. Alcohol adducts of N-heterocyclic carbenes: Latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules 39: 5617–5628. Dai, W., J. Zhu, A. Shangguan, and M. Lang. 2009. Synthesis, characterization and degradability of the combtype Detrembleur, C., M. Mazza, O. Halleux, P. Lecomte, D. Mecerreyes, J.L. Hedrick, and R. Jérôme. 2000. Ringopening polymerization of γ-bromo-ɛ-caprolactone: A novel route to functionalized aliphatic polyesters. Macromolecules 33: 14–18. Dove, A.P., H. Li, R.C. Pratt, B.G.G. Lohmeijer, D.A. Culkin, R.M. Waymouth, and J.L. Hedrick. 2006. Stereoselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chem. Commun. 2006: 2881–2883. Dove, A.P., R.C. Pratt, B.G.G. Lohmeijer, R.M. Waymouth, and J.L. Hedrick. 2005. Thiourea-based bifunctional organocatalysis: Supramolecular recognition for living polymerization. J. Am. Chem. Soc. 127: 13798–13799. Dubois, P., R. Jérôme, and P. Teyssié. 1989. Macromolecular engineering of polylactones and polylactides. I. End-functionalization of poly-ɛ-caprolactone. Polym. Bull. 22: 475–482. Duda, A., A. Kowalski, S. Penczek, H. Uyama, and S. Kobayashi. 2002. Kinetics of the ring-opening polymerization of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones. Comparison of chemical and enzymatic polymerizations. Macromolecules 35: 4266–4270. Duda, A., J. Libiszowski, J. Mosnacek, and S. Penczek. 2005. Copolymerization of cyclic esters at the living polymer-monomer equilibrium. Macromol. Symp. 226: 109–119. Duda, A. and S. Penczek. 1991. Anionic and pseudoanionic polymerization of ɛ-caprolactone. Macromol. Symp. 42/43: 135–143. Duda, A., S. Penczek, A. Kowalski, and J. Libiszowski. 2000. Polymerization of ɛ-caprolactone and l,l-dilactide initiated with stannous octoate and stannous butoxide—A comparison. Macromol. Symp. 153: 41–53. El Habnouni, S., V. Darcos, and J. Coudane. 2009. Synthesis and ring-opening polymerization of a new functional lactone, α-iodo-ɛ-caprolactone: A novel route to functionalized aliphatic polyesters. Macromol. Rapid Commun. 30: 165–169. Feng, Y., D. Klee, H. Keul, and H. Höcker. 2000. Lipase-catalyzed ring-opening polymerization of morpholine2,5-dione derivatives: A novel route to the synthesis of poly(ester amide)s. Macromol. Chem. Phys. 201: 2670–2675. Feng, Y., J. Knüfermann, D. Klee, and H. Höcker. 1999a. Enzyme-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol. Rapid Commun. 20: 88–90. Feng, Y., J. Knüfermann, D. Klee, and H. Höcker. 1999b. Lipase-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol. Chem. Phys. 200: 1506–1514. Flétier, I., A. Le Borgne, and N. Spassky. 1990. Synthesis of functional polyesters derived from serine. Polym. Bull. 24: 349–353. Gazeau-Bureau, S., D. Delcroix, B. Martin-Vaca, D. Bourissou, C. Navarro, and S. Magnet. 2008. Organocatalyzed ROP of ɛ-caprolactone: Methanesulfonic acid competes with tri¥uoromethanesulfonic acid. Macromolecules 41: 3782–3784. Gerhardt, W.W., D.E. Noga, K.I. Hardcastle, A.J. Garcıa, D.M. Collard, and M. Weck. 2007. Functional lactide monomers: Methodology and polymerization. Biomacromolecules 8: 1735–1742. Gimenez, S., S. Ponsart, J. Coudane, and M. Vert. 2001. Synthesis, properties and in vitro degradation of carboxyl-bearing PCL. J. Bioact. Compat. Polym. 16: 32–46. Grijpma, D.W., E. Kroeze, A.J. Nijenhuis, and A.J. Pennings. 1993. Poly(l-lactide) crosslinked with spirobis-dimethylene-carbonate. Polymer 34: 1496–1503. Gross, R.A., A. Kumar, and B. Kalra. 2001. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 101: 2097–2124. Guillaume, S.M., M. Schappacher, and A. Soum. 2003. Polymerization of ɛ-caprolactone by Nd(BH 4 ) 3 (THF) 3 : Synthesis of hydroxytelechelic poly(ɛ-caprolactone). Macromolecules 36: 54–60. Hamitou, A., R. Jérôme, A.J. Hubert, and P. Teyssié. 1973. A new catalyst for the ring-opening polymerization of lactones to polyesters. Macromolecules 6: 651–652. Hiskins, J.N. and J.M. Grayson. 2009. Synthesis and degradation behavior of cyclic poly(ɛ-caprolactone). Macromolecules 42: 6406–6413. Hofman, A., R. Szymanski, S. Slomkowski, and S. Penczek. 1984. Structure of active species in the cationic polymerization of β-propiolactone and ɛ-caprolactone. Makromol. Chem. 185: 655–667. van Horn, B.A., R.K. Iha, and K.L. Wooley. 2008. Sequential and single-step, one-pot strategies for the transformation of hydrolytically degradable polyesters into multifunctional systems. Macromolecules 41: 1618–1626. van Horn, B.A. and K.L. Wooley. 2007. Cross-linked and functionalized polyester materials constructed using ketoxime ether linkages. Soft Matter 3: 1032–1040. Jeong, W., J.L. Hedrick, and R.M. Waymouth. 2007. Organic spirocyclic initiators for the ring-expansion polymerization of β-lactones. J. Am. Chem. Soc. 129: 8414–8415. Jiang, X., E.B. Vogel, M.R. Smith III, and G.L. Baker. 2008. “Clickable” polyglycolides: Tunable synthons for thermoresponsive, degradable polymers. Macromolecules 41: 1937–1944. Jin, S. and K.E. Gonsalves. 1997. A study of the mechanism of the free-radical ring-opening polymerization of 2-methylene-1,3-dioxepane. Macromolecules 30: 3104–3106. Kakuchi, R., Y. Tsuji, K. Chiba, K. Fuchise, R. Sakai, T. Satoh, and T. Kakuchi. 2010. Controlled/living ringopening polymerization of δ-valerolactone using tri¥ylimide as an ef�cient cationic organocatalyst. Macromolecules 43: 7090–7094. Kamber, N.E., W. Jeong, R.M. Waymouth, R.C. Pratt, B.G.G. Lohmeijer, and J.L. Hedrick. 2007. Organocatalytic ring-opening polymerization. Chem. Rev. 107: 5813–5840. Kim, M.S., K.S. Seo, G. Khang, S.H. Cho, and H.B. Lee. 2004. Preparation of methoxy poly(ethylene glycol)/ polyester diblock copolymers and examination of the gel-to-sol transition. J. Polym. Sci. A Polym. Chem. 42: 5784–5793. Kimura, Y., K. Shirotani, H. Yamane, and T. Kitao. 1988. Ring-opening polymerization of 3(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: A new route to a poly(α-hydroxy acid) with pendant carboxyl groups. Macromolecules 21: 3338–3340. Knani, D., A.L. Gutman, and D.H. Kohn. 1993. Enzymatic polyesteri�cation in organic media. Enzymecatalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyester. II. Ringopening polymerization of ɛ-caprolactone. J. Polym. Sci. A Polym. Chem. 31: 1221–1232. Kobayashi, S. and A. Makino. 2009. Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chem. Rev. 109: 5288–5353. Kowalski, A., A. Duda, and S. Penczek. 1998. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 1 Polymerization of ɛ-caprolactone. Macromol. Rapid Commun. 19: 567–572. Kowalski, A., A. Duda, and S. Penczek. 2000a. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 3. Polymerization of l,l-dilactide. Macromolecules 33: 7359–7370. Kowalski, A., A. Duda, and S. Penczek. 2000b. Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules �tted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33: 689–695. Kowalski, A., J. Libiszowski, A. Duda, and S. Penczek. 2000c. Polymerization of l,l-dilactide initiated by tin(II) butoxide. Macromolecules 33: 1964–1971. Kowalski, A., J. Libiszowski, K. Majerska, A. Duda, and S. Penczek. 2007. Kinetics and mechanism of ɛ-caprolactone and l,l-lactide polymerization coinitiated with zinc octoate or aluminum acetylacetonate: The next proofs for the general alkoxide mechanism and synthetic applications. Polymer 48: 3952–3960. Kricheldorf, H.R. 2003. Macrocycles. 21. Role of ring-ring equilibria in thermodynamically controlled polycondensations. Macromolecules 36: 2302–2308. Kricheldorf, H.R. 2004. Biodegradable polymers with variable architectures via ring-expansion polymerization. J. Polym. Sci. A Polym. Chem. 42: 4723–4742. Kricheldorf, H.R., K. Ahrensdorf, and S. Rost. 2004. Star-shaped homo- and copolyesters derived from ɛ-caprolactone, l,l-lactide and trimethylene carbonate. Macromol. Chem. Phys. 205: 1602–1610. Kricheldorf, H.R. and D.O. Damrau. 1998. Zn l-lactate-catalyzed polymerizations of 1,4-dioxan-2-one. Macromol. Chem. Phys. 199: 1089–1097. Kricheldorf, H.R. and S. Eggerstedt. 1998. Macrocycles 2. Living macrocyclic polymerization of ɛ-caprolactone with 2,2-dibutyl-2-stanna-1,3-dioxepane as initiator. Macromol. Chem. Phys. 199: 283–290. Kricheldorf, H.R. and B. Fechner. 2001. Polylactones. 51. Resorbable networks by combined ring-expansion polymerization and ring-opening polycondensation of ɛ-caprolactone or dl-lactide. Macromolecules 34: 3517–3521. Kricheldorf, H.R. and B. Fechner. 2002. Polylactones. 59. Biodegradable networks via ring-expansion polymerization of lactones and lactides. Biomacromolecules 3: 691–695. Kricheldorf, H.R., M. Garaleh, and G. Schwarz. 2005. Tertiary amine-initiated zwitterionic polymerization of pivalolactone—A reinvestigation by means of MALDI-TOF mass spectrometry. J. Macromol. Sci. A Pure Appl. Chem. 42: 139–148. Kricheldorf, H.R., J.M. Jonte, and R. Dunsing. 1986. Polylactones. 7. The mechanism of cationic polymerization of β-propiolactone and ɛ-caprolactone. Makromol. Chem. 187: 771–785. Kricheldorf, H.R. and S.R. Lee. 1996. Polylactones. 40. Nanopretzels by macrocyclic polymerization of lactones via a spirocyclic tin initiator derived from pentaerythritol. Macromolecules 29: 8669–8695. Kricheldorf, H.R. and G. Schwarz. 2003. Cyclic polymers by kinetically controlled step-growth polymerization. Macromol. Rapid Commun. 24: 359–381. Kricheldorf, H.R., A. Stricker, and D. Langanke. 2001. Polylactones, 50. The reactivity of cyclic and noncyclic dibutyltin bisalkoxides as initiators in the polymerization of lactones. Macromol. Chem. Phys. 202: 2525–2534. Kudoh, R., A. Sudo, and T. Endo. 2009. Synthesis of eight-membered lactone having tertiary amine moiety by ring-expansion reaction of 1,3-benzoxazine and its anionic ring-opening polymerization behavior. Macromolecules 42: 2327–2329. Kweon, H., M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H.S. Lee, J.S. Oh et al. 2003. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24: 801–808. Lang, M., R.P. Wong, and C.C. Chu. 2002. Synthesis and structural analysis of functionalized poly(ɛcaprolactone)-based three arm star polymers. J. Polym. Sci. A Polym. Chem. 40: 1127–1141. Latere, J.P., P. Lecomte, P. Dubois, and R. Jérôme. 2002. 2-Oxepane-1,5-dione: A precursor of a novel class of versatile semicrystalline biodegradable (co)polyester. Macromolecules 21: 7857–7859. Laurent, B.A. and S.M. Grayson. 2009. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 38: 2202–2213. Lecomte, P., V. D’Aloia, M. Mazza, O. Halleux, S. Gautier, C. Detrembleur, and R. Jérôme. 2000. Synthesis of new hydrophilic γ-substituted poly-ɛ-caprolactones. Polymer Preprints. Am. Chem. Soc. 41(2): 1534–1535. Lecomte, P. and R. Jérôme. 2004. Recent developments in controlled/living ring opening polymerization. In Encyclopedia of Polymer Science and Technology, ed. J. Kroschwitz, pp. 547–565. Hoboken, NJ: Wiley. Lecomte, P., R. Riva, C. Jérôme, and R. Jérôme. 2008. Macromolecular engineering of biodegradable polyesters by ring-opening polymerization and click chemistry. Macromol. Rapid Commun. 29: 982–997. Lecomte, P., R. Riva, S. Schmeits, J. Rieger, K. Van Butsele, C. Jérôme, and R. Jérôme. 2006. New prospects for the grafting of functional groups onto aliphatic polyesters. Ring-opening polymerization of α- or γ-substituted ɛ-caprolactone followed by chemical derivatization of the substituents. Macromol. Symp. 240: 157–165. Leemhuis, M., N. Akeroyd, J.A.W. Kruijtzer, C.F. van Nostrum, and W.E. Hennink. 2008. Synthesis and characterization of allyl functionalized poly(α-hydroxy)acids and their further dihydroxylation and epoxidation. Eur. Polym. J. 44: 308–317. Leemhuis, M., C.F. van Nostrum, J.A.W. Kruijtzer, Z.Y. Zhong, M.R. ten Breteler, P.J. Dijkstra, J. Feijen et al. 2006. Functionalized poly(α-hydroxy acid)s via ring-opening polymerization: Toward hydrophilic polyesters with pendant hydroxyl groups. Macromolecules 39: 3500–3508. Lenoir, S., R. Riva, X. Lou, C. Detrembleur, R. Jérôme, and P. Lecomte. 2004. Ring-opening polymerization of α-chloro-ɛ-caprolactone and chemical modi�cation of poly(α-chloro-ɛ-caprolactone) by atom transfer radical processes. Macromolecules 37: 4055–4061. Li, H., A. Debuigne, R. Jérôme, and P. Lecomte. 2006. Synthesis of macrocyclic poly(ɛ-caprolactone) by intramolecular cross-linking of unsaturated end groups of chains precyclic by the initiation. Ang. Chem. Int. Ed. 45: 2264–2267. Li, H., R. Riva, H.R. Kricheldorf, R. Jérôme, and P. Lecomte. 2008. Synthesis of eight and star-shaped poly(ɛcaprolactone)s and their amphiphilic derivatives. Chem. Eur. J. 14: 358–368. Libiszowki, J., A. Kowalski, A. Duda, and S. Penczek. 2002. Kinetics and mechanism of cyclic esters polymerization initiated with covalent metal carboxylates, 5. End-group studies in the model ɛ-caprolactone and l,l-dilactide/tin(II) and zinc octoate/butyl alcohol systems. Macromol. Chem. Phys. 203: 1694–1701. Liu, J. and L. Liu. 2004. Ring-opening polymerization of ɛ-caprolactone initiated by natural amino acids. Macromolecules 37: 2674–2676. Liu, M., N. Vladimirov, and J.M.J. Fréchet. 1999a. A new approach to hyperbranched polymers by ring-opening polymerization of an AB Monomer: 4-(2-hydroxyethyl)-ɛ-caprolactone. Macromolecules 32: 6881–6884. Liu, X.Q., M.X. Wang, Z.C. Li, and F.M. Li. 1999b. Synthesis and ring-opening polymerization of α-chloromethyl-α-methyl-β-propiolactone. Macromol. Chem. Phys. 200: 468–473. Loeker, F.C., C.J. Duxbury, R. Kumar, W. Gao, R.A. Gross, and S.M. Howdle. 2004. Enzyme-catalyzed ring-opening polymerization of ɛ-caprolactone in supercritical carbon dioxide. Macromolecules 37: 2450–2453. Löfgren, A., A.C. Albertsson, P. Dubois, and R. Jérôme. 1995. Recent advances in ring-opening polymerization of lactones and related compounds. J. Macromol. Sci. C Rev. Macromol. Chem. Phys. 35: 379–418. Löfgren, A., A.C. Albertsson, P. Dubois, R. Jérôme, and P. Teyssié. 1994. Synthesis and characterization of biodegradable homopolymers and block copolymers based on 1,5-dioxepan-2-one. Macromolecules 27: 5556–5562. Lohmeijer, B.G.G., R.C. Pratt, F. Leibfarth, J.W. Logan, D.A. Long, A.P. Dove, F. Nederberg, J. Choi, C. Wade, R.M. Waymouth, and J.L. Hedrick. 2006. Guanidine and amidine organocatalysts for ringopening polymerization of cyclic esters. Macromolecules 39: 8574–8583. Lou, X., C. Detrembleur, and R. Jérôme. 2002a. Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules 35: 1190–1195. Lou, X., C. Detrembleur, and R. Jérôme. 2003. Novel aliphatic polyesters based on functional cyclic (di)esters. Macromol. Rapid Commun. 24: 161–172. Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2001. Living ring-opening (co)polymerization of 6,7-dihydro-2(5H)-oxepinone into unsaturated aliphatic polyesters. Macromolecules 34: 5806–5811. Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2002b. Controlled synthesis and chemical modi�cation of unsaturated aliphatic (co)polyesters based on 6,7-dihydro-2(3H)-oxepinone. J. Polym. Sci. A Polym. Chem. 40: 2286–2297. Lou, X., C. Detrembleur, P. Lecomte, and R. Jérôme. 2002c. Novel unsaturated ɛ-caprolactone polymerizable by ring-opening metathesis mechanisms. e-polymers 34: 1–12. Lowe, J.R., W.B. Tolman, and M.A. Hillmyer. 2009. Oxidized dihydrocarvone as a renewable multifunctional monomer for the synthesis of shape memory polyesters. Biomacromolecules 10: 2003–2008. Lu, J., R.C. Tappel, and C.T. Nomura. 2009. Mini-review: Biosynthesis of poly(hydroxyalkanoates). J. Macromol. Sci. C Polym. Rev. 49: 226–248. Mahmud, A., X.B. Xiong, and A. Lavasanifar. 2006. Novel self-associating poly(ethylene oxide)-block-poly(ɛcaprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules 39: 9419–9428. Majerska, K., A. Duda, and S. Penczek. 2000. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate, 4. In¥uence of proton trapping agents on the kinetics of ɛ-caprolactone and l,ldilactide polymerization. Macromol. Rapid Commun. 21: 1327–1332. Martin, E., P. Dubois, and R. Jérôme. 2000. Controlled ring-opening polymerization of ɛ-caprolactone promoted by “in situ” formed yttrium alkoxides. Macromolecules 33: 1530–1535. Martin, E., P. Dubois, and R. Jérôme. 2003a. “In situ” formation of yttrium alkoxides: A versatile and ef�cient catalyst for the ROP of ɛ-caprolactone. Macromolecules 36: 5934–5941. Martin, E., P. Dubois, and R. Jérôme. 2003b. Preparation of supported yttrium alkoxides as catalysts for the polymerization of lactones and oxirane. J. Polym. Sci. A Polym. Chem. 41: 569–578. Martin, E., P. Dubois, and R. Jérôme. 2003c. Polymerization of ɛ-caprolactone initiated by Y alkoxide grafted onto porous silica. Macromolecules 36: 7094–7099. Mathisen, T. and A.C. Albertsson. 1989. Polymerization of 1,5-dioxepan-2-one. 1. Synthesis and characterization of the monomer 1,5-dioxepan-2-one and its cyclic dimer 1,5,8,12-tetraoxacyclotetradecane-2,9dione. Macromolecules 22: 3838–3842. Mathisen, T., K. Masus, and A.C. Albertsson. 1989. Polymerization of 1,5-dioxepan-2-one. 2. Polymerization of 1,5-dioxepan-2-one and its cyclic dimer, including a new procedure for the synthesis of 1,5-dioxepan2-one. Macromolecules 22: 3842–3846. McLain, S.J. and N.E. Drysdale. 1992. Living ring-opening polymerization of ɛ-caprolactone by yttrium and lanthanide alkoxides. Polymer Preprints. Am. Chem. Soc. 33(1): 174–175. Mecerreyes, D., B. Atthoff, K.A. Boduch, M. Trollsas, and J.L. Hedrick. 1999. Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 16: 5175–5182. Mecerreyes, D., J. Humes, R.D. Miller, J.L. Hedrick, P. Lecomte, C. Detrembleur, and R. Jérôme. 2000a. First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol. Rapid Commun. 21: 779–784. Mecerreyes, D., V. Lee., C.J. Hawker, J.L. Hedrick, A. Wursch, W. Volksen, T. Magbitang et al. 2001. A novel approach to functionalized nanoparticles: Self-crosslinking of macromolecules in ultradilute solution. Adv. Mater. 13: 204–208. Mecerreyes, D., R.D. Miller, J.L. Hedrick, C. Detrembleur, and R. Jérôme. 2000b. Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone: Novel biodegradable copolymers containing allyl pendent groups. J. Polym. Sci. A Polym. Chem. 38: 870–875. Mingotaud, A.-F., F. Cansell, N. Gilbert, and A. Soum. 1999. Cationic and anionic ring-opening polymerization in supercritical CO 2 . Preliminary results. Polym. J. 31: 406–410. Mingotaud, A.-F., F. Dargelas, and F. Cansell. 2000. Cationic and anionic ring-opening polymerization in supercritical CO 2 . Macromol. Symp. 153: 77–86. Miola-Delaite, C., E. Colomb, E. Pollet, and T. Hamaide. 2000. Anionic ring-opening polymerization of oxygenated heterocycles with supported zirconium and rare earth alkoxides as initiators in protic conditions towards a catalytic heterogeneous process. Macromol. Symp. 153: 275–286. Misaka, H., R. Kakuchi, C. Zhang, R. Sakai, T. Satoh, and T. Kakuchi. 2009. Synthesis of well-de�ned macrocyclic poly(δ-valerolactone) by “click cyclization.” Macromolecules 42: 5091–5096. Möller, M., F. Nederberg, L.S. Lim, R. Kange, C.J. Hawker, J.L. Hedrick, Y. Gu et al. 2000. Sn(OTf) 2 and Sc(OTf) 3 : Ef�cient and versatile catalysts for the controlled polymerization of lactones. J. Polym. Sci. A Polym. Chem. 38: 2067–2074. Myers, M., E.F. Connor, T. Glauser, A. Möck, G. Nyce, and J.L. Hedrick. 2002. Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J. Polym. Sci. A Polym. Chem. 40: 844–851. van Natta, F.J., J.W. Hill, and W.H. Carothers. 1934. Studies of polymerization and ring formation. XXIII. ɛ-Caprolactone and its polymers. J. Am. Chem. Soc. 56: 455–457. Nederberg, F., E.F. Connor, M. Möller, T. Glauser, and J.L. Hedrick. 2001. New paradigms for organic catalysts: The �rst organocatalytic living polymerization. Ang. Chem. Int. Ed. 40: 2712–2715. Nomura, N., A. Taira, T. Tomioka, and M. Okada. 2000. A catalytic approach for cationic living polymerization: Sc(OTf) 3 -catalyzed ring-opening polymerization of lactones. Macromolecules 33: 1497–1499. Nottelet, B., J. Coudane, and M. Vert. 2006. Synthesis of an x-ray opaque biodegradable copolyester by chemical modi�cation of poly (ɛ-caprolactone). Biomaterials 27: 4948–4954. Nyce, G.W., T. Glauser, E.F. Connor, A. Möck, R.M. Waymouth, and J.L. Hedrick. 2003. In situ generation of carbenes: A general and versatile platform for organocatalytic living polymerization. J. Am. Chem. Soc. 125: 3046–3056. Oshimura, M. and A. Takasu. 2010. Controlled ring-opening polymerization of ɛ-caprolactone catalyzed by rare-earth per¥uoroalkanesulfonates and per¥uoroalkanesulfonimides. Macromolecules 43: 2283–2290. Oshimura, M., T. Tang, and A. Takasu. 2011. Ring-opening polymerization of ɛ-caprolactone using per¥uoroalkanesulfonates and per¥uoroalkanesulfonimides as organic catalysts. J. Polym. Sci. A Polym. Chem. 49: 1210–1218. Ouhadi, T., A. Hamitou, R. Jérôme, and P. Teyssié. 1976. Soluble bimetallic μ-oxoalkoxides. 8. Structure and kinetic behavior of the catalytic species in unsubstituted lactone ring-opening polymerization. Macromolecules 9: 927–931. Palard, I., A. Soum, and S.M. Guillaume. 2005. Rare earth metal tris(borohydride) complexes as initiators for ɛ-caprolactone polymerization: General features and IR investigations of the process. Macromolecules 36: 54–60. Palmgren, R., S. Karlsson, and A.C. Albertsson. 1997. Synthesis of degradable crosslinked polymers based on 1,5-dioxepan-2-one and crosslinker of bis-1-caprolactone type. J. Polym. Sci. A Polym. Chem. 35: 1635–1649. Parrish, B., R.B. Breitenkamp, and T. Emrick. 2005. PEGand peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127: 7404–7410. Parrish, B. and T. Emrick. 2004. Aliphatic polyesters withy pendant cyclopentene groups: Controlled synthesis and conversion to polyester-graft-PEG copolymers. Macromolecules 37: 5863–5865. Parzuchowski, P.G., M. Grabowska, M. Tryznowski, and G. Rokicki. 2006. Synthesis of glycerol based hyperbranched polyesters with primary hydroxyl groups. Macromolecules 39: 7181–7186. Penczek, S., T. Biela, and A. Duda. 2000. Living polymerization with reversible chain transfer and reversible deactivation: The case of cyclic esters. Macromol. Rapid Commun. 21: 941–950. Penczek, S., M. Cypryk, A. Duda, P. Kubisa, and S. Slomkowski. 2007. Living ring-opening polymerizations of heterocyclic monomers. Prog. Polym. Sci. 32: 247–282. Persson, P.V., J. Casas, T. Iversen, and A. Cordova. 2006. Direct organocatalytic chemoselective synthesis of a dendrimer-like star polyester. Macromolecules 39: 2819–2822. Pitt, C.G., Z.H. Gu, P. Ingram, and R.W. Hendren. 1987. The synthesis of biodegradable polymers with functional side chains. J. Polym. Sci. A Polym. Chem. 25: 955–966. Ponsart, S., J. Coudane, J. McGrath, and M. Vert. 2002. Study of the grafting of bromoacetylated α-hydroxy-ωmethoxypoly(ethyleneglycol) onto anionically activated poly(ɛ-caprolactone). J. Bioact. Compat. Polym. 17: 417–432. Ponsart, S., J. Coudane, J.L. Morgat, and M. Vert. 2001. Synthesis of 3 H and ¥uorescence-labelled poly (dlLactic acid). J. Labelled Comp. Radiopharm. 44: 677–687. Ponsart, S., J. Coudane, and M. Vert. 2000. A novel route to poly(ɛ-caprolactone)-based copolymers via anionic derivatization. Biomacromolecules 1: 275–281. Pratt, R.C., B.G.G. Lohmeijer, D.A. Long, R.M. Waymouth, and J.L. Hedrick. 2006. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 128: 4556–4557. Raquez, J.M., P. Degée, R. Narayan, and P. Dubois. 2000. “Coordination-insertion” ring-opening polymerization of 1,4-dioxan-2-one and controlled synthesis of diblock copolymers with ɛ-caprolactone. Macromol. Rapid Commun. 21: 1063–1071. Raquez, J.M., P. Degée, R. Narayan, and P. Dubois. 2001. Some thermodynamic, kinetic, and mechanistic aspects of the ring-opening polymerization of 1,4-dioxan-2-one initiated by Al(OiPr) 3 in bulk. Macromolecules 34: 8419–8425. Renard, E., C. Ternat, V. Langlois, and P. Guérin. 2003. Synthesis of graft bacterial polyesters for nanoparticles preparation. Macromol. Biosci. 3: 248–252. Rieger, J., K. Van Butsele, P. Lecomte, C. Detrembleur, R. Jérôme, and C. Jérôme. 2005. Versatile functionalization and grafting of poly(ɛ-caprolactone) by Michael-type addition. Chem. Commun. 274–276. Riva, R., W. Lazzari, L. Billiet, F. Du Prez, C. Jérôme, and P. Lecomte. 2011. Preparation of pH-sensitive starshaped aliphatic polyesters as precursors of polymersomes. J. Polym. Sci. A Polym. Chem. 49: 1552–1563. Riva, R., S. Schmeits, C. Jérôme, R. Jérôme, and P. Lecomte. 2007. Combination of ring-opening polymerization toward functionalization and grafting of poly(ɛ-caprolactone). Macromolecules 40: 796–803. Ropson, N., P. Dubois, R. Jérôme, and P. Teyssié. 1995. Macromolecular engineering of polylactones and polylactides. 20. Effect of monomer, solvent, and initiator on the ring-opening polymerization as initiated with aluminum alkoxides. Macromolecules 28: 7589–7598. Sanda, F. and T. Endo. 2001. Radical ring-opening polymerization. J. Polym. Sci. A Polym. Chem. 39: 265–276. Sanda, F., H. Sanada, Y. Shibasaki, and T. Endo. 2002. Star polymer synthesis from ɛ-caprolactone utilizing polyol/protonic acid initiator. Macromolecules 35: 680–683. Save, M., M. Schappacher, and A. Soum. 2002. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide. I. General aspects and kinetics. Macromol. Chem. Phys. 203: 889–899. Shen, Y., Z. Shen, Y. Zhang, and K. Yao. 1996. Novel rare earth catalysts for the living polymerization and block copolymerization of ɛ-caprolactone. Macromolecules 29: 8289–8295. Shibasaki, Y., H. Sanada, M. Yokoi, F. Sanda, and T. Endo. 2000. Activated monomer cationic polymerization of lactones and the application to well-de�ned block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules 33: 4316–4320. Shirahama, H., K. Mizuma, Y. Kawaguchi, M. Shomi, and H. Yasuda. 1993. Development of new biodegradable polymers. Kobunshi Ronbunshu 50: 821–835. Shirahama, H., Biodegradation synthesized by Macromolecules M. Shomi, M. Sakane, and H. Yasuda. 1996. of novel optically active polyesters copolymerization of (R)-MOHEL with lactones. 29: 4821–4828. Shueh, M.L., Y.S. Wang, B.H. Huang, C.Y. Kuo, and C.C. Lin. 2004. Reactions of 2,2′-methylenebis(4-chloro-6isopropyl-3-methylphenol) and 2,2′-ethylenebis(4,6-di-tert-butylphenol)with Mg n Br 2 : Ef�cient catalysts for the ring-opening polymerization of ɛ-caprolactone and l-lactide. Macromolecules 37: 5155–5162. Simmons, T.L. and G.L. Baker. 2001. Poly(phenyllactide): Synthesis, characterization and hydrolytic degradation. Biomacromolecules 2: 658–663. Sinha, V. R., K. Bansal, R. Kaushik, R. Kumria, and A. Trehan. 2004. Poly-ɛ-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm. 278: 1–23. Slomkowski, S., R. Szymanski, and A. Hofman. 1985. Formation of the intermediate cyclic six-membered oxonium ion in the cationic polymerization of β-propiolactone initiated with CH CO SbF 3 6 + − . Makromol. Chem. 186: 2283–2290. Stassin, H., O. Halleux, P. Dubois, C. Detrembleur, P. Lecomte, and R. Jérôme. 2000. Ring-opening copolymerization of ɛ-caprolactone, γ-triethylsilyloxy-ɛ-caprolactone and γ-ethylene ketal- ɛ-caprolactone: A route to hetero-graft copolyesters. Macromol. Symp. 153: 27–39. Stassin, F., O. Halleux, and R. Jérôme. 2001. Ring-opening polymerization of ɛ-caprolactone in supercritical carbon dioxide. Macromolecules 34: 775–781. Stassin, F. and R. Jérôme. 2002. Effect of pressure and temperature upon tin alkoxide-promoted ring-opening polymerisation of ɛ-caprolactone in supercritical carbon dioxide. Chem. Commun. 232–233. Stassin, F. and R. Jérôme. 2004. Contribution of supercritical CO 2 to the preparation of aliphatic polyesters and materials thereof. Macromol. Symp. 217: 135–146. Stevels, W.M., M.J.K. Ankoné, P.J. Dijkstra, and J. Feijen. 1996a. A versatile and highly ef�cient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols. Macromolecules 29: 3332–3333. Stevels, W.M., M.J.K. Ankoné, P.J. Dijkstra, and J. Feijen. 1996b. Kinetics and mechanism of ɛ-caprolactone polymerization using yttrium alkoxides as initiators. Macromolecules 29: 8296–8303. Stjerndahl, A., A.F. Wistrand, and A.C. Albertsson. 2007. Industrial utilization of tin-initiated resorbable polymers: Synthesis on a large scale with a low amount of initiator residue. Biomacromolecules 8: 937–940. Stridsberg, K.M., M. Ryner, and A.-C. Albertsson. 2002. Controlled ring-opening polymerization: Polymers with designed macromolecular architecture. Adv. Polym. Sci. 157: 42–139. Szwarc, M. 1956. Living polymers. Nature 178: 1168–1169. Takamoto, T., H. Uyama, and S. Kobayashi. 2001. Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. e-polymers 4:1–6. Taniguchi, I., A.M. Mayes, E.W.L. Chan, and L.G. Grif�th. 2005. A chemoselective approach to grafting biodegradable polyesters. Macromolecules 38: 216–219. Tasaka, F., Y. Ohya, and T. Ouchi. 2001. One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalonolactone. Macromol. Rapid Commun. 22: 820–824. Theiler, S., M. Teske, H. Keul, K. Sternberg, and M. Möller. 2010. Synthesis, characterization and in vitro degradation of 3D-microstructured poly(ɛ-caprolactone) resins. Polym. Chem. 1: 1215–1225. Tian, D., P. Dubois, C. Grand�ls, and R. Jérôme. 1997. Ring-opening polymerization of 1,4,8-trioxaspiro[4.6]9-undecanone: A new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 30: 406–409. Tian, D., P. Dubois, R. Jérôme, and P. Teyssié. 1994. Macromolecular engineering of polylactones and polylactides. 18. Synthesis of star-branched aliphatic polyesters bearing various functional end-groups. Macromolecules 27: 4134–4144. Tortosa, K., T. Hamaide, C. Boisson, and R. Spitz. 2001. Homogeneous and heterogeneous polymerization of ɛ-caprolactone by neodymium alkoxides prepared in situ. Macromol. Chem. Phys. 202: 1156–1160. Trollsas, M., C.J. Hawker, J.F. Remenar, J.L. Hedrick, M. Johansson, H. Ihre, and A. Hult. 1998. Highly branched radial block copolymers via dendritic initiation of aliphatic polyesters. J. Polym. Sci. A Polym. Chem. 36: 2793–2798. Trollsas, M., V.Y. Lee, D. Mecerreyes, P. Löwenhielm, M. Möller, R.D. Miller, and J.L. Hedrick. 2000. Hydrophilic aliphatic polyesters: Design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules 33: 4619–4627. Trollsas, M., P. Löwenhielm, V.Y. Lee, M. Möller, R.D. Miller, and J.L. Hedrick. 1999. New approach to hyperbranched polyesters: Self-condensing cyclic ester polymerization of bis(hydroxymethyl)-substituted ɛ-caprolactone. Macromolecules 32: 9062–9066. Turunen, M.P.K., H. Korhonen, J. Tuominen, and J.V. Seppälä. 2001. Synthesis, characterization and crosslinking of functional star-shaped poly(ɛ-caprolactone). Polym. Int. 51: 92–100. Undin, J., P. Plikk, A. Finne-Wistrand, and A.C. Albertsson. 2010. Synthesis of amorphous aliphatic polyesterether homo- and copolymers by radical polymerization of ketene acetals. J. Polym. Sci. A Polym. Chem. 48: 4965–4973. Uyama, H. and S. Kobayashi. 1993. Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem. Lett. 7: 1149–1150. Vaida, C., P. Mela, H. Keul, and M. Möller. 2008. 2D- and 3D-Microstructured biodegradable polyester resins. J. Polym. Sci. A Polym. Chem. 46: 6789–6800. Van Butsele, K., F. Stoffelbach, R. Jérôme, and C. Jérôme. 2006. Synthesis of novel amphiphilic and pHsensitive ABC miktoarm star terpolymers. Macromolecules 39: 5652–5656. Varma, I.K., A.C. Albertsson, R. Rajkhowa, and R.K. Srivistava. 2005. Enzyme catalyzed synthesis of polyesters. Prog. Polym. Sci. 30: 949–981. Veld, M.J., A.R.A. Palmans, and E.W. Meijer. 2007. Selective polymerization of functional monomers with Novozym 435. J. Polym. Sci. A Polym. Chem. 45: 5968–5978. Wang, G., Y. Shi, Z. Fu, W. Yang, Q. Huang, and Y. Zhang. 2005. Controlled synthesis of poly(ɛ-caprolactone)graft-polystyrene by atom transfer radical polymerization with poly(ɛ-caprolactone-co-α-bromo-ɛcaprolactone) copolymer as macroinitiator. Polymer 46: 10601–10606. Westerhausen, M., S. Schneiderbauer, A.N. Kneifel, Y. Söltl, P. Mayer, H. Nöth, Z. Zhong, P.J. Dijkstra, and J. Feijen. 2003. Organocalcium compounds with catalytic activity for the ring-opening polymerization of lactones. Eur. J. Inorg. Chem. 2003: 3432–3439. Williams, S.F., D.P. Martin, D.M. Horowitz, and O.P. Peoples. 1999. PHA applications: Addressing the price performance issue I. Tissue engineering. Int. J. Biol. Macromol. 25: 111–121. Wilson, B.C. and C.W. Jones. 2004. A recoverable, metal-free catalyst for the green polymerization of ɛ-caprolactone. Macromolecules 37: 9709–9714. Woodruff, M.A. and W. Hutmacher. 2010. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 35: 1217–1256. Xie, M., J. Shi, L. Ding, J. Li, H. Han, and Y. Zhang. 2009. Cyclic poly(ɛ-caprolactone) synthesized by combination of ring-opening polymerization with ring-closing metathesis, ring closing enyne metathesis, or “click” reaction. J. Polym. Sci. A Polym. Chem. 47: 3022–3033. Yamashita, M., Y. Takemoto, E. Ihara, and H. Yasuda. 1996. Organolanthanide-initiated living polymerization of ɛ-caprolactone, δ-valerolactone, and β-propiolactone. Macromolecules 29: 1798–1806. Yan, J., Y. Zhang, Y. Xiao, Y. Zhang, and M.D. Lang. 2010. Novel poly(ɛ-caprolactone)s bearing amino groups: Synthesis, characterization and biotinylation. React. Funct. Polym. 70: 400–407. Yu, X.H., J. Feng, and R.X. Zhuo. 2005a. Preparation of hyperbranched aliphatic polyester derived from functionalized 1,4-dioxan-2-one. Macromolecules 38: 6244–6247. Yu, T.L., C.C. Wu, C.C. Chen, B.H. Huang, J. Wu, and C.C. Lin. 2005b. Catalysts for the ring-opening polymerization of ɛ-caprolactone and l-lactide and the mechanistic study. Polymer 46: 5909–5917. Zednik, J., R. Riva, P. Lussis, C. Jérôme, R. Jérôme, and P. Lecomte. 2008. pH-responsive biodegradable amphiphilic networks. Polymer 49: 697–702. Zeng, F., H. Lee, M. Chidiac, and C. Allen. 2005. Synthesis and characterization of six-arm star poly(δvalerolactone)-block-methoxy poly(ethylene glycol) copolymers. Biomacromolecules 6: 2140–2149. Zhang, L., F. Nederberg, J.M. Messman, R.C. Pratt, R.M. Waymouth, J.L. Hedrick, and C.G. Wade. 2007b. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J. Am. Chem. Soc. 129: 12610–12611. Zhang, L., F. Nederberg, R.C. Pratt, R.M. Waymouth, J.L. Hedrick, and C.G. Wade. 2007a. Phosphazene bases: A new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40: 4154–4158. Zhong, Z., P.J. Dijkstra, C. Birg, M. Westerhausen, and J. Feijen. 2001. A novel and versatile calcium-based initiator system for the ring-opening polymerization of cyclic esters. Macromolecules 34: 3863–3868. Zhong, Z., P.J. Dijkstra, and J. Feijen. 2004. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single site stereoselective polymerization initiators. J. Biomater. Sci. Polymer Ed. 15: 929–946. 2 Chapter 2. Hydrogels Formed by Cross-Linked Poly(Vinyl Alcohol) 1. Finch, C. A. 1973. Polyvinyl Alcohol. Properties and Applications. London, U.K.: Wiley. 2. Huisgen, R. 1989. Kinetics and reaction mechanisms: Selected examples from the experience of forty years. Pure Appl. Chem. 61:613–628. 3. Kolb, H. C., Finn, M. G., Sharpless, K. B. 2001. Click chemistry: Diverse chemical. Function from a few good reactions. Angew. Chem. Int. Ed. 40:2004–2021. 4. Evans, R. A. 2007. The rise of azide-alkyne 1,3-dipolar ‘click’ cycloaddition and its application to polymer science and surface modi�cation. Aust. J. Chem. 60:384–395. 5. Flory, P. J. 1953. Principles of Polymer Chemistry. Ithaca, NY: Cornel1 University. 6. Peppas, N. A., Merril, E. W. 1976. Determination of interaction parameter χ 1 , for poly(vinyl alcohol) and water in gels crosslinked from solutions. J. Pol. Sci. Polym. Chem. Ed. 14:459–464. 7. of in 1. Peppas, N. A., Bar-Howell, B. D. 1986. Characterization the cross-linked structure of hydrogels. In Hydrogels Medicine and Pharmacy, ed. N. A. Peppas, pp. 27–55, Vol. Boca Raton, FL: CRC Press. 8. De Gennes, P. G. 1979. Scaling Concept in Polymer Physics. Ithaca, NY: Cornell University Press. 9. Neuburger, N. A., Eichinger, B. E. 1988. Critical experimental test of the Flory-Rehner theory of swelling. Macromolecules 21:3060–3070. 10. Hansen, E. W., Bouzga, A. M., Sommer, B., Kvernberg, P. O. 2000. Crosslinking of PVA and glutaraldehyde in water monitored by viscosity and pulse �eld gradient NMR: A comparative study. Polym. Adv. Technol. 11:185–191. 11. Paradossi, G., Di Bari, M. T., Telling, M. T. F., Turtù, A., Cavalieri, F. 2001. Incoherent quasi-elastic neutron scattering study of chemical hydrogels based on poly (vinyl alcohol). Physica B 301:150–156. 12. de Groot, J. H., Spaans, C. J., van Calck, R. V., van Beijma, F. J., Norrby, S., Pennings, A. J. 2003. Hydrogels for an accommodating intraocular lens. An explorative study. Biomacromolecules 4:608–616. 13. Bo, J. 1992. Study on PVA hydrogel crosslinked by epichloroh ydrin. J. Appl. Polym. Sci. 46:783–786. 14. Painter, T., Larsen, B. 1970. Formation of hemiacetals between neighbouring hexuronic acid residues during the periodate oxidation of alginate. Acta Chem. Scand. 24:813–33. 15. Barretta, P., Bordi, F., Rinaldi, C., Paradossi, G. 2000. A dynamic light scattering study of hydrogels based on telechelic PVA. J. Phys. Chem. B 104:11019–11026. 16. Paradossi, G., Ca valieri, F., Chiessi, E., Telling, M. T. F. 2003. Super-cooled water in PVA matrices: I. An incoherent quasi elastic neutron scattering (QENS) study. J. Phys. Chem. B 107:8363–8371. 17. Cavalieri, F., El Hamassi, A., Chiessi, E., Paradossi, G. 2005. Stable polymeric microballoons as multifunctional device for biomedical uses: Synthesis and characterization. Langmuir 21:8758–8764. 18. Martens, P., Anseth, K. S. 2000. Characterization of hydrogels formed from acrylate modi�ed poly(vinyl alcohol) macromers. Polymer 41:7715–7722. 19. Mühlebach, A., Müller, B., Pharisa, C., Hofmann, M., Seiferling, B., Guerry, D. 1997. New water-soluble photo crosslinkable polymers based on modi�ed poly(vinyl alcohol). J. Polym. Sci. Part A Polym. Chem. 35:3603–3611. 20. Martens, P., Blundo, J., Nilasaroya, A., Odell, R. A., Cooper-White, J., Poole-Warren, L. A. 2007. Effect of poly(vinyl alcohol) macromer chemistry and chain interactions on hydrogel mechanical properties. Chem. Mater. 19:2641–2648. 21. van Dijk-Wolthuis, W. N. E., Franssen, O., Talsma, H., van Stenbergen, M. J., Kettenes-van den Bosh, J. J., Hennink, W. E. 1995. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules 28: 6317–6322. 22. Meyvis, T. K. L., De Smedt, S. C., Demeester, J., Hennink, E. 1999. Rheological monitoring of long-term degrading polymer hydrogels. J. Rheol. 43: 933–950. 23. Cavalieri, F ., Miano, F., D’Antona, P., Paradossi, G. 2004. Study of gelling behaviour of poly(vinyl alcohol)-methacrylate for in situ utilizations in tissue replacement and drug delivery. Biomacromolecules 5:2439–2446. 24. Cavalieri, F., Chiessi, E., Villa, R., Viganò, L., Zaffaroni, N., Telling, M. F., Paradossi, G. 2008. Novel PVA-based hydrogel microparticles for doxorubicin delivery. Biomacromolecules 9:1967–1973. 25. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., Seed, B. 1990. CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313. 26. Cerroni, B., Chiessi, E., Margheritelli, S., Oddo, L., Paradossi, G. 2011. Polymer shelled microparticles for a targeted doxorubicin delivery in cancer therapy. Biomacromolecules 12:593–601. 27. Ghugare, S. V., Mozetic, P., Paradossi, G. 2009. Temperature-sensitive poly(vinyl alcohol)/ poly(methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery. Biomacromolecules 10:1589–1596. 28. Ghugare, S. V., Chiessi, E., Telling, M. T. F., Deriu, A., Gerelli, Y., Wuttke, J., Paradossi, G. 2010. Structure and dynamics of a thermoresponsive microgel around its volume phase transition temperature. J. Phys. Chem. B 114:10285–10293. 29. Mawad, D., Odell, R., Poole-Warren, L. A. 2009. Network structure and macromolecular drug release form poly(vinyl alcohol) hydrogels fabricated via two crosslinking strategies. Int. J. Pharm. 366:31–37. 30. Nuttelman, C. R., Henry, S. M., Anseth, K. S. 2002. Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 23:3617–3626. 31. Martens, P., Holland, T., Anseth, K. S. 2002. Synthesis and characterization of degradable hydrogels formed from acrylate modi�ed poly(vinyl alcohol) macromers. Polymer 43:6093–6100. 32. Ossipov, D. A., Piskounova, S., Hilborn, J. 2008. Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels. Macromolecules 41:3971–3982. 33. Ossipov, D. A., Brännvall, K., Forsberg-Nilsson, K., Hilborn, J. 2007. Formation of the �rst injectable poly(vinyl alcohol) hydrogel by mixing of functional PVA precursors. J. Appl. Polym. Sci. 106:60–70. 34. Tortora, M., Ca valieri, F., Chiessi, E., Paradossi, G. 2007. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels. Biomacromolecules 8:209–214. 35. Ossipov, D. A., Hilborn, J. 2006. Poly(vinyl alcohol)-based hydrogels formed by “Click Chemistry.” Macromolecules 39:1709–1718. 36. Nilasarova, A., Poole-warren, L. A., Whitelock, J. M., Jo Martens, P. 2008. Structural and functional characterization of poly (vinyl alcohol) and heparin hydrogels. Biomaterials 29:4658–4664. 37. Mansur, H. S., Costa, Jr., E., de, S., Mansur, A. A. P., Barbosa-Stancioli, E. F. 2009. Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater. Sci. Eng. C 29:1574–1583. 3 Chapter 3. Development and Evaluation of Poly (Vinyl Alcohol )Hydrogels as a Component of Hybrid Artificial Tissues for Orthopedics Surgery Application 1. S.H. Hyon, W.I. Cha, Y. Ikada; Preparation of transparent poly (vinyl alcohol) hydrogel. Polym. Bull. 1989: 22, 119–122. 2. W.I. Cha, S.H. Hyon, M. Oka, Y. Ikada; Mechanical and wear properties of poly (vinyl alcohol) hydrogels. Macromol. Symp. 1996: 109, 115–126. 3. J. Delecrin, M. Oka, P. Kumar et al.; Joint reactions against polymer particles: PVA-H versus UHMEPE. J. Jpn. Ortho. Assoc. 1990: 64, S1395. 4. T. Noguchi, T. Yamamuro, M. Oka. et al.; Poly (vinyl alcohol) hydrogel as an arti�cial articular cartilage: Evaluation of biocompatibility. J. Appl. Biomater. 1991: 2, 101–107. 5. N.A. Peppas, E.W. Merrill; Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical application. J. Biomed. Mater. Res. 1997: 11, 423–434. 6. T.H. Young, N.K. Yao, R.F. Chang, L.W. Chen; Evaluation of asymmetric poly (vinyl alcohol) membranes for use in arti�cial islets. Biomaterials 1996: 17, 2139–2145. 7. M. Kobayashi, J. Toguchida, M. Oka; Development of PVA-H shields with a high water content for tendon injury repair. J. Hand Surg. 2001: 26(B) 5, 436–440. 8. J. Nishiura, M. Oka, K. Sakaguchi et al.; Mechanical properties of PVA-H using injection molding method. J. Jpn. Clin. Biomech. 2001: 22, 129–133 (Japanese). 9. M. Kobayashi, M. Oka; Characterization of a poly(vinyl alcohol)-hydrogel arti�cial articular cartilage prepared by injection molding. J. Biomater. Sci. Polym. Edn. 2004: 15(6), 741–751. 10. M. Kobayashi, J. Toguchida, M. Oka; Development of an arti�cial meniscus using polyvinyl alcoholhydrogel for early return to, and continuance of athletic life in sports persons with severe meniscus injury. I: Mechanical evaluation. The Knee 2003: 10, 47–51. 11. R. Hayashi, M. Oka, K. Ikeuchi et al.; Friction of arti�cial cartilage sliding against articular cartilage. J. Jpn. Clin. Biomech. 1999: 20, 307–313 (Japanese). 12. M. Kobayashi, J. Toguchida, M. Oka; Study on the lubrication mechanism of natural joint by confocal laser scanning microscopy. J. Biomed. Mater. Res. 2001: 55, 645–651. 13. M. Kobayashi, M. Oka; The lubricative function of arti�cial joint material surfaces by confocal laser scanning microscopy. Comparison with natural synovial joint surface. Bio-Med. Mater. Eng. 2003: 12, 429–437. 14. D.A. Swan, F.H. Silver, H.S. Slayter et al.; The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial ¥uids. Biochemistry 1985: 225, 195–201. 15. J.E. Pickadr, E. Fisher, E. Ingham, J. Egan; Investigation into the effect of proteins and lipids on the frictional properties of articular cartilage. Biomaterials 1998: 19, 1807–1812. 16. T. Murakami; The adaptive multimode lubrication in biotribological systems. Proc. Int. Tribol. Conf. 1995: 3, 1981–1986. 17. Y. Matsuda, T. Yamamuro, R. Kasai et al.; Severe metallosis observed 17 years after replacement of the knee with a tumor prosthesis: A case report. J. Long-Term Effects Med. Implants 1992: 1, 295–303. 18. E.A. Salvati, C.N. Coornell; Long-term follow up of total hip replacement in patient with avascular necrosis. Instr. Course Lect. 1988: 37, 67–73. 19. M. Oka, Y.S. Chang, K. Ushio et al.; Synthetic osteochondral replacement of the femoral articular surface. J. Bone Joint Surg. (B) 1997: 79-B, 1003–1007. 20. P. Corkhill, A. Trevent, B. Tighe; The potential of hydrogels as synthetic articular cartilage. Proc. Inst. Mech. Eng. 1990: 204, 147–155. 21. T. Murakami, Y . Sawae, K. Nakajima; Evaluation of friction and wear characteristics of arti�cial cartilage materials. J. Jpn. Clin. Biomech. 1999: 20, 319–323 (Japanese). 22. J. Arict; Nontraumatic a vascular necrosis of the femoral head: Past, present, and future. Clin. Orthop. 1992: 277, 12–21. 23. M.W. Hugerford, M.A. Mont, R. Scott et al.; Surface replacement hemiarthroplasty for the treatment of osteonecrosis of the femoral head. J. Bone Joint Surg. (A) 1998: 80-A, 1656–1664. 24. M. Singuler, T . Judel, T. Siguier et al.; Preliminary results of partial surface replacement of the femoral head in osteonecrosis. J. Arthroplast. 1999: 14, 45–51. 25. K. Ushio, M. Oka, S.H. Hyon et al.; Partial hemiarthroplasty for the treatment of osteonecrosis of the femoral head. J. Bone-Joint. Surg. (B) 2003: 85-B, 922–930. 26. H.J. Mankin, H. Dorfman, L. Lippiello, A. Zarins; Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J. Bone Joint Surg. (A) 1971: 53-A, 523–537. 27. T. Brindle, J. Nyland, D.J. Johnson; The Meniscus: Review of basic principles with application to surgery and rehabilitation. J. Athl. Train. 2001: 36, 160–169. 28. E.L. Radin, F. Lamotte, P. Maquet; Role of the menisci in the distribution of stress in the knee. Clin. Orthop. 1984: 185, 290–294. 29. A.S. Voloshin, J. Wosk; Shock absorption of menisectomized and painful knees: A comparative in vivo study. J. Biomed. Eng. 1983: 5, 157–161. 30. T.J. Fairbank; Knee joint changes after meniscectomy. J. Bone Joint Surg. (B) 1948: 30-B, 664–670. 31. W.L. Lanzer, G. Komenda; Changes in articular cartilage after meniscectomy. Clin. Orthop. 1990: 252, 41–48. 32. M.J. McNicholas, D.I. Roele y, D. Mcgurty et.al; Total meniscectomy in adolescence. A thirty-year follow up. J. Bone Joint Surg. (B) 2000: 82-B, 217–221. 33. M. Kobayashi, J. Toguchida, M. Oka; Preliminary study of poly(vinyl alcohol)-hydrogel (PVA-H) arti�cial meniscus. Biomaterials 2003: 24, 639–647. 34. M. Kobayashi, Y.S. Chang, M. Oka; A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) arti�cial meniscus. Biomaterials 2005: 26, 3243–3248. 35. C.K. Lee; Accelerated degeneration of the segment adjacent to a lumber fusion. Spine 1988: 13, 375–377. 36. P. Enker, A. Steffee, C. Mcmillin et al.; Arti�cial disc replacement. Spine 1993: 18, 1061–1070. 37. K. Taniyama, M. Oka, Y.S. Hyon et al.; Evaluation of mechanical properties od canine arti�cial intervertebral disc. J. Jpn. Clin. Biomech. 2001: 22, 109–115 (Japanese). 38. S. Yura, M. Oka, K. Ushio et al.; Development of arti�cial intervertabral disc using poly(vinyl alcohol) hydrogels. SIROT 99 (Sydney, Australia), Freund Publishing House Ltd., London, U.K., 1999, pp. 371–376. 39. K. So, M. T akemoto, S. Fujibayashi et al.; Anti degenerative effects of partial disc replacement in an animal surgery model. Spine 2007: 32, 1586–1591. 40. Y.S. Chang, M. Oka, M. Kobayashi et al.; Signi�cance of interstitial bone ingrowth under loadbearing conditions: A comparison between solid and porous implant materials. Biomaterials 1996: 17, 1141–1148. 41. Y.S. Chang, M. Oka, M. Kobayashi et al.; Comparison of the bony ingrowth into an osetochondral defect and an arti�cial osteochondral composite device in load-bearing joints. The Knee 1998: 5, 205–213. 42. Y.S. Chang, M. Oka, M. Kobayashi et al.; In¥uence of various structure treatment on histological �xation of titanium implants. J. Arthroplasty 1998: 13, 816–825. 43. M. Kobayashi, M. Oka; Composite device for attachment of poly(vinyl alcohol)-hydrogel to underlying bone. Artif. Organs 2004: 28, 734–738. 44. C. Roberts, C.S. Chen, M. Mrksich et al.; Using mixed self-assembled monolayers presenting RGD and (EG) 3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J. Am. Chem. Soc. 1998: 120, 6548–6555. 45. M. Arnold, E.A. Cavalcanti-Adam, R. Glass et al.; Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem. 2004: 5, 383–388. 46. T. Hayami, K. Matsumura, Y.S. Hyon et al.; The effect of ultra-thin coating of hydroxyapatite on arti�cial articular cartilage (PVA-H) for cell contracture. Proceedings of the 35th Annual Meeting of Japanese Society for Clinical Biomechanics, Osaka, Japan, 2008, p. 142 (Japanese). 47. C.J. Xian, B.K. F oster; Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr. Stem Cell Res. Ther. 2006: 1, 213–229. 48. H.X. Song, F.B. Li, H.L. Shen et al.; Repairing articular cartilage defects with tissue- engineering cartilage in rabbits. Chin. J. Traumatol. 2006: 9, 266–271. 49. A. Heymer, G. Bradica, J. Eulert, U. Nöth; Multiphasic collagen �bre-PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: An in vitro study. J. Tissue Eng. Regen. Med. 2009: 3(5), 389–397. 50. Y. Uchino, S. Shimmura, H. Miyashita et al.; Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an arti�cial cornea scaffold that supports a strati�ed and differentiated corneal epithelium. J. Biomed. Mater. Res. Appl. Biomater. 2007: 81(1), 201–206. 51. C.R. Nuttelman, S.M. Henry , K.S. Anseth; Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 2002: 23, 3617–3626. 4 Chapter 4. Polyphosphazenes as Biomaterials Adibi, S. A. 1989. Glycyl-dipeptides: New substrates for protein nutrition. J Lab Clin Med 113 (6):665–673. Agrawal, C. M. and Athanasiou, K. A. 1997. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 38 (2):105–114. Aldini, N. N., Fini, M., Rocca, M. et al. 1997. Peripheral nerve reconstruction with bioabsorbable polyphosphazene conduits. J Bioact Compat Pol 12 (1):3–13. Allcock, H. R. 1967. Heteroatom Ring Systems and Polymers. New York: Academic Press. Allcock, H. R. 1972a. Phosphorus-Nitrogen Compounds. Cyclic, Linear and High Polymeric Systems. New York: Academic Press. Allcock, H. R. 1972b. Recent advances in phosphazene (phosphonitrilic) chemistry. Chem Rev 72 (4):315–356. Allcock, H. R. 1979. Small-molecule phosphazene rings as models for high polymeric chains. Acc Chem Res 12 (10):351–358. Allcock, H. R. 1985. Developments at the interface of inorganic, organic, and polymer chemistry. Chem Eng News 63 (11):22–36. Allcock, H. R. 1992. Mechanisms and catalysis in cyclophosphazene polymerization. In Catalysis in Polymer Synthesis, eds., E. J. Vandenberg and J. C. Salamone, pp. 236–247. Washington, DC: American Chemical Society. Allcock, H. R. 2003. Chemistry and Applications of Polyphosphazenes. Hoboken, NJ: Wiley Interscience. Allcock, H. R. 2010. Hybrids of hybrids: Nano-scale combinations of polyphosphazenes with other materials. Appl Organometal Chem 24 (8):600–607. Allcock, H. R. and Ambrosio, A. M. 1996. Synthesis and characterization of pH-sensitive poly (organophosphazene) hydrogels. Biomaterials 17 (23):2295–2302. Allcock, H. R., Austin, P. E., and Neenan, T. X. 1982a. Phosphazene high polymers with bioactive substituent groups: Prospective anesthetic aminophosphazenes. Macromolecules 15 (3):689–693. Allcock, H. R., Bender, J. D., Morford, R. V., and Berda, E. B. 2003a. Synthesis and characterization of novel solid polymer electrolytes based on poly(7-oxanorbornenes) with pendent oligoethyleneoxyfunctionalized cyclotriphosphazenes. Macromolecules 36 (10):3563–3569. Allcock, H. R. and Chu, C. T.-W. 1979. Reaction of phenyllithium with poly(dichlorophosphazene). Macromolecules 12 (4):551–555. Allcock, H. R., Clay Kellam, E., and Morford, R. V. 2001a. Gel electrolytes from co-substituted oligoethyleneoxy/tri¥uoroethoxy linear polyphosphazenes. Solid State Ionics 143 (3–4):297–308. Allcock, H. R., Cook, W. J., and Mack, D. P. 1972. Phosphonitrilic compounds. XV. High molecular weight poly[bis(amino)phosphazenes] and mixed-substituent poly(aminophosphazenes). Inorg Chem 11 (11):2584–2590. Allcock, H. R., Crane, C. A., Morrissey, C. T. et al. 1996. Living cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights. Macromolecules 29 (24):7740–7747. Allcock, H. R. and Fuller, T. J. 1980. Phosphazene high polymers with steroidal side groups. Macromolecules 13 (6):1338–1345. Allcock, H. R., Fuller, T. J., Mack, D. P., Matsumura, K., and Smeltz, K. M. 1977. Synthesis of poly[(amino acid alkyl ester)phosphazenes]. Macromolecules 10 (4):824–830. Allcock, H. R., Fuller, T. J., and Matsumura, K. 1982b. Hydrolysis pathways for aminophosphazenes. Inorg Chem 21 (2):515–521. Allcock, H. R., Hartle, T. J., Taylor, J. P., and Sunderland, N. J. 2001b. Organic polymers with cyclophosphazene side groups: In¥uence of the phosphazene on physical properties and thermolysis. Macromolecules 34 (12):3896–3904. Allcock, H. R. and Kellam, E. C. 2001. Incorporation of cyclic phosphazene trimers into saturated and unsaturated ethylene-like polymer backbones. Macromolecules 35 (1):40–47. Allcock, H. R., Kellam, E. C., and Hofmann, M. A. 2001c. Synthesis of cyclolinear phosphazene-containing polymers via ADMET polymerization. Macromolecules 34 (15):5140–5146. Allcock, H. R. and Kugel, R. L. 1965. Synthesis of high polymeric alkoxy- and aryloxyphosphonitriles. J Am Chem Soc 87 (18):4216–4217. Allcock, H. R. and Kugel, R. L. 1966. Phosphonitrilic compounds. VII. High molecular weight poly(diaminophosphazenes). Inorg Chem 5 (10):1716–1718. Allcock, H. R., Kugel, R. L., and Valan, K. J. 1966. Phosphonitrilic compounds. VI. High molecular weight poly(alkoxy- and aryloxyphosphazenes). Inorg Chem 5 (10):1709–1715. Allcock, H. R. and Kwon, S. 1988. Glyceryl polyphosphazenes: Synthesis, properties, and hydrolysis. Macromolecules 21 (7):1980–1985. Allcock, H. E., Kwon, S., Riding, G. H., Fitzpatrick, R. J., and Bennett, J. L. 1988. Hydrophilic polyphosphazenes as hydrogels: Radiation cross-linking and hydrogel characteristics of poly [bis (methoxyethoxyethoxy)phosphazene]. Biomaterials 9 (6):509–513. Allcock, H. R., Lampe, F. W., and Mark, J. E. 2003b. Contemporary Polymer Chemistry, 3rd edn. Upper Saddle River, NJ: Pearson Education, Inc (Pearson/Prentice Hall). Allcock, H. R., Laredo, W. R., Kellam, E. C., and Morford, R. V. 2001d. Polynorbornenes bearing pendent cyclotriphosphazenes with oligoethyleneoxy side groups: Behavior as solid polymer electrolytes. Macromolecules 34 (4):787–794. Allcock, H. R., Nelson, J. M., Reeves, S. D., Honeyman, C. H., and Manners, I. 1997a. Ambient-temperature direct synthesis of poly(organophosphazenes) via the living cationic polymerization of organosubstituted phosphoranimines. Macromolecules 30 (1):50–56. Allcock, H. R., Powell, E. S., Chang, Y., and Kim, C. 2004a. Synthesis and micellar behavior of amphiphilic polystyrene-poly[bis(methoxyethoxyethoxy)phosphazene] block copolymers. Macromolecules 37 (19):7163–7167. Allcock, H. R., Powell, E. S., Maher, A. E., and Berda, E. B. 2004b. Poly(methyl methacrylate)-graft-poly[bis(tri¥uoroethoxy)phosphazene] copolymers: Synthesis, characterization, and effects of polyphosphazene incorporation. Macromolecules 37 (15):5824–5829. Allcock, H. R. and Prange, R. 2001. Properties of poly(phosphazene-siloxane) block copolymers synthesized via telechelic polyphosphazenes and polysiloxane phosphoranimines. Macromolecules 34 (20):6858–6865. Allcock, H. R. and Pucher, S. R. 1991. Polyphosphazenes with glucosyl and methylamino, tri¥uoroethoxy, phenoxy, or (methoxyethoxy)ethoxy side groups. Macromolecules 24 (1):23–34. Allcock, H. R., Pucher, S. R., and Scopelianos, A. G. 1994a. Poly[(amino acid ester)phosphazenes] as substrates for the controlled release of small molecules. Biomaterials 15 (8):563–569. Allcock, H. R., Pucher, S. R., and Scopelianos, A. G. 1994b. Poly[(amino acid ester)phosphazenes]: Synthesis, crystallinity, and hydrolytic sensitivity in solution and the solid state. Macromolecules 27 (5):1071–1075. Allcock, H. R., Pucher, S. R., and Scopelianos, A. G. 1994c. Synthesis of poly(orgnaophosphazenes) with glycolic acid ester and lactic acid ester side groups: Prototypes for new bioerodible polymers. Macromolecules 27 (1):1–4. Allcock, H. R., Ravikiran, R., and Olshavsky, M. A. 1998. Synthesis and characterization of hindered polyphosphazenes via functionalized intermediates: Exploratory models for electro-optical materials. Macromolecules 31 (16):5206–5214. Allcock, H. R., Reeves, S. D., Nelson, J. M., Crane, C. A., and Manners, I. 1997b. Polyphosphazene block copolymers via the controlled cationic, ambient temperature polymerization of phosphoranimines. Macromolecules 30 (7):2213–2215. Allcock, H. R. and Scopelianos, A. G. 1983. Synthesis of sugar-substituted cyclic and polymeric phosphazenes and their oxidation, reduction, and acetylation reactions. Macromolecules 16 (5):715–719. Allcock, H. R., Singh, A., Ambrosio, A. M., and Laredo, W. R. 2003c. Tyrosine-bearing polyphosphazenes. Biomacromolecules 4 (6):1646–1653. Allcock, H. R., Welna, D. T., and Stone, D. A. 2005. Synthesis of pendent functionalized cyclotriphosphazene polyoctenamers: Amphiphilic lithium ion conductive materials. Macromolecules 38 (25):10406–10412. Ambrosio, A. M. A., Allcock, H. R., Katti, D. S., and Laurencin, C. T. 2002. Degradable polyphosphazene/ poly([alpha]-hydroxyester) blends: Degradation studies. Biomaterials 23 (7):1667–1672. Ambrosio, A. M., Sahota, J. S., Runge, C. et al. 2003. Novel polyphosphazene-hydroxyapatite composites as biomaterials. IEEE Eng Med Biol Mag 22 (5):18–26. Andrianov, A. K., DeCollibus, D. P., Gillis, H. A. et al. 2009. Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc Natl Acad Sci USA 106 (45):18936–18941. Andrianov, A. K., Jianping, C., and Payne, L. G. 1998. Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions. Biomaterials 19 (1–3):109–115. Andrianov, A. K. and Marin, A. 2006. Degradation of polyaminophosphazenes: Effects of hydrolytic environment and polymer processing. Biomacromolecules 7 (5):1581–1586. Andrianov, A. K. and Payne, L. G. 1998. Protein release from polyphosphazene matrices. Adv Drug Deliv Rev 31 (3):185–196. Barrett, E. W., Phelps, M. V. B., Silva, R. J., Gaumond, R. P., and Allcock, H. R. 2005. Patterning poly(organophosphazenes) for selective cell adhesion applications. Biomacromolecules 6 (3):1689–1697. Bates, F. S. 1991. Polymer-polymer phase behavior. Science 251 (4996):898–905. Bhattacharyya, S., Kumbar, S. G., Khan, Y. M. et al. 2009. Biodegradable polyphosphazenenanohydroxyapatite composite nano�bers: Scaffolds for bone tissue engineering. J Biomed Nanotec hnol 5 (1):69–75. Bhattacharyya, S., Nair, L. S., Singh, A. et al. 2006. Electrospinning of poly[bis(ethyl alanato) phosphazene] nano�bers J Biomed Nanotechnol 2 (1):36–45. Bi, Y. M., Gong, X. Y., Wang, W. Z. et al. 2010. Synthesis and characterization of new biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups. Chin Chem Lett 21 (2):237–241. Borden, M., Attawia, M., Khan, Y., El-Amin, S. F., and Laurencin, C. T. 2004. Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Joint Surg Br 86 (8):1200–1208. Borden, M., Attawia, M., Khan, Y., and Laurencin, C. T. 2002a. Tissue engineered microsphere-based matrices for bone repair: Design and evaluation. Biomaterials 23 (2):551–559. Borden, M., Attawia, M., and Laurencin, C. T. 2002b. The sintered microsphere matrix for bone tissue engineering: In vitro osteoconductivity studies. J Biomed Mater Res 61 (3):421–429. Borden, M., El-Amin, S. T. 2003. Structural and novel microsphere-based repair. Biomaterials 24 F., Attawia, M., and Laurencin, C. human cellular assessment of a tissue engineered scaffold for bone (4):597–609. Böstman, O. M. 1998. Osteoarthritis of the ankle after foreign-body reaction to absorbable pins and screws: A three- to nine-year follow-up study. J Bone Joint Surg Br 80 (2):333–338. Böstman, O. and Pihlajamäki, H. 2000. Clinical biocompatibility of biodegradable orthopaedic implants for internal �xation: A review. Biomaterials 21 (24):2615–2621. Braddock, M., Houston, P., Campbell, C., and Ashcroft, P. 2001. Born again bone: Tissue engineering for bone repair. News Physiol Sci 16 (5):208–213. Brown, J. L., Nair, L. S., Bender, J., Allcock, H. R., and Laurencin, C. T. 2007. The formation of an apatite coating on carboxylated polyphosphazenes via a biomimetic process. Mater Lett 61 (17):3692–3695. Brown, J. L., Nair, L. S., and Laurencin, C. T. 2008. Solvent/non-solvent sintering: A novel route to create porous microsphere scaffolds for tissue regeneration. J Biomed Mater Res B Appl Biomater 86B (2):396–406. Brown, J. L., Peach, M. S., Nair, L. S., Kumbar, S. G., and Laurencin, C. T. 2010. Composite scaffolds: Bridging nano�ber and microsphere architectures to improve bioactivity of mechanically competent constructs. J Biomed Mater Res A 95 (4):1150–1158. DOI: 10.1002/jbm.a.32934. Caliceti, P., Veronese, F. M., and Lora, S. 2000. Polyphosphazene microspheres for insulin delivery. Int J Pharm 211 (1–2):57–65. Carampin, P., Conconi, M. T., Lora, S. et al. 2007. Electrospun polyphosphazene nano�bers for in vitro rat endothelial cells proliferation. J Biomed Mater Res A 80A (3):661–668. Chang, Y., Powell, E. S., and Allcock, H. R. 2005. Environmentally responsive micelles from polystyrene– poly[bis(potassium carboxylatophenoxy)phosphazene] block copolymers. J Polym Sci Polym Chem 43 (13):2912–2920. Chang, Y., Powell, E. S., Allcock, H. R., Park, S. M., and Kim, C. 2003. Thermosensitive behavior of poly(ethylene oxide)-poly[bis(methoxyethoxyethoxy)-phosphazene] block copolymers. Macromolecules 36 (7):2568–2570. Chang, Y., Prange, R., Allcock, H. R., Lee, S. C., and Kim, C. 2002. Amphiphilic poly[bis(tri¥uoroethoxy) phosphazene]-poly(ethylene oxide) block copolymers: Synthesis and micellar characteristics. Macromolecules 35 (22):8556–8559. Chatani, Y. and Yatsuyanagi, K. 1987. Structural studies of poly(phosphazenes). 1. Molecular and crystal structures of poly(dichlorophosphazene). Macromolecules 20 (5):1042–1045. Chaubal, M. V., Gupta, A. S., Lopina, S. T., and Bruley, D. F. 2003. Polyphosphates and other phosphoruscontaining polymers for drug delivery applications. Crit Rev Ther Drug Carrier Syst 20 (4):295–315. Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., and Lee, S.-Y. 2003. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24 (7):1167–1173. Chen, G. and Hoffman, A. S. 1995. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373 (6509):49–52. Chun, C., Lee, S. M., Kim, C. W. et al. 2009a. Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials 30 (27):4752–4762. Chun, C., Lee, S. M., Kim, S. Y., Yang, H. K., and Song, S.-C. 2009b. Thermosensitive poly(organophosphazene)paclitaxel conjugate gels for antitumor applications. Biomaterials 30 (12):2349–2360. Chun, C., Lim, H. J., Hong, K.-Y., Park, K.-H., and Song, S.-C. 2009c. The use of injectable, thermosensitive poly(organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation. Biomaterials 30 (31):6295–6308. Cohen, S., Bano, M. C., Cima, L. G. et al. 1993. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater 13 (1–4):3–10. Coleman, M. M. and Painter, P. C. 1995. Hydrogen bonded polymer blends. Prog Polym Sci 20 (1):1–59. Conconi, M. T., Carampin, P., Lora, S., Grandi, C., and Parnigotto, P. P. 2009. Electrospun polyphosphazene nano�bers for in vitro osteoblast culture. In Polyphosphazenes for Biomedical Applications, ed., A. Andrianov. Hoboken, NJ: Wiley-Interscience. pp. 169–184. Conconi, M. T., Lora, S., Baiguera, S. et al. 2004. In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J Biomed Mater Res A 71A (4):669–674. Conconi, M. T., Lora, S., Menti, A. M., Carampin, P., and Parnigotto, P. P. 2006. In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering. Tissue Eng 12 (4):811–819. Conforti, A., Bertani, S., Lussignoli, S. et al. 1996. Anti-in¥ammatory activity of polyphosphazene-based naproxen slow-release systems. J Pharm Pharmacol 48 (5):468–473. Crommen, J. H., Schacht, E. H., and Mense, E. H. 1992a. Biodegradable polymers. I. Synthesis of hydrolysissensitive poly[(organo)phosphazenes]. Biomaterials 13 (8):511–520. Crommen, J. H., Schacht, E. H., and Mense, E. H. 1992b. Biodegradable polymers. II. Degradation characteristics of hydrolysis-sensitive poly[(organo)phosphazenes]. Biomaterials 13 (9):601–611. Crommen, J., Vandorpe, J., and Schacht, E. 1993. Degradable polyphosphazenes for biomedical applications. J Control Release 24 (1–3):167–180. Cui, Y., Zhao, X., Tang, X., and Luo, Y. 2004. Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix. Biomaterials 25 (3):451–457. De Jaeger, R., Helioui, M., and Puscaric, E. 1983. Novel polychlorophosphazenes and process for their preparation. U.S. Patent 4377558. Deng, M. 2010. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development, PhD dissertation, Department of Chemical Engineering, University of Virginia, Charlottesville, VA. Deng, M., Kumbar, S. G., Wan, Y. et al. 2010a. Polyphosphazene polymers for tissue engineering: An analysis of material synthesis, characterization and applications. Soft Matter 6:3119–3132. Deng, M., Nair, L. S., Krogman, N. R., Allcock, H. R., and Laurencin, C. T. 2009. Biodegradable polyphosphazene blends for biomedical applications. In Polyphosphazenes for Biomedical Applications, ed., A. Andrianov. Hoboken, NJ: Wiley-Interscience. pp. 139–154. Deng, M., Nair, L. S., Nukavarapu, S. P. et al. 2008. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid). Biomaterials 29 (3):337–349. Deng, M., Nair, L. S., Nukavarapu, S. P. et al. 2010b. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials 31 (18):4898–4908. Deng, M., Nair, L. S., Nukavarapu, S. P. et al. 2010c. Biomimetic, bioactive etheric polyphosphazene-poly(lactideco-glycolide) blends for bone tissue engineering. J Biomed Mater Res A 92A (1):114–125. Deng, M., Nair, L. S., Nukavarapu, S. P. et al. 2010d. In situ porous structures: A unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater 20 (17):2794–2806. Devadoss, E. and Nair, C. P. R. 1985. A novel cyclomatrix polymer based on (hydroxy phenoxy) phosphazenes and 2-methyl aziridine: Some aspects of synthesis and adhesive heat resistance. Polymer 26 (12):1895–1900. El-Amin, S. F., Kwon, M. S., Starnes, T., Allcock, H. R., and Laurencin, C. T. 2007. The biocompatibility of biodegradable glycine containing polyphosphazenes: A comparative study in bone. J Inorg Organomet Polym Mater 16 (4):387–396. Fox, T. 1956. In¥uence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123. Franz, U., Nuyken, O., and Matyjaszewski, K. 1994. Synthesis and characterization of poly(phenyl-ptolylphosphazene), prepared via in situ polymerization of phenyl-p-tolylphosphine azide. Macromol Rapid Commun 15 (2):169–174. Fu, K., Pack, D. W., Klibanov, A. M., and Langer, R. 2000. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 17 (1):100–106. Ghattas, D. and Leroux, J. 2009. Amphiphilic ionizable polyphosphazenes for the preparation of pHresponsive liposomes. In P olyphosphazenes for Biomedical Applications, ed., A. Andrianov. Hoboken, NJ: WileyInterscience. pp. 225–247. Glatter, O., Scherf, G., Schillen, K., and Brown, W. 1994. Characterization of a poly(ethylene oxide)poly(propylene oxide) triblock copolymer (EO27-PO39-EO27) in aqueous solution. Macromolecules 27 (21):6046–6054. Gleria, M. and De Jaeger, R. 2004. Phosphazenes: A Worldwide Insight. New York: Nova Science Publishers. Greish, Y. E., Bender, J. D., Lakshmi, S. et al. 2005a. Composite formation from hydroxyapatite with sodium and potassium salts of polyphosphazene. J Mater Sci Mater Med 16 (7):613–620. Greish, Y. E., Bender, J. D., Lakshmi, S. et al. 2005b. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications. Biomaterials 26 (1):1–9. Greish, Y. E., Bender, J. D., Lakshmi, S. et al. 2006. Formation of hydroxyapatite-polyphosphazene polymer composites at physiologic temperature. J Biomed Mater Res A 77 (2):416–425. Greish, Y. E., Sturgeon, J. L., Singh, A. et al. 2008. Formation and properties of composites comprised of calcium-de�cient hydroxyapatites and ethyl alanate polyphosphazenes. J Mater Sci Mater Med 19 (9):3153–3160. Grolleman, C. W. J., de Visser, A. C., Wolke, J. G. C., van der Goot, H., and Timmerman, H. 1986. Studies on a bioerodible drug carrier system based on polyphosphazene Part I. Synthesis. J Control Release 3 (1–4):143–154. Gümüsdereliolu, M. and Gür, A. 2002. Synthesis, characterization, in vitro degradation and cytotoxicity of poly[bis(ethyl 4-aminobutyro)phosphazene]. React Funct Polym 52 (2):71–80. Gunatillake, P. A. and Adhikari, R. 2003. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16. He, Y., Zhu, B., and Inoue, Y. 2004. Hydrogen bonds in polymer blends. Prog Polym Sci 29 (10):1021–1051. Helioui, M., De Jaeger, R., Puskaric, E., and Heubel, J. 1982. Nouvelle préparation de polychlorophosphazènes linéaires. Die Makromol. Chem. 183 (5):1137–1143. Honeyman, C. H., Manners, I., Morrissey, C. T., and Allcock, H. R. 1995. Ambient temperature synthesis of poly(dichlorophosphazene) with molecular weight control. J Am Chem Soc 117 (26):7035–7036. Huang, D., Balian, G., and Chhabra, A. B. 2006. Tendon tissue engineering and gene transfer: The future of surgical treatment. J Hand Surg 31 (5):693–704. Huang, Z. M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S. 2003. A review on polymer nano�bers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. Ibim, S. E. M., Ambrosio, A. M. A., Kwon, M. S. et al. 1997. Novel polyphosphazene/poly(lactide-coglycolide) blends: Miscibility and degradation studies. Biomaterials 18 (23):1565–1569. Ibim, S. M., Ambrosio, A. A., Larrier, D., Allcock, H. R., and Laurencin, C. T. 1996. Controlled macromolecule release from poly(phosphazene) matrices. J Control Release 40 (1–2):31–39. Ibim, S. M., El-Amin, S. F., Goad, M. E. P. et al. 1998. In vitro release of colchicine using poly(phosphazenes): The development of delivery systems for musculoskeletal use. Pharmaceut Dev Tech 3 (1):55–62. Ikada, Y. and Tsuji, H. 2000. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21 (3):117–132. Ilia, G. 2009. Phosphorus containing hydrogels. Polym Adv Technol 20 (9):707–722. Iwasaki, Y., Sawada, S.-I., Ishihara, K., Khang, G., and Lee, H. B. 2002. Reduction of surface-induced in¥ammatory reaction on PLGA/MPC polymer blend. Biomaterials 23 (18):3897–3903. Jeong, B., Bae, Y. H., and Kim, S. W. 1999. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32 (21):7064–7069. Jun, Y. J., Kim, J. I., Jun, M. J., and Sohn, Y. S. 2005. Selective tumor targeting by enhanced permeability and retention effect. Synthesis and antitumor activity of polyphosphazene-platinum (II) conjugates. J Inorg Biochem 99 (8):1593–1601. Kang, G. D., Heo, J. Y., Jung, S. B., and Song, S. C. 2005. Controlling the thermosensitive gelation properties of poly(organophosphazenes) by blending. Macromol Rapid Commun 26 (20):1615–1618. Katti, D. and Laurencin, C. T. 2003. Synthetic biomedical polymers for tissue engineering and drug delivery. In Advanced Polymeric Materials: Structure Property Relationships, eds., G. O. Shonaike and S. G. Advani. Boca Raton, FL: CRC Press. pp. 479–525. Kokubo, T. and Takadama, H. 2006. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (15):2907–2915. Kricheldorf, H. R., Nuyken, O., and Swift, G. 2004. Handbook of Polymer Synthesis: Second Edition (Plastics Engineering), 2nd edn. Boca Raton, FL: CRC Press. Krogman, N. R., Hindenlang, M. D., Nair, L. S., Laurencin, C. T., and Allcock, H. R. 2008a. Synthesis of purine- and pyrimidine-containing polyphosphazenes: Physical properties and hydrolytic behavior. Macromolecules 41 (22):8467–8472. Krogman, N. R., Singh, A., Nair, L. S., Laurencin, C. T., and Allcock, H. R. 2007. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends. Biomacromolecules 8 (4):1306–1312. Krogman, N. R., Steely, L., Hindenlang, M. D. et al. 2008b. Synthesis and characterization of polyphosphazeneblock-polyester and polyphosphazene-block-polycarbonate macromolecules. Macromolecules 41 (4):1126–1130. Krogman, N. R., Weikel, A. L., Kristhart, K. A. et al. 2009. The in¥uence of side group modi�cation in polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA. Biomaterials 30 (17):3035–3041. Krogman, N. R., Weikel, A. L., Nguyen, N. Q. et al. 2008c. Synthesis and characterization of new biomedical polymers: Serine- and threonine-containing polyphosphazenes and poly(l-lactic acid) grafted copolymers. Macromolecules 41 (21):7824–7828. Krogman, N. R., Weikel, A. L., Nguyen, N. Q. et al. 2010. Hydrogen bonding in blends of polyesters with dipeptide-containing polyphosphazenes. J Appl Polym Sci 115 (1):431–437. Kumbar, S. G., Bhattacharyya, S., Nukavarapu, S. P. et al. 2006. In vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications. J Inorg Organomet Polym Mater 16 (4):365–385. Kumbar, S. G., Bhattacharyya, S., Sethuraman, S., and Laurencin, C. T. 2007. A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: Precision electrospraying. J Biomed Mater Res B Appl Biomater. 81B (1):91–103. Kumbar, S. G., James, R., Nukavarapu, S. P., and Laurencin, C. T. 2008. Electrospun nano�ber scaffolds: Engineering soft tissues. Biomed Mater 3 (3):034002. Landes, C. A., Ballon, A., and Roth, C. 2006. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: A 5-year inpatient biocompatibility and degradation experience. Plast Reconstr Surg 117 (7):2347–2360. Langer, R. 2000. Tissue engineering. Mol Ther 1 (1):12–15. Langer, R. and Peppas, N. A. 2003. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 49 (12):2990–3006. Langer, R. and Vacanti, J. P. 1993. Tissue engineering. Science 260 (5110):920–926. Langone, F., Lora, S., Veronese, F. M. et al. 1995. Peripheral nerve repair using a poly(organo)phosphazene tubular prosthesis. Biomaterials 16 (5):347–353. Laurencin, C. T., Ambrosio, A. M. A., Bauer, T. W. et al. 1998. The biocompatibility of polyphophazenes. Evaluation in bone. Paper read at Society for Biomaterials. 24th Annual Meeting in Conjunction with 30th International Symposium, San Diego, CA. p. 436. Laurencin, C. T., Ambrosio, A. M. A., Borden, M. D., and Cooper, J. A. 1999. Tissue engineering: Orthopedic applications. Annu Rev Biomed Eng 1 (1):19–46. Laurencin, C. T., El-Amin, S. F., Ibim, S. E. et al. 1996. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 30 (2):133–138. Laurencin, C. T., Koh, H. J., Neenan, T. X., Allcock, H. R., and Langer, R. 1987. Controlled release using a new bioerodible polyphosphazene matrix system. J Biomed Mater Res 21 (10):1231–1246. Laurencin, C. T., Morris, C. D., Pierre-Jacques, H. et al. 1992. Osteoblast culture on bioerodible polymers: Studies of initial cell adhesion and spread. Polym Adv Tech 3 (6):359–364. Laurencin, C. T., Norman, M. E., Elgendy, H. M. et al. 1993. Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res 27 (7):963–973. Lee, B. H., Lee, Y. M., Sohn, Y. S., and Song, S.-C. 2002. A thermosensitive poly(organophosphazene) gel. Macromolecules 35 (10):3876–3879. Lee, K. Y. and Mooney, D. J. 2001. Hydrogels for tissue engineering. Chem Rev 101 (7):1869–1880. Lee, S. B. and Song, S.-C. 2005. Hydrolysis-improved thermosensitive polyorganophosphazenes with alpha-aminoomega-methoxy-poly(ethylene glycol) and amino acid esters as side groups. Polym Int 54 (9):1225–1232. Lemmouchi, Y., Schacht, E., and Dejardin, S. 1998. Biodegradable poly[(amino acid ester)phosphazenes] for biomedical applications. J Bioact Compat Polym 13 (1):4–18. Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., and Ko, F. K. 2002. Electrospun nano�brous structure: A novel scaffold for tissue engineering. J Biomed Mater Res 60 (4):613–621. Li, Z., Li, J., and Qin, J. 2001. Synthesis of polyphosphazenes as potential photorefractive materials. React Funct Polym 48 (1–3):113–118. Li, D. and Xia, Y. 2004. Electrospinning of nano�bers: Reinventing the wheel? Adv Mater 16 (14):1151–1170. Lin, Y.-J., Cai, Q., Li, L. et al. 2010. Co-electrospun composite nano�bers of blends of polyamino acid esterphosphazene and gelatin. Polym Int 59:610–616. Ma, P. X. 2008. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60 (2):184–198. Ma, P. X. and Zhang, R. 1999. Synthetic nano-scale �brous extracellular matrix. J Biomed Mater Res 46 (1):60–72. Martin, C. R. 1996. Membrane-based synthesis of nanomaterials. Chem Mater 8 (8):1739–1746. Mi, F.-L., Shyu, S.-S., Lin, Y.-M. et al. 2003. Chitin/PLGA blend microspheres as a biodegradable drug delivery system: A new delivery system for protein. Biomaterials 24 (27):5023–5036. Montague, R. A. and Matyjaszewski, K. 1990. Synthesis of poly[bis(tri¥uoroethoxy)phosphazene] under mild conditions using a ¥uoride initiator. J Am Chem Soc 112 (18):6721–6723. Nair, L. S., Allcock, H. R., and Laurencin, C. T. 2005. Biodegradable poly[bis(ethyl alanato)phosphazene]poly(lactide-co-glycolide) blends: Miscibility and osteocompatibility evaluations. Paper read at Materials Research Society Symposium, Boston, MA. 844:Y9.7.1–Y9.7.7. Nair, L. S., Bhattacharyya, S., Bender, J. D. et al. 2004. Fabrication and optimization of methylphenoxy substituted polyphosphazene nano�bers for biomedical applications. Biomacromolecules 5 (6):2212–2220. Nair, L. S., Katti, D. S., and Laurencin, C. T. 2003. Biodegradable polyphosphazenes for drug delivery applications. Adv Drug Deliv Rev 55 (4):467–482. Nair, L. S. and Laurencin, C. T. 2007. Biodegradable polymers as biomaterials. Progr Polym Sci 32 (8–9):762–798. Nair, L. S. and Laurencin, C. T. 2008. Nano�bers and nanoparticles for orthopaedic surgery applications. J Bone Joint Surg Am 90 (Suppl. 1):128–131. Nair, L. S., Lee, D. A., Bender, J. D. et al. 2006. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes. J Biomed Mater Res A 76 (1):206–213. Neilson, R. H. and Wisian-Neilson, P. 1988. Poly(alkyl/arylphosphazenes) and their precursors. Chem Rev 88 (3):541–562. Nelson, J. M. and Allcock, H. R. 1997. Synthesis of triarmed-star polyphosphazenes via the “living” cationic polymerization of phosphoranimines at ambient temperatures. Macromolecules 30 (6):1854–1856. Nukavarapu, S. P., Kumbar, S. G., Allcock, H. R., and Laurencin, C. T. 2009. Biodegradable polyphosphazene scaffolds for tissue engineering. In Polyphosphazenes for Biomedical Applications, ed., A. Andrianov. Hoboken, NJ: Wiley-Interscience. pp. 117–138. Nukavarapu, S. P., Kumbar, S. G., Brown, J. L. et al. 2008. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 9 (7):1818–1825. Odian, G. 2004. Principles of Polymerization, 4th edn., Hoboken, NJ: John Wiley & Sons, Inc. Ondarçuhu, T. and Joachim, C. 1998. Drawing a single nano�bre over hundreds of microns. Europhys Lett 42 (2):215. Oredein-McCoy, O., Krogman, N. R., Weikel, A. L. et al. 2009. Novel factor-loaded polyphosphazene matrices: Potential for driving angiogenesis. J Microencapsul 26 (6):544–555. Park, T. G., Cohen, S., and Langer, R. 1992. Poly(L-lactic acid)/pluronic blends: Characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrixes. Macromolecules 25 (1):116–122. Payne, L. G., Jenkins, S. A., Andrianov, A., and Roberts, B. E. 1995. Water-soluble phosphazene polymers for parenteral and mucosal vaccine delivery. Pharm Biotechnol 6:473–493. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H., and Zhang, J. 2003. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2 (1):9–29. Pitt, G. G., Cha, Y., Shah, S. S., and Zhu, K. J. 1992. Blends of PVA and PGLA: Control of the permeability and degradability of hydrogels by blending. J Control Release 19 (1–3):189–199. Potin, P. and De Jaeger, R. 1991. Polyphosphazenes: Synthesis, structures, properties, applications. Eur Polym J 27 (4–5):341–348. Potta, T., Chun, C., and Song, S.-C. 2010. Injectable, dual cross-linkable polyphosphazene blend hydrogels. Biomaterials 31 (32):8107–8120. Prange, R. and Allcock, H. R. 1999. Telechelic syntheses of the �rst phosphazene siloxane block copolymers. Macromolecules 32 (19):6390–6392. Qiu, L. Y. 2002a. Degradation and tissue compatibility of polyphosphazene blend �lms in vivo. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 19 (2):191–195. Qiu, L. Y. 2002b. In vitro and in vivo degradation study on novel blends composed of polyphosphazene and polyester or polyanhydride. Polym Int 51:481–487. Qiu, L. and Zheng, C. 2009. Amphiphilic polyphosphazenes as drug carriers. In Polyphosphazenes for Biomedical Applications, ed., A. Andrianov. Hoboken, NJ: Wiley-Interscience. pp. 277–295. Qiu, L. Y. and Zhu, K. J. 2000a. Novel biodegradable polyphosphazenes containing glycine ethyl ester and benzyl ester of amino acethydroxamic acid as cosubstituents. J Appl Polym Sci 77 (13):2987–2995. Qiu, L. Y. and Zhu, K. J. 2000b. Novel blends of poly[bis(glycine ethyl ester) phosphazene] and polyesters or polyanhydrides: Compatibility and degradation characteristics in vitro. Polym Int 49 (11):1283–1288. Ratner, B. D. and Bryant, S. J. 2004. Biomaterials: Where we have been and where we are going. Annu Rev Biomed Eng 6 (1):41–75. Rho, J. -Y., Kuhn-Spearing, L., and Zioupos, P. 1998. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20 (2):92–102. Schacht, E., Vandorpe, J., Dejardin, S., Lemmouchi, Y., and Seymour, L. 1996. Biomedical applications of degradable polyphosphazenes. Biotechnol Bioeng 52 (1):102–108. Schacht, E., Vandorpe, J., Lemmouchi, Y., Dejardin, S., and Seymour, L. 1998. Degradable polyphosphazenes for biomedical applications. In Frontiers in Biomedical Polymer Applications, ed., R. Ottembrite. Lancaster, U.K.: Technomic. pp. 27–42. Sethuraman, S., Nair, L. S., El-Amin, S. et al. 2006. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. J Biomed Mater Res A 77 (4):679–687. Sethuraman, S., Nair, L. S., El-Amin, S. et al. 2010. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects. Acta Biomaterialia 6 (6):1931–1937. Sethuraman, S., Nair, L. S., Singh, A. et al. 2004. Synthesis and evaluation of novel amino acid ester phenyl phenoxy polyphosphazene for bone tissue engineering. Paper read at Transactions of the Fifth Combined Meeting of the Orthopaedic Research Societies of Canada, USA, Japan, and Europe. Calgary, Alberta, Canada. Singh, A., Krogman, N. R., Sethuraman, S. et al. 2006. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Biomacromolecules 7 (3):914–918. Sulkowski, W., Sulkowska, A., and Kireev, V. 1997. Synthesis and spectroscopic studies of polyorganophosphazenes containing binaphthalene groups. J Mol Struct 410–411:241–244. Taylor, M. S., Daniels, A. U., Andriano, K. P., and Heller, J. 1994. Six bioabsorbable polymers: In vitro acute toxicity of accumulated degradation products. J Appl Biomater 5 (2):151–157. Tsuji, H. 2003. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: Well-homo-crystallized blend and nonblended �lms. Biomaterials 24 (4):537–547. Utracki, L. A. 1989. Polymer Alloys and Blends Thermodynamics and Rheology. Munich, Germany: Hanser. Vacanti, J. P. 1999. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32. Veronese, F. M., Marsilio, F., Caliceti, P. Polyorganophosphazene microspheres for drug Polymer synthesis, microsphere preparation, vivo naproxen release. J Control Release 52 et al. 1998. release: in vitro and in (3):227–237. Veronese, F. M., Marsilio, F., Lora, S. et al. 1999. Polyphosphazene membranes and microspheres in periodontal diseases and implant surgery. Biomaterials 20 (1):91–98. Wade, C. W. R., Gourlay, S., Rice, R. et al. 1978. Biocompatibility of eight poly(organophosphazenes). In Organometallic Polymers, eds., C. E. Carraher, J. E. Sheats and C. U. Pittman. New York: Academic. pp. 283–288. Weikel, A. L., Cho, S. Y., Morozowich, N. L. et al. 2010a. Hydrolysable polylactide-polyphosphazene block copolymers for biomedical applications: Synthesis, characterization, and composites with poly(lactic-coglycolic acid). Polym Chem 1 (9):1459–1466. Weikel, A. L., Krogman, N. R., Nguyen, N. Q. et al. 2009. Polyphosphazenes that contain dipeptide side groups: Synthesis, characterization, and sensitivity to hydrolysis. Macromolecules 42 (3):636–639. Weikel, A. L., Owens, S. G., Morozowich, N. L. et al. 2010b. Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends. Biomaterials 31 (33):8507–8515. Welle, A., Grunze, M., and Tur, D. 2000. Blood compatibility of poly[bis(tri¥uoroethoxy)phosphazene]. J Appl Med Polym 4 (1):6–10. Whitesides, G. M. and Boncheva, M. 2002. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99 (8):4769–4774. Whitesides, G. M. and Grzybowski, B. 2002. Self-assembly at all scales. Science 295 (5564):2418–2421. Wood, L. A. 1958. Glass transition temperatures of copolymers. J Polym Sci 28 (117):319–330. Yang, L. and Alexandridis, P. 2000. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr Opin Colloid Interface Sci 5 (1–2):132–143. Yuan, W., Song, Q., Zhu, L. et al. 2005. Asymmetric penta-armed poly(e-caprolactone)s with short-chain phosphazene core: Synthesis, characterization, and in vitro degradation. Polym Int 54 (9):1262–1267. Zentner, G. M., Rathi, R., Shih, C. et al. 2001. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72 (1–3):203–215. Zhang, T., Cai, Q., Wu, D. Z., and Jin, R. G. 2005. Phosphazene cyclomatrix network polymers: Some aspects of the synthesis, characterization, and ¥ame-retardant mechanisms of polymer. J Appl Polym Sci 95 (4):880–889. Zhang, J. X., Qiu, L. Y., Jin, Y., and Zhu, K. J. 2006. Multimorphological self-assemblies of amphiphilic graft polyphosphazenes with oligopoly(N-isopropylacrylamide) and ethyl 4-aminobenzoate as side groups. Macromolecules 39 (1):451–455. Zhang, Q.-S., Yan, Y.-H., Li, S.-P., and Feng, T. 2009. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Biomed Mater 4 (3):035008. Zhu, G., Mallery, S. R., and Schwendeman, S. P. 2000. Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nat Biotechnol 18 (1):52–57. 5 Chapter 5. Biodegradable Polymers as Drug Carrier Systems Adhirajan, N., N. Shanmugasundaram, S. Shanmuganathan, and M. Babu. 2009. Functionally modi�ed gelatin microspheres impregnated collagen scaffold as novel wound dressing to attenuate the proteases and bacterial growth. Eur J Pharm Sci 36 (2–3):235–245. Agueros, M., L. Ruiz-Gaton, C. Vauthier, K. Bouchemal, S. Espuelas, G. Ponchel, and J. M. Irache. 2009. Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 38 (4):405–413. Albertsson, A. C. and S. Lundmark. 1988. Synthesis of poly(adipic anhydride) by use of ketene. 25 (3):247–258. Allcock, H. R. 1976. Polyphosphazenes: New polymers with inorganic backbone atoms. Science 193 (4259):1214–1219. Allcock, H. R. and A. M. Ambrosio. 1996. Synthesis and characterization of pH-sensitive poly(organo phosphazene) hydrogels. Biomaterials 17 (23):2295–2302. Allcock, H. R. and T. J. Fuller. 1980. Phosphazene high polymers with steroidal side groups. Macromolecules 13 (6):1338–1345. Allcock, H. R., T. J. Fuller, D. P. Mack, K. Matsumura, and K. M. Smeltz. 1977. Synthesis of Poly[(amino acid alkyl ester)phosphazenes]. Macromolecules 10 (4):824–830. Allcock, H. R. and R. L. Kugel. 1966. High molecular weight poly(diaminophosphazenes). Inorg Chem 5:1716. Allcock, H. R. and S. Kwon. 1986. Covalent linkage of proteins to surface-modi�ed poly(organophosphazenes): Immobilization of glucose-6-phosphate dehydrogenase and trypsin. Macromolecules 19 (6):1502–1508. Allcock, H. R., A. Singh, A. M. Ambrosio, and W. R. Laredo. 2003. Tyrosine-bearing polyphosphazenes. Biomacromolecules 4 (6):1646–1653. Allcock, H. R., L. B. Steely, S. H. Kim, J. H. Kim, and B. K. Kang. 2007. Plasma surface functionalization of poly[bis(2,2,2-tri¥uoroethoxy)phosphazene] �lms and nano�bers. Langmuir 23 (15):8103–8107. Amor, S. R., T. Rayment, and J. K. M. Sanders. 1991. Polyhydroxybutyrate in vivo: NMR and X-ray diffraction characterisation of the elastomeric state. Macromolecules 24:4583–4588. Anonymous. 1985. Capronor. Hypotenuse, May–Jun:2–5. Anonymous. 1991. Phase II—Clinical trial with biodegradable subdermal contraceptive implant Capronor (4.0-cm single implant). Indian Council of Medical Research Task Force on Hormonal Contraception. Contraception 44 (4):409–417. Armstrong, D. K., G. F. Fleming, M. Markman, and H. H. Bailey. 2006. A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer) in recurrent ovarian cancer: A Gynecologic Oncology Group study. Gynecol Oncol 103 (2):391–396. Aronson, S. B. and R. C. Horton. 1971. Mechanisms of the host response in the eye. VII. The normal rabbit eye in anterior ocular in¥ammation. Arch Ophthalmol 85 (3):306–308. Arun, A., R. Arthi, V. Shanmugabalaji, and M. Eyini. 2009. Microbial production of poly-beta-hydroxybutyrate by marine microbes isolated from various marine environments. Bioresour Technol 100 (7):2320–2323. Asch, R. H., F. J. Rojas, A. Bartke, A. V. Schally, T. R. Tice, H. G. Klemcke, T. M. Siler-Khodr, R. E. Bray, and M. P. Hogan. 1985a. Prolonged suppression of plasma LH levels in male rats after a single injection of an LH-RH agonist in poly(dl-lactide-co-glycolide) microcapsules. J Androl 6 (2):83–88. Asch, R. H., F. J. Rojas, T. R. Tice, and A. V. Schally. 1985b. Studies of a controlled-release microcapsule formulation of an LH-RH agonist (d-Trp-6-LH-RH) in the rhesus monkey menstrual cycle. Int J Fertil 30 (2):19–26. Bailey, L. O., M. L. Becker, J. S. Stephens, N. D. Gallant, C. M. Mahoney, N. R. Washburn, A. Rege, J. Kohn, and E. J. Amis. 2006. Cellular response to phase-separated blends of tyrosine-derived polycarbonates. J Biomed Mater Res A 76 (3):491–502. Beck, L. R., C. E. Flowers, V. Z. Pope, W. H. Wilborn, and T. R. Tice. 1983a. Clinical evaluation of an improved injectable microcapsule contraceptive system. Am J Obstet Gynecol 147 (7):815–821. Beck, L. R., V. Z. Pope, C. E. Flowers, D. R. Cowsar, T. R. Tice, D. H. Lewis, R. L. Dunn, A. B. Moore, and R. M. Gilley. 1983b. Poly(dl-lactide-co-glycolide)/norethisterone microcapsules: An injectable biodegradable contraceptive. Biol Reprod 28 (1):186–195. Beck, L. R., R. A. Ramos, C. E. Flowers, G. Z. Lopez, D. H. Lewis, and D. R. Cowsar. 1981. Clinical evaluation of injectable biodegradable contraceptive system. Am J Obstet Gynecol 140 (7):799–806. Belen’Kaya, B. G., Ye B. Lyudvig, A. L. Izyumnikov, and Yu I. Kul’Velis. 1982. Aspects of the cationic polymerization of [epsilon]-caprolactone in the presence of alcohols. Polym Sci U.S.S.R. 24 (2):306–313. Benagiano, G. and H. L. Gabelnick. 1979. Biodegradable systems for the sustained release of fertilityregulating agents. J Steroid Bioc hem 11 (1B):449–455. Bennett, D. B., X. Li, N. W. Adams, S. W. Kim, C. J. T. Hoes, and J. Feijen. 1991. Biodegradable polymeric prodrugs of naltrexone. J Control Release 16 (1–2):43–52. Bezwada, R. S., S. W. Shalaby, H. D. Newman, and A. Kafrauy. 1990. Bioabsorbable copolymers of p-dioxane and lactide for surgical devices. Trans Soc Biomater 13:194. Bobo, W. V. and R. C. Shelton. 2010. Risperidone long-acting injectable (Risperdal Consta) for maintenance treatment in patients with bipolar disorder. Expert Rev Neurother 10 (11):1637–1658. Bodmeier, R., K. H. Oh, and H. Chen. 1989. The effect of the addition of low molecular weight poly(dllactide) on drug release from biodegradable poly(dl-lactide) drug delivery systems. Int J Pharm 51 (1):1–8. Bogdansky, S. 1990. Natural polymers as drug delivery systems, In Biodegradable Polymers as Drug Delivery Systems. M. Chasin and R. S. Langer, eds. New York: Marcel Dekker. pp. 231–259. Bourke, S. L. and J. Kohn. 2003. Polymers derived from the amino acid -tyrosine: Polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Deliv Rev 55 (4):447–466. Brandl, H., R. A. Gross, R. W. Lenz, and R. C. Fuller. 1988. Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54 (8):1977–1982. Brem, H., H. Ahn, R. J. Tamargo, M. Pinn, and M. Chasin. 1988a. A biodegradable polymer for intracranial drug delivery: A radiological study in primates. Am Assoc Neurol Surg 24:349. Brem, H., A. Kader, J. I. Epstein, R. J. Tamargo, A. J. Domb, R. Langer, and K. W. Leong. 1989. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Sel Cancer Ther 5 (2):55–65. Brem, H., S. Piantadosi, P. C. Burger, M. Walker, R. Selker, N. A. Vick, K. Black et al. 1995. Placebo-controlled trial of safety and ef�cacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345 (8956):1008–1012. Brem, H., R. J. Tamargo, M. Pinn, and M. Chasin. 1988b. Biocompatibility of BCNU-loaded biodegradable polymer: A toxicity study in primates. Am Assoc Neurol Surg 24:381. Brin, Y. S., A. Nyska, A. J. Domb, J. Golenser, B. Mizrahi, and M. Nyska. 2009. Biocompatibility of a polymeric implant for the treatment of osteomyelitis. J Biomater Sci Polym Ed 20 (7–8):1081–1090. Bucher, J. E. and W.C. Slade. 1909. The anhydrides of isophthalic and terephthalic acids. J Am Chem Soc 31:1319–1321. Bunger, C. M., N. Grabow, K. Sternberg, C. Kroger, L. Ketner, K. P. Schmitz, H. J. Kreutzer, H. Ince, C. A. Nienaber, E. Klar, and W. Schareck. 2007. Sirolimus-eluting biodegradable poly-l-lactide stent for peripheral vascular application: A preliminary study in porcine carotid arteries. J Surg Res 139 (1):77–82. Byrro, R. M., D. Miyashita, V. B. Albuquerque, A. A. Velasco e Cruz, and S. Cunha Junior Ada. 2009. Biodegradable systems containing prednisolone acetate for orbital administration. Arq Bras Oftalmol 72 (4):444–450. Cao, F. L., Y. W. Xi, L. Tang, A. H. Yu, and G. X. Zhai. 2009. Preparation and characterization of curcumin loaded gelatin microspheres for lung targeting. Zhong Yao Cai 32 (3):423–426. Chaubal, M. V., A. S. Gupta, S. T. Lopina, and D. F. Bruley. 2003. Polyphosphates and other phosphoruscontaining polymers for drug delivery applications. Crit Rev Ther Drug Carrier Syst 20 (4):295–315. Chen, C., L. Dong, and P. H. F. Yu. 2006. Characterization and properties of biodegradable poly(hydroxyalkanoates) and 4,4-dihydroxydiphenylpropane blends: Intermolecular hydrogen bonds, miscibility and crystallization. Eur Polym J 42:2838–2848. Chen, J., C. Huang, and Z. Chen. 2000. Study on the biocompatibility and toxicology of biomaterials— Poly(epsilon-caprolactone). Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 17 (4):380–382. Chen, S. and J. Singh. 2008. Controlled release of growth hormone from thermosensitive triblock copolymer systems: In vitro and in vivo evaluation. Int J Pharm 352 (1–2):58–65. Cheng, G., X. Fan, W. Pan, and Y Liu. 2010. Ring-opening polymerization of ɛ-caprolactone initiated by heteropolyacid. J Polym Res 17 (6):847–851. Chiang, C. N., L. E. Hollister, A. Kishimoto, and G. Barnett. 1984. Kinetics of a naltrexone sustained-release preparation. Clin Pharmacol Ther 36 (5):704–708. Choi, N. S. and J. Heller. 1979. Erodible agent releasing device comprising poly(orthoesters) and poly(orthocarbonates). In US4138344 USA. Conix, A. 1958. Aromatic polyanhydrides, a new class of high melting �ber-forming polymers. J Polym Sci 29:343–353. Cook, D. M., B. M. Biller, M. L. Vance, A. R. Hoffman, L. S. Phillips, K. M. Ford, D. P. Benziger et al. 2002. The pharmacokinetic and pharmacodynamic characteristics of a long-acting growth hormone (GH) preparation (nutropin depot) in GH-de�cient adults. J Clin Endocrinol Metab 87 (10):4508–4514. Dadsetan, M., E. M. Christenson, F. Unger, M. Ausborn, T. Kissel, A. Hiltner, and J. M. Anderson. 2003. In vivo biocompatibility and biodegradation of poly(ethylene carbonate). J Control Release 93 (3):259–270. Dandagi, P. M., V. S. Mastiholimath, M. B. Patil, and M. K. Gupta. 2006. Biodegradable microparticulate system of captopril. Int J Pharm 307 (1):83–88. Danhier, F., B. Vroman, N. Lecouturier, N. Crokart, V. Pourcelle, H. Freichels, C. Jerome, J. Marchand-Brynaert, O. Feron, and V. Preat. 2009. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release 140 (2):166–173. Daniels, A. U., M. K. Chang, and K. P. Andriano. 1990. Mechanical properties of biodegradable polymers and composites proposed for internal �xation of bone. J Appl Biomater 1 (1):57–78. Darney, P. D., S. E. Monroe, C. M. Klaisle, and A. Alvarado. 1989. Clinical evaluation of the Capronor contraceptive implant: Preliminary report. Am J Obstet Gynecol 160 (5 Pt 2):1292–1295. Deng, J. S., L. Li, Y. Tian, E. Ginsburg, M. Widman, and A. Myers. 2003. In vitro characterization of polyorthoester microparticles containing bupivacaine. Pharm Dev Technol 8 (1):31–38. Di Toro, R., V. Betti, and S. Spampinato. 2004. Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(dl-lactide-co-glycolide) copolymers. Eur J Pharm Sci 21 (2–3):161–169. Dittrich, V. W. and R. C. Schultz. 1971. Kinetics and mechanism of the ring opening polymerization of llactide. Angew Makromol Chem 15:109. Dlugi, A. M., J. D. Miller, and J. Knittle. 1990. Lupron depot (leuprolide acetate for depot suspension) in the treatment of endometriosis: A randomized, placebo-controlled, double-blind study. Lupron Study Group. Fertil Steril 54 (3):419–427. Doi, Y., A. Tamaki, M. Kunioka, and K. Soga. 1988. Production of copolyesters of 3-hydroxybutirate and 3-hydroxyvalerate by Alcanigenes eutrophus from butyric and pentanoic acids. Appl Microbiol Biotech 28:330. Domb, A. J. 1990. Biodegradable polymers derived from amino acids. Biomaterials 11 (9):686–689. Domb, A. 1992. Synthesis and characterization of biodegradable aromatic anhydride copolymers. Macromolecules 25 (1):12–17. Domb, A., C. Gallardo, and R. Langer. 1989. Poly(anhydrides) 3. Poly(anhydrides) based on aliphatic-aromatic diacids. Macromolecules 22:3200–3204. Domb, A. and R. Langer. 1987. Polyanhydrides: I. preparation of high molecular weight polyanhydrides. J Polym Sci 25:3373–3386. Domb, A. J. and R. Langer. 1989. Solid state and solution stability of poly(anhydrides) and poly(esters). Macromolecules 22:2117–2122. Domb, A. J., C. T. Laurencin, O. Israeli, T. N. Gerhart, and R. Langer. 1990. The formation of propylene fumarate oligomers for use in bioerodible bone cement composites. J Polym Sci A: Polym Chem 28:973–985. Domb, A. J. and M. Maniar. 1993. Absorbable biopolymers derived from dimer fatty acids. J Polym Sci Polym Chem 31 (5):1275. Domb, A., M. Maniar, S. Bogdansky, and M. Chasin. 1991a. Drug delivery to the brain using polymers. Crit Rev Ther Drug Carrier Syst 8 (1):1–17. Domb, A. J., N. Manor, and O. Elmalak. 1996. Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions. Biomaterials 17 (4):411–417. Domb, A., E. Mathiowitz, E. Ron, S. Giannos, and R. Langer. 1991b. Polyanhydrides IV: Unsaturated and cross-linked polyanhydrides. J Polym Sci 29:571–579. Domb, A. J. and R. Nudelman. 1995. In vivo and in vitro elimination of aliphatic polyanhydrides. Biomaterials 16 (4):319–323. Domb, A., E. Ron, and R. Langer. 1988. Polyanhydrides II. One step polymerization using phosgene or diphosgene as coupling agents. Macromolecules 21:1925–1929. Edlund, U. and A. C. Albertsson. 2003. Polyesters based on diacid monomers. Adv Drug Deliv Rev 55 (4):585–609. El-Backly, R. M., A. G. Massoud, A. M. El-Badry, R. A. Sherif, and M. K. Marei. 2008. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. Aust Endod J 34 (2):52–67. Emerich, D. F., M. A. Tracy, K. L. Ward, M. Figueiredo, R. Qian, C. Henschel, and R. T. Bartus. 1999. Biocompatibility of poly (dl-lactide-co-glycolide) microspheres implanted into the brain. Cell Transplant 8 (1):47–58. Endo, M., T. Aida, and S. Inoue. 1987. Immortal polymerization of .epsilon.-caprolactone initiated by aluminum porphyrin in the presence of alcohol. Macromolecules 20 (12):2982–2988. Engelberg, I. and J. Kohn. 1991. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 12 (3):292–304. Ertel, S. I., J. Kohn, M. C. 1995. Evaluation of poly(DTH tyrosine-derived de gradable applications. J Biomed Mater Zimmerman, and J. R. Parsons. carbonate), a polymer, for orthopedic Res 29 (11):1337–1348. Farng, E. and O. Sherman. 2004. Meniscal repair devices: A clinical and biomechanical literature review. Arthroscopy 20 (3):273–286. Frank, A., S. K. Rath, and S. S. Venkatraman. 2005. Controlled release from bioerodible polymers: Effect of drug type and polymer composition. J Control Release 102 (2):333–344. Friess, W. 1998. Collagen—Biomaterial for drug delivery. Eur J Pharm Biopharm 45 (2):113–136. Frosch, K. H., T. Sawallich, G. Schutze, A. Losch, T. Walde, P. Balcarek, F. Konietschke, and K. M. Sturmer. 2009. Magnetic resonance imaging analysis of the bioabsorbable Milagro interference screw for graft �xation in anterior cruciate ligament reconstruction. Strategies Trauma Limb Reconstr 4 (2):73–79. Ge, Z., J. C. Goh, L. Wang, E. P. Tan, and E. H. Lee. 2005. Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering. J Biomater Sci Polym Ed 16 (9):1179–1192. Gefvert, O., B. Eriksson, P. Persson, L. Helldin, A. Bjorner, E. Mannaert, B. Remmerie, M. Eerdekens, and S. Nyberg. 2005. Pharmacokinetics and D2 receptor occupancy of long-acting injectable risperidone (Risperdal Consta) in patients with schizophrenia. Int J Neuropsychopharmacol 8 (1):27–36. Gillissen, M., R. Steendam, A. van der Laan, and E. Tijsma. 2006. Development of doxycycline-eluting delivery systems based on SynBiosys biodegradable multi-block copolymers. J Control Release 116 (2):e90–e92. Gopferich, A. 1997. Mechanisms of polymer degradation and elimination. In Handbook of Biodegradable Polymers, J. Kost, D. M. Wiseman, and A. J. Domb, eds., pp. 451–471. Amsterdam, the Netherlands: Harwood Academic. Gopferich, A. and J. Tessmar. 2002. Polyanhydride degradation and erosion. Adv Drug Deliv Rev 54 (7):911–931. Guo, W., Z. Shi, R. Guo, and R. Sun. 2007. Preparation of gentamicin sulfate-polyanhydride sustained-release beads and in vitro bacteriostatic activity studies. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 24 (2):360– 362, 384. Hamitou, A., T. Ouhadi, R. Jerome, and P. Teyssie. 1977. Soluble bimetallic μ-oxoalkoxides. VII. Characteristics and mechanism of ring-opening polymerization of lactones. J Polym Sci A: Polym Chem 15:865–873. Harper, E., W. Dang, R. G. Lapidus, and R. I. Garver, Jr. 1999. Enhanced ef�cacy of a novel controlled release paclitaxel formulation (PACLIMER delivery system) for local-regional therapy of lung cancer tumor nodules in mice. Clin Cancer Res 5 (12):4242–4248. Heller, J. 1990. Development of poly(ortho esters): A historical overview. Biomaterials 11 (9):659–665. Heller, J., B. K. Fritzinger, S. Y. Ng, and D. W. H. Pennale. 1985. In vitro and in vivo release of levonorgestrel from poly(ortho esters): II. Crosslinked polymers. J Control Release 1 (3):233–238. Heller, J., S. Y. Ng, and B. K. Fritzinger. 1992. Synthesis and characterization of a new family of poly(ortho esters). Macromolecules 25 (13):3362–3364. Heller, J., S. Y. Ng, B. K. Fritzinger, and K. V. Roskos. 1990. Controlled drug release from bioerodible hydrophobic ointments. Biomaterials 11 (4):235–237. Heller, J., S. Y. Ng, D. W. Penhale, B. K. Fritzinger, L. M. Sanders, R. A. Burns, M. G. Gaynon, and S. S. Bhosale. 1987. Use of poly(ortho esters) for the controlled release of 5-¥uorouracyl and a LHRH analogue. J Control Release 6 (1):217–224. Heller, J., D. W. Penhale, B. K. Fritzinger, J. E. Rose, and R. F. Helwing. 1983. Controlled release of contraceptive steroids from biodegradable poly (ortho esters). Contracept Deliv Syst 4 (1):43–53. Heng, B. C., H. Liu, and T. Cao. 2005. Scaffold implants for the controlled release of heparan sulfate (HS) and other glycosaminoglycan (GAG) species: This could facilitate the homing of adult stem cells for tissue/ organ regeneration. Med Hypotheses 65 (2):414–415. Henkind, P. 1978. Ocular neovascularization. Am J Ophthalmol 85:287–301. Hild, S. A., M. L. Meistrich, R. P. Blye, and J. R. Reel. 2001. Lupron depot prevention of antispermatogenic/ antifertility activity of the indenopyridine, CDB-4022, in the rat. Biol Reprod 65 (1):165–172. Hill, J. W. and W. polymerization and superpolyanhydride sebacic acid. J Am H. Carothers. 1932. Studies of ring formation. XIV. A linear and a cyclic dimeric anhydride from Chem Soc 54:1569. Holland, S. J., B. J. Tighe, and P. L. Gould. 1986. Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release 4 (3):155–180. Holmes, P. A. 1985. Application of PHB-a microbially produced biodegradable thermoplastic. Phys Technol 16:32–36. Hou, S., L. K. McCauley, and P. X. Ma. 2007. Synthesis and erosion properties of PEG-containing polyanhydrides. Macromol Biosci 7 (5):620–628. Huang, S. W., J. Wang, P. C. Zhang, H. Q. Mao, R. X. Zhuo, and K. W. Leong. 2004. Water-soluble and nonionic polyphosphoester: Synthesis, degradation, biocompatibility and enhancement of gene expression in mouse muscle. Biomacromolecules 5 (2):306–311. Iwai, S., Y. Sawa, S. Taketani, K. Torikai, K. Hirakawa, and H. Matsuda. 2005. Novel tissue-engineered biodegradable material for reconstruction of vascular wall. Ann Thorac Surg 80 (5):1821–1827. Izumi, Y., M. Gika, N. Shinya, S. Miyabashira, T. Imamura, C. Nozaki, M. Kawamura, and K. Kobayashi. 2007. Hemostatic ef�cacy of a recombinant thrombin-coated polyglycolic acid sheet coupled with liquid �brinogen, evaluated in a canine model of pulmonary arterial hemorrhage. J Trauma 63 (4):783–787; discussion 787. Jain, J. P., S. Modi, and N. Kumar. 2008. Hydroxy fatty acid based polyanhydride as drug delivery system: Synthesis, characterization, in vitro degradation, drug release, and biocompatibility. J Biomed Mater Res A 84 (3):740–752. Jerome, C. and P. Lecomte. 2008. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Deliv Rev 60 (9):1056–1076. Ju, Y. M., B. Yu, L. West, Y. Moussy, and F. Moussy. 2009. A dexamethasone-loaded PLGA microspheres/ collagen scaffold composite for implantable glucose sensors. J Biomed Mater Res A 93 (1):200–210. Jung, Y., M. S. Park, J. W. Lee, Y. H. Kim, and S. H. Kim. 2008. Cartilage regeneration with highlyelastic three-dimensional scaffolds prepared from biodegradable poly(l-lactide-co-epsilon-caprolactone). Biomaterials 29 (35):4630–4636. Kappy, M., T. Stuart, A. Perelman, and R. Clemons. 1989. Suppression of gonadotropin secretion by a longacting gonadotropin-releasing hormone analog (leuprolide acetate, Lupron Depot) in children with precocious puberty. J Clin Endocrinol Metab 69 (5):1087–1089. Kaschke, O., H. J. Gerhardt, K. Bohm, M. Wenzel, and H. Planck. 1996. Experimental in vitro and in vivo studies of epithelium formation on biomaterials seeded with isolated respiratory cells. J Invest Surg 9 (2):59–79. Kato, M., T. Namikawa, H. Terai, M. Hoshino, S. Miyamoto, and K. Takaoka. 2006a. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials 27 (21):3927–3933. Kato, M., H. Toyoda, T. Namikawa, M. Hoshino, H. Terai, S. Miyamoto, and K. Takaoka. 2006b. Optimized use of a biodegradable polymer as a carrier material for the local delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2). Biomaterials 27 (9):2035–2041. Katti, D. S., S. Lakshmi, R. Langer, and C. T. Laurencin. 2002. Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54 (7):933–961. Katz, A., D. P. Mukherjee, A. L. Kaganov, and S. Gordon. 1985. A new synthetic mono�lament absorbable suture made from polytrimethylene carbonate. Surg Gynecol Obstet 161:213–222. Kawaguchi, T., M. Nakano, K. Juni, S. Inoue, and Y. Yoshida. 1982. Release pro�les of 5-¥uorouracil and its derivatives from polycarbonate matrices in vitro. Chem Pharm Bull 30 1517–1520. Kawaguchi, T., M. Nakano, K. Juni, S. Inoue, and Y. Yoshida. 1983. Examination of biodegradability of poly(ethylene carbonate) and poly(propylene carbonate) in the peritoneal cavity in rats. Chem Pharm Bull (Tokyo) 31 (4):1400–1403. Kemnitzer, J. and J. Kohn. 1997. Degradable polymers derived from the amino acid L-tyrosine. In Handbook of Biodegradable Polymers, J. Kost, A. J. Domb, and D. M. Weiseman, eds., pp. 251–272. Amsterdam, the Netherlands: Hardwood academic publishers. Kemp, S. F., P. J. Fielder, K. M. Attie, S. L. Blethen, E. O. Reiter, K. M. Ford, M. Marian, L. N. Dao, H. J. Lee, and P. Saenger. 2004. Pharmacokinetic and pharmacodynamic characteristics of a long-acting growth hormone (GH) preparation (nutropin depot) in GH-de�cient children. J Clin Endocrinol Metab 89 (7):3234–3240. Khan, W. and N. Kumar. 2011. Drug targeting to macrophages using paromomycin-loaded albumin microspheres for treatment of visceral leishmaniasis: An in vitro evaluation. J Drug Target 19 (4):239–250. Kim, K., Y. K. Luu, C. Chang, D. Fang, B. S. Hsiao, B. Chu, and M. Hadjiargyrou. 2004. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nano�brous scaffolds. J Control Release 98 (1):47–56. Kissel, T., Z. Brich, S. Bantle, I. Lancranjan, F. Nimmerfall, and P. Vit. 1991. Parenteral depot-systems on the basis of biodegradable polyesters. J Control Release 16 (1–2):27–41. Kleinberg, L. R., J. Weingart, P. Burger, K. Carson, S. A. Grossman, K. Li, A. Olivi, M. D. Wharam, and H. Brem. 2004. Clinical course and pathologic �ndings after Gliadel and radiotherapy for newly diagnosed malignant glioma: Implications for patient management. Cancer Invest 22 (1):1–9. Kohn, J. and R. Langer. 1987. Polymerization reactions involving the side chains of.alpha.-l-amino acids. J Am Chem Soc 109 (3):817–820. Krasko, M. Y. and A. J. Domb. 2007. Pasty injectable biodegradable polymers derived from natural acids. J Biomed Mater Res A 83 (4):1138–1145. Kubek, M. J., A. J. Domb, and M. C. Veronesi. 2009. Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics 6 (2):359–371. Kumar, N., A. C. Albertsson, U. Edlund, D. Teomim, R. Aliza, and A. J. Domb. 2005. Polyanhydrides, Biopolymers Online. New York: Wiley-VCH Verlag GmbH & Co. KGaA. Kunioka, M., Y. Nakamura, and Y. Doi. 1988. New bacterial copolyester produced in alcanigenes eutrophus from organic acids. Polym Commun 29:174–176. Kwong, A. K., S. Chou, A. M. Sun, M. V. Sefton, and M. F. A. Goosen. 1986. In vitro and in vivo release of insulin from poly(lactic acid) microbeads and pellets. J Control Release 4 (1):47–62. Langer, R., H. Brem, and D. Tapper. 1981. Biocompatibility of polymeric delivery systems for macromolecules. J Biomed Mater Res 15 (2):267–277. Langer, R., D. Lund, K. Leong, and J. Folkman. 1985. Controlled release of macromolecules: Biological studies. J Control Release 2:331–341. Lapidus, R. G., W. Dang, D. M. Rosen, A. M. Gady, Y. Zabelinka, R. O’Meally, T. L. DeWeese, and S. R. Denmeade. 2004. Anti-tumor effect of combination therapy with intratumoral controlled-release paclitaxel (PACLIMER microspheres) and radiation. Prostate 58 (3):291–298. Laurencin, C., A. Domb, C. Morris, V. Brown, M. Chasin, R. McConnell, N. Lange, and R. Langer. 1990. Poly(anhydride) administration in high doses in vivo: Studies of biocompatibility and toxicology. J Biomed Mater Res 24 (11):1463–1481. Laurencin, C. T., M. E. Norman, H. M. Elgendy, S. F. el-Amin, H. R. Allcock, S. R. Pucher, and A. A. Ambrosio. 1993. Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res. 27 (7):963–973. Lee, C. H., A. Singla, and Y. Lee. 2001. Biomedical applications of collagen. Int J Pharm 221 (1–2):1–22. Lenz, R. W. and P. Guerin. 1983. Functional polyesters and polyamides for medical applications of biodegradable polymers. In Polymers in Medicine, E. Chiellini and P. Giusti, eds. New York: Plenum Press. pp. 219–230. Leong, K. W. 1995. Alternative materials for fracture �xation. Connect Tissue Res 31 (4):S69–S75. Leong, K. W., B. C. Brott, and R. Langer. 1985. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J Biomed Mater Res 19 (8):941–955. Leong, K. W., P. D. D’Amore, M. Marletta, and R. Langer. 1986. Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res 20 (1):51–64. Leong, K., V. Simonte, and R. Langer. 1987. Synthesis of polyanhydrides: Melt-polycondensation, dehydrochlorination, and dehydrative coupling. Macromolecules 20:705–712. Lewis, D. H. 1990. Controlled release of bioactive agents from lactide/glycolide polymers. In Biodegradable Polymers as Drug Delivery Systems, M. Chasin and R. Langer, eds. New York: Marcel Dekker. pp. 1–41. Liu, J., W. Huang, Y. Pang, X. Zhu, Y. Zhou, and D. Yan. 2010a. Hyperbranched polyphosphates for drug delivery application: Design, synthesis, and in vitro evaluation. Biomacromolecules 11 (6):1564–1570. Liu, Y., A. Kemmer, K. Keim, C. Curdy, H. Petersen, and T. Kissel. 2010b. Poly(ethylene carbonate) as a surface-eroding biomaterial for in situ forming parenteral drug delivery systems: A feasibility study. Eur J Pharm Biopharm 76 (2):222–229. Ludvig, E. B. and B. G. Belenkaya. 1974. Investigation of the mechanism of cationic polymerization of Îμ-caprolactone. J Macromol Sci A Pure Appl Chem 8 (4):819–828. Lundmark, S., M. SjÖling, and A. C. Albertsson. 1991. Polymerization of oxepan-2,7-dione in solution and synthesis of block copolymers of oxepan-2,7-dione and 2-oxepanone. J Macromol Sci A 28 (1):15–29. Lyman, D. J. and K. Knutson. 1980. Chemical, physical, and mechanical aspects of blood compatibility. In Biomedical Polymers, E. Goldberg and A. Nakajima, eds., pp. 1–30. New York: Academic Press. Ma, H., G. Melillo, L. Oliva, T. P. Spaniol, U. Englert, and J. Okuda. 2005. Aluminium alkyl complexes supported by [OSSO] type bisphenolato ligands: Synthesis, characterization and living polymerization of rac-lactide. Dalton Trans 4:721–727. Maniar, M., X. D. Xie, and A. J. Domb. 1990. Polyanhydrides. V. Branched polyanhydrides. Biomaterials 11 (9):690–694. Manoharan, C. and J. Singh. 2009. Evaluation of polyanhydride microspheres for basal insulin delivery: Effect of copolymer composition and zinc salt on encapsulation, in vitro release, stability, in vivo absorption and bioactivity in diabetic rats. J Pharm Sci 98 (11):4237–4250. Mathew, S. T., S. 2009. Formulation ketoprofen-loaded administration. J G. Devi, V. V. Prasanth, and B. Vinod. and in vitro-in vivo evaluation of albumin microspheres for intramuscular Microencapsul 26 (5):456–469. Mathiowitz, E. and R. Langer. 1987. Polyanhydride microspheres as drug carriers I. Hot-melt microencapsulation. J Control Release 5 (1):13–22. Mathiowitz, E., E. Ron, G. Mathiowtiz, C. Amato, and R. Langer. 1990. Morphological characterization of bioerodible polymers. I. Crystallinity of poly(anhydride) copolymers. Macromolecules 23:3212–3218. Mathiowitz, E., M. Saltzman, A. Domb, P. Dor, and R. Langer. 1988. Polyanhydride microspheres as drug carriers. II. Microencapsulation by solvent removal. J Appl Polym Sci 35:755–774. Mecerreyes, D., R. Jérôme, and P. Dubois. 1999. Novel macromolecular architectures based on aliphatic polyesters: Relevance of the “Coordination-Insertion” ring-opening polymerization. Adv Polym Sci 147:1–59. Molinari, G. 2009. Natural products in drug discovery: Present status and perspectives. Adv Exp Med Biol 655:13–27. Moll, F. and G. Koller. 1990. Biodegradable tablets having a matrix of low molecular weight poly-l-lactic acid and poly-d,l-lactic acid. Arch Pharm 323:887–888. Montanari, L., M. Costantini, E. C. Signoretti, L. Valvo, M. Santucci, M. Bartolomei, P. Fattibene, S. Onori, A. Faucitano, B. Conti, and I. Genta. 1998. Gamma irradiation effects on poly(dl-lactictide-co-glycolide) microspheres. J Control Release 56 (1–3):219–229. Mukerjee, A. and J. K. Vishwanatha. 2009. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29 (10):3867–3875. Nahar, M. and N. K. Jain. 2009. Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 26 (12):2588–2598. Nair, L. S. and C. T. Laurencin. 2007. Biodegradable polymers as biomaterials. Prog Polym Sci 32 (8–9):762–798. Nakamura, T., S. Hitomi, S. Watanabe, Y. Shimizu, K. Jamshidi, S. H. Hyon, and Y. Ikada. 1989. Bioabsorption of polylactides with different molecular properties. J Biomed Mater Res 23 (10):1115–1130. Ngiam, M., S. Liao, A. J. Patil, Z. Cheng, F. Yang, M. J. Gubler, S. Ramakrishna, and C. K. Chan. 2009. Fabrication of mineralized polymeric nano�brous composites for bone graft materials. Tissue Eng Part A 15 (3):535–546. Nicol, F., M. Wong, F. C. MacLaughlin, J. Perrard, E. Wilson, and J. L. Nordstrom. 2002. l-glutamate, an anionic polymer, enhances transgene expression for plasmids delivered by intramuscular injection with in vivo electroporation. Gene Ther 9:1351–1358. Nijenhuis, A. J., D. W. Grijpma, and A. J. Pennings. 1992. Lewis acid catalyzed polymerization of l-lactide. kinetics and mechanism of the bulk polymerization. Macromolecules 25:6419–6424. Nogueira, R., C. Alves, M. Matos, and A. G. Brito. 2009. Synthesis and degradation of poly-betahydroxybutyrate in a sequencing batch bio�lm reactor. Bioresour Technol 100 (7):2106–2110. Nojehdehian, H., F. Moztarzadeh, H. Baharvand, H. Nazarian, and M. Tahriri. 2009. Preparation and surface characterization of poly-l-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: In vitro study. Colloids Surf B Biointerfaces 73:23–29. Novikova, L. N., J. Pettersson, M. Brohlin, M. Wiberg, and L. N. Novikov. 2008. Biodegradable poly-betahydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials 29 (9):1198–1206. Nukavarapu, S. P., S. G. Kumbar, J. L. Brown, N. R. Krogman, A. L. Weikel, M. D. Hindenlang, L. S. Nair, H. R. Allcock, and C. T. Laurencin. 2008. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 9 (7):1818–1825. Ohta, S., N. Nitta, A. Sonoda, A. Seko, Takahashi, Y. Kimura, Y. Tabata, and K. Cisplatin-conjugated degradable gelatin Fundamental study in vitro. Br J Radiol T. Tanaka, M. Murata. 2009. microspheres: 82 (977):380–385. Ory, S. J., C. B. Hammond, S. G. Yancy, R. W. Hendren, and C. G. Pitt. 1983. The effect of a biodegradable contraceptive capsule (Capronor) containing levonorgestrel on gonadotropin, estrogen, and progesterone levels. Am J Obstet Gynecol 145 (5):600–605. Pal, A., A. Prabhu, A. A. Kumar, B. Rajagopal, K. Dadhe, V. Ponnamma, and S. Shivakumar. 2009. Optimization of process parameters for maximum poly(-beta-)hydroxybutyrate (PHB) production by Bacillus thuringiensis IAM 12077. Pol J Microbiol 58 (2):149–154. Park, J., P. M. Fong, J. Lu, K. S. Russell, C. J. Booth, W. M. Saltzman, and T. M. Fahmy. 2009. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5 (4):410–418. Perrin, D. E. and J. P. English. 1997. Polycaprolactone. In Handbook of Biodegradable Polymers, J. Kost, A. J. Domb, and D. M. Weiseman eds. Amsterdam, the Netherlands: Hardwood Academic Publishers. pp. 63–77. Pinholt, E. M., E. Solheim, G. Bang, and E. Sudmann. 1991. Bone induction by composite of bioerodible polyorthoester and demineralized bone matrix in rats. Acta Orthop Scand 62 (5):476–480. Pitt, C. G. 1990. Poly(ɛ-caprolactone) and its copolymers. In Biodegradable Polymers as Drug Delivery Systems, R. S. Langer and M. Chasin, eds. New York: Marcel Dekker. pp. 71–120. Pitt, C. G., F. I. Chasalow, Y. M. Hibionada, D. M. Klimas, and A. Schindler. 1981a. Aliphatic polyesters. I. The degradation of poly(ɛ-caprolactone) in vivo. J Appl Polym Sci 26 (11):3779–3787. Pitt, C. G., M. M. Gratzl, G. L. Kimmel, J. Surles, and A. Schindler. 1981b. Aliphatic polyesters II. The degradation of poly (dl-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials 2 (4):215–20. Pitt, C. G. and A. Schindler. 1984. Capronor™: A biodegradable delivery system for levonorgestrel. In LongActing Contraceptive Delivery Systems, A. Glodsmith, G. L. Zatuchni, J. D. Shelton, and J. J. Sciarra, eds. Philadelphia, PA: Harper and Row, pp. 48–63. Poshusta, A. K., J. A. Burdick, D. J. Mortisen, R. F. Padera, D. Ruehlman, M. J. Yaszemski, and K. S. Anseth. 2003. Histocompatibility of photocrosslinked polyanhydrides: A novel in situ forming orthopaedic biomaterial. J Biomed Mater Res A 64 (1):62–69. Pradilla, G., P. P. Wang, P. Gabikian, K. Li, C. A. Magee, K. A. Walter, and H. Brem. 2006. Local intracerebral administration of Paclitaxel with the paclimer delivery system: Toxicity study in a canine model. J Neurooncol 76 (2):131–138. Puppi, D., F. Chiellini, A. M. Piras, and E. Chiellini. 2010. Polymeric materials for bone and cartilage repair. Prog Polym Sci 35 (4):403–440. Qiu, L. Y. and M. Q. Yan. 2009. Constructing doxorubicin-loaded polymeric micelles through amphiphilic graft polyphosphazenes containing ethyl tryptophan and PEG segments. Acta Biomater 5 (6):2132–2141. Quintilio, W., C. S. Takata, O. A. Sant’Anna, M. H. da Costa, and I. Raw. 2009. Evaluation of a diphtheria and tetanus PLGA microencapsulated vaccine formulation without stabilizers. Curr Drug Deliv 6 (3):297–304. Rock, M., M. Green, C. Fait, R. Geil, J. Myer, M. Maniar, and A. Domb. 1991. Evaluation and comparison of biocompatibility of various classes of polyanhydrides. Polym Preprints 32:221–222. Rodeheaver, G. T., K. A. Beltran, C. W. Green, B. C. Faulkner, B. M. Stiles, G. W. Stanimir, H. Traeland, G. M. Fried, H. C. Brown, and R. F. Edlich. 1996. Biomechanical and clinical performance of a new synthetic mono�lament absorbable suture. J Long Term Eff Med Implants 6 (3–4):181–198. Rosen, H. B., J. Chang, G. E. Wnek, R. J. Linhardt, and R. Langer. 1983. Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 4 (2):131–133. Sahoo, S., J. G. Cho-Hong, and T. Siew-Lok. 2007. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomed Mater 2 (3):169–173. Sahoo, S., H. Ouyang, J. C. Goh, T. E. Tay, and S. L. Toh. 2006. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 12 (1):91–99. Samad, A., Y. Sultana, R. K. Khar, K. Chuttani, and A. K. Mishra. 2009. Gelatin microspheres of rifampicin cross-linked with sucrose using thermal gelation method for the treatment of tuberculosis. J Microencapsul 26 (1):83–89. Sano, A., T. Hojo, M. Maeda, and K. Fujioka. 1998. Protein release from collagen matrices. Adv Drug Deliv Rev 31 (3):247–266. Santander-Ortega, M. J., D. Bastos-Gonzalez, J. L. Ortega-Vinuesa, and M. J. Alonso. 2009. Insulin-loaded PLGA nanoparticles for oral administration: An in vitro physico-chemical characterization. J Biomed Nanotechnol 5 (1):45–53. Schafer, V., H. von Briesen, H. Rubsamen-Waigmann, A. M. Steffan, C. Royer, and J. Kreuter. 1994. Phagocytosis and degradation of human serum albumin microspheres and nanoparticles in human macrophages. J Microencapsul 11 (3):261–269. Schenderlein, S., M. Luck, and B. W. Muller. 2004. Partial solubility parameters of poly(d,l-lactide-coglycolide). Int J Pharm 286 (1–2):19–26. Schwope, A. D., D. L. Wise, and J. F. Howes. 1975. Development of polylactic/glycolic acid delivery systems for use in treatment of narcotic addiction. Natl Inst Drug Abuse Res Monogr Ser (4):13–18. Seckel, B. R., T. H. Chiu, E. Nyilas, and R. L. Sidman. 1984. Nerve regeneration through synthetic biodegradable nerve guides: Regulation by the target organ. Plast Reconstr Surg 74 (2):173–181. Sehgal, P. K. and A. Srinivasan. 2009. Collagen-coated microparticles in drug delivery. Expert Opin Drug Deliv 6 (7):687–695. Sethuraman, S., L. S. Nair, S. El-Amin, R. Farrar, M. T. Nguyen, A. Singh, H. R. Allcock, Y. E. Greish, P. W. Brown, and C. T. Laurencin. 2006. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. J Biomed Mater Res A 77 (4):679–687. Shanmugasundaram, K. and A. C. Rigby. 2009. Exploring novel target space: A need to partner high throughput docking and ligand-based similarity searches? Comb Chem High Throughput Screen 12 (10):984–999. Shen, J. Y., M. B. Chan-Park, B. He, A. P. Zhu, X. Zhu, R. W. Beuerman, E. B. Yang, W. Chen, and V. Chan. 2006. Three-dimensional microchannels in biodegradable polymeric �lms for control orientation and phenotype of vascular smooth muscle cells. Tissue Eng 12 (8):2229–2240. Shindler, A., R. Jeffcoat, G. L. Kimmel, C. G. Pitt, M. E. Wall, and R. Zweidinger. 1977. Biodegradable polymers for sustained drug delivery. Contemp. Top. Polym. Sci. 2:251–289. Shire, S. J. 2009. Formulation and manufacturability of biologics. Curr Opin Biotechnol 20 (6):708–714. Silverman, B. L., S. L. Blethen, E. O. Reiter, K. M. Attie, R. B. Neuwirth, and K. M. Ford. 2002. A long-acting human growth hormone (Nutropin Depot): Ef�cacy and safety following two years of treatment in children with growth hormone de�ciency. J Pediatr Endocrinol Metab 15 (Suppl 2):715–722. Sinha, V. R., K. Bansal, R. Kaushik, R. Kumria, and A. Trehan. 2004. Poly-epsilon-caprolactone microspheres and nanospheres: An overview. Int J Pharm 278 (1):1–23. Slager, J. and A. J. Domb. 2002. Stereocomplexes based on poly(lactic acid) and insulin: Formulation and release studies. Biomaterials 23 (22):4389–4396. Sokolsky-Papkov, M., K. Agashi, A. Olaye, K. Shakesheff, and A. J. Domb. 2007. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59 (4–5):187–206. Solheim, E., E. M. Pinholt, R. Andersen, G. Bang, and E. Sudmann. 1995. Local delivery of indomethacin by a polyorthoester inhibits reossi�cation of experimental bone defects. J Biomed Mater Res 29 (9):1141–1146. Sonmez, K., B. Bahar, R. Karabulut, O. Gulbahar, A. Poyraz, Z. Turkyilmaz, B. Sancak, and A. C. Basaklar. 2009. Effects of different suture materials on wound healing and infection in subcutaneous closure techniques. B-ENT 5 (3):149–152. Sosnowski, S., S. Slornkowski, and S. Penczek. 1991. Kinetics of the anionic polymerization of caprolactone with K + —(dibenzo-18-crownd ether) counterion. Propagation via macroions and macroion pairs. Die Makromolekulare Chemie 192:735. Sparer, Randall V., Shih Chung, Cheryl D. Ringeisen, and Kenneth J. Himmelstein. 1984. Controlled release from erod1ble poly(ortho ester) drug delivery systems. J Control Release 1 (1):23–32. Steendam, R., A. van der Laan, and D. Hissink. 2006. Bioresorbable drug-eluting stent coating formulations based on SynBiosys biodegradable multi-block copolymers. J Control Release 116 (2):e94–e95. Steinmann, R., H. Gerngross, and W. Hartel. 1990. [The use of bioresorbable implants (Bio�x) in surgery. The indications, technic and initial clinical results]. Aktuelle Traumatol 20 (2):102–107. Stoll, G. H., F. Nimmerfall, M. Acemoglu, D. Bodmer, S. Bantle, I. Muller, A. Mahl, M. Kolopp, and K. Tullberg. 2001. Poly(ethylene carbonate)s, part II: Degradation mechanisms and parenteral delivery of bioactive agents. J Control Release 76 (3):209–225. Subramanyam, R., and A. G. Pinkus. 1985. Synthesis of poly(terephthalic anhydride) by hydrolysis of terephthaloyl chloride triethylamine intermediate adduct: Characterization of intermediate adduct. J Macromol Sci Chem A22 (1):23. Sun, L., S. Zhou, W. Wang, Q. Su, X. Li, and J. Weng. 2009. Preparation and characterization of protein-loaded polyanhydride microspheres. J Mater Sci Mater Med 20 (10):2035–2042. Susperregui, N., D. Delcroix, B. Martin-Vaca, D. Bourissou, and L. Maron. 2010. Ring-opening polymerization of epsilon-caprolactone catalyzed by sulfonic acids: Computational evidence for bifunctional activation. J Org Chem 75 (19):6581–6587. Suzuki, A., H. Terai, H. Toyoda, T. Namikawa, Y. Yokota, T. Tsunoda, and K. Takaoka. 2006. A biodegradable delivery system for antibiotics and recombinant human bone morphogenetic protein-2: A potential treatment for infected bone defects. J Orthop Res 24 (3):327–332. Tamargo, R. J., J. I. Epstein, C. S. Reinhard, M. Chasin, and H. Brem. 1989. Brain biocompatibility of a biodegradable, controlled-release polymer in rats. J Biomed Mater Res 23 (2):253–266. Teomim, D. and A. J. Domb. 1999. Fatty acid terminated polyanhydrides. J Polym Sci A Polym Chem 37 (16):3337–3344. Teomim, D., A. Nyska, and A. J. Domb. 1999. Ricinoleic acid-based biopolymers. J Biomed Mater Res 45 (3):258–267. Torres, M. P., A. S. Determan, G. L. Anderson, S. K. Mallapragada, and B. Narasimhan. 2007. Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials 28 (1):108–116. Unger, F., U. Westedt, P. Hanefeld, R. Wombacher, S. Zimmermann, A. Greiner, M. Ausborn, and T. Kissel. 2007. Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings? J Control Release 117 (3):312–321. Urakami, H. and Z. Guan. 2008. Living ring-opening polymerization of a carbohydrate-derived lactone for the synthesis of protein-resistant biomaterials. Biomacromolecules 9 (2):592–597. Vaquette, C., S. Fawzi-Grancher, P. Lavalle, C. Frochot, M. L. Viriot, S. Muller, and X. Wang. 2006. In vitro biocompatibility of different polyester membranes. Biomed Mater Eng 16 (4 Suppl):S131–S136. Veronesi, M. C., Y. Aldouby, A. J. Domb, and M. J. Kubek. 2009. Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res 1303:151–160. Vert, M. 2005. Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules 6 (2):538–546. Vert, M., S. Li, and H. Garreau. 1991. More about the degradation of LA/GA-derived matrices in aqueous media. J Control Release 16 (1–2):15–26. Villegas-Cabello, O., J. L. Vazquez-Juarez, F. M. Gutierrez-Perez, R. F. Davila-Cordova, and C. DiazMontemayor. 1994. Staged replacement of the canine trachea with ringed polyethylene terephthalate grafts. Thorac Cardiovasc Surg 42 (5):302–305. Wade, C. W. R., S. Gourlay, R. Rice, A. Hegyeli, R. Singler, and J. White. 1978. Biocompatibility of eight poly(organophosphazenes). In Organometallic Polymers, eds., J. E. Sheats, C. U. Pittmann, and C. E. Carraher, pp. 283–288. New York: Academic Press. Wang, Y. C., X. Q. Liu, T. M. Sun, M. H. Xiong, and J. Wang. 2008. Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery. J Control Release 128 (1):32–40. Wang, S., A. C. Wan, X. Xu, S. Gao, H. Q. Mao, K. W. Leong, and H. Yu. 2001. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials 22 (10):1157–1169. Wei, X., C. Gong, M. Gou, S. Fu, Q. Guo, S. Shi, F. Luo, G. Guo, L. Qiu, and Z. Qian. 2009. Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm 381 (1):1–18. Wen, J., G. J. Kim, and K. W. Leong. 2003. Poly(d,l-lactide-co-ethyl ethylene phosphate)s as new drug carriers. J Control Release 92 (1–2):39–48. Wen, J., H. Q. Mao, W. Li, K. Y. Lin, and K. W. Leong. 2004. Biodegradable polyphosphoester micelles for gene delivery. J Pharm Sci 93 (8):2142–2157. Wenk, E., A. J. Meinel, S. Wildy, H. P. Merkle, and L. Meinel. 2009. Microporous silk �broin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering. Biomaterials 30 (13):2571–2581. Wheeler, J. M., J. D. Knittle, and J. D. Miller. 1993. Depot leuprolide acetate versus danazol in the treatment of women with symptomatic endometriosis: A multicenter, double-blind randomized clinical trial. II. Assessment of safety. The Lupron Endometriosis Study Group. Am J Obstet Gynecol 169 (1):26–33. Whittle, I. R., S. Lyles, and M. Walker. 2003. Gliadel therapy given for �rst resection of malignant glioma: A single centre study of the potential use of Gliadel. Br J Neurosurg 17 (4):352–354. Woodward, S. C., P. S. Brewer, F. Moatamed, A. Schindler, and C. G. Pitt. 1985. The intracellular degradation of poly(epsilon-caprolactone). J Biomed Mater Res 19 (4):437–444. Xie, H., Y. S. Khajanchee, and B. S. Shaffer. 2008. Chitosan hemostatic dressing for renal parenchymal wound sealing in a porcine model: Implications for laparoscopic partial nephrectomy technique. JSLS 12 (1):18–24. Xue, J. M., C. H. Tan, and D. Lukito. 2006. Biodegradable polymer-silica xerogel composite microspheres for controlled release of gentamicin. J Biomed Mater Res B Appl Biomater 78 (2):417–422. Yi Mok, N., J. Chadwick, K. A. Kellett, N. M. Hooper, A. P. Johnson, and C. W. Fishwick. 2009. Discovery of novel non-peptide inhibitors of BACE-1 using virtual high-throughput screening. Bioorg Med Chem Lett 19 (23):6770–6774. Yoda, N. 1963. Synthesis of polyanhydrides. XII. J Polym Sci 1:1323–1338. Yu, H. 1988. Pseudopoly(Amino Acids): A Study of the Synthesis and Characterization of Polyesters Made from-l-Amino Acids. Cambridge, MA: Massachusetts Institute of Technology. Zhang, N. and S. Guo. 2003. [Studies on a kind of new biodegradable material—Polycaprolactone and developments in medical area]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20 (4):746–749. Zhang, P., Z. Hong, T. Yu, X. Chen, and X. Jing. 2009. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials 30 (1):58–70. Zhang, Z., R. Kuijer, S. K. Bulstra, D. W. Grijpma, and J. Feijen. 2006. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 27 (9):1741–1748. Zhang, J. X., M. Q. Yan, X. H. Li, L. Y. Qiu, X. D. Li, X. J. Li, Y. Jin, and K. J. Zhu. 2007. Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res 24 (10):1944–1953. Zheng, C., L. Qiu, X. Yao, and K. Zhu. 2009. Novel micelles from graft polyphosphazenes as potential anticancer drug deliv ery systems: Drug encapsulation and in vitro evaluation. Int J Pharm 373 (1–2):133–140. Zheng, C., J. Xu, X. Yao, and L. Qiu. 2011. Polyphosphazene nanoparticles for cytoplasmic release of doxorubicin with improved cytotoxicity against Dox-resistant tumor cells. J Colloid Interface Sci 355 (2):374–382. Zurita, R., J. Puiggali, and A. Rodriguez-Galan. 2006. Loading and release of ibuprofen in multi- and mono�lament surgical sutures. Macromol Biosci 6 (9):767–775. 6 Chapter 6. Bioresorbable Hybrid Membranes for Bone Regeneration Asada, M., Asada, N., Toyoda, A., Ando, I., and Kurosu, H. 1991. Side-chain structure of poly(methacrylic acid) and its zinc salts in the solid state as studied by high-resolution solid-state 13 C NMR spectroscopy. J Mol Struct 244:237–248. Badami, A.S., Kreke, M.R., Thompson, M.S., Rif¥e, J.S., and Goldstein, A.S. 2006. Effect of �ber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27:596–606. Bos, R.R.M., Rozema, F.B., Boering, G. et al. 1991. Degradation of and tissue reaction to biodegradable poly(L-lactide) for use as internal �xation of fractures: A study in rats. Biomaterials 12:32–36. Boskey, A.L., Wright, T.M., and Blank, R.D. 1999. Collagen and bone strength. J Bone Miner Res 14:330–335. Carlisle, E.M. 1986. Silicon as an essential trace element in animal nutrition. In Silicon Biochemistry, eds. Evered, D. and O’Connor, M., pp. 123–139. Chichester, U.K.: Wiley. Gough, J.E., Jones, J.R., and Hench, L.L. 2004. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25:2039–2046. Jaiswal, N., Haynesworth, S.E., Caplan, A.I., and Bruder, S.P. 1997. Osteogenic differentiation of puri�ed, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312. Jones, J.R., Tsigkou, O., Coates, E.E., Stevens, M.M., Polak, J.M., and Hench, L.L. 2007. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 28:1653–1663. Kasuga, T., Maeda, H., Kato, K., Nogami, M., Hata, K., and Ueda, M. 2003. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 24:3247–3253. Kenawy, E.R., Bowlin, G.L., Mans�eld, K. et al. 2002. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64. Kim, S.S., Park, M.S., Jeon, O., Choi, C.Y., and Kim, B.S. 2006. Poly(lactide-co-glycolide)/hydroxyapatite composted scaffolds for bone tissue engineering. Biomaterials 27:1399–1409. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., and Yamamuro, T. 1990. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 24:721–734. Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., and Ko, F.K. 2002. Electrospun nano�brous structure: A novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621. Liao, H., Mutvei, H., Sjöström, M., Hammarström, L., and Li, J. 2000. Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials 21:457–468. Maeda, H., Kasuga, T., and Hench, L.L. 2006. Preparation of poly(L-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials 27:1216–1222. Maeda, H., Kasuga, T., and Nogami, M. 2004. Bonelike apatite coating on skeleton of poly(lactic acid) composite sponge. Mater Trans 45:989–993. Mainil-Varlet, P., Rahn, B., and Gogolewski, S. 1997. Long-term in vivo degradation and bone reaction to various polylactides: 1. One-year results. Biomaterials 18:257–266. Nie, H. and Wang, C.H. 2007. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 120:111–121. Ref�tt, D.M., Ogston, N., Jugdaohsingh, R. et al. 2003. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135. Still, T.J. and von Recum, H.A. 2008. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. Thian, E.S., Huang, J., Best, S.M., Barber, Z.H., Brooks, R.A., Rushton, N., and Bon�eld, W. 2006. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin �lms. Biomaterials 27:2692–2698. Vago, R., Plotquin, D., Bunin, A., Sinelnikov, I., Atar, D., and Itzhak, D. 2002. Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50:253–259. Xin, X., Hussain, M., and Mao, J.J. 2007. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nano�ber scaffold. Biomaterials 28:316–325. Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., and Polak, J.M. 2000. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465. Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., and Polak, J.M. 2001. Gene-expression pro�ling of human osteoblasts following treatment with the ionic products of Bioglass ® 45S5 dissolution. J Biomed Mater Res 55:151–157. Yabuta, T., Tsuru, K., Hayakawa, S., Ohtsuki, C., and Osaka, A. 2000. Synthesis of bioactive organic-inorganic hybrids with γ-methacryloxypropyltrimethoxysilane. J Sol-Gel Sci Technol 19:745–748. Yang, F., Murugan, R., Wang, S., and Ramakrishna, S. 2005. Electrospinning of nano/micro scale poly(L-lactic acid) aligned �bers and their potential in neural tissue engineering. Biomaterials 26:2603–2610. Zeng, J., Xu, X., Chen, X. et al. 2003. Biodegradable electrospun �bers for drug delivery. J Control Release 92:227–231. Zhang, K., Wang, Y., Hillmyer, M.A., and Francis, L.F. 2004. Processing and properties of porous poly(L-lactide)/ bioactive glass composites. Biomaterials 25:2489–2500. 7 Chapter 7. Mucoadhesive Polymers 1. Robinson, J. R. and W. J. Bologna. 1994. Vaginal and reproductive system treatments using a bioadhesive polymer. J. Control. Release 28:87–94. 2. Akiyama, Y., N. Nagahara, E. Nara, M. Kitano, S. Iwasa, I. Yamamoto, J. Azuma, and Y. Ogawa. 1998. Evaluation of oral mucoadhesive microspheres in man on the basis of the pharmacokinetics of furosemide and ribo¥avin, compounds with limited gastrointestinal absorption sites. J. Pharm. Pharmacol. 50:159–166. 3. Takeuchi, H., H. Yamamoto, N. Toshiyuki, H. Tomoaki, and Y. Kawashima. 1996. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm. Res. 13:896–901. 4. Takeuchi, H., Y. Matsui, H. Yamamoto, and Y. Kawashima. 2003. Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J. Control. Release 86:235–242. 5. Clausen, A. and A. Bernkop-Schnürch. 2000. In vitro evaluation of the permeation enhancing effect of thiolated polycarbophil. J. Pharm. Sci. 89:1253–1261. 6. Schipper, N. G. M., S. Olsson, J. A. Hoogstraate, A. G. de Boer, K. M. Varum, and P. Artursson. 1997. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm. Res. 14:923–929. 7. Lueß en, H. L., V. Bohner, D. Perard, P. Langguth, J. C. Verhoef, A. G. de Boer, H. P. Merkle, and H. E. Junginger. 1996. Mucoadhesive polymers in peroral peptide drug delivery. V. Effect of poly(acrylates) on the enzymatic degradation of peptide drugs by intestinal brush border membrane vesicles. Int. J. Pharm. 141:39–52. 8. Bernkop-Schnürch, A., C. Paikl, and C. Valenta. 1997. Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N. Pharm. Res. 14:917–922. 9. Matthes, I., F. Nimmerfall, and H. Sucker. 1992. Mucusmodelle zur Untersuchung von intestinalen Absorptionsmechanismen. Pharmazie 47:505–515. 10. Bernkop-Schnürch, A. and R. Fragner. 1996. Investigations into the diffusion behaviour of polypeptides in native intestinal mucus with regard to their peroral administration. Pharm. Sci. 2:361–363. 11. Campbell, B. J. 1999. Biochemical and functional aspects of mucus and mucin-type glycoproteins, bioadhesive drug delivery systems in Bioadhesive Drug Delivery Systems: Fundamentals, Novel Approaches, and Developments, E. Mathiowitz, D. E. Chickering III, and C.-M. Lehr, eds., pp. 85–130. New York: Marcel Dekker. 12. Gendler, S. J. and A. P. Spicer. 1995. Epithelial mucin genes. Ann. Rev. Physiol. 57:607–634. 13. Gum, J. R., J. W. Hicks, N. W. Toribara, E. M. Rothe, R. E. Lagace, and Y. S. Kim. 1992. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem. 267:21375–21383. 14. Gum, J. R., J. W. Hicks, D. M. Swallow, R. L. Lagace, J. C. Byrd, D. T. A. Lamport, B. Siddiki, and Y. S. Kim. 1990. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun. 171:407–415. 15. Porchet, N., V. C. Nguyen, J. Dufosse, J. P. Audie, V. Guyonnet-Duperat, M. S. Gross, C. Denis, P. Degand, A. Bernheim, and J. P. Aubert. 1991. Molecular cloning and chromosomal localisation of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem. Biophys. Res. Commun. 175:414–422. 16. Guyonnet-Duperat, V., J. P. Audie, V. Debailleul, A. Laine, M. P. Buisine, S. Galiegue-Zouitina, P. Pigny, P. Degand, J. P. Aubert, and N. Porchet. 1995. Characterisation of the human mucin gene MUC5AC: A consensus cysteine rich domain for 11p15 mucin genes? Biochem. J. 305:211–219. 17. Thornton, D. J., M. Howard, N. Khan, and J. K. Sheehan. 1997. Identi�cation of two glycoforms of the MUC5B mucin in human respiratory mucus. Evidence for a cysteine-rich sequence repeated within the molecule. J. Biol. Chem. 272:9561–9566. 18. Toribara, N. W., A. M. Roberton, S. B. Ho, W. L. Kuo, E. T. Gum, J. R. Gum, J. C. Byrd, B. Siddiki, and Y. S. Kim. 1993. Human gastric mucin: Identi�cation of unique species by expression cloning. J. Biol. Chem. 268:5879–5885. 19. Bobek, L. A., H. Tsai, A. R. Biesbrock, and M. J. Levine. 1993. Molecular cloning, sequence, and speci�city of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J. Biol. Chem. 268:20563–20569. 20. Shankar, V., P. Pichan, R. L. Eddy, V. Tonk, N. Nowak, S. N. Sait, T. B. Shows, R. E. Shultz, G. Gotway, R. C. Elkins, M. S. Gilmore, and G. P. Sachdev. 1997. Chromosomal localisation of a human mucin gene (MUC8) and cloning of the cDNA corresponding to the carboxy terminus. Am. J. Respir. Cell Mol. Biol. 16:232–241. 21. Lehr, C.-M., F . G. J. Poelma, and H. E. Junginger. 1991. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int. J. Pharm. 70:235–240. 22. Bernkop-Schnürch, A. and S. Steininger. 2000. Synthesis and characterisation of mucoadhesive thiolated polymers. Int. J. Pharm. 194:239–247. 23. Bernkop-Schnürch, A. and I. Apprich. 1997. Synthesis and evaluation of a modi�ed mucoadhesive polymer protecting from α-chymotrypsinic degradation. Int. J. Pharm. 146:247–254. 24. Jabbari, E., N. Wisniewski, and N. A. Peppas. 1993. Evidence of mucoadhesion by chain interpenetration at a poly(acrylic acid)/mucin interface using ATR-FTIR spectroscopy. J. Control. Release 26:99–108. 25. Imam, M. E., M. Hornof, C. Valenta, G. Reznicek, and A. Bernkop-Schnürch. 2003. Evidence for the interpenetration of mucoadhesive polymers into the mucous gel layer. STP Pharma. Sci. 13:171–176. 26. Mortazavi, S. A. and J. D. Smart. 1993. An investigation into the role of water movement and mucus gel dehydration in mucoadhesion. J. Control. Release 25:197–203. 27. Cara mella, C. M., S. Rossi, and M. C. Bonferoni. 1999. A rheological approach to explain the mucoadhesive behavior of polymer hydrogels in Bioadhesive Drug Delivery Systems: Fundamentals, E. Mathiowitz, D. E. Chickering III, and C.-M. Lehr, eds., pp. 25–65. New York: Marcel Dekker. 28. Bernkop-Schnürch, A., C. Humenberger, and C. Valenta. 1998. Basic studies on bioadhesive delivery systems for peptide and protein drugs. Int. J. Pharm. 165:217–225. 29. Hertzog, B. A. and E. Mathiowitz. 1999. Novel magnetic technique to measure bioadhesion Novel Approaches, and Developments, E. Mathiowitz, D. E. Chickering III, and C.-M. Lehr, eds., pp. 147–175. New York: Marcel Dekker. 30. Schneider, J. and M. Tirrell. 1999. Direct measurement of molecular-level forces and adhesion in biological systems Novel Approaches, and Developments, E. Mathiowitz, D. E. Chickering III, and C.-M. Lehr, eds., pp. 223–261. New York: Marcel Dekker. 31. Bernkop-Schnürch, A., A. Weithaler, K. Albrecht, and A. Greimel. 2006. Thiomers: Preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int. J. Pharm. 317:76–81. 32. Nielsen, L. S., L. Schubert, and J. Hansen. 1998. Bioadhesive drug delivery systems—I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur. J. Pharm. Sci. 6:231–239. 33. Rango Rao, K. V. and P. Buri. 1989. A novel in situ method to test polymers and coated microparticles for bioadhesion. Int. J. Pharm. 52:265–270. 34. Tobyn, M. J., J. R. Johnson, and P. W. Dettmar. 1996. Factors affecting in vitro gastric mucoadhesion II. Physical properties of polymers. Eur. J. Pharm. Biopharm. 42:56–61. 35. Mortazavi, S. A. and J. D. Smart. 1993. An in-vitro evaluation of mucosa-adhesion using tensile and shear stresses. J. Pharm. Pharmacol. 45 (suppl.):1108–1111. 36. Ch’ng, H. S., H. Park, P. Kelly, and J. R. Robinson. 1985. Bioadhesive polymers as platforms for oral controlled drug delivery II: Synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J. Pharm. Sci. 74:399–405. 37. Chickering III, D. E., C. A. Santos, and E. Mathiowitz. 1999. Adaptation of a microbalance to measure bioadhesive properties of microspheres Novel Approaches, and Developments, E. Mathiowitz, D. E. Chickering III, and C.-M. Lehr, eds., pp. 131–147. New York: Marcel Dekker. 38. Hassan, E. E. and J. M. Gallo. 1990. A simple rheological method for the in vitro assessment of mucinpolymer bioadhesive bond strength. Pharm. Res. 7:491–495. 39. Leitner, V., G. F. Walker, and A. Bernkop-Schnürch. 2003. Thiolated polymers: Evidence for the formation of disulphide bonds with mucus glycoproteins. Eur. J. Pharm. Biopharm. 56:207–214. 40. Kellaway, I. W. 1990. In vitro test methods for the measurement of mucoadhesion, R. Gurny and H. E. Junginger. eds., pp. 86–97. Stuttgart, Germany: Wissenschaftliche Verlagsgesellschaft. 41. Kerr, L. J., I. W. Kellaway, C. Rowlands, and G. D. Parr. 1990. The in¥uence of poly(acrylic) acids on the rheology of glycoprotein gels. Proc. Int. Symp. Control. Release Bioact. Mater. 122–123. 42. Tobyn, M. J., J. R. Johnson, and S. A. Gibson. 1992. Investigations into the role of hydrogen bonding in the interaction between mucoadhesives and mucin at gastric pH. J. Pharm. Pharmacol. 44 (suppl.):1048–1048. 43. Mortazavi, S. A., B. G. Carpenter, and J. D. Smart. 1993. An investigation into the nature of mucoadhesive interactions. J. Pharm. Pharmacol. 45 (suppl.): 1141. 44. Mortazavi, S. A. 1995. In vitro assessment of mucus/mucoadhesive interactions. Int. J. Pharm. 124:173–182. 45. Akiy ama, Y. and N. Nagahara. 1999. Novel formulation approaches to oral mucoadhesive drug delivery systems in Bioadhesive Drug Delivery Systems: Fundamentals, Novel Approaches, and Developments, E. Mathiowitz, D. E. Chickering III, and C.-M. Lehr, eds., pp. 477–507. New York: Marcel Dekker. 46. Bouckaert, S., R. A. Lefebvre, and J.-P. Remon. 1993. In vitro/in vivo correlation of the bioadhesive properties of a buccal bioadhesive miconazole slow-release tablet. Pharm. Res. 10:853–856. 47. Bottenberg, P., R. Cleymaet, C. de Muynck, J.-P. Remon, D. Coomans, Y. Michotte, and D. Slop. 1991. Development and testing of bioadhesive, ¥uoride-containing slow-release tablets for oral use. J. Pharm. Pharmacol. 43:457–464. 48. Khosla, L. and S. S. Davis. 1987. The effect of polycarbophil on the gastric emptying of pellets. J. Pharm. Pharmacol. 39:47–49. 49. Harris, D., J. T. Fell, H. L. Sharma, and D. C. Taylor. 1990. GI transit of potential bioadhesive formulations in man: A scintigraphic study. J. Control. Release 12:45–53. 50. Grabovac, V ., D. Guggi, and A. Bernkop-Schnürch. 2005. Comparison of the mucoadhesive properties of various polymers. Adv. Drug Deliv. Rev. 57:1713–1723. 51. Witschi, C. and R. J. Mrsny. 1999. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm. Res. 16:382–390. 52. Evans, I. V . 1989. Mucilaginous substances from macroalgae: An overview. Symp. Soc. Exp. Biol. 43:455–461. 53. Mortazavi, S. A. and J. D. Smart. 1994. An in-vitro method for assessing the duration of mucoadhesion. J. Control. Release 31:207–217. 54. El Hameed, M. D. and I. W. Kellaway. 1997. Preparation and in vitro characterization of mucoadhesive polymeric microspheres as intra-nasal delivery systems. Eur. J. Pharm. Biopharm. 44:53–60. 55. Bernkop-Schnürch, A. and M. E. Krajicek. 1998. Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates. J. Control. Release 50:215–223. 56. Bernkop-Schnürch, A. and J. Freudl. 1999. Comparative in vitro study of different chitosan-complexing agent conjugates. Pharmazie 54:369–371. 57. Takayama, K., M. Hirata, Y. Machida, T. Masada, T. Sannan, and T. Nagai. 1990. Effect of interpolymer complex formation on bioadhesive property and drug release phenomenon of compressed tablets consisting of chitosan and sodium hyaluronate. Chem. Pharm. Bull. 38:1993–1997. 58. Hadler, N. M., R. R. Dourmashikin, M. V. Nermut, and L. D. Williams. 1982. Ultrastructure of hyaluronic acid matrix. Biochemistry 79:307–309. 59. Sanzgiri, Y. D., E. M. Topp, L. Benedetti, and V. J. Stella. 1994. Evaluation of mucoadhesive properties of hyaluronic acid benzyl esters. Int. J. Pharm. 107:91–97. 60. Madsen, F., K. Eberth, and J. D. Smart. 1998. A rheological assessment of the nature of interactions between mucoadhesive polymers and a homogenised mucus gel. Biomaterials 19:1083–1092. 61. Liu, P. and T. R. Krishnan. 1999. Alginate-pectin-poly-l-lysine particulate as a potential controlled release formulation. J. Pharm. Pharmacol. 51:141–149. 62. Smart, J. D., I. W. Kellaway, and H. E. C. Worthington. 1984. An in vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J. Pharm. Pharmacol. 36:295–299. 63. Longer, M. A., H. S. Ch’ng, and J. R. Robinson. 1985. Bioadhesive polymers as platforms for oral controlled drug delivery III: Oral delivery of chlorothiazide using a bioadhesive polymer. J. Pharm. Sci. 74:406–411. 64. Lehr, C.-M., J. A. Bouwstra, E. H. Schacht, and H. E. Junginger. 1992. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 78:43–48. 65. Valenta, C., B. Christen, and A. Bernkop-Schnürch. 1998. Chitosan-EDTA conjugate: A novel polymer for topical used gels. J. Pharm. Pharmacol. 50:445–452. 66. Artursson, P., T. Lindmark, S. S. Davis, and L. Illum. 1994. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11:1358–1361. 67. Lueßen, H. L., C.-O. Rentel, A. F. Kotzé, C.-M. Lehr, A. G. de Boer, J. C. Verhoef, and H. E. Junginger. 1997. Mucoadhesive polymers in peroral peptide drug delivery. IV. Polycarbophil and chitosan are potent enhancers of peptide transport across intestinal mucosae in vitro. J. Control. Release 45:15–23. 68. Thanou, M., B. I. Florea, M. W. Langemeÿer, J. C. Verhoef, and H. E. Junginger. 2000. N-trimethylated chitosan chloride (TMC) improves the intestinal permeation of the peptide drug buserelin in vitro (Caco-2 cells) and in vivo (rats). Pharm. Res. 17:27–31. 69. Lehr, C.-M. 1996. From sticky stuff to sweet receptors—Achievements, limits and novel approaches to bioadhesion. Eur. J. Drug Metabol. Pharmacokinet. 21:139–148. 70. Rillosi, M. and G. Buckton. 1995. Modelling mucoadhesion by use of surface energy terms obtained from the Lewis acid—Lewis base approach. II. Studies on anionic, cationic, and unionisable polymers, Pharm. Res. 12:669–675. 71. Lueßen, H. L., B. J. de Leeuw, M. W. Langemeyer, A. G. de Boer, J. C. Verhoef, and H. E. Junginger. 1996. Mucoadhesive polymers in peroral peptide drug delivery. VI. Carbomer and chitosan improve the intestinal absorption of the peptide drug buserelin in vivo. Pharm. Res. 13:1668–1672. 72. Matsuda, S., H. Iw ata, N. Se, and Y. Ikada. 1999. Bioadhesion of gelatin �lms crosslinked with glutaraldehyde. J. Biomed. Mater. Res. 45:20–27. 73. Bernkop-Schnürch, A., V . Schwarz, and S. Steininger. 1999. Polymers with thiol groups: A new generation of mucoadhesive polymers? Pharm. Res. 16:876–881. 74. Bernkop-Schnürch, A. 2005. Thiomers: A new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev. 57:1569–1582. 75. Snyder, G. H. 1987. Intramolecular disul�de loop formation in a peptide containing two cysteines. Biochemistry 26:688–694. 76. Roldo, M., M. Hornof, P. Caliceti, and A. Bernkop-Schnürch. 2004. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: Synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm. 57:115–121. 77. Bernkop-Schnürch, A., S. Scholler, and R. G. Biebel. 2000. Development of controlled drug release systems based on polymer-cysteine conjugates. J. Control. Release 66:39–48. 78. Bernkop-Schnürch, A., U.-M. Brandt, and A. Clausen. 1999. Synthese und in vitro Evaluierung von Chitosan-Cystein Konjugaten. Sci. Pharm. 67:197–208. 79. Kafedjiiski, K., F. Föger, M. Werle, and A. Bernkop-Schnürch. 2005. Synthesis and in vitro evaluation of a novel chitosan-glutathione conjugate. Pharm. Res. 22:1480–1488. 80. Bernkop-Schnürch, A., M. Hornof, and T. Zoidl. 2003. Thiolated polymers—Thiomers: Modi�cation of chitosan with 2-iminothiolane. Int. J. Pharm. 260:229–237. 81. Kafedjiiski, K., M. Hof fer, M. Werle, and A. Bernkop-Schnürch. 2006. Improved synthesis and in vitro characterization of chitosan-thioethylamidine conjugate. Biomaterials 27:127–135. 82. Kast, C. E. and A. Bernkop-Schnürch. 2001. Thiolated polymers—Thiomers: Development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 22:2345–2352. 83. Kast, C. E. and A. Bernkop-Schnürch. 2002. Polymer-cystamine conjugates: New mucoadhesive excipients for drug delivery? Int. J. Pharm. 234:91–99. 84. Leitner, V., M. Marschütz, and A. Bernkop-Schnürch. 2003. Mucoadhesive and cohesive properties of poly(acrylic acid)-cysteine conjugates with regard to their molecular mass. Eur. J. Pharm. Sci. 18:89–96. 85. Bernkop-Schnürch, A. and S. Thaler. 2000. Polycarbophil-cysteine conjugates as platforms for peroral poly(peptide) delivery systems. J. Pharm. Sci. 89:901–909. 86. Hornof, M. D., W. Weyenberg, A. Ludwig, and A. Bernkop–Schnürch. 2003. A mucoadhesive ocular insert: Development and in vivo evaluation in humans. J. Control. Release 89:419–428. 87. Lueßen, H. L., J. C. Verhoef, G. Borchard, C.-M. Lehr, A. G. de Boer, and H. E. Junginger. 1995. Mucoadhesive polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm. Res. 12:1293–1298. 88. Walker, G. F., R. Ledger, and I. G. Tucker. 1999. Carbomer inhibits tryptic proteolysis of luteinizing hormone-releasing hormone and N-α-benzoyl-l-arginine ethyl ester by binding the enzyme. Pharm. Res. 16:1074–1080. 89. Bernkop-Schnürch, A., G. Schwarz, and M. Kratzel. 1997. Modi�ed mucoadhesive polymers for the peroral administration of mainly elastase degradable therapeutic poly(peptides). J. Control. Release 47:113–121. 90. Bernkop-Schnürch, A. and K. Dundalek. 1996. Novel bioadhesive drug delivery system protecting poly(peptides) from gastric enzymatic degradation. Int. J. Pharm. 138:75–83. 91. Bernkop-Schnürch, A., I. Bratengeyer, and C. Valenta. 1997. Development and in vitro evaluation of a drug delivery system protecting from trypsinic degradation. Int. J. Pharm. 157:17–25. 92. Bernkop-Schnürch, A. and A. Scerbe-Saiko. 1998. Synthesis and in vitro evaluation of chitosan-EDTAprotease-inhibitor conjugates which might be useful in oral delivery of peptides and proteins. Pharm. Res. 15:263–269. 93. Bernkop-Schnürch, A. and M. Pasta. 1998. Intestinal peptide and protein delivery: Novel bioadhesive drug carrier matrix shielding from enzymatic attack. J. Pharm. Sci. 87:430–434. 94. Bernkop-Schnürch, A. and N. C. Göckel. 1997. Development and analysis of a polymer protecting from luminal enzymatic degradation caused by α-chymotrypsin. Drug Dev. Ind. Pharm. 23:733–740. 95. Bernkop-Schnürch, A. and M. K. Marschütz. 1997. Development and in vitro evaluation of systems to protect peptide drugs from aminopeptidase N. Pharm. Res. 14:181–185. 96. Marschütz, M. K, P . Caliceti, and A. Bernkop-Schnürch. 2000. Design and in vivo evaluation of an oral delivery system for insulin. Pharm. Res. 17:1468–1474. 97. Caliceti, P., S. Salmaso, G. Walker, and A. Bernkop-Schnürch. 2004. Development and in vivo evaluation of an oral insulin-PEG delivery system. Eur. J. Pharm. Sci. 22:315–323. 98. Guggi, D., A. H. Krauland, and A. Bernkop-Schnürch. 2003. Systemic peptide delivery via the stomach: In vivo evaluation of an oral dosage form for salmon calcitonin. J. Control. Release 92:125–135. 99. Borchard, G., H. L. Lueßen, J. C. Verhoef, C.-M. Lehr, A. G. de Boer, and H. E. Junginger. 1996. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J. Control. Release 39:131–138. 100. Lee, V. H. L. 1990. Protease inhibitors and permeation enhancers as approaches to modify peptide absorption. J. Control. Release 13:213–223. 101. Aungst, B. J., H. Saitoh, D. L. Burcham, S. M. Huang, S. A. Mousa, and M. A. Hussain. 1996. Enhancement of the intestinal absorption of peptides and non-peptides. J. Control. Release 41:19–31. 102. Illum, L., N. F . Farraj, and S. S. Davis. 1994. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res. 11:1186–1189. 103. Rao, R. K., R. D. Baker, S. S. Baker, A. Gupta, and M. Holycross. 1997. Oxidant-induced disruption of intestinal epithelial barrier function: Role of tyrosine phosphorylation. Am. J. Physiol. 273:G812–G823. 104. Barret, W. C., J. P. DeGnore, S. Konig, H. M. Fales, Y. F. Keng, Y. Zhang, M. B. Yim, and P. B. Chock. 1999. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38:6699–6705. 105. Werle, M. and M. Hoffer. 2006. Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J. Control. Release 111:41–46. 106. Föger, F ., T. Schmitz, and A. Bernkop-Schnürch. 2006. In vivo evaluation of polymeric delivery systems for P-glycoprotein substrates. Biomaterials 27:4250–4255. 107. Bernkop-Schnürch, A. and V. Grabovac. 2006. Polymeric ef¥ux pump inhibitors in oral drug delivery. Am. J. Drug Deliv. 4: 263–272. 108. Föger, F ., S. Malaivijitnond, T. Wannaprasert, C. Huck, A. Bernkop-Schnürch, and M. Werle. 2008. Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats. J. Drug Target 16:149–155. 109. Shen, Q., Y. L. Lin, T. Handa, M. Doi, M. Sugie, K. Wakayama, N. Okada, T. Fujita, and A. Yamamoto 2006. Modulation of intestinal P-glycoprotein function by polyethylene glycols and their derivatives by in vitro transport and in situ absorption studies. Int. J. Pharm. 313:49–56. 110. Greindl, M., F. Föger, J. Hombach, and A. Bernkop-Schnürch. 2009. In vivo evaluation of thiolated poly(acrylic acid) as a drug absorption modulator for Mpr2 ef¥ux pump substrates. Eur. J. Pharm. Biopharm 72:561–566. 111. Gottesman, M. M. and I. Pastan. 1988. The multidrug transporter, a double-edged sword. J. Biol. Chem. 263:12163–12166. 112. Bernkop-Schnürch, A. and B. Gilge. 2000. Anionic mucoadhesive polymers as auxiliary agents for the peroral administration of poly(peptide) drugs: In¥uence of the gastric ¥uid. Drug Dev. Ind. Pharm. 26:107–113. 113. Skov, O. P., S. S. Poulsen, P. Kirkegaard, and E. Nexo. 1984. Role of submandibular saliva and epidermal growth factor in gastric cytoprotection. Gastroenterology 87:103–108. 114. Itoh, M. and Y. Matsuo. 1994. Gastric ulcer treatment with intravenous human epidermal growth factor: A double-blind controlled clinical study. J. Gastroenterol. Hepatol. 9: S78–S83. 115. Slomiany, B. L., H. Nishikawa, J. Bilski, and A. Slomiany. 1990. Colloidal bismuth subcitrate inhibits peptic degradation of gastric mucus and epidermal growth factor in vitro. Am. J. Gastroenterol. 85:390–393. 116. Bernkop-Schnürch, A., H. Schuhbauer, and I. Pischel. 1999. α-Liponsäure(-Derivate) enthaltende Retardform, Deutsche Patentschrift 1999-09-30. 8 Chapter 8. Biodegradable Polymeric/Ceramic Composite Scaffolds to Regenerate Bone Tissue 1. Kretlow, J.D. and Mikos, A.G., 2007. Review: Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Engineering 13(5): 927–938. 2. Moroni, L., Hamann, D., Paoluzzi, L. et al., 2008. Regenerating articular tissue by converging technologies. PLoS ONE 3(8): e3032. 3. Tadic, D. and Epple, M., 2004. A thorough physicochemical characterisation of 14 calcium phosphatebased bone substitution materials in comparison to natural bone. Biomaterials 25(6): 987–994. 4. Weiner, S. and Traub, W., 1992. Bone structure: From angstroms to microns. The FASEB Journal 6(3): 879–885. 5. Rho, J.-Y., Kuhn-Spearing, L., and Zioupos, P., 1998. Mechanical properties and the hierarchical structure of bone. Medical Engineering and Physics 20(2): 92–102. 6. Weiner, S., Traub, W., and Wagner, H.D., 1999. Lamellar bone: Structure-function relations. Journal of Structural Biology 126(3): 241–255. 7. Wong, S.-C., Baji, A., and Gent, A.N., 2008. Effect of specimen thickness on fracture toughness and adhesive properties of hydroxyapatite-�lled polycaprolactone. Composites Part A: Applied Science and Manufacturing 39(4): 579–587. 8. Ritchie, R.O., Kinney, J.H., Kruzic, J.J. et al., 2005. A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue and Fracture of Engineering Materials and Structures 28(4): 345–371. 9. Song, J., Malathong, V., and Bertozzi, C.R., 2005. Mineralization of synthetic polymer scaffolds: A bottom-up approach for the development of arti�cial bone. Journal of the American Chemical Society 127(10): 3366–3372. 10. Rezwan, K., Chen, Q.Z., Blaker, J.J. et al., 2006. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18): 3413–3431. 11. LeGeros, R., 2002. Properties of osteoconductive biomaterials: Calcium phosphates. Clinical Orthopaedics and Related Research 395: 81–98. 12. Zhou, Z., Liu, X., Liu, Q. et al., 2009. Evaluation of the potential cytotoxicity of metals associated with implanted biomaterials (I). Preparative Biochemistry and Biotechnology 39: 81–91. 13. Barrabés, M., Michiardi, A., Aparicio, C. et al., 2007. Oxidized nickel–titanium foams for bone reconstructions: Chemical and mechanical characterization. Journal of Materials Science: Materials in Medicine 18(11): 2123–2129. 14. Khan, Y., Yaszemski, M.J., Mikos, A.G. et al., 2008. Tissue engineering of bone: Material and matrix considerations. Journal of Bone and Joint Surgery 90(Suppl_1): 36–42. 15. Habraken, W.J.E.M., Wolke, J.G.C., and Jansen, J.A., 2007. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews 59(4–5): 234–248. 16. Bon�eld, W., W ang, M., and Tanner, K.E., 1998. Interfaces in analogue biomaterials. Acta Materialia 46(7): 2509–2518. 17. Song, J., Saiz, E., and Bertozzi, C.R., 2003. A new approach to mineralization of biocompatible hydrogel scaffolds: An ef�cient process toward 3-dimensional bonelike composites. Journal of the American Chemical Society 125(5): 1236–1243. 18. Ho, E., Lowman, A., and Marcolongo, M., 2007. In situ apatite forming injectable hydrogel. Journal of Biomedical Materials Research 83A(1): 249–256. 19. Hutmacher, D.W., 2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24): 2529–2543. 20. Schiller, C. and Epple, M., 2003. Carbonated calcium phosphates are suitable pH-stabilising �llers for biodegradable polyesters. Biomaterials 24(12): 2037–2043. 21. Kim, S.-S., Sun P ark, M., Jeon, O. et al., 2006. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8): 1399–1409. 22. Castner, D.G. and Ratner, B.D., 2002. Biomedical surface science: Foundations to frontiers. Surface Science 500(1–3): 28–60. 23. Nair, L. and Laurencin, C.T., 2006. Polymers as biomaterials for tissue engineering and controlled drug delivery. Advances Biochemistry Engineering Biotechnology, 102: 47–90. 24. Göpferich, A., 1996. Mechanisms of polymer degradation and erosion. Biomaterials 17(2): 103–114. 25. Seal, B.L., Otero, T .C., and Panitch, A., 2001. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports 34(4–5): 147–230. 26. Kyle, S., Aggeli, A., Ingham, E. et al., 2009. Production of self-assembling biomaterials for tissue engineering. Trends in Biotechnology 27(7): 423–433. 27. Cen, L., Liu, W ., Cui, L. et al., 2008. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatric Research 63(5): 492. 28. Kuijpers, A., Engbers, G., Krijgsveld, G. et al., 2000. Cross-linking and characterisation of gelatin matrices for biomedical applications Journal of Biomaterial Science: Polymer Edition 11: 225–243. 29. Campoccia, D., Doherty, P., Radice, M. et al., 1998. Semisynthetic resorbable materials from hyaluronan esteri�cation. Biomaterials 19(23): 2101–2127. 30. Lloyd, L.L., Kennedy, J.F., Methacanon, P. et al., 1998. Carbohydrate polymers as wound management aids. Carbohydrate Polymers 37(3): 315–322. 31. Kuo, C.K. and Ma, P.X., 2001. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6): 511–521. 32. Anna Gutowska, B.J.M.J., 2001. Injectable gels for tissue engineering. The Anatomical Record 263(4): 342–349. 33. Maurus, P.B. and Kaeding, C.C., 2004. Bioabsorbable implant material review. Operative Techniques in Sports Medicine 12(3): 158–160. 34. Heidemann, W., Jeschkeit, S., Ruf�eux, K. et al., 2001. Degradation of poly( D , L )lactide implants with or without addition of calcium phosphates in vivo. Biomaterials 22(17): 2371–2381. 35. Middleton, J.C. and Tipton, A.J., 2000. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23): 2335–2346. 36. Ueda, H. and Tabata, Y., 2003. Polyhydroxyalkanonate derivatives in current clinical applications and trials. Advanced Drug Delivery Reviews 55(4): 501–518. 37. Ashammakhi, N., Suuronen, R., Tiainen, J. et al., 2003. Spotlight on naturally absorbable osteo�xation devices. Journal of Craniofacial Surgery 14(2): 247–259. 38. Edlund, U. and Albertsson, A.C., 2003. Polyesters based on diacid monomers. Advanced Drug Delivery Reviews 55(4): 585–609. 39. Sinha, V.R., Bansal, K., Kaushik, R. et al., 2004. Poly-[epsilon]-caprolactone microspheres and nanospheres: An overview. International Journal of Pharmaceutics 278(1): 1–23. 40. Wu, X.S. and Wang, N., 2001. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation. Journal of Biomaterials Science, Polymer Edition 12: 21–34. 41. Place, E.S., George, J.H., Williams, C.K. et al., 2009. Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews 38(4): 1139–1151. 42. Peppas, N.A., Keys, K.B., Torres-Lugo, M. et al., 1999. Poly(ethylene glycol)-containing hydrogels in drug delivery. Journal of Controlled Release 62(1–2): 81–87. 43. Jo, S., Shin, H., Shung, A.K. et al., 2001. Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34(9): 2839–2844. 44. Shin, H., Temenof f, J.S., and Mikos, A.G., 2003. In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol)fumarate] macromers and their cross-linked hydrogels. Biomacromolecules 4(3): 552–560. 45. Teme noff, J.S., Shin, H., Conway, D.E. et al., 2003. In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers. Biomacromolecules 4(6): 1605–1613. 46. Kamitakahara, M., Ohtsuki, C., and Miyazaki, T., 2008. Review paper: Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Journal of Biomaterials Applications 23(3): 197–212. 47. Dorozhkin, S., 2007. Calcium orthophosphates. Journal of Materials Science 42(4): 1061–1095. 48. Mirtchi, A.A., Lemaitre, J., and Terao, N., 1989. Calcium phosphate cements: Study of the [beta]tricalcium phosphate—Monocalcium phosphate system. Biomaterials 10(7): 475–480. 49. Drie ssens, F.C.M., Boltong, M.G., Bermúdez, O. et al., 1994. Effective formulations for the preparation of calcium phosphate bone cements. Journal of Materials Science: Materials in Medicine 5(3): 164–170. 50. Yamamoto, H., Niw a, S., Hori, M. et al., 1998. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 19(17): 1587–1591. 51. Takagi, S., Cho w, L.C., and Ishikawa, K., 1998. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19(17): 1593–1599. 52. Suzuki, O., Kamakura, S., Katagiri, T. et al., 2006. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-de�cient hydroxyapatite. Biomaterials 27(13): 2671–2681. 53. Dekker, R.J., de Bruijn, J.D., Stigter, M. et al., 2005. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials 26(25): 5231–5239. 54. Kikawa, T., Kashimoto, O., Imaizumi, H. et al., 2009. Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomaterialia 5(5): 1756–1766. 55. LeGeros, R.Z., 2001. F ormation and transformation of calcium phosphates: Relevance to vascular calci�cation. Zeitschrift für Kardiologie 90(15): III116–III124. 56. Sinyaev, V.A., Shustikova, E.S., Levchenko, L.V. et al., 2001. Synthesis and dehydration of amorphous calcium phosphate. Inorganic Materials 37(6): 619–622. 57. Yoshikawa, H. and Myoui, A., 2005. Bone tissue engineering with porous hydroxyapatite ceramics. Journal of Arti©cial Organs 8(3): 131–136. 58. Hench, L.L., Splinter, R.J., Allen, W.C. et al., 1971. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research 5(6): 117–141. 59. Priya, S., Julian, R.J., Russell, S.P. et al., 2003. Bioactivity of gel-glass powders in the CaO-SiO 2 system: A comparison with ternary (CaO-P 2 O 5 -SiO 2 ) and quaternary glasses (SiO 2 -CaO-P 2 O 5 -Na 2 ). Journal of Biomedical Materials Research Part A 66A(1): 110–119. 60. Priya, S., Julian, R.J., Sophie, V. et al., 2004. Binary CaO-SiO 2 gel-glasses for biomedical applications. Bio-Medical Materials and Engineering 14(4): 467–486. 61. Hench, L.L., 1997. Sol-gel materials for bioceramic applications. Current Opinion in Solid State and Materials Science 2(5): 604–610. 62. Jones, J.R., Ehrenfried, L.M., and Hench, L.L., 2006. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27(7): 964–973. 63. Navarro, M., Michiardi, A., Castano, O. et al., 2008. Biomaterials in orthopaedics. Journal of the Royal Society Interface 5(27): 1137–1158. 64. Wang, M., 2003. Developing bioactive composite materials for tissue replacement. Biomaterials 24(13): 2133–2151. 65. Bon�eld, W., 1988. Composites for bone replacement. Journal of Biomedical Engineering 10(6): 522–526. 66. Bon�eld, W., 1988. Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement. Annals of the New York Academy of Science 523 (Bioceramics: Material Characteristics Versus In Vivo Behavior): 173–177. 67. Wahl, D.A. and Czermuszka, J.T., 2006. Collagen-hydroxyapatite composites for hard tissue repair. European Cells and Materials Journal 11: 43–56. 68. Yamauchi, K., Goda, T., Takeuchi, N. et al., 2004. Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials 25(24): 5481–5489. 69. Leupold, J.A., Bar�eld, W.R., An, Y.H. et al., 2006. A comparison of ProOsteon, DBX, and collagraft in a rabbit model. Journal of Biomedical Materials Research Part B: Applied Biomaterials 79B(2): 292–297. 70. Wang , Y., Cui, F.Z., Hu, K. et al., 2008. Bone regeneration by using scaffold based on mineralized recombinant collagen. Journal of Biomedical Materials Research Part B: Applied Biomaterials 86B(1): 29–35. 71. Serre, C.M., Papillard, M., Chavassieux, P. et al., 1993. In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: An ultrastructural comparison of three types of biomaterials. Biomaterials 14(2): 97–106. 72. Kikuchi, M., Itoh, S., Ichinose, S. et al., 2001. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22(13): 1705–1711. 73. Kikuchi, M., Matsumoto, H.N., Yamada, T. et al., 2004. Glutaraldehyde cross-linked hydroxyapatite/ collagen self-organized nanocomposites. Biomaterials 25(1): 63–69. 74. Sotome, S., Uemura, T ., Kikuchi, M. et al., 2004. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone �ller and a drug delivery carrier of bone morphogenetic protein. Materials Science and Engineering: C 24(3): 341–347. 75. Song, J.-H., Kim, H.-E., and Kim, H.-W., 2007. Collagen-apatite nanocomposite membranes for guided bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials 83B(1): 248–257. 76. Wu, T.-J., Huang, H.-H., Lan, C.-W. et al., 2004. Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials 25(4): 651–658. 77. Joseph, E.Z., Sohrab, K., Robert, S. et al., 1992. Fibrillar collagen-biphasic calcium phosphate composite as a bone graft substitute for spinal fusion. Journal of Orthopaedic Research 10(4): 562–572. 78. Zou, C., Weng, W., Deng, X. et al., 2005. Preparation and characterization of porous [beta]tricalcium phosphate/collagen composites with an integrated structure. Biomaterials 26(26): 5276–5284. 79. Jacqueline, A.S. and Melissa, K.C.B., 1999. Biocompatibility and degradation of collagen bone anchors in a rabbit model. Journal of Biomedical Materials Research Part B: Applied Biomaterials 48(3): 309–314. 80. Jui-Sheng, S., Feng-Huei, L., Yng-Jiin, W. et al., 2003. Collagen-hydroxyapatite/tricalcium phosphate microspheres as a delivery system for recombinant human transforming growth factor-β1. Arti©cial Organs 27(7): 605–612. 81. Vicente, V., Meseguer, L., Martinez, F. et al., 1996. Ultrastructural study of the osteointegration of bioceramics (whitlockite and composite Î 2 -TCP + collagen) in rabbit bone. Ultrastructural Pathology 20(2): 179–188. 82. Shinji, K., Kazuo, S., Takahiro, H. et al., 2007. The primacy of octacalcium phosphate collagen composites in bone regeneration. Journal of Biomedical Materials Research Part A 83A(3): 725–733. 83. Du, C., Cui, F.Z., Zhang, W. et al., 2000. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. Journal of Biomedical Material Research 50(4): 518–527. 84. Du, C., Cui, F.Z., Feng, Q.L. et al., 1998. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. Journal of Biomedical Materials Research 42(4): 540–548. 85. Pederson, A.W., Ruberti, J.W., and Messersmith, P.B., 2003. Thermal assembly of a biomimetic mineral/ collagen composite. Biomaterials 24(26): 4881–4890. 86. Eglin, D., Maalheem, S., Livage, J. et al., 2006. In vitro apatite forming ability of type I collagen hydrogels containing bioactive glass and silica sol-gel particles. Journal of Materials Science: Materials in Medicine 17(2): 161–167. 87. Lin, H.-R. and Yeh, Y.-J., 2004. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies. Journal of Biomedical Materials Research Part B: Applied Biomaterials 71B(1): 52–65. 88. Panzavolta, S., Fini, M., Nicoletti, A. et al., 2009. Porous composite scaffolds based on gelatin and partially hydrolyzed α-tricalcium phosphate. Acta Biomaterialia 5(2): 636–643. 89. Kim, H.-W., Knowles, J.C., and Kim, H.-E., 2005. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Journal of Biomedical Materials Research Part A 72A(2): 136–145. 90. Nazhat, S.N., Kellomäki, M., Törmälä, P. et al., 2001. Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. Journal of Biomedical Materials Research Part B: Applied Biomaterials 58(4): 335–343. 91. Nenad, I., Edin, S., Jaroslava, B.-S. et al., 2004. Evaluation of hot-pressed hydroxyapatite/polyL -lactide composite biomaterial characteristics. Journal of Biomedical Materials Research Part B: Applied Biomaterials 71B(2): 284–294. 92. Hasegaw a, S., Tamura, J., Neo, M. et al., 2005. In vivo evaluation of a porous hydroxyapatite/polyDL lactide composite for use as a bone substitute. Journal of Biomedical Materials Research Part A 75A(3): 567–579. 93. Anita, A.I., Oliver, B., Peter, A. et al., 2001. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes. Journal of Biomedical Materials Research Part B: Applied Biomaterials 58(6): 701–709. 94. Ahmed, I.A., Cronin, P .S., Abou Neel, E.A. et al., 2009. Retention of mechanical properties and cytocompatibility of a phosphate-based glass �ber/polylactic acid composite. Journal of Biomedical Materials Research Part B: Applied Biomaterials 89B(1): 18–27. 95. Kim, H.-W., Kno wles, J.C., and Kim, H.-E., Hydroxyapatite/poly(ɛ-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25(7–8): 1279–1287. 96. Causa, F., Netti, P.A., Ambrosio, L. et al., 2006. Poly-ɛ-caprolactone/hydroxyapatite composites for bone regeneration: In vitro characterization and human osteoblast response. Journal of Biomedical Materials Research Part A 76A(1): 151–162. 97. Guarino, V. and Ambrosio, L., 2008. The synergic effect of polylactide �ber and calcium phosphate particle reinforcement in poly [epsilon]-caprolactone-based composite scaffolds. Acta Biomaterialia 4(6): 1778–1787. 98. Kikuchi, M., Koyama, Y., Yamada, T. et al., 2004. Development of guided bone regeneration membrane composed of [beta]-tricalcium phosphate and poly (-lactide-co-glycolide-co-[var epsilon]-caprolactone) composites. Biomaterials 25(28): 5979–5986. 99. Khan, A.S., Ahmed, Z., Edirisinghe, M.J. et al., 2008. Preparation and characterization of a novel bioactive restorative composite based on covalently coupled polyurethane-nanohydroxyapatite �bres. Acta Biomaterialia 4(5): 1275–1287. 100. Bil, M., Ryszkowska, J., Roether, J.A. et al., 2007. Bioactivity of polyurethane-based scaffolds coated with Bioglass. Biomedical Materials 2(2): 93–101. 101. Wang, M., Y ubao, L., Wu, J. et al., 2008. In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite. Journal of Biomedical Materials Research Part A 85A(2): 418–426. 102. Leeuwenburgh, S.C., Jansen, J.A., and Mikos, A.G., 2007. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with �nely dispersed calcium phosphate nanocrystals for bone-substituting purposes. Journal of Biomaterials Science Polymer Edition 18(12): 1547–1564. 103. Demirtaş, T.T., Karakeçili, A.G., and Gümüşderelioğlu, M., 2008. Hydroxyapatite containing superporous hydrogel composites: Synthesis and in-vitro characterization. Journal of Materials Science: Materials in Medicine 19(2): 729–735. 104. Kenny, S.M. and Buggy, M., 2003. Bone cements and �llers: A review. Journal of Materials Science: Materials in Medicine 14(11): 923–938. 105. Ruhé, P.Q., Boerman, O.C., Russel, F.G.M. et al., 2005. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. Journal of Controlled Release 106(1–2): 162–171. 106. Fei, Z., Hu, Y., Wu, D. et al., 2008. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. Journal of Materials Science: Materials in Medicine 19(3): 1109–1116. 107. Tamimi, F., Kumarasami, B., Doillon, C. et al., 2008. Brushite-collagen composites for bone regeneration. Acta Biomaterialia 4(5): 1315–1321. 108. Mai, R., Reinstorf, A., Pilling, E. et al., 2008. Histologic study of incorporation and resorption of a bone cement-collagen composite: An in vivo study in the minipig. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 105(3): e9–e14. 109. Qi, X., Ye, J., and Wang, Y., 2009. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A 89A(4): 980–987. 110. Xu, H.H.K., Eichmiller, F.C., and Giuseppetti, A.A., 2000. Reinforcement of a self-setting calcium phosphate cement with different �bers. Journal of Biomedical Materials Research Part A 52(1): 107–114. 111. Zhang, Y. and Zhang, M., 2002. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. Journal of Biomedical Materials Research Part A 61(1): 1–8. 9 Chapter 9. Amphiphilic Systems as Biomaterials Based on Chitin, Chitosan, and Their Derivatives 1. Braconnot, H. Sur la nature des champignons, Annales Chimie Physique, 79 (1811): 265–304. 2. Odier, A. Mémoire sur la composition chimique des parties cornées des insectes, Mémoires de la Société d’Histoire Naturelle, 1 (1823): 29–42. 3. Cauchie, H.M. An attempt to estimate crustacean chitin production in the hydrosphere, in Advances in Chitin science, Domard, A., Roberts, G.A.F., Varum, K.M. (Eds.), Jacques Andre Publishers, Lyon, France, Vol. 2, 1998, pp. 32–39. 4. Peter, M.G. Chitin and chitosan in fungi, in Polysaccharides II: Polysaccharides from Eukaryotes, Vol. 6: Biopolymers, Steinbüchel, A. (Ed.), Wiley-VCH, Weinheim, Germany, 2002, pp. 123–157. 5. Kumar, M.N.V .R. A review of chitin and chitosan applications, Reactive and Functional Polymers, 46 (2000): 1–27. 6. Sashiwa, H., Saimoto, H., Shigemasa, Y., Ogawa, R., Tokura, S. Lysozyme susceptibility of partially deacetylated chitin, International Journal of Biological Macromolecules, 12 (1990): 295–296. 7. Shigemasa, Y., Saito, K., Sashiwa, H., Saimoto, H. Enzymatic degradation of chitins and partially deacetylated chitins, International Journal of Biological Macromolecules, 16 (1994): 43–49. 8. Nishimura, K., Nishimura, S., Nishi, N. Immunological activity of chitin and its derivatives, Vaccine, 2 (1984): 93–99. 9. Mori, T., Okumura, M., Matsuura, M., Ueno, K., Tokura, S., Okamoto, Y., Minami, S., Fujinaga, T. Effects of chitin and its derivatives on the proliferation and cytokine production of �broblasts in vitro, Biomaterials, 18 (1997): 947–951. 10. Tokura, S., Ueno, K., Miyazaki, S., Nishi, N. Molecular weight dependent antimicrobial activity by chitosan, Macromolecular Symposia, 120 (1997): 1–9. 11. Tanigaw a, T., Tanaka, Y., Sashiwa, H., Saimoto, H., Shigemasa, Y. Advances in chitin and chitosan, Brine, C.J., Sandford, P.A., Zikakis, J.P. (Eds.), in Proceedings from the 5th International Conference on Chitin and Chitosan, London, U.K., Elsevier, the Netherlands, 1992, pp. 206–215. 12. Okamoto, Y., Minami, S., Matsuhashi, A., Sashiwa, H., Saimoto, H., Shigesama, Y., Tanigawa, T., Tanaka, Y., Tokura, S. Polymeric N-acetyl-D-glucosamine (chitin) induces histrionic activation in dogs, Journal of Veterinary Medical Science, 55 (1993): 739–742. 13. Kweon, D.K., Song, S.B., Park, Y.Y. Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator, Biomaterials, 24 (2003): 1595–1601. 14. Khor, E., Lim, L. Implantable applications of chitin and chitosan, Biomaterials, 24 (2003): 2339–2349. 15. Ramos, V.M., Rodriguez, N.M., Rodriguez, M.S., Heras, A., Agullo, E. Modi�ed chitosan carrying phosphonic and alkyl groups, Carbohydrate Polymers, 51 (2003): 425–429. 16. Peter, M. Applications and environmental aspects of chitin and chitosan, Journal of Macromolecular Science Part A Pure and Applied Chemistry, A32 (1995): 629–640. 17. Muzzarelli, R.A.A. Chitosan-based dietary foods, Carbohydrate Polymers, 29 (1996): 309–316. 18. Fädlt, P., Bergenstahl, B., Claesson, P.M. Stabilization by chitosan of soybean oil emulsions coated with phospholipid and glycocholic acid, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 71 (1993): 187–195. 19. Lindman, B., Carlsson, A., Gerdes, S., Karlström, G., Piculell, L., Thalberg, K., Zhang, K. Food Colloids and Polymers: Stability and Mechanical Properties, Dickinson, E., Walstra, P. (Ed.), Royal Society of Chemistry, Cambridge, U.K., 1993, pp. 113–125. 20. Baschong, W., Hüglin, D., Maier, T., Kulik, E. In¥uence of N-derivatization of chitosan to ist cosmetic activities, SÖFW Journal, 125 (1999): 22–24. 21. Muzzarelli, R.A.A. Natural Chelating Polymers: Alginic Acid, Chitin and Chitosan, International series of monographs in analytical chemistry, Belcher, R. (Ed.), Pergamon Press, Oxford, U.K., Vol. 144, 1973. 22. Romoren, K., Thu, B.J., Evensen, O. Immersion delivery of plasmid DNA. II. A study of the potentials of a chitosan based delivery system in rainbow trout (Oncorhynchus mykiss) fry, Journal of Controlled Release, 85 (2002): 215–225. 23. Borchard, G. Chitosans for gene delivery, Advances in Drug Delivery Reviews, 52 (2001): 145–150. 24. Rolland, A.P. From genes to gene medicines. Recent advances in nonviral gene delivery, Critical Reviews in Therapeutic Drug Carrier Systems, 15 (1998): 143–198. 25. Sato, T., Ishii, T., Okahata, Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum and molecular mass of chitosan on the transfer ef�ciency, Biomaterials, 22 (2001): 2075–2080. 26. Venkatesh, S., Smith, T.J. Chitosan-membrane interactions and their probable role in chitosan-mediated transfection, Biotechnology and Applied Biochemistry, 27 (1998): 265–267. 27. Cui, Z., Mumper, R.J. Chitosan-based nanoparticles for topical genetic immunization, Journal of Controlled Release, 75 (2001): 409–419. 28. Illum, L., Jabbal-Gill, I., Hinchcliffe, M., Fisher, A.N., Davis, S.S. Chitosan as a novel nasal delivery system for vaccines, Advanced Drug Delivery Reviews, 51 (2001): 81–96. 29. Hejazi, R., Amiji, M. Chitosan-based gastrointestinal delivery systems, Journal of Controlled Release, 89 (2003): 151–165. 30. Fang, N., Chan, V., Mao, H.Q., Leong, K.W. Interactions of phospholipid bilayer with chitosan: Effect of molecular weight and pH, Biomacromolecules, 2 (2001): 1161–1168. 31. Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E., Fernandes, J.C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection ef�cacy, European Journal of Pharmaceutics and Biopharmaceutics, 57 (2004): 1–8. 32. Corsi, K., Chella, F ., Yahia, L., Fernandes, J.C. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles, Biomaterials, 24 (2003): 1255–1264. 33. Erbacher, P., Zou, S., Bettinger, T., Steffan, A.M., Remy, J.S. Chitosan-based vector/DNA complexes for gene delivery: Biophysical characteristics and transfection ability, Pharmaceutical Research, 15 (1998): 1332–1339. 34. Sashiwa, H., Aiba, S.I. Chemically modi�ed chitin and chitosan as biomaterials, Progress in Polymer Science, 29 (2004): 887–908. 35. Wang, K.T., Iliopoulos, I., Audebert, R. Viscometric behaviour of hydrophobically modi�ed poly(sodium acrylate), Polymer Bulletin, 20 (1988): 577–582. 36. Bock, J., Pace, S.J., Schulz, D.N. Enhanced oil recovery with hydrophobically associating polymers containing N-vinyl-pyrrolidone functionality, U.S. Patent 4, 709, 759, 1987. 37. Hill, A., Candau, F ., Selb, J. Properties of hydrophobically associating polyacrylamides: In¥uence of the method of synthesis, Macromolecules, 26 (1993): 4521–4532. 38. Kaczmarski, J.P., Glass, J.E. Synthesis and solution properties of hydrophobically-modi�ed ethoxylated urethanes with variable oxyethylene spacer lengths, Macromolecules, 26 (1993): 5149–5152. 39. Wesslen, B., Wesslen, K.B. Preparation and properties of some water-soluble, comb-shaped, amphiphilic polymers, Journal of Polymer Science Part A: Polymer Chemistry, 27 (1989): 39153926. 40. Yahya, G.O., Hamad, E.Z. Solution behaviour of sodium maleate/1-alkene copolymers, Polymer, 36 (1995): 3705–3710. 41. Yahya, G.O., Asrof Ali, S.K., Al-Naafa, M.A., Hamad, E.Z. Preparation and viscosity behavior of hydrophobically modi�ed poly(vinyl alcohol) (PVA), Journal of Applied Polymer Science, 57 (1995): 343–352. 42. Shulz, D.N., Kaladas, J.J., Maurer, J.J., Bock, H., Pace, S.J., Shulz, W.W. Copolymers of acrylamide and surfactant macromonomers: Synthesis and solution properties, Polymer, 28 (1987): 2110–2115. 43. Valint, P.L., Jr., Bock, J. Synthesis and characterization of hydrophobically associating block polymers, Macromolecules, 21 (1988): 175–179. 44. Chang, Y.H., Mc Cormick, C.L. Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers, Macromolecules, 26 (1993): 6121–6126. 45. Shaw, K.G., Leipold, D.P. New cellulosic polymers for rheology control of latex paints, Journal of Coatings Technology, 57 (1985): 63–72. 46. Branham, K.D., Snowdey, H.S., Mc Cormick, C.L. Water-soluble copolymers. 64. Effects of pH and composition on associative properties of amphiphilic acrylamide/acrylic acid terpolymers, Macromolecules, 29 (1996): 254–262. 47. Taylor, K.C., Nasr-El-Din, H.A. Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review, Journal of Petroleum Science and Engineering, 19 (1998): 265–280. 48. Durand, A., Marie, E., Rotureau, E., Leonard, M., Dellacherie, E. Amphiphilic polysaccharides: Useful tools for the preparation of nanoparticles with controlled surface characteristics, Langmuir, 20 (2004): 6956–6963. 49. Rotureau, E., Leonard, M., Dellacherie, E., Durand, A. Amphiphilic derivatives of dextran: Adsorption at air/water and oil/water interfaces, Journal of Colloid and Interface Science, 279 (2004): 68–77. 50. Langevin, D. Polyelectrolyte and surfactant mixed solutions. Behavior at surfaces and in thin �lms, Advances in Colloid and Interface Science, 89–90 (2001): 467–484. 51. Beltran, C.M., Guillot, S., Langevin, D. Strati�cation phenomena in thin liquid �lms containing polyelectrolytes and stabilized by ionic surfactants, Macromolecules, 36 (2003): 8506–8512. 52. Guillot, S., McLoughlin, D., Jain, N., Delsanti, M., Langevin, D. Polyelectrolyte-surfactant complexes at interfaces and in bulk, Journal of Physics: Condensed Matter, 15 (2003): S219–S224. 53. Alves, N.M., Mano, J.F., Chitosan derivatives obtained by chemical modi�cations for biomedical and environmental applications, International Journal of Biological Macromolecules, 43 (2008): 401–414. 54. Hara, M. Polyelectrolytes. Marcel Dekker, New York, 1993. 55. Magny, B., Iliopoulos, I., Audebert, R., Aggregation of hydrophobically modi�ed polyelectrolytes in dilute solution: ionic strength effects in Macromolecular Complexes in Chemistry and Biology, Dubin, P., Bock, J., Davies, R.M., Schulz, D.N., Thies, C. (Edts), Springer, Berlin, Germany, 1994, pp. 51–62. 56. Prabaharan, M., Mano, J.F. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials, Macromolecular Bioscience, 6 (2006): 991–1008. 57. Holme, K., Hall, L. Chitosan derivatives bearing C10-alkyl glycoside branches: A temperature-induced gelling polysaccharide, Macromolecules, 24 (1991): 3828–3833. 58. Nishimura, S., Miura, Y ., Ren, L., Sato, M., Yamagashi, A., Nishi, N., Tokura, S., Kurita, K., Ishii, S. An ef�cient method for the syntheses of novel amphiphilic polysaccharides by regio- and thermoselective modi�cations of chitosan, Chemistry Letters, 22 (1993): 1623–1626. 59. Yoshioka, H., Nonaka, K., Fukuda, K., Kazama, S. Chitosan-derived polymer-surfactants and their micellar properties, Bioscience Biotechnology and Biochemistry, 59 (1995): 1901–1904. 60. Mourya, V.K., Inamdar , N.N., Chitosan-modi�cations and applications: Opportunities galore, Reactive and Functional Polymers, 68 (2008): 1013–1051. 61. Yalpani, M., Hall, L.D. Some chemical and analytical aspects of polysaccharide modi�cations. 3. Formation of branched-chain, soluble chitosan derivatives, Macromolecules, 17 (1984): 272–281. 62. Desbrieres, J., Martinez, C., Rinaudo, M. Hydrophobic derivatives of chitosan: Characterization and rheological behaviour, International Journal of Biological Macromolecules, 19 (1996): 21–28. 63. Lane, C.F. Sodium cyanoborohydride—A highly selective reducing agent for organic functional groups, Synthesis, 3 (1975): 135–146. 64. Auzely-Velty, R., Rinaudo, M. Chitosan derivatives bearing pendant cyclodextrin cavities: Synthesis and inclusion performance, Macromolecules, 34 (2001): 3574–2580. 65. Buschmann, H.J., Knittel, D., Schollmeyer, E. New textile applications of cyclodextrins, Journal of Inclusion Phenomena, 40 (2001): 169–172. 66. Lainé, V., Sarguet, C.A., Gadelle, A., Defaye, J., Perly, B., Pilard, D.F. Inclusion and solubilization properties of 6-S-glycosyl-6-thio derivatives of β-cyclodextrin, Journal of Chemical Society, Perkin Transactions 2, 2 (1995): 1479–1487. 67. Uekama, K. Recent aspects of pharmaceutical application of cyclodextrins, Journal of Inclusion Phenomena, 44 (2002): 3–7. 68. Liu, G.-Y., Zhai, Y.-L., Wang, X.-L., Wang, W.-T., Pan, Y.-B., Dong, X.-T., Wang, Y.-Z. Preparation, characterization, and in vitro release behavior of biodegradable chitosan-graft-poly(1,4-dioxan-2-one) copolymer, Carbohydrate Polymers, 74 (2008): 862–867. 69. Duan, K., Chen, H., Huang, J., Yu, J., Liu, S., Wang, D., Li, Y. One-step synthesis of amino-reserved chitosan-graft-polycaprolactone as a promising substance of biomaterial, Carbohydrate Polymers, 80 (2010): 499–504. 70. Yu, L., He, Y., Bin, L., Yue, F. Study of radiation-induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution, Journal of Applied Polymer Science, 90 (2003): 2855–2860. 71. Singh, V., Triparthi, D.N., Tiwari, A., Sanghi, R., Microwave promoted synthesis of chitosan-graftpoly(acrylonitrile), Journal of Applied Polymer Science, 95 (2005): 820–825. 72. Nam, H.Y., Kwon, S.M., Chung, H., Lee, S.-Y., Kwon, S.-H., Jeon, H., Kim et al. Cellular uptake mechanism and intracellular fate of hydrophobically modi�ed glycol chitosan particles, Journal of Controlled Release, 135 (2009): 259–267. 73. Chen, T., Kumar, G., Harris, M.T., Smith, P.J., Payne, G.F. Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties, Biotechnology and Bioengineering, 70 (2000): 564–573. 74. Muzzarelli, C., Muzzarelli, R.A.A. Reactivity of quinones towards chitosans, Trends in Glycoscience and Glycotechnology, 14 (2002): 223–229. 75. Bordenave, N., Grelier, S., Coma, V. Advances on selective C-6 oxidation of chitosan by TEMPO, Biomacromolecules, 9 (2008): 2377–2382. 76. Hu, Y., Jiang, H., Xu, C., Wang, Y., Zhu, K. Preparation and characterization of poly(ethylene glycol)chitosan with water- and organosolubility, Carbohydrate Polymers, 61 (2005): 472–479. 77. Xu, Z., Wan, X., Zhang, W., Wang, Z., Peng, R., Tao, F., Cai, L., Li, Y., Jiang, Q., Gao, R. Synthesis and biodegradable polycationic methoxy poly(ethylene glycol)polyethylenimine-chitosan and its potential as gene carrier, Carbohydrate Polymers, 78 (2009): 46–53. 78. Yoshiwaza, T., Shin-Ya, Y., Hong, K.J., Kajiuchi, T. pH- and temperature-sensitive release behaviors from polyelectrolyte complex �lms composed of chitosan and PAOMA copolymer, European Journal of Pharmaceutics and Biopharmaceutics, 59 (2005): 307–313. 79. Yoshiwaza, T., Shin-Ya, Y., Hong, K.J., Kajiuchi, T. pH- and temperature-sensitive permeation through polyelectrolyte complex �lms composed of chitosan and polyalkyleneoxide-maleic acid copolymer, Journal of Membrane Science, 241 (2004): 347–354. 80. Strand, S.P., Danielsen, S., Christensen, B.E., Varum, K.M. In¥uence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes, Biomacromolecules, 6 (2005): 3357–3366. 81. Mao, H.-Q., Roy , K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., Wang, Y., August, J.T., Leong, K.W. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection ef�ciency, Journal of Controlled Release, 70 (2001): 399–421. 82. Erce len, S., Zhang, X., Duportail, G., Grand�ls, C., Desbrieres, J., Karaeva, S., Tikhonov, V., Mely, Y., Babak, V. Physicochemical properties of low molecular weight alkylated chitosans: A new class of potential nonviral vectors for gene delivery, Colloids and Surfaces B: Biointerfaces, 51 (2006): 140–148. 83. Ginsberg, G.L., Pepelk o, W.E., Goble, R.L., Hattis, D.B. Comparison of contact site cancer potency across dose routes: Case study with epichlorohydrin, Risk Analysis, 16 (1996): 667–681. 84. Athawale, V.D., Rathi, S.C. Graft polymerization: Starch as a model substrate, Journal of Macromolecular Science—Reviews in Macromolecular Chemistry and Physics, C39 (1999): 445. 85. Beck, R.H.F., Fitton, M.G., Kricheldorf, H.R. Chemical modi�cation of polysaccharides in Handbook of Polymer Synthesis, Part B, Kricheldorf, H.R. (Ed.), Marcel Dekker, New York, Chapter 25, 1992, pp. 1517–1578. 86. Vernon, B., Kim, S.W., Bae, Y.H. Insulin release from islets of Langerhans entrapped in a poly(Nisopropylacrylamide-co-acrylic acid) polymer gel, Journal of Biomaterials Science, Polymer Edition, 10 (1999): 183–198. 87. Ebara, M., Aoyagi, T., Sakai, K., Okano, T. Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-isopropylacrylamide copolymer gels, Macromolecules, 33 (2000): 8312–8316. 88. Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application, Progress in Polymer Science, 17 (1992): 163–249. 89. Bokias, G., Hourdet, D. Synthesis and characterization of positively charged amphiphilic water soluble polymers based on poly(N-isopropylacrylamide), Polymer, 42 (2001): 6329–6337. 90. Kubota, N., T asumoto, N., Sano, T., Matsukawa, Y. Temperature-responsive properties of poly(acrylic acid-co-acrylamide)-graft-oligo(ethylene glycol) hydrogels, Journal of Applied Polymer Science, 80 (2001): 798–805. 91. Lee, C.F., Wen, C.J., Lin, C.L., Chiu, W.Y. Morphology and temperature responsiveness-swelling relationship of poly(N-isopropylamide-chitosan) copolymers and their application to drug release, Journal of Polymer Science Part A: Polymer Chemistry, 42 (2004): 3029–3037. 92. Wang, M., Qiang, J., Fang, Y., Hu, D., Cui, Y., Fu, X. Preparation and properties of chitosan-poly(Nisopropylacrylamide) semi-IPN hydrogels, Journal of Polymer Science A: Polymer Chemistry, 38 (2000): 478–481. 93. Goycoolea, F.M., Heras, A., Aranaz, I., Galed, G., Fernandez-Valle, M.E., Monal, W.A. Effect of chemical crosslinking on the swelling and shrinking properties of thermal and pH-responsive chitosan hydrogels, Macromolecular Bioscience, 3 (2003): 612–619. 94. Kim, S.J., Shin, S.R., Lee, S.M., Kim, I.Y., Kim, S.I. Water and temperature response of semi-IPN hydrogels composed of chitosan and polyacrylonitrile, Journal of Applied Polymer Science, 88 (2003): 2721–2724. 95. Wang, M., F ang, Y., Hu, D. Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels, Reactive and Functional Polymers, 48 (2001): 215–221. 96. Cai, H., Zhang, Z.P ., Sun, P.C., He, B.L., Zhu, X.X. Synthesis and characterization of thermo- and pHsensitive hydrogels based on chitosan-grafted N-isopropylacrylamide via γ-radiation, Radiation Physics and Chemistry, 74 (2005): 26–30. 97. Kim, I.Y., Kim, S.J., Shin, M.S., Lee, Y.M., Shin, D.I., Kim, S.J. pH- and thermal characteristics of graft hydrogels based on chitosan and poly(dimethylsiloxane), Journal of Applied Polymer Science, 85 (2002): 2661–2666. 98. Zhu, A.P., Chan, M.B., Dai, S., Li, L. The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution, Colloid and Surface B: Biointerfaces, 43 (2005): 143–149. 99. Glass, J.E. Polymers in Aqueous Media: Performance through Association. Advances in Chemistry Series, American Chemical Society, Washington, DC, Vol. 223, 1989. 100. Hall, J.E., Hodgson, P., Krivanek, L., Malizia, P.J. In¥uence of rheology modi�ers on the performance characteristics of latex paints, Journal of Coatings Technology, 58 (1986): 65–73. 101. Desbrieres, J. Autoassociative natural polymer derivatives: The alkylchitosans. rheological behaviour and temperature stability, Polymer, 45 (2004): 3285–3295. 102. Hirrien, M., Chevillard, C., Desbrieres, J., Axelos, M.A.V., Rinaudo, M. Thermogelation of methylcelluloses. New evidence for understanding the gelation mechanism, Polymer, 39 (1998): 6251–6259. 103. Hourdet, D., L’Alloret, F., Audebert, R. Reversible thermothickening of aqueous polymer solutions, Polymer, 35 (1994): 2624–2630. 104. Desbrieres, J. Contribution of chitin derivatives to the modi�cation of physicochemical properties of formulations, Polymer International, 52 (2003): 494–499. 105. Desbrieres, J., Rinaudo, M., Klein, J.M., Mahler, B Dérivés du chitosane. Procédé pour sa préparation et composition cosmétiques contenant de tels dérivés, French Patent FR 2721933, 1994; European Patent EP 699433, 1995. 106. Marencic, A.P., W u, M.W., Register, R.A., Chaikin, P.M. Orientational order in sphere-forming block copolymer thin �lms aligned under shear, Macromolecules, 40 (2007): 7299–7305. 107. Gohy, J.F., Lohmeijer, B.G.G., Alexeev, A., Wang, X.S., Manners, I., Winnik, M.A., Schubert, U.S. Cylindrical micelles from the aqueous self-assembly of an amphiphilic poly(ethylene oxide)-bpoly(ferrocenylsilane) (PEO-b-PFS) block copolymer with a metallo-supramolecular linker at the block junction, Chemistry—A European Journal, 10 (2004): 4315–4323. 108. Rodriguez-Hernandez, J., Lecommandoux, S. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers, Journal of American Chemical Society, 127 (2005): 2026–2027. 109. Pochan, D.J., Chen, Z.Y ., Cui, H.G., Hales, K., Qi, K., Wooley, K.L. Toroidal triblock copolymer assemblies, Science, 306 (2004): 94–97. 110. Cameron, N.S., Corbierre, M.K., Eisenberg, A. 1998. E.W.R. Steacie award lecture asymmetric amphiphilic block copolymers solution: A morphological wonderland, Canadian Journal of Chemistry, 77 (1999): 1311–1326. 111. Discher, D.E., Eisenberg, A. Polymer v esicles, Science, 297 (2002): 967–973. 112. Yu, K., Bartels, C., Eiesnberg, A. Vesicles with hollow rods in the walls: A trapped intermediate morphology in the transition of vesicles to inverted hexagonally packed rods in dilute solutions of PS-b-PEO, Macromolecules, 31 (1998): 9399–9402. 113. Photos, P.J., Bacak ova, L., Discher, B., Bates, F.S., Discher, D.E.J. Polymer vesicles in vivo: Correlations with PEG molecular weight, Journal of Controlled Release, 90 (2003): 323–334. 114. Mishima, K. Biodegradable particle formation for drug and gene delivery using supercritical ¥uid and dense gas, Advanced Drug Delivery Reviews, 60 (2008): 411–432. 115. Kim, K., Kwon, S., Park, J.H., Chung, H., Jeong, S.Y., Kwon, I.C. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates, Biomacromolecules, 6 (2005): 1154–1158. 116. Aiping, Z., Tian, C., Lanhua, Y., Hao, W., Ping, L., Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres, Carbohydrate Polymers, 66 (2006): 274–279. 117. Yoo, H.S., Lee, J.E., Chung, H., Kwon, I.C., Jeong, S.Y. Self-assembled nanoparticles containing hydrophobically modi�ed glycol chitosan for gene delivery, Journal of Controlled Release, 103 (2005): 235–243. 118. Zhang, C., Ping, Q., Zhang, H., Shen, J. Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol, Carbohydrate Polymers, 54 (2003): 137–141. 119. Chae, S.Y., Son, S., Lee, M., Jang, M.-K., Nah, J.-W. Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for ef�cient gene carrier, Journal of Controlled Release, 109 (2005): 330–344. 120. Zhu, A., Lu, Y., Pan, Y., Dai, S., Wu, H. Self-assembly of N-maleoylchitosan in aqueous media, Colloids and Surfaces B: Biointerfaces, 76 (2010): 221–225. 121. Wu, Y., Zheng, Y., Yang, W., Wang, C., Hu, J., Fu, S. Synthesis and characterization of a novel amphiphilic chitosan-polylactids graft copolymer, Carbohydrate Polymers, 59 (2005): 165–171. 122. Ishimuro, Y., Ueberreiter K. The surface tension of poly(acrylic acid) in aqueous solution, Colloid and Polymer Science, 258 (1980): 928–931. 123. Babak, V.G. Thermodynamic and kinetic aspects of the stabilization of microscopic liquid �lms by the adsorbed layers of macromolecular surfactants, Langmuir, 3 (1987): 612–620. 124. Babak, V., Lukina, I., Vikhoreva, G., Desbrieres, J., Rinaudo, M. Interfacial properties of dynamic association between chitin derivatives and surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 147 (1999): 139–148. 125. Sui, W., Song, G., Chen, G., Xu, G. Aggregate formation and surface activity property of an amphiphilic derivative of chitosan, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 256 (2005): 29–33. 126. Babak, V.G., Desbrieres, J., Tikhonov, V.E. Dynamic surface tension and dilatational viscoelasticity of adsorption layers of a hydrophobically modi�ed chitosan, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255 (2005): 119–130. 127. Babak, V.G., Desbrieres, J. Dynamic surface tension and dilational viscoelasticity of adsorption layers of alkylated chitosans and surfactant-chitosan complexes, Colloid and Polymer Science, 284 (2006): 745–754. 128. Desbrieres, J., Babak, V .G., Bousquet, C. Dynamic surface tension and viscoelastic properties of adsorption layers of amphiphilic chitosan derivatives systems, in Advances in Chitin Science, Domard, A., Guibal, E., Varum, K.M. (Eds.), Vol. 9, 2007, pp. 232–240. 129. Benjamins, J., Cagna, A., Lucassen-Reynderts, E.H. Viscoelastic properties of triacylglycerol/water interfaces covered by proteins, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 114 (1996): 245–254. 130. Desbrieres, J., Babak, V.G. Interfacial properties of amphiphilic natural polymer systems based on derivatives of chitin, Polymer International, 55 (2006): 1177–1183. 131. Zhu, A.-P., Y uan, L.-H., Chen, T., Wu, H., Zhao, F. Interactions between N-succinyl-chitosan and bovine serum albumin, Carbohydrate Polymers, 69 (2007): 363–370. 132. Wong, D.W.S., Gastineau, F.A., Gregorski, K.S., Tillin, S.J., Pavlath, A.E. Chitosan-lipid �lms: Microstructure and surface energy, Journal of Agricultural and Food Chemistry, 40 (1992): 540–544. 133. Muzzarelli, R.A.A., Human enzymatic activities related to the therapeutic administration of chitin derivatives, Cellular and Molecular Life Science, 53 (1997): 131–140. 134. Bersch, P.C., Nies, B., Liebendörfer, A., Kreuler, J. In vitro evaluation of biocompatibility of different wound dressing materials, Journal of Materials Science, Materials in Medicine, 6 (1995): 201–205. 135. Park, K., Kim, J.-H., Nam, Y.S., Lee, S., Nam, H.Y., Kim, K., Park, J.H., Kim, I.-S., Choi, K., Kim, S.Y., Kwon, I.C. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles, Journal of Controlled Release, 122 (2007): 305–314. 136. Kim, J.-H., Kim, Y.S., Kim, S., Park, J.H., Kim, K., Choi, K., Chung et al. Hydrophobically modi�ed glycol chitosan nanoparticles as carriers for paclitaxel, Journal of Controlled Release, 111 (2006): 228–234. 137. Park, J.H., Kw on, S., Nam, J.O., Park, R.W., Chung, H., Seo, S.B., Kim, I.S., Kwon, I.C., Jeong, S.Y. Self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid for RGD peptide delivery, Journal of Controlled Release, 95 (2004): 579–588. 138. Prabaharan, M., Mano, J.F. Hydroxypropyl chitosan bearing β-cyclodextrin cavities: Synthesis and slow release of its inclusion complex with a model hydrophobic drug, Macromolecular Science and Bioscience, 5 (2005): 965–973. 139. Krauland, A.H., Alonso, M.J. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system, International Journal in Pharmaceutics, 340 (2007): 134–142. 140. Li, F., Liu, W.G., Yao, K.D. Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour, Biomaterials, 23 (2002): 343–347. 141. Liu, W.G., Li, F. Yao, K.D. Oxidized glucose-crosslinked alkylated chitosan membrane for the delivery of Vitamin B2, in Chitosan in Pharmacy and Chemistry, Muzzarelli, R.A.A., Muzzarelli, C. (Eds.), Atec, Grottammare, Italy, 2002, pp. 93–99. 142. Liu, W.G., Sun, S.J., Zhang, X., Yao, K.D. Self-aggregation behavior of alkylated chitosan and its effect on the release of a hydrophobic drug, Journal of Biomaterials Science Polymer Edition, 14 (2003): 851–859. 143. Cai, K., Liu, W ., Li, F., Yao, K., Yang, Z., Li, X., Xie, H. Modulation of osteoblast function using poly(D,L-lactic acid) surfaces modi�ed with alkylation derivative of chitosan, Biomaterials Science Polymer Edition, 13 (2002): 53–66. 144. Li, J., Gong, Y ., Zhao, N., Zhang, X. Preparation of N-butyl chitosan and study of its physical and biological properties, Journal of Applied Polymer Science, 98 (2005): 1016–1024. 145. Taboada, E., Cabrera, G., Cardenas, G. Synthesis and characterization of new arylamine chitosan derivatives, Journal of Applied Polymer Science, 91 (2004): 807–812. 146. Martin, L., Wilson, C.G., Koosha, F., Tetley, L., Gray, A.I., Senel, S., Uchegbu, I.F. The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels, Journal of Controlled Release, 80 (2002): 87–100. 147. McEwan, G.T.A., Jepson, M.A., Hirst, B.H., Simmons, N.L. Polycation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics, Biochima et Biophysica Acta—Biomembranes, 1148 (1993): 51–60. 148. Artursson, P., Lindmark, T., Davis, S.S., Illum, L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2), Pharmaceutical Research, 11 (1994): 1358–1361. 149. Alvarez-Lorenzo, C., Concheiro, A., Dubovik, A.S., Grinberg, N.V., Burova, T.V., Grinberg, V.Y. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties, Journal of Controlled Release, 102 (2005): 629–641. 150. Bhattarai, N., Ramay, H.R., Gunn, J., Matsen, F.A., Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release, Journal of Controlled Release, 103 (2005): 609–624. 151. Zhang, C., Qu, G., Sun, Y., Yang, T., Yao, Z., Shen, W., Shen, Z., Ding, Q., Zhou, H., Ping, Q. Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs, European Journal of Pharmaceutical Sciences, 33 (2008): 415–423. 152. Green, S., Roldo, M., Douroumis, D, Bouropoulos, N., Lamprou, D., Fatouros, D.G. Chitosan derivatives alter release pro�les of model compounds from calcium phosphate implants, Carbohydrate Research, 344 (2009): 901–907. 153. Wang, Y., Tu, S.L., Li, R.S., Yang, X.Y., Liu, L.R., Zhang, Q.Q. Cholesterol succinyl chitosan anchored liposomes: Preparation, characterization, physical stability, and drug release behavior, Nanomedicine: Nanotechnology, Biology and Medicine, 6 (2010): 471–477. 154. Sash iwa, H., Sumi, R., Saimoto, H., Okamoto, Y., Minami, S., Matsuhashi, A., Shigesama, Y. Evaluation of chitin and its derivatives as biomaterials, in Chitin World, Karnicki, Z.S., Wojtasz-Pajak, A., Brzeski, M.M., Bykowski, P.J. (Eds.), Wirtschaftsverlag NW, Bremerhaven, Germany, 1994, pp. 382–386. 155. Sui, W., W ang, Y., Dong, S., Chen, Y. Preparation and properties of an amphiphilic derivative of succinylchitosan, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316 (2008): 171–175. 156. Babak, V.G., Sk otnikova, E.A. Lipid and Surfactant Dispersed Systems. Fundamentals, Design, Formulation, Production, AGPI, Moscow, Russia, Vol. 73, 1999. 157. Babak, V.G., Merk ovich, E.A., Galbraich, L.S., Shtykova, E.V., Rinaudo, M. Kinetics of diffusionally induced gelation and ordered nanostructure formation in surfactant-polyelectrolyte complexes formed at water/water emulsion type interfaces, Mendeleev Communications, 3 (2000): 94. 158. Babak, V.G., Merk ovich, E.A., Desbrieres, J., Rinaudo, M. Formation of an ordered nanostructure in surfactant-polyelectrolyte complexes formed by interfacial diffusion, Polymer Bulletin, 45 (2000): 77–81. 159. Babak, V.G., Rinaudo, M. Physico-chemical properties of chitin-surfactant complexes, in Chitosan in Pharmacy and Chemistry, Muzzarelli, R.A.A., Muzzarelli, C. (Eds.), Atec, Grottammare, Italy, 2002, pp. 277–284. 160. Lai, W.-F., Lin, M. C.-M. Nucleic acid delivery with chitosan and its derivatives, Journal of Controlled Release, 134 (2009): 158–168. 161. Jia, Z., Shen, D., Xu, W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan, Carbohydrate Research, 333 (2001): 1–6. 162. Sieval, A.B., Thanou, M., Kotze, A.F., Verhoef, J.C., Brussee, J., Junginger, H.E. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride, Carbohydrate Polymers, 36 (1998): 157–165. 163. Thanou, M., Florea, B.I., Geldof, M., Junginger, H.E., Borchard, G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines, Biomaterials, 23 (2002), 153–159. 164. Mel’nikov, S.M., Sergeyev, V.G., Yoshikawa, K. Discrete coil—Globule transition of large DNA induced by cationic surfactant, Journal of American Chemical Society, 117 (1995): 2401–2408. 165. Liu, W.G., Yao, K.D., Liu, Q.G. Formation of a DNA/N-dodecylated chitosan complex and salt-induced gene delivery, Journal of Applied Polymer Science, 82 (2001): 3391–3395. 166. Liu, W.G., Zhang, X., Sun, S.J., Sun, G.J., Yao, K.D., Liang, D.C., Guo, G., Zhang, J.Y. N-alkylated chitosan as a potential nonviral vector for gene transfection, Bioconjugate Chemistry, 14 (2003): 782–789. 167. Tikhonov, V.E., Stepnova, E.A., Babak, V.G., Yamskov, I.A., Palma-Guerrero, J., Jansson, H.B., LopezLlorca, L.V. et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives, Carbohydrate Polymers, 64 (2006): 66–72. 168. Hirano, S., Ohe, Y., Ono, H. Selective N-acylation of chitosan, Carbohydrate Research, 47 (1976): 315–320. 169. Kim, Y.H., Gim, S.H., Park, C.R., Lee, K.Y., Kim, T.W., Kwon, I.C., Chung, H., Jeong, S.Y. Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modi�ed chitosan and their application as a DNA delivery carrier, Bioconjugate Chemistry, 12 (2001): 932–938. 170. Yun, Y.H., Jiang, H., Chan, R., Chen, W. Sustained release of PEG-g-chitosan complexed DNA from poly(lactide-co-glycolide), Journal of Biomaterials Science Polymer Edition, 16 (2005): 1359–1378. 171. Zhu, D.W., Bo, J.G., Zhang, H.L., Liu, W.G., Leng, X.G., Song, C.X., Yin et al. Synthesis of N-methylene phosphonic chitosan (NMPCS) and its potential as gene carrier, Chinese Chemical Letters 18 (2007): 1407–1410. 172. Zhu, D., Yao, K., Bo, J., Zhang, H., Liu, L., Dong, X., Song, L., Leng, X. Hydrophilic/lipophilic N-methylene phosphonic chitosan as a promising non-viral vector for gene delivery, Journal of Materials Science, Materials in Medicine, 21 (2010): 223–229. 173. Tuzlakoglu, K., Alves, C.M., Mano, J.F., Reis, R.L. Production and characterization of chitosan �bers and 3-D �ber mesh scaffolds for tissue engineering applications, Macromolecular Bioscience, 4 (2004): 811–819. 174. Ding, Z., Chen, J., Gao, S., Chang, J., Zhang, J., Kang, E.T. Immobilization of chitosan onto poly-l-lactic acid �lm surface by plasma graft polymerization to control the morphology of �broblast and liver cells, Biomaterials, 25 (2004): 1059–1067. 175. Prabaharan, M., Rodriguez-Perez, M.A., de Saja, J.A., Mano, J.F. Preparation and characterization of poly(l-lactic acid)-chitosan hybrid scaffolds with drug release capability, Journal of Biomedical Biomaterials Research, Part B: Applied Biomaterials, 81B (2007): 427–434. 176. Amornchai, W., Hoven, V.P., Tangpasuthadol, V. Surface modi�cation of chitosan �lms-grafting ethylene glycol oligomer and its effect on protein adsorption, Macromolecular Symposia, 216 (2004): 99–107. 177. Wang, J., Chen, L., Zhao, Y., Guo, G., Zhang, R. Cell adhesion and accelerated detachment on the surface of temperature-sensitive chitosan and poly(N-isopropylacrylamide) hydrogels, Journal of Materials, Materials in Medicine, 20 (2009): 583–590. 178. Li, Y., Liu, L., Fang, Y. Plasma-induced grafting of hydroxyethyl methacrylate (HEMA) onto chitosan membranes by a swelling method, Polymer International, 52 (2003): 285–290. 10 Chapter 10. Biomaterials of Natural Origin in Regenerative Medicine Ahmed, T.A., Dare, E.V., and Hincke, M. 2008. Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14:199–215. Akane, T. and Toshikati, N. 2005. Acceleration of wound healing by gelatin �lm dressings with epidermal growth factor. J Vet Med Sci 67:909–913. Albarghouthi, M., Fara, D.A., Saleem, M. et al. 2000. Immobilization of antibodies on alginate-chitosan beads. Int J Pharm 206:23–34. Albertsson, A.C. and Karlsson, S. 1996. Macromolecular architecture-nature as a model for degradable polymers. J Macromol Sci Pure Appl Chem 33:1565–1570. Alcaide, M., Serrano, M.C., Pagani, R. et al. 2008. L929 �broblast and Saos-2 osteoblast response to hydroxyapatite-β-TCP/agarose biomaterial. J Biomed Mater Res A 89:539–549. Alini, M., Li, W., Markovic, P. et al. 2003. The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 28:446–454. Alves, C.M., Yang, Y., Carnes, D.L. et al. 2007. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials 28: 307–315. Aoki, H., Taguchi, T., Saito, H. et al. 2004. Rheological evaluation of gelatin gels prepared with a citric acid derivative as a novel cross-linker. Mater Sci Eng C 24:787–790. Appelqvist, I.A.M. and Debet, M.R.M. 1997. Starch-biopolymer interactions—A review. Food Rev Int 13:163–224. Artanareeswaran, G., Thanikaivelan, P., Srinivasn, K. et al. 2004. Synthesis, characterization and thermal studies on cellulose acetate membranes with additives. Eur Polym J 40:2153–2159. Atalla, R.H. and VanderHart, D.L. 1984. Native cellulose: A composite of two distinct crystalline forms. Science 223:283–285. Avery, N.C. and Bailey, A.J. 2008. Restraining cross-links responsible for the mechanical properties of collagen �bers: Natural and arti�cial. In Collagen: Structure and Mechanics, ed. P. Fratzl, pp. 81–110. Boston, MA: Springer. Azevedo, H.S. and Reis, R.L. 2009. Encapsulation of α-amylase into starch-based biomaterials: An enzymatic approach to tailor their degradation rate. Acta Biomater 5:3021–3030. Bach, A.D., Bannasch, H., Galla, T.J. et al. 2001. Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng 7:45–53. Bakos, D., Soldan, M., and Hernández-Fuentes, I. 1997. Hydroxyapatite-collagen-hyaluronic acid composite. Biomaterials 20:191–195. Balgude, A.P., Yu, X., Szymanski, A. et al. 2001. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084. Barbosa, M.A., Granja, P.L., Barrias, C.C. et al. 2005. Polysaccharides as scaffolds for bone regeneration. ITBM-RBM 26:212–217. Barker, H.T., Fuller, G.M., Klinger, M.M. et al. 2001. Modi�cation of �brinogen with poly (ethylene glycol) and its effects on �brin clot characteristics. J Biomed Mater Res 56:529–535. Baron, M., Norman, D.G., and Campbell, I.D. 1991. Protein modules. Trends Biochem Sci 16:13–17. Benedetti, L., Cortivo, R. Berti, T. et al. 1993. Biocompatibility and biodegradation of different hyaluronan derivatives (HYAFF) implanted in rats. Biomaterials 14:1154–1160. Benya, P. D. and Shaffer, J. D. 1982. Dedifferentiated chondrocytes re-express the differentiated phenotype when cultured in agarose cells. Cell 30:215–224. Bigi, A., Borghi, M., Cojazzi, G. et al., 2000. Structural and mechanical properties of crosslinked drawn gelatin �lms. J Therm Anal Calorim 61:451–459. Boesel, L.F., Mano, J.F., and Reis, R.L. 2004. Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. J Mater Sci Mater Med 15:73–83. Brown, J.C. and Timple, R. 1995. The collagen superfamily. Int Arc Allergy Immunol 107:484–490. Buckley, C.T., Thorpe, S.D., O’Brien, F.J. et al. 2009. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J Mech Behav Biomed 2:512–521. Buma, P., Pieper, J.S., van Tienen, T. et al. 2003. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects—A study in rabbits. Biomaterials 24:3255–3263. Calonder, C., Matthew, H.W., and Van Tassel, P.R. 2005. Adsorbed layers of oriented �bronectin: A strategy to control cell-surface interactions. J Biomed Mater Res 75A:316–323. Carreira, A.S., Goncalves, F.A.M.M., Mendonça, P.V. et al. 2010. Temperature and pH responsive polymers based on chitosan: Applications and new graft copolymerization strategies based on living radical polymerization. Carbohyd Polym 80:618–630. Chari, P.S. 2003. Susruta and our heritage. Indian J Plast Surg 36:4–13. Chen, G., Ito, Y., Imanishi, Y. et al. 1997. Photoimmobilization of sulfated hyaluronic acid for antithrombogenicity. Bioconjug Chem 8:730–734. Chen, W., Shi, C., Yi, S. et al. 2010. Bladder regeneration by collagen scaffolds with collagen binding human basic �broblast growth factor. J Urol 183:2432–2439. Chiono, V., Pulieri, E., Vozzi, G. et al. 2008. Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J Mater Sci Mater Med 19:889–898. Chirita, M. 2008. Mechanical properties of collagen biomimetic �lms formed in the presence of calcium, silica and chitosan. J Bionic Eng 5:149–158. Choi, Y.S., Hong, S.R., Lee, Y.M. et al. 1999. Studies on gelatin-containing arti�cial skin: II Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res 48:631–639. Choi, Y.S., Lee, S.B., Hong, S.R. et al. 2001. Studies on gelatin-based sponges. Part III: A comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. J Mater Sci Mater Med 12:67–73. Chvapil, M. 1979. Industrial uses of collagen. In Fibrous Proteins: Scienti©c, Industrial and Medical Aspects, eds. D.A.D. Parry, and L.K. Creamer, pp. 247–629. London, U.K.: Academic Press. Ciardelli, G., Gentile, P., Chiono, V. et al. 2009. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J Biomed Mater Res A 92A:137–151. Coburn, J.C. and Pandit, A. 2007. Development of naturally-derived biomaterials and optimization of their biomechanical properties. In Topics in Tissue Engineering, eds. N. Ashammakhi, R. Reis, and E. Chiellini, Vol. 3, pp. 1–32 (Ebook). Curotto, E. and Aros, F. 1993. Quantitative determination of chitosan and the percentage of free amino groups. Anal Biochem 211:240–241. Dal Pozzo, A., Vanini, L., Fagnoni, M., Guerrini, A., De Benedittis, M., and Muzzarelli, R. A. A. 2000. Preparation and characterization of poly(ethylene glycol) crosslinked reacetylated chitosans. Carbohydrate Polymers, 42: 201–206. De La Riva, B., Sànchez, E., Hernández, A. et al., 2010. Local controlled release of VEGF and PDGF from a combined brushite–chitosan system enhances bone regeneration. J Control Release 143:45–52. Degenshein, G.A., Hurwitz, A., and Ribacoff, S. 1963. Experience with regenerated oxidized cellulose. NY State J Med 63:2639–2643. Dias, G.J., Peplow, P.V., and Teixeira, F. 2003. Osseous regeneration in the presence of oxidized cellulose and collagen. J Mater Sci Mater Med 14:739–745. Dillon, G.P., Yu, X., Sridharan, A. et al. 1998. The in¥uence of physical structure and charge polarity on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym 9:1049–1069. Dittrich, R., Despang, F., Bernhardt, A. et al. 2006. Mineralized scaffolds for hard tissue engineering by ionotropic gelation of alginate. Adv Sci Technol 49:159–164. Djabourov, M., Leblond, J., and Papon, P. 1988. Gelation of aqueous gelatin solutions. II. Rheology of the sol–gel transition. J Phys France 49:333–343. Drury, J.L. and Mooney, D.J. 2003. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24:4337–4351. Duarte, A.R.C., Mano, J.F., and Reis, R.L. 2009. Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. J Supercrit Fluids 49:279–285. Elisseeff, J., Puleo, C., Yang, F. et al. 2005. Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res 8:150–161. Elsie, S.P., Nicholas, D.E., and Molly, M.S. 2009. Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470. Elvira, C., Mano, J.F., San Roman, J. et al. 2002. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23:1955–1966. Entcheva, E., Bien, H., Yin, L. et al. 2004. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762. Entcheva, E.G. and Yotova, L.K. 1994. Analytical application of membranes with covalently bound glucoseoxidase. Anal Chim Acta 299:171–177. Ertesvag, H. and Valla, S. 1998. Biosynthesis and applications of alginates. Polym Degrad Stabil 59:85–91. Ertesvag, H., Valla, S., and Skjåk-Bræk, G. 1996. Genetics and biosynthesis of alginates. Carbohyd Eur 14:14–18. Espigares, I., Elvira, C., and Reis, R.L. 2002. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic �llers. Biomaterials 23:1883–1895. Exposito, J.Y., Cluzel, C., Garrone, R. et al. 2002. Evolution of collagens. Anat Rec 268:302–316. Eyrich, D., Brandl, F., Appel, B. et al. 2007. Long-term stable �brin gels for cartilage engineering. Biomaterials 28:55–65. Fa-Ming, C., Yi-Min, Z., Rong, Z. et al. 2007. Periodontal regeneration using novel glycidyl methacrylated dextran (Dex-GMA)/gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. J Control Release 121:81–90. Freier, T., Koh, H.S., Kazazian, K. et al. 2005a. Controlling cell adhesion and degradation of chitosan �lms by N-acetylation. Biomaterials 26:5872–5878. Freier, T., Montenegro, R., Koh, H.S. et al. 2005b. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26:4624–4632. Freile-Pelegrin, Y., Madera-Santana, T., Robledo, D. et al. 2007. Degradation of agar �lms in a humid tropical climate: Thermal, mechanical, morphological and structural changes. Polym Degrad Stabil 92:244–252. Friess, W. 1998. Collagen: Biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136. Gatj, I., Popa, M., and Rinaudo, M. 2005. Role of the pH on hyaluronan behavior in aqueous solution. Biomacromolecules 6:61–67. Gelinsky, M., Eckert, M., and Despang, F. 2007. Biphasic but monolithic scaffolds for the therapy of osteochondral defects. Int J Mater Res 8:749–755. Gentile, P., Chiono, V., Ciardelli, G. et al. 2010. Composite �lms of gelatin and hydroxyapatite/bioactive glass for tissue-engineering applications. J Biomater Sci Polym Ed 21:1207–1226. Glowacki, J. and Mizuno, S. 2008. Collagen scaffolds for tissue engineering. Biopolymers 89:338–344. Gomes, M.E., Bossano, C.M., Johnston, C.M. et al. 2006. In vitro localization of bone growth factors in constructs of biodegradable scaffolds seeded with marrow stromal cells and cultured in a ¥ow perfusion bioreactor. Tissue Eng 12:177–188. Gomes, M.E., Ribeiro, A.S., Malafaya, P.B. et al. 2001. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: Morphology, mechanical and degradation behaviour. Biomaterials 22:883–889. Gomez, G.M.C., Turnay, J., and Monter, P. 2002. Structural and physical properties of gelatine extracted from different marine species: A comparative study. Food Hydrocolloid 16:25–34. Gotterbarm, T., Richter, W., Jung, M. et al. 2006. An in vivo study of a growth-factor enhanced, cell free, twolayered collagen–tricalcium phosphate in deep osteochondral defects. Biomaterials 27:3387–3395. Grabarek, Z. and Gergely, J. 1990. Zero-length crosslinking procedure with the use of active esters. Anal Biochem 18:131–135. Guo, T., Zhao, J., Chang, J. et al. 2006. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-β1 for chondrocytes proliferation. Biomaterials 27:1095–1103. Hahn, S.K., Park, J.K., Tomimatsu, T. et al. 2007. Synthesis and degradation test of hyaluronic acid hydrogels. Int J Biol Macromol 40:374–380. Han, W.W. and Misra, R.D.K. 2009. Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197. Han, B., Schwab, I., Madsen, T. et al. 2002. Fibrin-based bioengineered ocular surface with human corneal epithelial stem cells. Cornea 21:505–510. Hao, T., Wen, N., Wang, H.B. et al. 2010. The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthr Cartil 18:257–265. Herbert, C.B., Bittner, G.D., and Hubbell, J.A. 1996. Effects of �brinolysis on neurite growth from dorsal root ganglia cultured in two- and three-dimensional �brin gels. J Comp Neurol 365:380–391. Hieta, K., Kuga, S., and Usuda, M. 1984. Electron staining of reducing ends evidences a parallel-chain structure in valonia cellulose. Biopolymers 23:1807–1810. Hirakura, T., Yasugi, K., Nemoto, T. et al. 2010. Hybrid hyaluranon hydrogel as a protein nano carrier: New system for sustained delivery if protein with a chaperone-like function. J Control Release 142:483–489. Hirota, Y., Tanioka, S., Tanigawa, T. et al. 1996. Clinical applications of chitin and chitosan to human decubitus. In Advances in Chitin Science, eds. A. Domard, C. Jeuniaux, R. Muzzarelli et al., pp. 407–413. Lyon, France: Jacques Andre Ed. Hofmann, I., Muller, L., Greil, P. et al. 2006. Calcium phosphate nucleation on cellulose fabrics. Surf Coating Tech 201:2392–2398. Huang, Z.H., Dong, Y.S., Chu, C.L. et al. 2008. Electrochemistry assisted reacting deposition of hydroxyapatite in porous chitosan scaffolds. Mater Lett 62:3376–3378. Hynes, R. O. 1990. Fibronectins. New York: Springer-Verlag. Idris, A. and Yet, L.K. 2006. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J Membr Sci 280:920–927. Izydorczyk, M., Cui, S.W., and Wang, Q. 2005. Food Carbohydrates: Chemistry, Physical Properties, and Applications. Boca Raton, FL: Taylor & Francis Group. Javerliat, I., Goëau-Brissonnière, O., Sivadon-Tardy, V. et al., 2007. Prevention of Staphylococcus aureus graft infection by a new gelatin-sealed vascular graft prebonded with antibiotics. J Vasc Surg 46:1026–1031. Jiankang, H., Dichen, L., Yiaxiong, L. et al., 2009. Preparation of chitosan–gelatin hybrid scaffolds with wellorganized microstructures for hepatic tissue engineering. Acta Biomater 5:453–461. Johnson, F.A., Craig, D.Q.M., and Mercer, A.D. 1997. Characterization of the block structure and molecular weight of sodium alginates. J Pharm Pharmacol 49:639–643. Khor, E. 1997. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105. Khor, E. and Lim, L.Y. 2003. Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349. Kifune, K. 1992. Clinical application of chitin arti�cial skin. In Advances in Chitin and Chitosan, eds. C.J. Brine, P.A. Sandford, and J.P. Zikakis, pp. 9–15. London, U.K.: Elsevier. Kim, T.H., Jiang, H.L. Jere, D. et al. 2007. Chemical modi�cation of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32:726–753. Kim, I.Y., Seo, S.J., Moon, H.S. et al. 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21. Klemm, D., Heublein, B., Fink, H.P. et al. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393. Knaul, J. Z., Hudson, S.M., and Creber, K.A.M. 1999. Crosslinking of chitosan �bers with dialdehydes: Proposal of a new reaction mechanism. J Polym Sci B Polym Phys 37: 1079–1094. Kobayashi, S., and Uyama, H. 2003. Biomacromolecules and bio-related macromolecules. Macromol Chem Phys 204:235–256. Kodama, K., Doi, O., Higashiyama, M. et al. 1997. Pneumostatic effect of gelatin-resorcinol formaldehydeglutaraldehyde glue on thermal injury of the lung: An experimental study on rats. Eur J Cardiothorac Surg 11:333–336. Kong, H. and Mooney, D.J. 2004. Polysaccharide-based hydrogels in tissue engineering. In Polysaccharides, 2nd edn, ed. S. Dumitriu, Chapter 36, pp. 817–837. New York: Marcel & Dekker. Kuo, C.K. and Ma, P.X. 2001. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521. Kurita, K. 2001. Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971. Lakshmi, S.N. and Cato, T.L. 2007. Biodegradable polymers as biomaterials. Progr Polym Sci 32:762–798. Lee, S.B., Kim, Y.H., Chong, M.S. et al. 2005. Study of gelatin-containing arti�cial skin V: Fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 26:1961–1968. Lee, E.J., Shin, D.S., Kim, H.E. et al. 2009. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials 30:743–750. Lee, C.H., Singla, A., and Lee, Y. 2001. Biomedical applications of collagen. Int J Pharm 221:1–22. Lezica, R.P. and Quesada-Allue, L. 1990. Chitin. In Methods in Plant Biochemistry. Carbohydrates, ed. P.M. Dey, pp. 443–481. London, U.K.: Academic Press. Li, Q., Dunn, E.T., Grandmaison, E.W. et al. 1992. Applications and properties of chitosan. J Bioact Compat Polym 7:370–397. Liang, S.M., Zhang, L.N., and Xu, J. 2007. Morphology and permeability of cellulose/chitin blend membranes. J Membr Sci 287:19–28. Lien, S.-M., Chien, C.-H., and Huang, T.-J. 2009. A novel osteochondral scaffold of ceramic–gelatin assembly for articular cartilage repair. Mater Sci Eng C 29:315–321. Liu, C.Z. 2008. Biomimetic synthesis of collagen/nano-hydroxyapatite scaffold for tissue engineering. J Bionic Eng 5:1–8. Liu, Y., Lu, Y., Cui, G. et al. 2009a. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/�brin scaffold in a rabbit model. Biomaterials 30:6276–6285. Liu, X., Smith, L.A., Hu, J. et al. 2009b. Biomimetic nano�brous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30:2252–2258. Lin, Y.C., Tan, F.J., Marra, K.G. et al. 2009. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomater 5:2591–2600. Liu, S.H., Yang, R.S., al-Shaikh, R. et al. 1995. Collagen in tendon, ligament and bone healing. Clin Orthop Res 318:265–278. Lu, J.T., Lee, C.J., Bent, S.F. et al. 2007. Thin collagen �lm scaffolds for retinal epithelial cell culture. Biomaterials 28:1486–1494. Luo, Y. and Shoichet, M.S. 2004. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253. Luo, L.H., Zhang, Y.F., Wang, X.M. et al. 2010. Preparation, characterization, and in vitro and in vivo evaluation of cellulose/soy protein isolate composite sponges. J Biomater Appl 24:503–526. Luo, Y., Ziebell, M.R., and Prestwich, G.D. 2000. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules 1:208–218. Madhumathi, K., Nair, S.V., and Jayakumar, R. et al. 2009. Preparation and characterization of novel-chitin– hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44:1–5. Malafaya, P.B., Elvira, C., Gallardo, A. et al. 2001. Porous starch-based drug delivery systems processed by a microwave route. J Biomater Sci Polym Ed 12:1227–1241. Malafaya, P.B., Silva, G.A., and Reis, R.L. 2007. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233. Malafaya, P., Stappers, F., and Reis, R.L. 2006. Starch-based microspheres produced by emulsion crosslinking with a potential media dependent responsive behaviour to be used as drug delivery carriers. J Mater Sci Mater Med 17:371–377. Maluf, N.S. 1954. History of blood transfusion. J Hist Med Allied Sci 9:59–107. Mandal, B.B., Mann, J.K., and Kundu, S.C. 2009. Silk �broin/gelatin multilayered �lms as a model system for controlled drug release. Eur J Pharm Sci 37:160–171. Mano, J.F., Silvia, G.A., Reis, R.L. et al. 2007. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. J R Soc Interface 4:999–1030. Mao, J.S. Zhao, L.G., Yin Y.J. et al. 2003. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials 24:1067–1074. Marques, A.P., Reis, R.L., and Hunt, J.A. 2002. The biocompatibility of novel starch-based polymers and composites: In vitro studies. Biomaterials 23:1471–1478. Martins, A., Chung, S., and Pedro, A.J. et al. 2009. Hierarchical starch-based �brous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 3:37–42. Martson, M., Viljanto, J., and Hurme, T. et al. 1998. Biocompatibility of cellulose sponge with bone. Eur Surg Res 30:426–432. Mathew, P., Binulal, N.S., Nair, S.V. et al. 2010. Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361. Mauck, R.L., Seyhan, S.L., Ateshian, G.A. et al. 2002. In¥uence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30(8):1046–1056. del Mel, A., Bolvin, C., Edirisinghe, M. et al. 2008. Development of cardiovascular bypass grafts: Endothelialization and applications of nanotechnology. Expert Rev Cardiovasc Ther 6:1259–1277. Michon, C., Cuvelier, G., Relkin, P. et al. 1997. In¥uence of thermal history on the stability of gelatin gels. Int J Biol Macromol 20:259–264. Miyamoto, T., Takahashi, S., Ito, H. et al. 1989. Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133. Morrison, W.R. and Karkalas, J. 1990. Carbohydrates. London, U.K.: Academic Press. Mosesson, M.W., Siebenlist, K.R., and Meh, D.A. 2001. The structure and biological features of �brinogen and �brin. Ann N Y Acad Sci 936:11–30. Mouw, J.K., Case, N.D., Guldberg, R.E. et al. 2005. Variations in matrix composition and GAG �ne structure among scaffolds for cartilage tissue engineering. Osteoarthr Cartil 13:828–836. Muller, F.A., Muller, L., Hofmann, I. et al. 2006. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963. Murphy, C.M., Haugh, M.G., and O’Brien, F.J. 2010. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. Neidert, M. R., Lee, E. S., Oegema, T.R. et al. 2002. Enhanced �brin remodeling in vitro with TGF-β1, insulin and plasmin for improved tissue-equivalents. Biomaterials 23:3717–3731. Nisbet, D. R., Crompton, K.E., Horne, M.K. et al. 2008. Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 87B:251–263. Nishiyama, P., Langan H., and Chanzy, H. 2002. Crystal structure and hydrogen-bonding system in cellulose I β from synchrotron X-ray and neutron �ber diffraction. J Am Chem Soc 124:9074–9082. Nishiyama, Y., Sugiyama, J., Chanzy, H. et al. 2003. Crystal structure and hydrogen bonding system in cellulose I α from synchrotron x-ray and neutron �ber diffraction. J Am Chem Soc 125:14300–14306. Oakenfull, D. and Scott A. 2003. Gelatin gels in deuterium oxide. Food Hydrocolloid 17:207–210. Okuyama, K., Wu, G., Jiravanichanun, N. et al. 2006. Helical twists of collagen model peptides. Biopolymers 84:421–432. Olde, L.H.H.D., Dijkstra, P.J., van Luyn, M.J.A. et al. 1996. In vitro degradation of dermal sheep collagen crosslinked using a water-soluble carbodiimide. Biomaterials 17:679–684. Olsen, D., Yang, C., Bodo, M. et al. 2003. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55:1547–1567. Onsoyen, E. 1992. Alginates. In Thickening and Gelling Agents for Food, ed. A. Imeson, pp. 1–24. London, U.K.: Blackie Academic & Professional. Osathanon, T., Linnes, M.L. Rajachar, R.M. et al. 2008. Microporous nano�brous �brin-based scaffolds for bone tissue engineering. Biomaterials 29:4091–4099. Pacaccio, D. 2005. Demineralized bone matrix: Basic science and clinical applications. Clin Podiatr Med Surg 22:599–606. Painter, T.J. 1983. Algal polysaccharides. In The Polysaccharides, ed. G.O. Aspinall, pp. 195–285. New York: Academic Press. Pankov, R. and Yamada, K.M. 2002. Fibronectin at a glance. J Cell Sci 115:861–863. Pavlov, M.P., Mano, J.F., and Reis, R.L. 2004. Fibers and 3D mesh scaffolds from biodegradable starch-based blends: Production and characterization. Macromol Biosci 4:776–784. Pek, Y.S., Shujun, G., Arshad, M.S.M. et al. 2008. Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 29:4300–4305. Peppas, N.A. 1986. Hydrogel in Medicine and Pharmacy. Boca Raton, FL: CRC Press. Pereira, C.S., Cunha, A.M., Reis, R.L. et al. 1998. New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J Mater Sci Mater Med 9:825–833. Perng, C.K., Wang, Y.J., Tsi, C.H. et al. 2009. In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. J Surg Res (doi.org/10.1016/j.jss. 2009. 09. 052). Peter, M., Binulal, N.S., Nair, S.V. et al. 2010a. Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361. Peter, M., Ganesh, N. Selvamurugan, N. et al. 2010b. Preparation and characterization of chitosan–gelatin/ nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohyd Polym 80:687–694. Petite, H., Duval, J.L., Frei, V. et al. 1995. Cytocompatibilty of calf pericardium treated by glutaraldehyde and by the acyl azide methods in an organotypic culture model. Biomaterials 16:1003–1008. Petite, H., Rault, I., Huc, A. et al. 1990. Use of the acyl azide method for crosslinking collagen-rich tissues such as pericardium. J Biomed Mater Res 24:179–187. Pieper, J.S., Hafmans, T., Veerkamp, J.H. et al. 2000. Development of tailor-made collagen–glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 21:581–593. Piez, K.A. 1985. Collagen. In Encyclopedia of Polymer Science and Engineering, ed. J.I. Kroschwitz, pp. 699–627. New York: Wiley. Poustis, J., Baquey, C., and Chauveaux, D. 1994. Mechanical properties of cellulose in orthopaedic devices and related environments. Clin Mater 16:119–124. Pouyani, T., Harbison, G.S., and Prestwich, G.D. 1994. Novel hydrogels of hyaluronic acid: Synthesis, surface morphology, and solid-state NMR. J Am Chem Soc 116:7515–7522. Prabaharan, M. 2008. Chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl 23:5–36. Prabaharan, M. and Jayakumar R. 2009. Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Biol Macromol 44:320–325. Puppi, D., Chiellini, F., Piras, A.M. et al. 2010. Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440. Quinn, T.M., Schmid, P., Hunziker, E.B. et al. 2002. Proteoglycan deposition around chondrocytes in agarose culture: Construction of a physical and biological interface for mechanotransduction in cartilage. Biorheology 39:27–37. Ramshaw, J.A.M., Werkmeister, J.A., and Glattauer, V. 1995. Collagen based biomaterials. Biotechnol Genet Eng Rev 13:335–382. Rao, K.P. 1995. Recent developments of collagen-based materials for medical applications and drug delivery. J Biomater Sci 7:623–645. Rassis, D.K., Saguy, I.S., and Nussinovitch, A. 2002. Collapse, shrinkage and structural changes in dried alginate gels containing �lles. Food Hydrocolloid 16:139–151. Rehakova, M., Bakos, D., Vizarova, K. et al. 1996. Properties of collagen and hyaluronic acid composite materials and their modi�cation by chemical cross linking. J Biomed Mater Res 30:369–372. Reis, R.L. and Cunha, A.M. 1995. Characterization of two biodegradable polymers of potential application within the biomaterials �eld. J Mater Sci Mater Med 6:786–792. Rhee, S.H. and Tanaka, J. 2000. Hydroxyapatite formation on cellulose cloth induced by citric acid. J Mater Sci Mater Med 11:449–452. Rinaudo, M. 2006. Chitin and chitosan: Properties and applications. Prog Polym Sci 31:603–632. Rinaudo, M. 2008. Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430. Rindlava, A., Hulleman, S.D.H., and Gatenholma, P. 1997. Formation of starch �lms with varying crystallinity. Carbohyd Polym 34:25–30. Rodriguez-Cabello, J.C., Reguera, J., and Girotti, A. 2005. Developing functionality in elastin-like polymers by increasing their molecular complexity: The power of the genetic engineering approach. Prog Polym Sci 30:1119–1145. Roman, J., Cabañas, M.V., and Vallet-Regi, M. 2008. An optimized β-tricalcium phosphate and agarose scaffold fabrication technique. J Biomed Mater Res Part A 84A:99–107. Rowley, J.A., Madlambayan, G., and Mooney, D.J. 1999. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53. Saito, H., Murabayashi, S., Mitamura, Y. et al. 2007. Characterization of alkali-treated collagen gels prepared by different crosslinkers. J Mater Sci Mater Med 19:1297–1305. Salgado, A.J., Coutinho, O.P., and Reis, R.L. 2004. Novel starch-based scaffolds for bone tissue engineering: Cytotoxicity, cell culture, and protein expression. Tissue Eng 10:465–474. Samuel, C.S., Coghlan, J.P., and Bateman, J.F. 1998. Effects of relaxin, pregnancy and parturition on collagen metabolism in the rat public symphysis. J Endocrinol 159:117–125. Santoni-Rugiu, P. and Sykes, P.J. 2007. A History of Plastic Surgery. Chapter 7. Heidelberg: Springer. Santosa, M.I., Sabine, F., and James, K. 2007. Response of micro- and macrovascular endothelial cells to starch-based �ber meshes for bone tissue engineering. Biomaterials 28:240–248. Sarkar, N. and Walker, L.C. 1995. Hydration–dehydration properties of methylcellulose and hydroxyl propyl methyl cellulose. Carbohyd Polym 7:177–185. Sashiwa, H. and Aiba, S. 2004. Chemically modi�ed chitin and chitosan as biomaterials. Prog Polym Sci 29:887–808. Sawyer, A.A., Song, S.J., Susanto, E. et al. 2009. The stimulation of healing within a rat calvarial defect by mPCL–TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials 30:2479–2488. Schrieber, R. and Gareis, H. 2007. Gelatin Handbook. Weinhem, Germany: Wiley-VCH GmbH & Co. Seal, B.L., Otero, T.C., and Panitch, A. 2001.Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R 34:147–230. Segura, T., Anderson, B.C., Chung, P.H. et al. 2005. Crosslinked hyaluronic acid hydrogels: A strategy to functionalize and pattern. Biomaterials 26:359–371. Sevillano, G., Rodriguez-Puyol, M., Martos, R. et al. 1990. Cellulose acetate membrane improves some aspects of red blood cell function in haemodialysis patients. Nephrol Dial Transplant 5:497–499. Shalumon, K.T., Binulal, N.S., Selvamurugan, N. et al. 2009. Electrospinning of carboxy methylchitin/poly (vinyl alcohol) nano �brous scaffolds for tissue engineering applications. Carbohyd Polym 77:863–869. Shigemasa, Y. and Minami, S. 1995. Applications of chitin and chitosan for biomaterials. Biotech Gen Eng Rev 13:383–415. Shinji, S., Hashimoto, I., and Kawakami, K. 2007. Agarose-gelatin conjugate for adherent cell-enclosing capsules. Biotechnol Lett 29:731–735. Shoulders, M.D. and Raines, R.T. 2009. Collagen structure and stability. Annu Rev Biochem 78:929–958. Silva, G.A., Pedro, A., Costa, F.J. et al. 2005. Soluble starch and composite starch Bioactive Glass 45S5 particles: Synthesis, bioactivity, and interaction with rat bone marrow cells. Mater Sci Eng C 25:237–246. Skoog, T. 1967. The use of periosteum and Surgicel ® for bone restoration in congenital clefts of the maxilla. Scand J Plast Reconstr Surg 1:113–130. Smidsrod, O. and Draget, K.I. 1996. Chemistry and physical properties of alginates. Carbohyd Eur 14:6–13. Soon, A.S.C., Stabenfeldt, S.E., Brown, W.E. et al. 2010. Engineering �brin matrices: The engagement of polymerization pockets through �brin knob technology for the delivery and retention of therapeutic proteins. Biomaterials 31:1944–1954. Sousa, R.A., Kalay, G., Reis, R.L. et al. 2000. Injection molding of a starch/EVOH blend aimed as an alternative biomaterial for temporary applications. J Appl Polym Sci 77:1303–1315. Sousa, R.A., Reis, R.L., Cunha, A.M. et al. 2003. Processing and properties of bone-analogue biodegradable and bioinert polymeric composites. Comp Sci Tech 63:389–402. Stevens, M.M., Mayerb, M., Anderson, D.G. et al. 2005. Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials 26:7636–7641. Sundaram, J., Durance, T.D., and Wang, R. 2008. Porous scaffold of gelatin-starch with nano hydroxy apatite composite processed via novel microwave vacuum drying. Acta Biomater 4:932–942. Sung, H.W., Huang, D.M., Chang, W.H. et al. 1999. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. J Biomed Mater Res 46:520–530. Svegmark, K. and Hermansson, A. M. 1993. Microstructure and rheological properties of composites of potato starch granules and amylose: A comparison of observed and predicted structures. Food Struct 12:181–193. Svensson, A. Nicklasson, E., Harrah, T. et al. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. de Taillac, L.B., Porté-Durrieua, M.C., Labrugere, C. et al. 2004. Grafting of RGD peptides to cellulose to enhance human osteoprogenitor cells adhesion and proliferation. Compos Sci Technol 64:827–837. Tan, S.C., Khor, E., Tan, T. K. et al. 1998. The degree of deacetylation of chitosan: Advocating the �rst derivative UV-spectrophotometry method of determination. Talanta 45:713–719. Tavares-Dias, M. and Oliveira, S.R. 2009. A review of the blood coagulation system of �sh. Braz J Biosci 7:205–244. Tiwari, A., Salacinski, H.J., Punshon, G. et al. 2002. Development of a hybrid cardiovascular graft using a tissue engineering approach. FASEB J 16:791–796. Todhunter, R.J., Wooton, J.A.M., Lust, G. et al. 1994. Structure of equine type I and type II collagens. Am J Vet Res 55:425–431. Tolaimate, A., Desbrieres, J., Rhazi, M. et al. 2000. On the in¥uence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer 41:2463–2469. Tortelli, F. and Cancedda, F. 2009. Three-dimensional cultures of osteogenic and chondrogenic cells: A tissue engineering approach to mimic bone and cartilage in vitro. Eur Cell Mater 17:1–14. Touyama, R., Inoue, K. Takeda, Y. et al. 1994. Studies on the blue pigments produced from genipin and methylamine. II. On the formation mechanisms of brownish-red intermediates leading to the blue pigment formation. Chem Pharm Bull 42:1571. Traver, M.A. and Assimos, G. 2006. New generation tissue sealants and haemostatic agents: Innovative urological applications. Rev Urol 8:104–111. Tuan, T.L., Song, A.K., Chang, S. et al. 1996. In vitro �broplasia: Matrix contraction, cell growth, and collagen production of �broblasts cultured in �brin gels. Exp Cell Res 223:127–134. Tuovinen, L., Peltonen, S., and Jarvinen, K. 2003. Drug release from starch acetate �lms. J Control Release 91:345–354. Tuovinen, L, Ruhanen, L., Kinnarinen, T. et al. 2004. Starch acetate microparticles for drug delivery into retinal pigment epithelium-in vitro study. J Control Release 98:407–413. Tuzlakoglu, K., Bolgen, N., Salgado, A.J. et al. 2005. Nano and micro-�ber combined scaffolds: A new architecture for bone tissue engineering. J Mater Sci Mater Med 16:1099–1104. Ulubayram, K., Cakar, A.N., Korkusuz, P. et al. 2001. EGF containing gelatin-based wound dressings. Biomaterials 22:1345–1356. Utpal, B., Pragya, S., Krishnamoorthy, K. et al. 2006. Photoreactive cellulose membranes—A novel matrix for covalent immobilization of biomolecules. J Biotech 126:220–229. Van Vlierberghe, S., Cnudde, V., Jacobs, P.J.S. et al. 2006. Porous gelatin cryogels as cell delivery tool in tissue engineering. J Control Release 116: e95–e98. Voet, D., Voet, J.G., and Pratt, C.W. 1999. Fundamentals of Biochemistry. New York: Wiley. Walker, M., Hobot, J.A., Newman, G.R. et al., 2003. Scanning electron microscopic examination of bacterial immobilization in a carboxy methyl cellulose (AQUACEL) and alginate dressings. Biomaterials 24:883–890. Wang, J., Fu, W., Zhang, D. et al. 2010. Evaluation of novel alginate dialdehyde cross-linkedchitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering. Carbohyd Polym 79:705–710. Wang, S., Liu, W., Han, B. et al. 2009. Study on a hydroxypropyl chitosan–gelatin based scaffold for corneal stroma tissue engineering. Appl Surf Sci 255:8701–8705. Wang, L. and Stegemann, J.P. 2010. Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials 31:3976–3785. Watanabe, K., Takahashi, H. Habu, Y. et al. 2000. Interaction with heparin and matrix metalloproteinase 2 cleavage expose a cryptic anti-adhesive site of �bronectin. Biochem 39:7138–7144. Weadock, K.S., Miller, E.J., and Bellincampi, L.D. et al. 1995. Physical crosslinking of collagen �bers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 29:1373–1379. Weadock, K.S., Miller, E.J., Keuffel, E.L. et al. 1996. Effect of physical crosslinking methods on collagen-�ber durability in proteolytic solutions. J Biomed Mater Res 32:221–226. Whistler, R.L. and Daniel, J.R. 2005. Starch. In Kirk Othmer Encyclopedia of Chemical Technology, ed. A. Seidel, Hoboken, NJ, pp. 699–719. John Wiley & Sons, Inc. Williams, D.F. 1987. De�nitions in biomaterials. In Progress in Biomedical Engineering, ed. D.F. Williams, Vol. 54, Amsterdam, the Netherlands: Elsevier. de Wolf, F.A. 2003. Collagen and gelatin. In Progress in Biotechnology, eds. W.Y. Aalbersberg, R.J. Hamer, P. Jasperse et al., pp. 133–218. Amsterdam, the Netherlands: Elsevier Science B.V. Wongpanit, P., Sanchavanakit, N., Pavasant, P. et al. 2005. Preparation and characterization of microwavetreated carboxymethyl chitin and carboxymethyl chitosan �lms for potential use in wound care application. Macromol Biosci 5:1001–1012. Wu, X., Liu, Y., Li X. et al. 2010. Preparation of aligned porous gelatin scaffolds by unidirectional freezedrying method. Acta Biomater 6:1167–1177. Wu, J. and Yuan, Q. 2002. Gas permeability of a novel cellulose membrane. Journal of Membrane Science 204:185–194. Xu, H.H.K., Weir, M.D., and Simon, C.G. 2008. Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 24:1212–1222. Yamane, T., Yamaguchi, N., Yoshida, Y. et al. 2004. Regulation of the extracellular matrix production and degradation of endothelial cells by shear stress. Int Congr Ser 1262:407–410. Yannas, I.V. and Tobolksy, A.V. 1967. Crosslinking of gelatin by dehydration. Nature 215:509–510. Ye, Q., Zünd, G., Benedikt, P. et al., 2000. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 17:587–591. Yeom, C.K. and Lee, K.H. 1998. Characterization of sodium alginate membrane crosslinked with glutaraldehyde in pervaporation separation. J Appl Polym Sci 67:209–219. Young, S., Wong, M., Tabata, Y. et al. 2005. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109:256–274. Zaborowska, M., Bodin, A., Bäckdahl, H. et al. 2010. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547. Zhang, Y. and Zhang, M. 2001. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 55:304–312. Zheng, J.P., Wang, C.Z., Wang, X.X. et al. 2007. Preparation of biomimetic three-dimensional gelatin/montmorillonite-chitosan scaffold for tissue engineering. React Funct Polym 67:780–788. Zhou, P. and Regenstein, J.M. 2005. Effects of alkaline and acid pretreatments on Alaska Pollock skin gelatin extraction. J Food Sci 70:C392–C396. Zimmerman, L.M. and Veith, I. 1993. Great Ideas in the History of Surgery. New York: Norman Publishers. 11 Chapter 11. Natural Polymers as Components of Blends for Biomedical Applications 1. Vert M. Polymeric biomaterials: Strategies of the past vs. strategies of the future. Prog. Polym. Sci. 2007; 32: 755–761. 2. Howard MWT. Polymers for tissue engineering scaffolds. In: S Dumitriu, ed., Polymeric Biomaterials, 2nd edn., Marcel Dekker Inc., New York, 2002, p. 167. 3. Kohn J, Welsh WJ, and Knight D. A new approach to the rationale discovery of polymeric biomaterials. Biomaterials 2007; 28: 4171–4177. 4. Nair LS and Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007; 32: 762–798. 5. Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011; 36: 1254–1276. 6. Cascone MG. Dynamic-mechanical properties of bioarti�cial polymeric materials. Polym. Int. 1997; 43: 55–69. 7. Giusti P, Lazzeri L, Petris S, Palla M, and Cascone MG. Collagen-based new bioarti�cial polymeric materials. Biomaterials 1994; 15: 1229–1233. 8. Giusti P, Lazzeri L, and Lelli L. Bioarti�cial polymeric materials: A new method to design biomaterials by using both biological and synthetic polymers. TRIP 1993; 1(9): 261–267. 9. Werk meister JA, Edwards GA, Casagranda F, White JF, and Ramshaw JAM. Evaluation of a collagen-based biosynthetic materials for the repair of abdominal wall defects. J. Biomed. Mater. Res. 199; 39(3): 429–436. 10. Suh JKF and Matthe w HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 2000; 21(24): 2589–2598. 11. Leclerc E, Furukaw a KS, Miyata F, Sakai Y, Ushida T, and Fujii T. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials 2004; 25(19): 4683–4690. 12. Sionkowska A. Interaction of collagen and poly(vinyl pyrrolidone) in blends. Eur. Polym. J. 2003; 39: 2135–2140. 13. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, and Wess TJ. Molecular interactions in collagen and chitosan blends. Biomaterials 2004; 25: 795–801. 14. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, and Wess TJ. The photochemical stability of collagen-chitosan blends. J. Photochem. Photobiol. Part A; Chem. 2004; 162: 545–554. 15. Marsano E, Vicini S, Skopińska J, and Sionkowska A. Chitosan and poly(vinyl pyrrolidone): Compatibility and miscibility of blends. Macromol. Symp. 2004; 218: 251–260. 16. Sionkowska A, Kaczmarek H, Kowalonek J, Wisniewski M, and Skopinska J. Surface state of UV irradiated collagen/PVP blends. Surf. Sci. 2004; 566–568: 608–612. 17. Sionkowska A, Wisniewski M, and Skopinska J. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym. Degrad. Stab. 2004; 83: 117–125. 18. Sionkowska A, Kaczmarek H, Wisniewski M, ElFeninat F, and Mantovani D. Ultraviolet irradiation of synthetic polymer/collagen blends: Preliminary results of atomic force microscopy. In: D. Mantovani, ed., Advanced Materials for Biomedical Applications, COM 2002, Quebec, Canada, p. 27. 19. Shanmugasundaram N, Ra vichandran P, Neelakanta PR, Nalini R, Subrata P, and Rao KP. CollagenChitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 2001; 22: 1943–1951. 20. Salome Machado AA, Martins VCA, and Plepis AMG. Thermal and rheological behaviour of collagen chitosan blends. J. Therm. Anal. Calorim. 2002; 67: 491–498. 21. Cascone MG, Di Pasquale G, La Rosa AD, Cristallini C, Barbani N, and Recca A. Blends of synthetic and natural polymers as drug delivery systems for growth hormon. Biomaterials 1995; 16(7): 569–574. 22. Yang JM, Su WY, Leu TL, and Yang MC. Evaluation of chitosan/PVA blended hydrogel membranes. J. Memb. Sci. 2004; 236(1–2): 39–51. 23. Da Cruz AGB, Góes JC, Figueiró SD, Feitosa JPA, and Ricardo NMPS. On the piezoelectricity of collagen/natural rubber blend �lms. Eur. Polym. J. 2003; 39(6): 1267–1272. 24. Coombes AGA, Verderio E, Shaw B, Li X, Grif�n M, and Downes S. Biocomposites of non-crosslinked natural and synthetic polymers. Biomaterials 2002; 23(10): 2113–2118. 25. Piza MA, Constantino CJL, Venancio EC, and Mattoso LHC. Interaction mechanism of poly (oethoxyaniline) and collagen blends. Polymer 2003; 44(19): 5663–5670. 26. Yang Y, Porté MCh, Marmey P, El Haj AJ, and Amédée J. Covalent bonding of collagen on poly(L-lactic acid) by gamma irradiation. Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interact. Mater. Atoms 2003; 207(2): 165–174. 27. Lee PC, Huang LLH, Chen LW, Hsieh KH, and Tsai CL. Effect of forms of collagen linked to polyurethane on endothelial cell growth. J. Biomed. Mater. Res. 1996; 32(4): 645–653. 28. Goissis G, Piccirili L, Goes JC, Plepis AMD, and Das-Gupta DK. Anionic collagen: Polymer composites with improved dielectric and rheological properties. Artif. Organs 1998; 22(3): 203–209. 29. Lee SD, Hsiue GH, Chang PCT, and Kao CY. Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer �lm as biomaterials. Biomaterials 1996; 17(16): 1599–1608. 30. Dufrene YF, Marchal TG, and Rouxhet PG. In¥uence of substratum surface properties on the organization of absorbed collagen �lms: In situ characterisation by atomic force microscopy. Langmuir 1999; 15(8): 2871–2878. 31. Naqvi A and Nahar P. Photochemical immobilization of proteins on microwave-synthesized photoreactive polymers. Anal. Biochem. 2004; 327(1): 68–73. 32. Cheng Z and Teoh SH. Surface modi�cation of ultra thin poly(ɛ-caprolactone) �lms using acrylic acid and collagen. Biomaterials 2004; 25(11): 1991–2001. 33. Van Wachem PB, Hendriks M, Blaauw EH, Dijk F, Verhoeven MLPM, Cahalan PT, and van Luyn MJA. (Electron) microscopic observations on tissue integration of collagen-immobilized polyurethane. Biomaterials 2002; 23(6): 1401–1409. 34. Tyan YC, Liao JD, Klauser R, Wu ID, and Weng CC. Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto collagen-bonded polypropylene non-woven fabric surfaces. Biomaterials 2002; 23: 65–76. 35. De Cupere VM and Rouxhet PG. Collagen �lms adsorbed on native and oxidized poly(ethylene terephthalate): Morphology after drying. Surf. Sci. 2001; 491: 395–404. 36. Giusti P, Lazzeri L, Barbani N, Narducci P, Bonaretti A, Palla M, and Lelli L. Hydrogels of poly(vinyl alcohol) and collagen as new bioarti�cial materials: Physical and morphological study. J. Mater. Sci.: Mater. Med. 1993; 4(6): 538–542. 37. Barbani N, Lazzeri L, Bonaretti A, Seggiani M, Nerducci P, Polacco G, Pizzirani G, and Giusti P. Physical and biological stability of dehydro-thermally crosslinked collagen-poly(vinyl alcohol) blands. J. Mater. Sci.: Mater. Med. 1994; 5(12): 882–888. 38. Barbani N, Cascone MG, Giusti P, Lazzeri L, Polacco G, and Pizzirani G. Bioarti�cial materials based on collagen: 2. Mixtures of soluble collagen and poly(vinyl alcohol) cross-linked with gaseous glutaraldehyde. J. Biomater. Sci. Polym. Ed. 1995; 7(6): 471–484. 39. Sionkowska A, Skopińska J, and Wiśniewski M. Collagen synthetic polymer interactions in solution and thin �lms. J. Mol. Liq. 2009; 145: 135–138. 40. Cascone MG, Giusti P, Lazzeri L, Pollicino A, and Recca A. Surface characterisation of collagen-based bioarti�cial polymeric materials. J. Biomater. Sci. Polym. Ed. 1996; 7(10): 917–924. 41. Rao KP. Recent developments of collagen-based materials for medical applications and drug delivery systems. J. Biomater. Sci. Polym. Ed. 1995; 7(7): 623–631. 42. Shenoy V and Rosenblatt J. Diffusion of macromolecules in collagen and hyaluronic acid, rigid-rod¥exible polymer, composite matrices. Macromolecules 1995; 28(26): 8751–8756. 43. Barbani N, Lazzeri L, Cristallini C, Cascone MG, Polacco G, and Pizzirani G. Bioarti�cial materials based on blends of collagen and poly(acrylic acid). J. Appl. Polym. Sci. 1999; 72: 971–975. 44. Taravel MN and Domard A. Collagen and its interaction with chitosan. Some biological and mechanical properties. Biomaterials 1996; 17(4): 451–455. 45. Taniguchi T and Okamura K. New �lms produced from micro�brillated natural �bres. Polym. Int. 1998; 47: 291–294. 46. Chen XG, Wang Z, Liu WS, and Park HJ. The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin �broblasts. Biomaterials 2002; 23(23): 4609–4614. 47. Alexy P, Bakoš D, Hanzelová S, Kukolíková L, and Kupec J. Poly(vinyl alcohol)–collagen hydrolysate thermoplastic blends: I. Experimental design optimisation and biodegradation behaviour. Polym. Test. 2003; 22(7): 801–809. 48. Mao JSh, Cui YL, Wang XH, Sun Y, Yin YJ, and Zhao HM. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials 2004; 25(18): 3973–3981. 49. Quek ChH, Li J, Sun T, Chan MLH, Mao HQ, Gan LM, and Leong KW. Photo-crosslinkable microcapsules formed by polyelectrolyte copolymer and modi�ed collagen for rat hepatocyte encapsulation. Biomaterials 2004; 25(17): 3531–3540. 50. Shan Y, Zhou Y, Cao Y, Xu Q, Ju Huangxian, and Wu Z. Preparation and infrared emissivity study of collagen-g-PMMA/In 2 O 3 nanocomposite. Mater. Lett. 2004; 58(10): 1655–1660. 51. Lee SB, Kim YH, Chong MS, and Lee YM. Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen. Biomaterials 2004; 25(12): 2309–2317. 52. Wong Po Foo Ch and Kaplan DL. Genetic engineering of �brous proteins: Spider dragline silk and collagen. Adv. Drug Delivery Rev. 2002; 4(8): 1131–1143. 53. Daamen WF, van Moerkerk HThB, Hafmans T, Buttafoco L, Poot AA, and Veerkamp JH. Preparation and evaluation of molecularly-de�ned collagen–elastin–glycosaminoglycan scaffolds for tissue engineering. Biomaterials 2003; 24(22): 4001–4009. 54. Ma L, Gao Ch, Mao Z, Zhou J, Shen J, Hu X, and Han Ch. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003; 24(26): 4833–4841. 55. Dai NT, Williamson MR, Khammo N, Adams EF, and Coombes AGA. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 2004; 25(18): 4263–4271. 56. Lopes CMA and Felisberti MI. Mechanical behaviour and biocompatibility of poly(1-vinyl-2pyrrolidone)-gelatin IPN hydrogels. Biomaterials 2003; 24: 1279–1284. 57. Dutoya S, Lefeb vre F, Deminières C, Rouais F, Verna A, Kozluca A, and Le Bugle A. Unexpected original property of elastin derived proteins:spontaneous tight coupling with natural and synthetic polymers. Biomaterials 1998; 19 (1–3): 147–155. 58. Scot chford CA, Cascone MG, Downes S, and Giusti P. Osteoblast responses to collagen-PVA bioarti�cial polymers in vitro: The effects of cross-linking method and collagen content. Biomaterials 1998; 19: 1–11. 59. Sarti B and Scandola M. Viscoelastic and thermal properties of collagen/poly(vinyl alcohol) blends. Biomaterials 1995; 16: 785–792. 60. Nezu T and W innik FM. Interaction of water-soluble collagen with poly(acrylic acid). Biomaterials 2000; 21: 415–419. 61. Thacharodi D and Rao KP. Collagen-chitosan composite membranes for controlled release of propranolol hydrochloride. Int. J. Pharm. 1995;120(1): 115–118. 62. Hirano S, Zhang M, Nakagawa M, and Miyata T. Wet spun chitosan–collagen �bers, their chemical N-modi�cations, and blood compatibility. Biomaterials 2000; 21(10): 997–1003. 63. Bailey AJ and Paul RG. Collagen - Is not so simple protein. J. Soc. Leather Technol. Chem. 1998; 82: 104–108. 64. Van der Rest R and Garrone M. Collagen family of proteins. F ASEB J. 1991; 5: 2814–2823. 65. Ellis DO and McGa vin S. The structure of collagen- on X-ray study. J. Ultrastruct. Res. 1970; 32: 191–211. 66. Prockop J and Fertala A. The collagen �bril: The almost crystalline structure. J. Struct. Biol. 1998; 122: 111–118. 67. Bella J, Eaton M, Brodsky B, and Berman HM. Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 1994; 266: 75–81. 68. Piez KA. Molecular and aggregate structures of the collagen. In: KA Piez and AH Reddi, eds., Extracellular Matrix Biochemistry, Elsevier Science Publishing, New York, 1994, p. 1. 69. Silver FH. Connecti ve tissue structure. In: Biological Materials: Structure Mechanical Properties and Modelling of Soft Tissues, New York University Press, New York, 1987, p. 7. 70. Miyahara T, Murai A, Tanaka T, Shiozawa S, and Kameyama M. Age-related differences in human skin collagen: Solubility in solvent, susceptibility to pepsin digestion, and the spectrum of the solubilized polymeric collagen molecules. J. Gerontol. 1982; 37: 651. 71. Sionkowska A, Kaminska A, Miles CA, and Bailey AJ. The effect of UV radiation on the structure and properties of collagen. Polimery 2001; 6: 379–389. 72. Rich A and Crick FHC. The molecular structure of collagen. J. Mol. Biol. 1961; 3: 483–506. 73. Fraser RDB, MacRea TP, and Suzuki E. Chain conformation in the collagen molecule. J. Mol. Biol. 1979; 129: 463–481. 74. Privalov PL. Stability of proteins which do not present a single co-operative system. Adv. Protein Chem. 1982; 25: 1–104. 75. Burjanadze TV. Thermodynamic substantiation of water-bridged collagen structure. Biopolymers 1992; 32: 941–949. 76. Flory PJ and Garrett RR. Phase transition in collagen and gelatin systems. J. Am. Chem. Soc. 1958; 80: 4836–4845. 77. Bigi A, Cojazzi, G, Roveri N, and Koch MHJ. Differential scanning calorimetry and X-ray diffraction study of tendon collagen thermal denaturation. Int. J. Biol. Macromol. 1987; 9: 363–367. 78. Luescher M, Ruegg M, and Scjindler P. Effect of hydration on thermal stability of tropocollagen and its effect of hydration on thermal stability of tropocollagen and its dependence on the presents of neutral salts. Biopolymers 1974; 13: 2489–2503. 79. Sionkowska A and Kamińska A. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. Int. J. Biol. Macromol. 1999; 24: 337–340. 80. Usha R and Ramasami T. The effects of urea and n-propanol on collagen denaturation: Using DSC, circular dichroism and viscosity. Termochim. Acta 2004; 409: 2001–206. 81. Lee CH, Singla A, and Lee Y. Biomedical applications of collagen. Int. J. Pharm. 2001; 221(1–2): 1–22. 82. Seal BL, Otero TC, and Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng.: R. Reports 2001; 34(4–5): 147–230. 83. Fischbach C, Tessmar J, Lucke A, Schnell E, Schmeer G, and Blunk T. Does UV irradiation affect polymer properties relevant to tissue engineering? Surf. Sci. 2001; 491(3): 333–345. 84. Struszczyk, MH. Chitin and Chitosan: Part II: Applications of chitosan. Polimery 2002; 47(6): 396–403. 85. Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, and Vasi V. Biological activity of chitosan: Ultrastructural study. Biomaterials 1988; 9(3): 247–252. 86. Rinaudo M and Domard A. In: G Skiåk-Break, T Anthonsen, and P Sandford, eds., Chitin and Chitosan, Elsevier Applied Science, London, U.K., 1989, pp. 71–86. 87. Terbojevich M, Cosani A, Conio G, Marsano E, and Bianchi E. Chitosan: Chain rigidity and mesophase formation. Carbohydr. Res. 1991; 209: 251–260. 88. Gerrit B. Chitosans for gene delivery. Adv. Drug Delivery Rev. 2001; 52: 145–150. 89. Chunmeng S, Ying Z, Xinze R, Meng W, Yongping S, and Tianmin C. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J. Surg. Res. 2006; 133: 185–192. 90. Berg er J, Reist M, Mayer JM, Felt O, and Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004; 57: 35–52. 91. Sevda S and McClure SJ. Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev. 2004; 56: 1467–1480. 92. Di Martino A, Sittinger M, and Risbud MV. Chitosan: A versatile biopolymer for orthopaedic tissueengineering. Biomaterials 2005; 26: 5983–5990. 93. Kim TH, Jiang H, Jere D, Park IK, Cho MH, and Nah JW. Chemical modi�cation of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci. 2007; 32: 726–753. 94. Khor E and Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003; 24: 2339–2349. 95. Dodane V and V ilivalam VD. Pharmaceutical applications of chitosan. Pharm. Sci. Technol. Today 1998; 1: 246–253. 96. Sinha, VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, and Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 2004; 274: 1–33. 97. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, and Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004; 57: 19–34. 98. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, and Cho CS. Chitosan and its derivatives for tissue engineering applications. Biotech. Adv. 2008; 26: 1–21. 99. Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 2004; 35: 126–139. 100. Ta HT, Dass CR, and Dunstan DE. Injectable chitosan hydrogels for localised cancer therapy. J. Control. Release 2008; 126: 205–216. 101. Grant J, Lee H, Allen C. In¥uence of interactions on drug polymer-lipid blend. Soo P, Lim CJ, Piquette-Miller M, and molecular organization and release for an injectable Int. J. Pharma. 2008; 360: 83–90. 102. Wischke C, Borchert HH, Zimmermann J, Siebenbrodt I, and Lorenzen DR. Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J. Control. Release 2006; 114: 359–368. 103. Rogovina SZ and Vikhoreva GA. Polysaccharide-based polymer blends: Methods of their production. Glycoconj. J. 2006; 23: 611–618. 104. Karavas E, Georgarakis E, and Bikiaris D. Adjusting drug release by using miscible polymer blends as effective drug carries. J. Therm. Anal. Calorim. 2006; 84: 125–133. 105. Khoo CGL, Frantzich S, Rosinski A, Sjöström M, Hoogstraate J. Oral gingival delivery systems from chitosan blends with hydrophilic polymers. Eur. J. Pharm. Biopharm. 2003; 55: 47–56. 106. Sakurai K, Maegawa T, and Takahashi T. Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 2000; 41: 7051–7056. 107. Sionkowska A, W isniewski M, Skopinska J, Vicini S, and Marsano E. The in¥uence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polym. Degrad. Stab. 2005; 88: 261–267. 108. Risb ud pH-sensitive hydrogels as delivery. J. MV, Hardikar AA, Bhat SV, and Bhonde RR. freeze-dried chitosan–polyvinyl pyrrolidone controlled release system for antibiotic Control. Release 2000; 68: 23–30. 109. Zhao L, Xu L, Mitomo H, and Yoshii F. Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation. Carbohydr. Polym. 2006; 64: 473–480. 110. Smitha B, Sridhar S, and Khan AA. Chitosan–poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications. J. Power Sources 2006; 159: 846–854. 111. Marsano E, Bianchi E, Vicini S, Compagnino L, Sionkowska A, Skopińska J, and Wiśniewski M. Stimuli responsive gels based on interpenetrating network of chitosan and poly(vinylpyrrolidone). Polymer 2005; 46: 1595–1600. 112. Don TM, King CF, Chiu WY, and Peng CA. Preparation and characterization of chitosan-g-poly(vinyl alcohol)/poly(vinyl alcohol) blends used for the evaluation of blood-contacting compatibility. Carbohydr. Polym. 2006; 63: 331–339. 113. Minoura N, Koyano T, Koshizaki N, Umehara H, Nagura M, and Kobayashi K. Preparation, properties, and cell attachment/growth behavior of PVA/chitosan-blended hydrogels. Mater. Sci. Eng. C 1998; 6: 275–280. 114. Sajeev US, Anoop AK, Menon D, and Nair S. Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning. Bull. Mater. Sci. 2008; 31: 343–351. 115. Patel VR and Amiji MM. Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-speci�c antibiotic delivery in the stomach. Pharm. Res. 1996; 13: 588–593. 116. Amiji MM. Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis. Biomaterials 1995; 16: 593–599. 117. Kuo PC, Sahu D, and Yu Hsin H. Properties and biodegradability of chitosan/nylon 11 blending �lms. Pol. Degrad. Stab. 2006; 91: 3097–3102. 118. Shieh JJ and Huang RYM. Chitosan/N-methylol nylon 6 blend membranes for the pervaporation separation of ethanol–water mixtures. J. Membr. Sci. 1998; 148: 243–255. 119. Desai K and Kit K. Effect of spinning temperature and blend ratios on electrospun chitosan/ poly(acrylamide) blends �bers. Polymer 2008; 49: 4046–4050. 120. Suyatma NE, Copinet A, Tighzert L, and Coma V. Mechanical and barrier properties of biodegradable �lms made from chitosan and poly (lactic acid) blends. J. Polym. Environ. 2004; 12: 1–6. 121. Strachota A, Tishchenk o G, Matejka L, and Bleha M. Chitosan–oligo(silsesquioxane) blend membranes: Preparation, morphology, and diffusion permeability. J. Inorg. Organometal. Polym. 2001; 11: 165–182. 122. Haas J, Ravi K, Borchard G, Bakowsky U, and Lehr CM. Preparation and characterization of chitosan and trimethyl-chitosanmodi�ed poly-(ɛ-caprolactone) nanoparticles as DNA carriers. AAPS PharmSciTech 2005; 6: E22–E30. 123. Sarasam A and Madihally SV. Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials 2005; 26: 5500–5508. 124. Olabarrieta I, Forsström D, Gedde UW, and Hedenqvist MS. Transport properties of chitosan and whey blended with poly(ɛ-caprolactone) assessed by standard permeability measurements and microcalorimetry. Polymer 2001; 42: 4401–4408. 125. Zeng M, Fang Z, and Xu C. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J. Membr. Sci. 2004; 230: 175–181. 126. Dufresne A, Cavaillé JY, Dupeyre D, and Garcia-Ramirez M. Morphology, phase continuity and mechanical behaviour of polyamide 6/chitosan blends. Polymer 1999; 40: 1657–1666. 127. Peesan M, Supaphol P, and Rujiravanit R. Preparation and characterization of hexanoyl chitosan/ polylactide blend �lms. Carbohydr. Polym. 2005; 60: 343–350. 128. Wu H, W an Y, Cao X, and Wu Q. Interlocked chitosan/poly(DL-lactide) blends. Mater. Lett. 2008; 62: 330–334. 129. Zhang X, Hua H, Shen X, and Yang Q. In vitro degradation and biocompatibility of poly(L-lactic acid)/ chitosan �ber composites. Polymer 2007; 48: 1005–1011. 130. Thanpitcha T, Sirivat A, Jamieson AM, and Rujiravanit R. Preparation and characterization of polyaniline/chitosan blend �lm. Carbohydr. Polym. 2006; 64: 560–568. 131. Sang YN and Young ML. Pervaporation and properties of chitosan-poly(acrylic acid) complex membranes. J. Membr. Sci. 1997; 135: 161–171. 132. Abou-Aiad THM, Abd-El-Nour KN, Hakim IK, and Elsabee MZ. Dielectric and interaction behavior of chitosan/polyvinyl alcohol and chitosan/polyvinyl pyrrolidone blends with some antimicrobial activities. Polymer 2006; 47: 379–389. 133. Rao V and Johns J. Thermal behavior of chitosan/natural rubber latex blends TG and DSC analysis. J. Therm. Anal. Calorim. 2008; 92: 801–806. 134. Ye Y, Dan W, Zeng R, Lin H, Dan N, Guan L, and Mi Z. Miscibility studies on the blends of collagen/ chitosan by dilute solution viscometry. Eur. Polym. J. 2007; 43: 2066–2071. 135. Sionkowska A. New materials based on the blends of collagen and other polymers. In: RK Bregg, ed., Current Topics in Polymer Research, Nova Science Publisher, New York, 2005, pp. 125–168. 136. Sionkowska A, Wisniewski M, Skopinska J, Poggi GF, Marsano E, Maxwell CA, and Wess TJ. Thermal and mechanical properties of UV irradiated collagen/chitosan thin �lms. Polym. Degrad. Stab. 2006; 91: 3026–3032. 137. Chen Z, Mo X, He C, and Wang H. Intermolecular interactions in electrospun collagen–chitosan complex nano�bers. Carbohydr. Polym. 2008; 72: 410–418. 138. Chen T, Embree HD, Brown EM, Taylor MM, and Payne GF. Enzyme-catalyzed gel formation of gelatin and chitosan: Potential for in situ applications. Biomaterials 2003; 24: 2831–2841. 139. Gao X, Liu W, Han B, Wei X, and Yang C. Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J. Mater. Sci.: Mater. Med. 2008; 19: 3611–3619. 140. Chiono V, Pulieri E, Vozzi G, Ciardelli G, Ahluwalia A, and Giusti P. Genipin-crosslinked chitosan/ gelatin blends for biomedical applications. J. Mater. Sci.: Mater. Med. 2008; 19: 889–898. 141. Huang Y, On yeri S, Siewe M, Moshfeghian A, and Madihally SV. In vitro characterization of chitosan– gelatin scaffolds for tissue engineering. Biomaterials 2005; 26: 7616–7627. 142. Chen CH, Wang FY, Mao CF, Liao WT, and Hsieh CD. Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend �lms. Int. J. Biol. Macromol. 2008; 43: 37–42. 143. Silva SS, Goodfello w BJ, Benesch J, Rocha J, Mano JF, and Reis RL. Morphology and miscibility of chitosan/soy protein blended membranes. Carbohydr. Polym. 2007; 70: 25–30. 144. Sashina ES and No voselov NP. Polyelectrolyte complexes of �broin with chitosan. Russ. J. Appl. Chem. 2005; 78: 487–491. 145. Lu Q, Feng Q, Hu K, and Cui F. Preparation of three-dimensional �broin/collagen scaffolds in various pH conditions. J. Mater. Sci.: Mater. Med. 2008; 19: 629–634. 146. Sashina ES, Janowska G, Zaborski M, and Vnuchkin AV. Compatibility of �broin/chitosan and �broin/ cellulose blends studied by thermal analysis. J. Therm. Anal. Calorim. 2007; 89: 887–891. 147. Park WH, Jeong L, Yoo DI, and Hudson S. Effect of chitosan on morphology and conformation of electrospun silk �broin nano�bers. Polymer 2004; 45: 7151–7157. 148. Zhai M, Zhao L, Yoshii F, and Kume T. Study on antibacterial starch/chitosan blend �lm formed under the action of irradiation. Carbohydr. Polym. 2004; 57: 83–88. 149. Wang Q, Zhang N, Hu X, Yang J, and Du Y. Chitosan/starch �bers and their properties for drug controlled release. Eur. J. Pharm. Biopharm. 2007; 66: 398–404. 150. Wu YB, Y u SH, Mi FL, Wu CW, Shyu SS, Peng CK, and Chao AC. Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr. Polym. 2004; 57: 435–440. 151. Veerapur RS, Gudasi KB, and Aminabhavi TM. Pervaporation dehydration of isopropanol using blend membranes of chitosan and hydroxypropyl cellulose. J. Membr. Sci. 2007; 304: 102–111. 152. Xu Y, Zhan C, Fan L, Wang L, and Zheng H. Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-speci�c drug delivery system. Int. J. Pharm. 2007; 336: 329–337. 153. Fan L, Du Y, Zhang B, Yang J, Zhou J, and Kennedy JF. Preparation and properties of alginate/carboxymethyl chitosan blend �bers. Carbohydr. Polym. 2006; 65: 447–452. 154. Dornish M, Aarnold M, and Skaugrud Ø. Alginate and chitosan: Biodegradable biopolymers in drug delivery systems. Eur. J. Pharm. Sci. 1996; 4: S153. 155. Lazaridou A and Biliaderis CG. Thermophysical properties of chitosan, chitosan–starch and chitosan– pullulan �lms near the glass transition. Carbohydr. Polym. 2002; 48: 179–190. 156. Wittaya-areekul S and Prahsarn C. Development and in vitro evaluation of chitosan–polysaccharides composite wound dressings. Int. J. Pharm. 2006; 313: 123–128. 157. Croyle MA, Cheng X, Sandhu A, and Wilson JM. Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol. Ther. 2001; 4: 22–28. 158. Samouillan V, Dandurand J, Lacabanne C, and Hornebeck W. Molecular mobility of elastin: Effect of molecular architecture. Biomacromolecules 2002; 3: 531–537. 159. Debelle L and Alix AJP. The structures of elastins and their function. Biochimie 1999; 81: 981–994. 160. Bonzon N, Carrat X, Daminiere C, Daculsi G, Lefebvre F, and Rabaud M. New arti�cial connective matrix made of �brin monomers, elastin peptides and type I + III collagens: Structural study, biocompatibility and use as tympanic membranes in rabbit. Biomaterials 1995; 16: 881–885. 161. Klein B, Schiffer R, Hafemann B, Klosterhalfen B, and Zwadlo-Klarwasser G. In¥ammatory response to a porcine membrane composed of �brous collagen and elastin as dermal substitute. J. Mater. Sci.: Mater. Med. 2001; 12: 419–424. 162. Mithieux SM, Rasko JE, and Weiss AS. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 2004; 25: 4921–4927. 163. Skopinska-Wisniewska J, Sionkowska A, Kaminska A, Kaznica A, Jachimiak R, and Drewa T. Surface properties of collagen/elastin based biomaterials for tissue regeneration. Appl. Surf. Sci. 2009; 225: 8286–8292. 164. Reiersen H, Clarke AR, and Rees AR. Short elastin-like peptides exhibit the same temperature induced structural transitions as elastin polymer: Implications for protein engineering. J. Mol. Biol. 1998; 283: 255–264. 165. Sionkowska A, Skopinska J, Wisniewski M, Leznicki A, and Fisz JJ. Spectroscopic studies into the in¥uence of UV radiation on elastin hydrolysates in water solution. J. Photochem. Photobiol. B: Biol. 2006; 85: 79–84. 166. Sionkowska A, Skopińska J, Wiśniewski M, and Leżnicki A. Spectroscopic studies into the in¥uence of UV radiation on elastin hydrolysates in the presence of collagen. J. Photochem. Photobiol. B Biol. 2007; 86: 186–191. 167. Liu Y, Liu H, Qian J, Deng J, and Yu T. Two papers dealing with the use of a regenerated silk �broin membrane in a biosensor. Biosens. Bioelectron. 1996; 11: x. 168. Qian J, Liu Y , Liu H, Yu T, and Deng J. Characteristics of regenerated silk �broin membrane in its application to the immobilization of glucose oxidase and preparation of a p-benzoquinone mediating sensor for glucose. Fresenius’ J. Anal. Chem. 1996; 354: 173–178. 169. Boschi A, Arosio C, Cucchi I, Bertini F, and Catellani M. Properties and performance of polypyrrole (PPy)-coated silk �bers. Fibers Polym. 2008; 9: 698–707. 170. Baek DH, Ki CS, Um IC, and Park YH. Metal ion adsorbability of electrospun wool keratose/silk �broin blend nano�ber mats. Fibers Polym. 2007; 8: 271–277. 171. Chen H, Hu X, and Cebe P. Thermal properties and phase transitions in blends of Nylon-6 with silk �broin. J. Therm. Anal. Calorim. 2008; 93: 201–206. 172. Liu H, Xu W , Zou H, Ke G, Li W, and Ouyang C. Feasibility of wet spinning of silk-inspired polyurethane elastic bio�ber. Mater. Lett. 2008; 62: 1949–1952. 173. Marsano E, Corsini P , Canetti M, and Freddi G. Regenerated cellulose-silk �broin blends �bers. Int. J. Biol. Macromol. 2008; 43: 106–114. 174. Hirano S, Nakahira T , Zhang M, Nakagawa M, Yoshikawa M, and Midorikawa T. Wet-spun blend bio�bers of cellulose–silk �broin and cellulose–chitin–silk �broin. Carbohydr. Polym. 2002; 47: 121–124. 175. Yang G, Zhang L, and Liu Y. Structure and microporous formation of cellulose/silk �broin blend membranes: I. Effect of coagulants. J. Membr. Sci. 2000; 177: 153–161. 176. Yang G, Zhang L, Cao X, and Liu Y. Structure and microporous formation of cellulose/silk �broin blend membranes: Part II. Effect of post-treatment by alkali. J. Membr. Sci. 2002; 210: 379–387. 177. Lee KY and Ha WS. DSC studies on bound water in silk �broin/S-carboxymethyl kerateine blend �lms. Polymer 1999; 40: 4131–4134. 178. Park KE, Jung SY, Lee SJ, Min BM, and Park WH. Biomimetic nano�brous scaffolds: Preparation and characterization of chitin/silk �broin blend nano�bers. Int. J. Biol. Macromol. 2006; 38: 165–173. 179. Yoo CR, Y eo IS, Park KE, Park JH, Lee S, Park WH, and Min BM. Effect of chitin/silk �broin nano�brous bicomponent structures on interaction with human epidermal keratinocytes. Int. J. Biol. Macromol. 2008; 42: 324–334. 180. Yongcheng L, Zhang X, Liu H, Tongying Y, and Jiaqi D. Immobilization of glucose oxidase onto the blend membrane of poly(vinyl alcohol) and regenerated silk �broin: Morphology and application to glucose biosensor. J. Biotechnol. 1996; 46: 131–138. 181. Kweon HY, Um IC, and Park YH. Structural and thermal characteristics of Antheraea pernyi silk �broin/ chitosan blend �lm. Polymer 2001; 42: 6651–6656. 182. Liu YS, Zhengzhong Z, and Chen X. Thermal and crystalline behavior of silk �borin/nylon 66 blend �lms. Polymer 2004; 45: 7705–7710. 183. Lee KH, Baek DH, Ki CS, and Park YH. Preparation and characterization of wet spun silk �broin/ poly(vinyl alcohol) blend �laments. Int. J. Biol. Macromol. 2007; 41: 168–172. 184. Li M, Lu S, Wu Z, Tan K, Minoura N, and Kuga S. Structure and properties of silk �broin–poly(vinyl alcohol) gel. Int. J. Biol. Macromol. 2002; 30: 89–94. 185. Yoo MK, Kweon HY, Lee KG, Lee HC, and Cho CS. Preparation of semi-interpenetrating polymer networks composed of silk �broin and poloxamer macromer. Int. J. Biol. Macromol. 2004; 34: 263–270. 186. Niamsa N, Srisuwan Y, Baimark Y, Phinyocheep P, and Kittipoom S. Preparation of nanocomposite chitosan/silk �broin blend �lms containing nanopore structures. Carbohydr. Polym . 2009; 78: 60–65. 187. Salminem F and Rintala J. Anaerobic digestion of organic solid poultry slaughterhouse waste – A review. Bioresour. Technol. 2002; 83: 13–26. 188. Moncrieff RW. Man Made Fibres, Vol. 11, 6th edn, Butterworths Scienti�c, London, U.K., 1975, p. 231. 189. Aluigi A, Zoccola M, Vineis C, Tonin C, Ferrero F, and Canetti M. Study on the structure and properties of wool keratin regenerated from formic acid. Int. J. Biol. Macromol. 2007; 41: 266–273. 190. Millington KR and Church JS. The photodegradation of wool keratin II. Proposed mechanisms involving cystine. J. Photochem. Photobiol. B: Biol. 1997; 39: 204–212. 191. Smith GJ. New trends in photobiology (invited review) photodegradation of keratin and other structural proteins. Photochem. Photobiol. B: Biol. 1995; 27: 187–198. 192. Tanabe T, Okitsu N, and Yamauchi K. Fabrication and characterization of chemically crosslinked keratin �lms. Mater. Sci. Eng. C 2004; 24: 441–446. 193. Aluigi A, Vineis C, Varesano A, Tonin C, Ferrero F, Canetti M, Mazzuchetti G, Ferrero F, and Tonin C. Structure and properties of keratin/PEO blend nano�bres. Eur. Polym. J. 2008; 44: 2465–2475. 194. Tonin C, Aluigi A, Vineis C, Varesano A, Montarsolo A, and Ferrero F. Thermal and structural characterization of poly(ethylene-oxide)/keratin blend �lms. J. Therm. Anal. Calorim. 2007; 89: 601–608. 195. Tanabe T, Okitsu N, Tachibana A, and Yamauchi K. Preparation and characterization of keratin–chitosan composite �lm. Biomaterials 2002; 23: 817–825. 196. Pingping Z. A ne w criterion of polymer-polymer miscibility detected by viscometry. Eur. Polym. J. 1997; 33: 411–414. 197. Meyers M, Chen PY, Lin A, and Seki Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008; 53: 1–206. 198. Olszta MJ, Cheng X, Sang S, and Kumar R. Bone structure and formation: A new perspective. Mater. Sci. Eng. R 2007; 58: 77–116. 199. Almer JD and Stock SR. Micromechanical response of mineral and collagen phases in bone. J. Struct. Biol. 2007; 157: 365–370. 200. Chang MC, Ikoma T, Kikuchi M, and Tanaka J. The cross-linkage effect of hydroxyapatite/collagen nanocomposites on a self-organization phenomenon. J. Mater. Sci.: Mater. Med. 2002; 13: 993–997. 201. Gerber T, Holzhuter G, and Gotz W. Nanostructuring of biomaterials—A pathway to bone grafting substitute. Eur. J. Trauma 2006; 32: 132–140. 202. Chen G, Ushida T , and Tateishi T. Development of biodegradable porous scaffolds for tissue engineering. Mater. Sci. Eng. C 2001; 17: 63–69. 203. Yunoki S, Maruka wa E, Ikoma T, Sotome S, Fan H, and Zhang X. Effect of collagen �bril formation on bioresorbability of hydroxyapatite/collagen composites. J. Mater. Sci.: Mater. Med. 2007; 18: 2179–2183. 204. Degirmenbasi N, Kalyon DM, and Birinci E. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol). Colloids Surf. B Biointerfaces 2006; 48: 42–49. 205. Kweon H, Ha HC, Um IC, and Park YH. Physical properties of silk �broin/chitosan blend �lms. J. Appl. Polym. Sci. 2001; 80: 928–934. 206. Wang L and Li C. Preparation and physicochemical properties of a novel hydroxyapatite/chitosan–silk �broin composite. Carbohydr. Polym. 2007; 68: 740–745. 207. Sionkowska A. Photochemical stability of collagen/poly(ethylene oxide) blends. J. Photochem. Photobiol. A Chem. 2006; 177: 61–67. 208. Sionkowska A. The in¥uence of UV light on collagen/poly(ethylene glycol) blends. Polym. Degrad. Stab. 2006; 91: 305–312. 209. Sionkowska A, Wiśniewski M, Kaczmarek H, Skopińska J, Chevallier P, Mantovani D, Lazare S, and Tokarev V. The in¥uence of UV irradiation on surface composition of collagen/pvp blended �lms. Appl. Surf. Sci. 2006; 253: 1970–1977. 210. Sionkowska A, Wiśniewski M, Skopińska J, and Mantovani D. Effects of solar radiation on collagen based biomaterials. Int. J. Photoenergy 2006, article ID 29196, pp. 1–9. 211. Skopińska-Wiśniewska J, Sionkowska A, Joachimiak R, Kaźnica A, Drewa T, Bajer K, and Dzwonkowski J. The modi�cation of new collagen-elastin hydrolysates biomaterials by ultraviolet irradiation. Eng. Biomater. 2007; 69–72: 67–69. 212. Drewa T, Joachimiak R, Kaźnica A, Wiśniewska-Skopińska J, and Sionkowska A. The comparison study on collagen scaffolds seeded with hair follicle epithelial cells and urothelials cells. Tissue Eng. 2007; 13: 1762–1763. 213. Rajan N, Couet F, Pennock W, Lagueux J, Sionkowska A, and Mantovani D. Low doses of UV radiation stimulate cell activity in collagen-based scaffolds. Biotechnol. Prog. 2008; 24(4): 884–889. 214. Sionkowska A, Kozlowska J, Planecka A, and Skopinska-Wisniewska J. Photochemical stability of poly(vinyl pyrrolidone) in the presence of collagen. Polym. Degrad. Stab. 2008; 93: 2127–2132. 215. Sionkowska A, Kozlowska J, Planecka A, and Skopinska-Wisniewska J. Collagen �brils in UV irradiated poly(vinyl pyrrolidone) �lms. Appl. Surf. Sci. 2008; 255: 2030–2039. 216. Sionkowska A, Planecka A, Kozlowska J, and Skopinska-Wisniewska J. Collagen �brils formation in poly(vinyl alcohol) and poly(vinyl pyrrolidone) �lms. J. Mol. Liq. 2009; 144: 71–74. 217. Sionkowska A, Planecka A, Kozlowska J, and Skopinska-Wisniewska J. Surface properties of UV-irradiated poly(vinyl alcohol) �lms containing small amount of collagen. Appl. Surf. Sci. 2009; 255: 4135–4139. 218. Sionkowska A, Planecka A, Kozlowska J, and Skopinska-Wisniewska J. Photochemical stability of poly(vinyl alcohol) in the presence of collagen. Polym. Degrad. Stab. 2009; 94: 383–388. 12 Chapter 12. Metal–Polymer Composite Biomaterials 1. Ratner, B. D., Hoffman, A. S., Schoen, F. J., and J. E. Lemons. 2004. Biomaterials Science: An Introduction to Materials in Medicine. Amsterdam, the Netherlands: Elsevier. 2. Yang, Y., Kim, K. H., and J. Ong. 2005. A review on calcium phosphate coatings produced using a sputtering process—An alternative to plasma spraying. Biomaterials 26: 327–337. 3. Kim, K. H. and N. Ramaswany. 2009. Electrochemical surface modi�cation of titanium in dentistry. Dent Mater J 28: 20–36. 4. Asami, K., Chen, S.C., Habazaki, H., and K. Hashimoto. 1993. The surface characterization of titanium and titanium-nickel alloys in sulfuric acid. Corros Sci 35: 43–49. 5. Hanawa, T ., Asami, K., and K. Asaoka. 1998. Repassivation of titanium and surface oxide �lm regenerated in simulated bioliquid. J Biomed Mater Res 40: 530–538. 6. Hanawa T . and M. Ota. 1991. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12: 767–774. 7. Hanawa T . 1991. Titanium and its oxide �lm: a substrate for formation of apatite. In: J. E. Davies, ed., The Bone-Biomaterial Interface, pp. 49–61. Toronto, Ontario, Canada: University of Toronto Press. 8. Hanawa, T., Okuno, O., and H. Hamanaka. 1992. Compositional change in surface of Ti-Zr alloys in arti�cial bioliquid. J Jpn Inst Met 56: 1168–1173. 9. Bruesch, P., Muller, K., Atrens, A., and H. Neff. 1985. Corrosion of stainless-steels in chloride solutionan XPS investigation of passive �lms bruesch. Appl Phys 38: 1–18. 10. Jin, S. and A. Atrens. 1987. ESCA-studies of the structure and composition of the passive �lm formed on stainless steels by various immersion times in 0.1 M NaCl solution. Appl Phys A42: 149–165. 11. Hanawa, T., Hiromoto, S., Yamamoto, A., Kuroda, D., and K. Asami. 2002. XPS characterization of the surface oxide �lm of 316L stainless samples that were located in quasi-biological environments. Mater Trans 43: 3088–3092. 12. Smith, D. C., Pilliar , R. M., Metson, J. B., and N. S. McIntyre. 1991. Preparative procedures and surface spectroscopic studies. J Biomed Mater Res 25: 1069–1084. 13. Hanawa, T ., Hiromoto, S., and K. Asami. 2001. Characterization of the surface oxide �lm of a Co-Cr-Mo alloy after being located in quasi-biological environments using XPS. Appl Surf Sci 183: 68–75. 14. Nagai, A., Tsutsumi, Y., Suzuki, Y., Katayama, K., Hanawa, T., and K. Yamashita. 2012. Characterization of air-formaed surface oxide �lm on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks’ solution. Appl Surf Sci 258: 5490–5498. 15. Endo, K., Araki, Y ., and H. Ohno. 1989. In vitro and in vivo corrosion of dental Ag-Pd-Cu alloys. In: T. Okabe and S. Takahashi, eds., Transaction of International Congress on Dental Materials, November 1–4, 1989, Honolulu, Hawaii, The Academy of Dental Materials and The Japanese Society for Dental Materials and Devices, pp. 226–227. 16. Par�tt, G. D. 1976. The surface of titanium dioxide. Prog Surf Membr Sci 11: 181–226. 17. Westall, J. and H. Hohl. 1980. A comparison of electrostatic models for the oxide/solution interface. Adv Colloid Interface Sci 12: 265–294. 18. Healy, T. W. and D. W. Fuerstenau. 1965. The oxide-water interface–Interreaction of the zero point of charge and the heat of immersion. J Colloid Sci 20: 376–386. 19. Boehm, H. P. 1971. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc 52: 264–289. 20. Takeyama, M., Kashibuti, S., Nakabayashi, N., and E. Masuhara. 1978. Studies on dental self-curing resins(17)—Adhesion of PMMA with bovine enamel or dental alloys. J Jpn Soc Dent Appar Mater 19: 179–185. 21. Omura, I., Yamauchi, J., Nagase, Y., and F. Uemura. 1983. Jpn Published Unexamined Patent Application, 58-21607. 22. Ikemura, K. and T. Endo. 2010. A review of our development of dental adhesives –Effects of radical polymerization initiators and adhesive monomers on adhesion. Dent Mater J 29: 109–121. 23. Tanaka, T., Nagata, K., Takeyama, M., Atsuta, M., Nakabayashi, N., and E. Masuhara. 1981. 4-META opaque resin—A new resin strongly adhesive to nickel-chromium alloy. J Dent Res 60: 1697–1707. 24. Tanaka, T., Nagata, K., Takeyama, M., Nakabayashi, N., and E. Masuhara. 1980. Heat treatment of gold alloys to get adhesion with resin. J Jpn Soc Dent Appar Mater 21: 95–102. 25. Varga, J., Matsumura, H., Tabata, T., and E. Masuhara. 1985. Adhesive behavior of the alloys ‘ALBABOND E’ containing large percentage of Pd after various surface treatments. Dent Mater J 4: 181–190. 26. Ohno, H., Araki, Y., and M. Sagara. 1986. The adhesion mechanism of dental adhesive resin to the alloy—Relationship between Co-Cr alloy surface structure analyzed by ESCA and bonding strength of adhesive resin. Dent Mater J 5: 46–65. 27. Ohno, H., Araki, Y., Sagara, M., and Y. Yamane. 1986. The adhesion mechanism of dental adhesive resin to the alloy—Experimental evidence of the deterioration of bonding ability due to adsorbed water on the oxide layer. Dent Mater J 5: 211–216. 28. Ohno, H., Araki, Y ., Endo, K., and K. Kawashima. 1989. The adhesion mechanism of dental adhesive resin to the alloy—Adhesive ability of dental adhesive resin to the clean metal surface obtained by hydrogen gas reduction method. Dent Mater J 8: 1–8. 29. Brewis, D. M., Comyn, J., and J. L. Tegg. 1980. The durability of some epoxide adhesive-bonded joints on exposure to moist warm air. Int J Adhes Adhes 1: 35–39. 30. Ko, C. U. and J. P. Wightman. 1988. Experimental analysis of moisture intrusion into the Al/Li-polysulfone interface. J Adhes 25: 23–29. 31. Ohno, H., Endo, K., Araki, Y., and S. Asakura. 1992. Destruction of metal-resin adhesion due to water penetrating through the resin. J Mater Sci 27: 5149–5153. 32. Ohno, H., Endo, K., Araki, Y., and Y. Asakura. 1993. ESCA study on the destruction mechanism of metalresin adhesion due to water penetrating through the resin. J Mater Sci 28: 3764–3768. 33. Ohno, H., Araki, K., Endo, K., Yamane, Y., and I. Kawashima. 1996. Evaluation of water durability at adhesion interface by peeling test of resin �lm. Dent Mater J 15: 183–192. 34. Musil, R. 1987. Clinical veri�cation of the Silicoater technique, results of three-years’ experience. Dent Lab 35: 1709–1715. 35. Tanaka, T., Hirano, M., Kawahara, H., Matsumura, H., and M. Atsuta. 1988. A new io-coating surface treatment of alloys for dental adhesive resins. J Dent Res 67: 1376–1380. 36. Ohno, H., Araki, K., and K. Endo. 1992. A new method for promoting adhesion between precious metal allo ys and dental adhesives. J Dent Res 71: 1326–1331. 37. Ohno, H., Endo, K., Yamane, Y., and I. Kawashima. XPS study on the weakest zone in the adhesion structure between resin containing 4-META and precious metal alloys treated with different surface modi�cation methods. Dent Mater J 20: 330–337. 38. Dotter, C. T. and M. P. Judkins. 1964. Transluminal treatment of arteriosclerotic obstruction of a new technique and preliminary report of its application. Circulation 30: 654–670. 39. Palmaz, J. C., Sibbitt, R. R., Tio, F. O., Reuter, S. R., Peters, J. E., and F. Garcia. 1986. Expandable intraluminal vascular graft. A feasibility study. Surgery 99: 199–205. 40. Roubin, G. S., Robinson, K. A., King, S. B., Gianturco, C., Black, A. J., Brown, J. E., Siegel, R. J., and J. S. Douglas. 1987. Early and late results of intracoronary arterial stenting after coronary angioplasty in dog. Circulation 76: 891–897. 41. Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F., and L. Kappenberger. 1987. Intravascular stents to prevent occlusion and restenosis after trans-luminal angioplasty. N Eng J Med 316: 701–706. 42. Phatouros, C. C., Higashida, R. T., and A. M. Malek. 2000. Endovascular stenting for carotid artery stenosis: Preliminary experience using the shape-memory-alloy-recoverable-technology (SMART) stent. Am J Neuroradiol 21: 732–738. 43. Roubin, G. S., Yadav, S., Iyer, S. S., and J. Vitek. 1996. Carotid stent-supported angioplasty: A neurovascular intervention to prevent stroke. Am J Cardiol 78: 8–12. 44. Dietrich, E. B. 1996. Aortic endografting: Visions of things to come. J Endovasc Surg 3: R21–R23. 45. Wholey, M. H., Wholey, M., Bergeron, P., Diethrich, E. B., Henry, M., Laborde, J. C., Mathias, K. et al. 1998. Current global status of carotid artery stent placement. Cathet Cardiovasc Diagn 44: 1–6. 46. Richter, G. M., Palmaz, J. C., Allenberg, J.R., and G. W. Kauffmann. Percutaneous stent grafts for aorticaneurysms–preliminary experience with a new procedure. Radiology 34: 511–518. 47. Fattori, R. and T. Pi va. 2003. Drug-eluting stents in vascular intervention. Lancet 362: 247–249. 48. Sous a, J. E., Serruys, P. W., and M. A. Costa. 2003. New frontiers in cardiology: Drug-eluting stents – Pt. I. Circulation 107: 2274–2279. 49. Sousa, J. E., Serruys, P. W., and M. A. Costa. 2003. New frontiers in cardiology: Drug-eluting stents – Pt. II. Circulation 107: 2283–2289. 50. Nakayama, Y., Kim, J. Y., Nishi, S., Ueno, H., and T. Matsuda. 2001. Development of high-performance stent: Gelatinous photogel-coated stent that permits drug delivery and gene transfer. J Biomed Mater Res 57: 559–566. 51. Ishihara, K., Ueda, T., and N. Nakabayashi. 1990. Preparation of phospholipids polymers and their properties as hydrogel membrane. Polym J 30: 355–360. 52. Huang, N. P., Michel, R., Voros, J., Textor, M., Hofer, R., Rossi, A., Elbert, D. L., Hubbell, J. A., and N. D. Spencer. 2001. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Surface-analytical characterization and resistance to serum and �brinogen adsorption. Langmuir 17: 489–498. 53. Sianos, G., Hofma, S., Lighthart, J. M. R., Saia, F., Hoye, A., Lemos, P. A., and P. W. Serruys. 2004. Stent fracture and restenosis in the drug-eluting stent era. Catheter Cardiovasc Interv 61: 111–116. 54. Consgny, P . M. 2000. Endotherial cell seeding on prosthetic surfaces. J Long Term Eff Med Implants 10: 79–95. 55. Seifalian, A. M., Tiwari, A., Hamilton, G., and H. J. Salacinski. 2001. Improving the clinical patency of prostetic vascular and coronary artery bypass grafts: The role of seeding and tissue engineering. Artif Organs 26: 489–495. 56. Heintz, C., Riepe, G., Birken, L., Kaiser, E., Chakfe, N., Morlock, M., Delling, G., and H. Imig. 2001. Corroded Nitinol wires in explanted aortic endografts. J Endovasc Ther 8: 248–253. 57. Mahato, R. I. 2005. Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids. Boca Raton, FL: CRC Press (Ald. Cat. No. Z705102). 58. Kenausis, G. L., Vörös, J., Elbert, D. L., Huang, N., Hofer, R., Ruiz-Taylor, L., Textor, M., Hubbell, J.A., and N. D. Spencer. 2000. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B104: 3298–3309. 59. Huang, N. P., Csucs, G., Emoto, K., Nagasaki, Y., Kataoka, K., Textor, M., and N. D. Spencer. 2002. Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to TiO 2 surfaces. Langmuir 18: 252–258. 60. Zhang, F., Kang, E. T., Neoh, K. G., Wang, P., and K. L. Tan. 2001. Surface modi�cation of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials 22: 1541–1548. 61. To, Y., Hasuda, Surface modi�cation photoimmobilization antibiofouling. Ast H., Sakuragi, M., and S. Tsuzuki. 2007. of plastic, glass and titanium by of polyethylene glycol for Biomater 3: 1024–1032. 62. Tanaka, Y., Doi, H., Iwasaki, Y., Hiromoto, S., Yoneyama, T., Asami, K., Imai, H., and T. Hanawa. 2007. Electrodeposition of amine-terminated-poly(ethylene glycol) to Ti surface. Mater Sci Eng C27: 206–212. 63. Tanaka, Y., Doi, H., Kobayashi, E., Yoneyama, T., and T. Hanawa. 2007. Determination of the immobilization manner of amine-terminated poly(ethylene glycol) electrodeposited on a Ti surface with XPS and GD-OES. Mater Trans 48: 287–292. 64. Tanaka, Y., Saito, H., Tsutsumi, Y., Doi, H., Imai, H., and T. Hanawa. 2008. Active hydroxyl groups on surface oxide �lm of Ti, 316l stainless steel, and cobalt-chromium-molybdenum alloy and its effect on the immobilization of poly(ethylene glycol). Mater Trans 49: 805–811. 65. Tanaka, Y., Matsuo, Y., Komiya, T., Tsutsumi, Y., Doi, H., Yoneyama, T., and T. Hanawa. 2010. Characterization of the spatial immobilization manner of poly(ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion. J Biomed Mater Res 92A: 350–358. 66. Tanaka, Y., Matin, K., Gyo, M., Okada, A., Tsutsumi, Y., Doi, H., Nomura, N., Tagami, J., and T. Hanawa. 2010. Effects of electrodeposited poly(ethylene glycol) on bio�lm adherence to titanium. J Biomed Mater Res 95A: 1105–1113. 67. Balachander, N. and C. N. Sukenik. 1990. Monolayer transformation by nucleophilic substitution: Applications to the creation of new monolayer assemblies. Langmuir 6: 1621–1627. 68. Bain, C. D., Troughton, Y., Tao, Y. T., Evall, J., Whitesides, G. M., and R. G. Nuzzo. 1989. Formation of monolayer �lms by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111: 437–335. 69. Dubo is, L. H. and R. G. Nuzzo. 1992. Synthesis, structure, and properties of model organic surfaces. Ann Rev Phys Chem 43: 437–463. 70. UlMan, A. 1996. Formation and structure of self-assembled monolayers. Chem Re v 96: 1533–1554. 71. Xiao, S. J., Textor, M., and N. D. Spencer. 1998. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)containing peptides to titanium surfaces. Langmuir 14: 5507–5516. 72. Gawalt, E. S., Avaltroni, M. J., Danahy, M. P., Silverman, B. M., Hanson, E. L., Midwood, K. S., Schwarzbauer, J. E., and J. Schwartz. 2003. Bonding organics to Ti alloys: Facilitating human osteoblast attachment and spreading on surgical implant materials. Langmuir 19: 200–204. 73. Brovelli, D., Hahner, G., Ruis, L., Hofer, R., Kraus, G., Waldner, A., Schlosser, J., Oroszlan, P., Ehart, M., and N. D. Spencer. 1999. Highly oriented, self-assembled alkanephosphate monolayers on tantalum(V) oxide surfaces. Langmuir 15: 4324–4327. 74. Textor, M., Ruiz, L., Hofer, R., Rossi, K., Feldman, K., Hahner, G., and N. D. Spencer. 2000. Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir 16: 3257–3271. 75. Fang, J. L., Wu, N. J., Wang, Z. W., and Y. Li. 1991. XPS, AES and Raman studies of an antitarnish �lm on tin. Corrosion 47: 169–173. 76. Van Alsten, J. G. 1999. Self-Assembled monolayers on engineering metals: structure, derivatization, and utility. Langmuir 15: 7605–7614. 77. Gawalt, E. S., Avaltroni, M. J., Koch, N., and J. Schwartz. 2001. Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir 17: 5736–5738. 78. Verrier, S., Pallu, S., Bareille, R., Jonczyk, A., Meyer, J., Dard, M., and J. Amedee. 2002. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials 23: 585–596. 79. Reyes, C. D., Petrie, T. A., Burns, K. L., Schwartz, Z., and A. J. Garcia. 2007. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 28: 3228–3235. 80. Hynes, R. O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687. 81. Bagn o, A., Piovan, A., Dettin, M., Chiarion, A., Brun, P., Gambaretto, R., Fontana, G., Di Bello, C., Palu, G., and I. Castagliuolo. 2007. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bone 40: 693–699. 82. Elmengaard, B., Bechtold, J. E., and K. Soballe. 2005. In vivo study of the effect of RGD treatment on bone ongrowth on press-�t titanium alloy implants. Biomaterials 26: 3521–3526. 83. Ramm elt, S., Illert, T., Bierbaum, S., Scharnweber, D., Zwipp, H., and W. Schneiders. 2006. Coating of titanium implants with collagen. RGD peptide and chondroitin sulfate. Biomaterials 27: 5561–5571. 84. Auernheimer, J., Zuk owski, D., Dahmen, C., Kantlehner, M., Enderle, A., Goodman, S. L., and H. Kessker. 2005. Titanium implant materials with improved biocompatibility through coating with phosphate-anchored cyclic RGD peptides. ChemBiochem 6: 2034–2040. 85. Ferr is, D. M., Moodie, G. D., Dimond, P. M., Gioranni, C. W., Ehrlich, M. G., and R. F. Valentini. 1999. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 20: 2323–2331. 86. Xiao, S. J., T extor, M., Spencer, N. D., Wieland, M., Keller, B., and H. Sigrist. 1997. Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med 8: 867–872. 87. Silverman, B. M., Wieghaus, K. A., and J. Schwartz. 2005. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir 21: 225–228. 88. Schwartz, J., A valtroni, M. J., Danahy, M. P., Silverman, B. M., Hanson, E. L., Schwarzbauer, J. E., Midwood, K. S., and E. S. Gawalt. 2003. Cell attachment and spreading on metal implant materials. Mater Sci Eng C23: 395–400. 89. Tanaka, Y., Saito, H., Tsutsumi, Y., Doi, H., Nomura, N., Imai, H., and T. Hanawa. 2009. Effect of pH on the interaction between zwitterion and titanium oxide. J Colloid Interface Sci 330: 138–143. 90. Oya, K., Tanaka, Y., Saito, H., Kurashima, K., Nogi, K., Tsutsumi, H., Tsutsumi, Y., Doi, H., Nomura, N., and T. Hanawa. 2009. Calci�cation by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials 30: 1281–1286. 91. Yamanouchi, N., Pugdee, K., Chang, W. J., Lee, S. Y., Yoshinari, M., Hayakawa, T., and Y. Abiko. 2008. Gene expression monitoring in osteoblasts on titanium coated with �bronectin-derived peptide. Dent Mater J 27: 744–750. 92. Urist, M. R. 1965. Bone: Formation by autoinduction. Science 150: 893–899. 93. Lee, Y. M., Nam, S. H., Seol, Y. J., Kim, T. I., Lee, S. J., Ku, Y., Rhyu, I. C., Chung, C. P., Han, S. B., and S. M. Choi. 2003. Enhanced bone augmentation by controlled release of recombinant human bone morphogenetic protein-2 from bioabsorbable membranes. J Periodontol 74: 865–872. 94. Wikesjo, U. M., Lim, W. H., Thomson, R. C., Cook, A. D., Wozney, J. M., and W. R. Hardwick. 2003. Periodontal repair in dogs: Evaluation of a bioabsorbable space-providing macroporous membrane with recombinant human bone morphogenetic protein-2. J Periodontol 74: 635–647. 95. Seol, Y. J., Park, Y. J., Lee, S. C., Kim, K. H., Lee, J. Y., Kim, T. I., Lee, Y. M., Ku, Y., Rhyu, I. C., Han, S. B., and C. P. Chung. 2006. Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res 77A: 599–607. 96. Puleo, D. A., Kissling, R. A., and M. S. Sheu. 2002. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 23: 2079–2087. 97. Nanci, A., Wuest, J. D., Peru, L., Brunet, P., Sharma, V., Zalzal, S., and M. D. McKee. 1998. Chemical modi�cation of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 40: 324–335. 98. Nagai, M., Hayakawa, T., Fukatsu, A., Yamamoto, M., Fukumoto, M., Nagahama, F., Mishima, H., Yoshinari, M., Nemoto, K., and T. Kato. 2002. In vitro study of collagen coating of titanium implants for initial cell attachment. Dent Mater J 21: 250–260. 99. Viornery, C., Guenther, H. L., Aronsson, B. O., Péchy, P., Descouts, P., and M. Grätzel. 2002. Osteoblast culture on polished titanium disks modi�ed with phosphonic acids. J Biomed Mater Res 62: 149–155. 100. Chang, W. J., Qu, K. L., Lee, S. Y., Chen, J. Y., Abiko, Y., Lin, C. T., and H. M. Huang. 2008. Type I collagen grafting on titanium surfaces using low-temperature grow discharge. Dent mater J 27: 340–346. 101. Kamata, H., Suzuki, S., Tanaka, Y., Tsutsumi, Y., Doi, H., Nomura N., Hanawa, T., and K. Moriyama. 2011. Effects of pH, potential, and deposition time on the durability of collagen electrodeposited to titanium. Mater Trans 52: 81–89. 102. Pugdee, K., Shibata, Y ., Yamamichi, N., Tsutsumi, H., Yoshinari, M., Abiko, Y., and T. Hayakawa. 2007. Gene expression of MC3T3-E1 cells on bibronectin-immobilized titanium using tresyl chloride activation technique. Dent Mater J 26: 647–655. 103. Abe, Y., Hiasa, K., Takeuchi, M., Yoshida, Y., Suzuki, K., and Y. Akagawa. 2005. New surface modi�cation of titanium implant with phosphor-amino acid. Dent mater J 24: 536–540. 104. Cadotte, A. J. and T. B. DeMarse. 2005. Poly-HEMA as a drug delivery device for in vitro neutral network on micro-electrode arrays. J Neural Eng 2: 114–122. 105. Belkasm J. S., Munro, C. A., Shoichet, M. S., Johnston, M., and R. Midha. 2005. Long-term in vivo biochemical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials 26: 1741–1749. 106. Indol�, L., Causa, F ., and P. A. Netti. 2009. Coating process and early stage adhesion evaluation of poly(2hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications. J Mater Sci: Mater Med 20: 1541–1551. 107. Fenelon, A. M. and C. B. Breslin. 2003. The electropolymerization of pryrole at a CuNi electrode: Corrosion protection properties. Corros Sci 45: 2837–2850. 108. Mengoli, G. 1979. Feasibility of polymer �lm coatings through electroinitiated polymerization in aqueous medium. Adv Polym Sci 33: 1–31. 109. De Giglio, E., Guascito, M. R., Sabbatini, L., and G. Zambonin. 2001. Electropolymerization of pyrrole on titanium substrates for the future development of new biocompatible surfaces. Biomaterials 22: 2609–2616. 110. Rammelt, U., Nguyen, P . T., and W. Plieth. 2003. Corrosion protection by ultrathin �lms of conducting polymers. Electrochem Acta 48: 1257–1262. 111. De Giglio, E., Gennaro, I., Sabbatini, L., and G. Zambonin. 2001. Analytical characterization of collagenand/or hydroxyapatite-modi�ed polypyrrole �lms electrosynthesized on Ti-substrates for the development of new bioactive surfaces. J Biomater Sci Polym Ed 12: 63–76. 112. De Giglio, E., Cometa, S., Satriano, C., Sabbatini, L., and G. Zambonin. 2009. Electrosynthesis of hydrogel �lms on metal substrates for the development of coatings with tunable drug delivery performance. J Biomed Mater Res 88A: 1048–1057. 113. Taira, Y. and Y. Imai. 1995. Primer for bonding resin to metal. Dent Mater 11: 2–6. 114. Smith, N. A., Antoun, G. G., Ellis, A. B., and W. C. Crone. 2004. Improved adhesion between nickeltitanium shape memory alloy and polymer matrix via silane coupling agents. Compos Part A-Apply S 35: 1307–1312. 115. Abboud, M., Casaubieilh, L., Morval, F., Fontanille, M., and E. Duguet. 2000. PMMA-based composite materials with reactive ceramic �llers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements. J Biomed Mater Res 53: 728–736. 116. Yoshida, K., T anagawa, M., and M. Atsuta. 2001. Effects of �ller composition and surface treatment on the characteristics of opaque resin composites. J Biomed Mater Res 58: 525–530. 117. Kanie, T., Arika wa, H., Fujii, K., and K. Inoue. 2004. Physical and mechanical properties of PMMA resins containing γ-methacryloxypropyltrimethoxysilane. J Oral Rehabil 31: 161–171. 118. Ferracane, J. L., Berge, H. X., and J. R. Condon. 1998. In vitro aging of dental composites in water-effect of degree of conversion, �ller volume, and �ller matrix coupling. J Biomed Mater Res 42: 465–472. 119. Bexell, U., Olsson, M., Jhansson, M., Samuelsson, J., and P. E. Sundell. 2003. A tribological study of a novel pre-treatment with linseed oil bonded to mercaptosilane-treated aluminum. Surf Coat Tech 166: 141–152. 120. Bexell, U., Olsson, M., Sundell, P. E., Jhansson, M., Carlsson, P., and M. A. Hellsing 2004. ToF-SIMS study of linseed oil bonded to mercaptosilane-treated aluminum. Appl Surf Sci 231–232: 362–365. 121. Jayaseelan, S. K. and W. J. V. Ooji. 2001. Rubber-to-metal bonding by silanes. J Adhes Sci Technol 15: 967–991. 122. Sakamoto, H., Doi, H., Kobayashi, E., Yoneyama, T., Suzuki, Y., and T. Hanawa. 2007. Structure and strength at the bonding interface between a titanium-segmentated polyurethane composite through 3-(trimethoxysilyl) propyl methacrylate for arti�cial organs. J Biomed Mater Res 82A: 52–61. 123. Sakamoto, H., Hirohashi, Y., Saito, H., Doi, H., Tsutsumi, Y., Suzuki, Y., Noda, K., and T. Hanawa. 2008. Effect of active hydroxyl groups on the interfacial bond strength of titanium with segmented polyurethane through γ-mercaptopropyl trimethoxysilane. Dent Mater J 27: 81–92. 124. Sakamoto, H., Hirohashi, Y ., Doi, H., Tsutsumi, Y., Suzuki, Y., Noda, K., and T. Hanawa. 2008. Effect of UV irradiation on the shear bond strength of titanium with segmented polyurethane through γ-mercapto propyl trimethoxysilane. Dent Mater J 27: 124–132. 125. Nomura, N., Baba, Y ., Kawamura, A., Fujinuma, S., Chiba, A., Masahashi, N., and S. Hanada. 2007. Mechanical properties of porous titanium compacts reinforced by UHMWPE. Mater Sci Forum 539– 543: 1033–1037. 126. Nakai, M., Niinomi, M., Akahori, T., Yamanoi, H., Itsuno, S., Haraguchi, N., Itoh, Y., Ogasawara, T., Onishi, T., and T. Shindo. Effect of silane coupling treatment on mechanical properties of porous pure titanium �lled with PMMA for biomedical applications. J Jpn Inst Metal 72: 839–845. 127. Possart, W. 1998. Adhesion of polymers. In: J. A. Hansen and H. J. Breme, eds., Metals as Biomaterials, pp. 197–218. New York: Wiley. 128. Worch, H. 1998. Special thin organic �lm. In: J. A. Hansen and H. J. Breme, eds., Metals as Biomaterials, pp. 177–196. New York: Wiley. 129. Xiao, S. J., K enausis, G., and M. Textor. 2001. Biochemical modi�cation of titanium surfaces. In: D. M. Brunrtte, P. Tenvall, M. Textor, and P. Thomsen, eds., Titanium in Medicine, pp. 417–455. Amsterdam, the Netherlands: Springer. 13 Chapter 13. Evolution of Current and Future Concepts of Biocompatibility Testing 1. Williams, D. 2003. Revisiting the de�nition of biocompatibility. Med Device Technol 14:10–12. 2. Williams, D. J. 1999. The Williams Dictionary of Biomaterials. Liverpool, U.K.: Liverpool University Press. 3. Anderson, J. M., Rodriguez, A., and Chang, D. T. 2008. Foreign body reaction to biomaterials. Semin Immunol 20:86–100. 4. Williams, D. F. 2008. On the mechanisms of biocompatibility. Biomaterials 29:2941–2953. 5. Nixon, M., Taylor, G., Sheldon, P., Iqbal, S. J., and Harper, W. 2007. Does bone quality predict loosening of demented total hip replacements? J Bone Joint Surg 89-B:1303–1308. 6. Gurbel, P. A. and Tantry, U. S. 2007. Stent thrombosis: Role of compliance and nonresponsiveness to antiplatelet therapy. Rev Cardiovasc Med 8(Suppl):S19–S26. 7. McFadden, E. P., Stabile, E., Regar, E. et al. 2004. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364:1519–1521. 8. Dhert, W. J. 1994. Retrieval studies on calcium phosphate-coated implants. Med Prog Technol 20:143–154. 9. Geesink, R. G., deGroot, K., and Klein, C. P. 1987. Chemical implant �xation using hydroxyl- apatite coatings. The development of a human total hip prosthesis for chemical �xation using hydroxyl-apatite coatings on titanium substrates. Clin Orthop Relat Res 225:147–170. 10. Bessa, P. C., Casai, M., and Reis, R. L. 2008. Bone morphogenic proteins in tissue engineering: The road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2:81–96. 11. Cowan, C. M., Soo, C., Ting, K., and Wu, B. 2005. Evolving concepts in bone tissue engineering. Curr Topics Dev Biol 66:239–285. 12. Cranenburg, E. C. M., Schurgers, L. J., and Vermeer, C. 2007. Vitamin K: Coagulation vitamin that became omnipotent. Thromb Haemost 98:120–125. 13. Irish, J. D. 2004. A 5,500 year old arti�cial human tooth from Egypt: A historical note. Int J Oral Maxillofac Implants 19:645–647. 14. Sanan, A. and Haines, S. J. 1997. Repairing holes in the head: A history of cranioplasty. Neurosurgery 40:588–603. 15. Balls, M. 1985. Scienti�c procedures on living animals: Proposals for reform of the 1876 cruelty to animals act. Altern Lab Anim 12:225–242. 16. Zimmer, H. G. 2001. Perfusion of isolated organs and the �rst heart-lung machine. Can J Cardiol 17:963–969. 17. Kaplan, J. and Hukku, B. 1998. Cell line characterization and authentication. Methods Cell Biol 57:203–216. 18. Braybrook, J. H. 1997. Biocompatibility assessment of medical devices and materials. Chichester, U.K.: Wiley. 19. Schneider, W. H. 1996. The history of research on blood group genetics: Initial discovery and diffusion. Hist Philos Life Sci 18:277–303. 20. Malda, J., Rouwkema, J., Leeuwenbergh, S., Dhert, W. J., and Kirkpatrick, C. J. 2008. Crossing frontiers in biomaterials and regenerative medicine. Regen Med 3:765–768. 21. Zilla, P., Bezuidenhout, D., and Human, P. 2007. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials 28:5009–5027. 22. Belanger, M. C. and Marois, Y. 2001. Hemocompatibility, biocompatibility, in¥ammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review. J Biomed Mater Res (Appl Biomater) 58:467–477. 23. Knetsch, M. L. W ., Olthof, N., and Koole, L. H. 2007. Polymers with tunable toxicity: A reference scale for cytotoxicity testing of biomaterial surfaces. J Biomed Mater Res 82:947–957. 24. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. 25. Johnson, I. 1998. Fluorescent probes for living cells. Histochem J 30:123–140. 26. Kroczek, R. A. 1993. Southern and northern analysis. J Chromato gr 618:133–145. 27. Fido, R. J., T atham, A. S., and Shewry, P. R. 1995. Western blotting analysis. Methods Mol Biol 49:423–437. 28. Butler, J. E. 2000. Enzyme-linked immunosorbent assay. J Immunoassay 21:165–209. 29. Malling, H. V. 1970. Chemical mutagens as a possible genetic hazard in human populations. Am Ind Hyg Assoc J 31:657–666. 30. Ames, B. N., Lee, F. D., and Durston, W. E. 1973. An improved test system for the detection and classi�cation of mutagens and carcinogens. Proc Natl Acad Sci USA 70:782–786. 31. Møller, P. 2006. The alkaline comet assay: Towards validation in biomonitoring of DNA damaging exposures. Basic Clin Pharmacol Toxicol 98:336–345. 32. Burlinson, B., Tice, R. R., Speit, G. et al. 2007. Fourth international workgroup on genotoxicity testing: Results in the in vivo comet assay workgroup. Mutat Res 627:31–35. 33. Gerberick, G. F., Ryan, C. A., Dearman, R. J., and Kimber, I. 2007. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods 41:54–60. 34. McGarry, H. F. 2007. The murine local lymph node assay: Regulatory and potency considerations under REACH. Toxicology 238:71–89. 35. Basketter, D. A., McFadden, J. F., Gerberick, F., Cockshott, A., and Kimber, I. 2009. Nothing is perfect, not even the local lymph node assay: A commentary and the implications for REACH. Contact Dermat 60(2):65–69. 36. Vinardell, M. P. and Mitjans, M. 2008. Alternative methods for eye and skin irritation tests: An overview. J Pharm Sci 97:46–59. 37. Hartung, T. 2002. Comparison and validation of novel pyrogens tests based on the human fever reaction. Altern Lab Anim 30(Suppl 2):49–51. 38. Fennrich, S., Fischer, M., Hartung, T., Lexa, P., Montag-Lessing, T., Sonntag, H. G., Weigandt, M., and Wendel, A. 1999. Detection of endotoxins and other pyrogens using human whole blood. Dev Biol Stand 101:131–139. 39. van Tienho ven, E. A. E., Korbee, D., Schipper, L., Verharen, H. W., and De Jong, W. H. 2006. In vitro and in vivo (cyto)toxicity assays using PVC and LDPE as model materials. J Biomed Mater Res 78:175–182. 40. Katsnelson, A. 2009. The scientists: Newsblog: Are lab standards harmful? http://www.the-scientist.com/ blog/print/55552/ (accessed July 27, 2009). 41. Richter, S. H., Garner, J. P., and Würbel, H. 2009. Environmental standardization: Cure or cause of poor reproducibility in animal experiments? Nat. Methods 6:257–261. 42. El Ghalzbzouri, A., Commandeur, S., Rietveld, M. H., Mulder, A. A., and Willemze, R. 2008. Replacement of animal-derived collagen matrix by human �broblast-derived dermal matrix for human skin equivalent products. Biomaterials 30:71–78. 43. Walles, T., Weimer, M., Linke, K., Michaelis, J., and Mertsching, H. 2007. The potential of bioarti�cial tissues in oncology research and treatment. Onkologie 30:388–394. 44. Yliperttula, M., Cung, B. G., Navaladi, A., Manchabi, A., and Urtti, A. 2008. High-throughput screening of cell responses to biomaterials. Eur J Pharm Sci 35:151–160. 45. Anderson, D. G., Levenberg, S., and Langer, R. 2004. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22:863–866. 14 Chapter 14. Biocompatibility of Elastomers Ai, H., H. Meng, I. Ichinose et al. 2003. Biocompatibility of layer-by-layer self-assembled nano�lm on silicone rubber for neurons. J Neurosci Methods 128:1–8. Albanese, A., R. Barbucci, J. Belleville et al. 1994. In vitro biocompatibility evaluation of a heparinizable material (PUPA), based on polyurethane and poly(amido-amine) components. Biomaterials 15:129–136. Anderson, J. M., A. Hiltner, Q. H. Zhao et al. 1992. Cell/polymer interactions in the biodegradation of polyurethanes. In Biodegradable Polymers and Plastics, eds. Vert, M., Feijen, J., Albertson, A., Scott, G., Chiellini, E., pp. 122–136. Cambridge, U.K.: Royal Society of Chemistry. Anderson, J. M. and K. M. Miller. 1984. Biomaterial biocompatibility and the macrophage. Biomaterials 5:5–10. Anderson, J. M., A. Rodriguez, and D. T. Chang. 2008. Foreign body reaction to biomaterials. Semin Immunol 20:86–100. Asberg, A. E. and V. Videm. 2005. Activation of neutrophil granulocytes in an in vitro model of a cardiopulmonary bypass. Artif Organs 29:927–936. Ashar, B., R. S. Ward, Jr., and L. R. Turcotte. 1981. Development of a silica-free silicone system for medical applications. J Biomed Mater Res 15:663–672. Ashby, R. D., A. M. Cromwick, and T. A. Foglia. 1998. Radiation crosslinking of a bacterial medium-chainlength poly(hydroxyalkanoate) elastomer from tallow. Int J Biol Macromol 23:61–72. Asplund, J. O., T. Bowden, T. Mathisen, and J. Hilborn. 2007. Synthesis of highly elastic biodegradable poly(urethane urea). Biomacromolecules 8:905–911. Auroy, P., P. Duchatelard, N. E. Zmantar, and M. Hennequin. 1996. Hardness and shock absorption of silicone rubber for mouth guards. J Prosthet Dent 75:463–471. Autian, J. 1974. Biological models for the testing of the toxicity of biomaterials. In Polymers in Medicine and Surgery, ed. Kronenthal, R., pp. 181–203. New York: Plenum Press. Bacakova, L., V. Svorcik, V. Rybka et al. 1996. Adhesion and proliferation of cultured human aortic smooth muscle cells on polystyrene implanted with N+, F+ and Ar+ ions: Correlation with polymer surface polarity and carbonization. Biomaterials 17:1121–1126. Backovic, A., H. L. Huang, B. Del Frari, H. Piza, L. A. Huber, and G. Wick. 2007. Identi�cation and dynamics of proteins adhering to the surface of medical silicones in vivo and in vitro. J Proteome Res 6:376–381. Bakker, D., C. A. Van Blitterswijk, W. T. Daems, and J. J. Grote. 1988. Biocompatibility of six elastomers in vitro. J Biomed Mater Res 22:423–439. Bakker, D., C. A. van Blitterswijk, S. C. Hesseling, W. T. Daems, W. Kuijpers, and J. J. Grote. 1990a. The behavior of alloplastic tympanic membranes in Staphylococcus aureus-induced middle ear infection. I. Quantitative biocompatibility evaluation. J Biomed Mater Res 24:669–688. Bakker, D., C. A. van Blitterswijk, S. C. Hesseling, H. K. Koerten, W. Kuijpers, and J. J. Grote. 1990b. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear. J Biomed Mater Res 24:489–515. Bakker, W. W., B. van der Lei, P. Nieuwenhuis, P. Robinson, and H. L. Bartels. 1991. Reduced thrombogenicity of arti�cial materials by coating with ADPase. Biomaterials 12:603–606. Bal, B. T., H. Yilmaz, C. Aydin, S. Karakoca, and S. Yilmaz. 2009. In vitro cytotoxicity of maxillofacial silicone elastomers: Effect of accelerated aging. J Biomed Mater Res B Appl Biomater 89:122–126. Balabanian, C. A., J. Coutinho-Netto, T. L. Lamano-Carvalho, S. A. Lacerda, and L. G. Brentegani. 2006. Biocompatibility of natural latex implanted into dental alveolus of rats. J Oral Sci 48:201–205. Balagadde, F. K., L. You, C. L. Hansen, F. H. Arnold, and S. R. Quake. 2005. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309:137–140. Bambauer, R., R. Latza, S. Bambauer, and E. Tobin. 2004. Large bore catheters with surface treatments versus untreated catheters for vascular access in hemodialysis. Artif Organs 28:604–610. Barak, P., Y. Coquet, T. R. Halbach, and J. A. E. Molina. 1991. Biodegradability of polyhydroxybutyrate ( co-h ydroxyvalerate) and starch-incorporated polyethylene plastic �lms in soils. J Environ Qual 20:173–179. Baumann, M., O. Witzke, R. Dietrich et al. 2003. Prolonged catheter survival in intermittent hemodialysis using a less thrombogenic micropatterned polymer modi�cation. ASAIO J 49:708–712. Baumgartner, J. N., C. Z. Yang, and S. L. Cooper. 1997. Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials 18:831–837. Berkland, C., D. W. Pack, and K. K. Kim. 2004. Controlling surface nano-structure using ¥ow-limited �eldinjection electrostatic spraying (FFESS) of poly(D,L-lactide-co-glycolide). Biomaterials 25:5649–5658. Bettinger, C. J., J. P. Bruggeman, J. T. Borenstein, and R. S. Langer. 2008. Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials 29:2315–2325. Bilbao, R., D. P. Reay, B. M. Koppanati, and P. R. Clemens. 2004. Biocompatibility of adenoviral vectors in poly(vinyl chloride) tubing catheters with presence or absence of plasticizer di-2-ethylhexyl phthalate. J Biomed Mater Res A 69:91–96. Bini, T. B., S. J. Gao, T. C. Tan et al. 2004. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nano�bre tubes for peripheral nerve regeneration. Nanotechnology 15:1459–1464. Bischoff, F. 1972. Organic polymer biocompatibility and toxicology. Clin Chem 18:869–894. Blass, C. R. 1992. PVC as a biomedical polymer—Plasticizer and stabilizer toxicity. Med Device Technol 3:32–40. Blum, U., M. Langer, G. Spillner et al. 1996. Abdominal aortic aneurysms: Preliminary technical and clinical results with transfemoral placement of endovascular self-expanding stent-grafts. Radiology 198:25–31. Boelens, J. J., S. A. Zaat, J. Meeldijk, and J. Dankert. 2000. Subcutaneous abscess formation around catheters induced by viable and nonviable Staphylococcus epidermidis as well as by small amounts of bacterial cell wall components. J Biomed Mater Res 50:546–556. Boldin, I., A. Klein, E. M. Haller-Schober, and J. Horwath-Winter. 2008. Long-term follow-up of punctal and proximal canalicular stenoses after silicone punctal plug treatment in dry eye patients. Am J Ophthalmol 146:968–972. Bonart, R. 1968. X-ray investigations concerning the physical structure of crosslinking in segmented urethane elastomers. J Macromol Sci Phys B7:115–138. Bon�eld, T. L. and J. M. Anderson. 1993. Functional versus quantitative comparison of IL 1 beta from monocytes/macrophages on biomedical polymers. J Biomed Mater Res 27:1195–1199. Boone, J. L. and S. A. Braley. 1966. Resistance of silicone rubbers to body ¥uids. Rubber Chem Technol 39:1293–1297. Boretos, J. W. and W. S. Pierce. 1967. Segmented polyurethane: A new elastomer for biomedical applications. Science 158:1481–1482. Boswald, M., M. Girisch, J. Greil et al. 1995. Antimicrobial activity and biocompatibility of polyurethane and silicone catheters containing low concentrations of silver: A new perspective in prevention of polymerassociated foreign-body-infections. Zentralbl Bakteriol 283:187–200. Boswald, M., K. Mende, W. Bernschneider et al. 1999. Biocompatibility testing of a new silver-impregnated catheter in vivo. Infection 27:S38–S42. Bouchemal, K., S. Briancon, E. Perrier, H. Fessi, I. Bonnet, and N. Zydowicz. 2004. Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsi�cation. Int J Pharm 269:89–100. Brand, K. G., L. C. Buoen, K. H. Johnson, and I. Brand. 1975. Etiological factors, stages, and the role of the foreign body in foreign body tumorigenesis. Cancer Res 35:279–286. Branger, B., M. Garreau, G. Baudin, and J. C. Gris. 1990. Biocompatibility of blood tubings. Int J Artif Organs 13:697–703. Briganti, E., P. Losi, A. Raf�, M. Scoccianti, A. Munao, and G. Soldani. 2006. Silicone based polyurethane materials: A promising biocompatible elastomeric formulation for cardiovascular applications. J Mater Sci Mater Med 17:259–266. Brinton, L. A. and S. L. Brown. 1997. Breast implants and cancer. J Natl Cancer Inst 89:1341–1349. de Brito Alves, S., A. A. de Queiroz, and O. Z. Higa. 2003. Digital image processing for biocompatibility studies of clinical implant materials. Artif Organs 27:444–446. Brodbeck, W. G., M. Macewan, E. Colton, H. Meyerson, and J. M. Anderson. 2005. Lymphocytes and the foreign body response: Lymphocyte enhancement of macrophage adhesion and fusion. J Biomed Mater Res A 74:222–229. Brown, J. M. 1995. Polyurethane and silicone: Myths and misconceptions. J Intraven Nurs 18:120–122. Bruck, S. D. 1980. Problems and artefacts in the evaluation of polymeric materials for medical uses. Biomaterials 1:103–107. Bschorer, R., G. B. Koveker, G. Gehrke, M. Jeschke, and V. Hermanutz. 1994. Experimental improvement of microvascular allografts with the new material polyurethane and microvessel endothelial cell seeding. Int J Oral Maxillofac Surg 23:389–392. Caballero, M., M. Bernal-Sprekelsen, C. Calvo, X. Farre, L. Quinto, and L. Alos. 2003. Polydimethylsiloxane versus polytetra¥uoroethylene for vocal fold medialization: Histologic evaluation in a rabbit model. J Biomed Mater Res B Appl Biomater 67:666–674. Cabanlit, M., D. Maitland, T. Wilson et al. 2007. Polyurethane shape-memory polymers demonstrate functional biocompatibility in vitro. Macromol Biosci 7:48–55. Capone, C. D. 1992. Biostability of a non-ether polyurethane. J Biomater Appl 7:108–129. Carroll, J. C., S. D. Schwaitzberg, A. A. Ucci, Jr., R. M. Schlesinger, D. Lauritzen, and G. R. Sant. 1993. New matrix material for potential use in “reversible” vasectomy. Preliminary animal biocompatibility studies. Urology 41:34–37. Casenave, J. P. 1986. Interaction of platelets with surfaces. In Blood Surface Interactions, Biological Principles Underlying Hemocompatibility with Arti©cial Surfaces, eds. Casenave, J. P., Davies, J. A., Kazatchkine, M. D.,Van Aken, W. G., pp. 89–105. Amsterdam, the Netherlands: Elsevier. Castner, D. G. and B. D. Ratner. 2002. Biomedical surface science: Foundations to frontiers. Surf Sci 500:28–60. Cavallini, G., M. Lanfredi, M. Lodi, M. Govoni, and M. Pampolini. 1987. Detection and measurement of a cellular immune-reactivity towards polyester and polytetra¥uoroethylene grafts. Leukocyte adherence inhibition test. Acta Chir Scand 153:179–184. Chapiro, A. 1983. Radiation grafting of hydrogels to improve the thromboresistance of polymers. Eur Polym J 19:859. Chauvel-Lebret, D. J., P. Pellen-Mussi, P. Auroy, and M. Bonnaure-Mallet. 1999. Evaluation of the in vitro biocompatibility of various elastomers. Biomaterials 20:291–299. Chen, Q. Z., A. Bismarck, U. Hansen et al. 2008. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 29:47–57. Chen, J. H., J. Wei, C. Y. Chang, R. F. Laiw, and Y. D. Lee. 1998. Studies on segmented polyetherurethane for biomedical application: Effects of composition and hard-segment content on biocompatibility. J Biomed Mater Res 41:633–648. Chesmel, K. D. and J. Black. 1995. Cellular responses to chemical and morphologic aspects of biomaterial surfaces. I. A novel in vitro model system. J Biomed Mater Res 29:1089–1099. Chou, C. W., S. H. Hsu, and P. H. Wang. 2008. Biostability and biocompatibility of poly(ether)urethane containing gold or silver nanoparticles in a porcine model. J Biomed Mater Res A 84:785–794. Christenson, E. M., J. M. Anderson, and A. Hiltner. 2004a. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: In vivo and in vitro correlations. J Biomed Mater Res A 70:245–255. Christenson, E. M., J. M. Anderson, and A. Hiltner. 2006a. Antioxidant inhibition of poly(carbonate urethane) in vivo biodegradation. J Biomed Mater Res A 76:480–490. Christenson, E. M., M. Dadsetan, and A. Hiltner. 2005. Biostability and macrophage-mediated foreign body reaction of silicone-modi�ed polyurethanes. J Biomed Mater Res A 74:141–155. Christenson, E. M., M. Dadsetan, M. Wiggins, J. M. Anderson, and A. Hiltner. 2004b. Poly(carbonate urethane) and poly(ether urethane) biodegradation: In vivo studies. J Biomed Mater Res A 69:407–416. Christenson, E. M., S. Patel, J. M. Anderson, and A. Hiltner. 2006b. Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials 27:3920–3926. Collier, T., J. Tan, M. Shive, S. Hasan, A. Hiltner, and J. Anderson. 1998. Biocompatibility of poly(etherurethane urea) containing dehydroepiandrosterone. J Biomed Mater Res 41:192–201. Colter, K. D., M. Shen, and A. T. Bell. 1977. Reduction of progesterone release rate through silicone membranes by plasma polymerization. Biomater Med Devices Artif Organs 5:13–24. Conconi, M. T., S. Lora, A. M. Menti, P. Carampin, and P. P. Parnigotto. 2006. In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering. Tissue Eng 12:811–819. Cooper, G. L. and C. C. Hopkins. 1985. Rapid diagnosis of intravascular catheter-associated infection by direct Gram staining of catheter segments. New Eng J Med 312:1142–1147. Cooper, S. and A. Toblosky. 1966. Properties of linear elastomeric polyurethanes. J Appl Polym Sci 10:1837–1844. Corea-Tellez, K. S., P. Bustamante-Montes, M. Garcia-Fabila, M. A. Hernandez-Valero, and F. VazquezMoreno. 2008. Estimated risks of water and saliva contamination by phthalate diffusion from plasticized polyvinyl chloride. J Environ Health 71:34–39, 45. Cormio, L., K. Turjanmaa, M. Talja, L. C. Andersson, and M. Ruutu. 1993. Toxicity and immediate allergenicity of latex gloves. Clin Exp Allergy 23:618–623. Coury, A., K. Cobian, P. Cahalan, and A. Jevne. 1984. Biomedical uses of polyurethanes. In Advances in Urethane Science and Technology, eds. Frisch, K., Klempner, D., pp. 133–139. Lancaster, PA: Technomic Publishing Co, Inc. Coury, A. J. and C. N. Hobot. 1991. Method for producing polyurethanes form poly-(hydroxyalkyl urethane). U.S. Patent 5, 001, 210. Coury, A. J., C. M. Hobot, P. C. Slaikeu, K. B. Stokes, and P. T. Cahalan. 1990. A new family of implantable biostable polyurethanes. Transactions of the 16th Annual Meeting for the Society for Biomaterials, Charleston, SC, p. 158. Coury, A. J., P. C. Slaikeu, P. T. Cahalan, K. B. Stokes, and C. M. Hobot. 1988. Factors and interactions affecting the performance of polyurethane elastomers in medical devices. J Biomater Appl 3:130–179. Coury, A. J., K. B. Stokes, P. T. Cahalan, and P. C. Slaikeu. 1987. Biostability considerations for implantable polyurethanes. Life Support Syst 5:25–39. Crommen, J., J. Vandorpe, and E. Schacht. 1993. Degradable poly-phazenes for biomedical applications. J Control Release 24:167–180. D’Arrigo, P., C. Giordano, P. Macchi, L. Malpezzi, G. Pedrocchi-Fantoni, and S. Servi. 2007. Synthesis, platelet adhesion and cytotoxicity studies of new glycerophosphoryl-containing polyurethanes. Int J Artif Organs 30:133–143. De Scheerder, I. K., K. L. Wilczek, E. V. Verbeken et al. 1995a. Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries. Cardiovasc Intervent Radiol 18:227–232. De Scheerder, I. K., K. L. Wilczek, E. V. Verbeken et al. 1995b. Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries. Atherosclerosis 114:105–114. Defrere, J. and A. Franckart. 1992. Te¥on/polyurethane arthroplasty of the knee: The �rst 2 years preliminary clinical experience in a new concept of arti�cial resurfacing of full thickness cartilage lesions of the knee. Acta Chir Belg 92:217–227. Deisler, P. F., Jr. 1987. New silicone modi�ed TPEs for medical applications. Rubber World 196:24–29. Deng, M., L. S. Nair, S. P. Nukavarapu et al. 2010. Biomimetic, bioactive etheric polyphosphazene-poly(lactideco-glycolide) blends for bone tissue engineering. J Biomed Mater Res A 92:114–125. Diebold, J., J. P. Camilleri, M. Reynes, and P. Callard. 1977. Anatomie Pathologique Générale. Paris, France: Baillière. Dobrovolskaia, M. A., J. D. Clogston, B. W. Neun, J. B. Hall, A. K. Patri, and S. E. McNeil. 2008. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8:2180–2187. Donawa, M. 2006a. New efforts to harmonise clinical evaluation. Med Device Technol 17:28, 30, 32. Donawa, M. 2006b. Proposed amendments to the medical devices Directives. Med Device Technol 17:22–25. Donawa, M. 2006c. Managing clinical data for worldwide acceptance. Med Device Technol 17:26–28. Dopico-Garcia, M. S., J. M. Lopez-Vilarino, and M. V. Gonzalez-Rodriguez. 2007. Antioxidant content of and migration from commercial polyethylene, polypropylene, and polyvinyl chloride packages. J Agric Food Chem 55:3225–3231. Dumitriu, S. and D. Dumitriu. 1990. Biocompatibility of polymers. In Polymeric Biomaterials, ed. Dumitriu, S., pp. 100–158. New York: Dekker Inc. Duvernoy, O., T. Malm, J. Ramstrom, and S. Bowald. 1995. A biodegradable patch used as a pericardial substitute after cardiac surgery: 6- and 24-month evaluation with CT. Thorac Cardiovasc Surg 43:271–274. El Fray, M., P. Prowans, J. E. Puskas, and V. Altstadt. 2006. Biocompatibility and fatigue properties of polystyrene-polyisobutylene-polystyrene, an emerging thermoplastic elastomeric biomaterial. Biomacromolecules 7:844–850. Elespuru, R., R. Agarwal, A. Atrakchi et al. 2009. Current and future application of genetic toxicity assays: The role and value of in vitro mammalian assays. Toxicol Sci 109:172–179. Everaert, E. P., H. C. Van Der Mei, J. De Vries, and H. J. Busscher. 1995. Hydrophobic recovery of repeatedly plasma-treated silicone rubber. I. Storage in air. J Adhes Sci Technol 9:1263. Fabre, T., J. Bertrand-Barat, G. Freyburger et al. 1998. Quanti�cation of the in¥ammatory response in exudates to three polymers implanted in vivo. J Biomed Mater Res 39:637–641. Feldman, D. S., S. M. Hultman, R. S. Colaizzo, and A. F. von Recum. 1983. Electron microscope investigation of soft tissue ingrowth into Dacron velour with dogs. Biomaterials 4:105–111. Feynmann, R. F. 1992. There’s plenty of room at the bottom [data storage]. J Microelectromech Syst 1:60–66. Feynmann, R. F. 1993. In�nitesimal machinery. J Microelectromech Syst 2:4–14. Fidkowski, C., M. R. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, and Y. Wang. 2005. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 11:302–309. Fishbein, L. 1984. Toxicity of the components of poly(vinylchloride) polymers additives. Prog Clin Biol Res 141:113–136. Fountain, S. W., J. Duf�n, C. A. Ward, H. Osada, B. A. Martin, and J. D. Cooper. 1979. Biocompatibility of standard and silica-free silicone rubber membrane oxygenators. Am J Physiol 236:H371–H375. Freij-Larsson, C., M. Kober, B. Wesslen, E. Willquist, and P. Tengvall. 1993. Effects of a polymeric additive in a biomedical poly(ether urethaneurea). J Appl Polym Sci 49:815–821. Frisch, K. and J. Saunders. 1962. Polyurethanes: Chemistry and Technology. New-York: Interscience Publishers. Fu, A. Y., H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake. 2002. An integrated microfabricated cell sorter. Anal Chem 74:2451–2457. Gagnon, K. D., R. W. Lenz, R. J. Farris, and R. C. Fuller. 1994a. Chemical modi�cation of bacterial elastomers: 1 Peroxide crosslinking. Polymer 35:4358. Gagnon, K. D., R. W. Lenz, R. J. Farris, and R. C. Fuller. 1994b. Chemical modi�cation of bacterial elastomers: 2 sulfur vulcanization. Polymer 35:4368. Ganning, A. E., U. Brunk, and G. Dallner. 1984. Phthalate esters and their effect on the liver. Hepatology 4:541–547. Geary, C., C. Birkinshaw, and E. Jones. 2008. Characterisation of Bionate polycarbonate polyurethanes for orthopaedic applications. J Mater Sci Mater Med 19:3355–3363. Gerecht, S., S. A. Townsend, H. Pressler et al. 2007. A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 28:4826–4835. Gogolewski, S. 1991. in vitro and in vivo molecular stability of medical polyurethanes: A review. Trends Polym Sci 1:47–61. Gottenbos, B., H. C. Van Der Mei, H. J. Busscher, D. W. Grijpma, and J. Feijen. 1999. Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J Mater Sci Mater Med 10:853–855. Granstroem, L., L. Backam, and S. E. Dahlgren. 1986. Tissue reaction to polypropylene and polyester in obese patients. Biomaterials 7:455–458. Grasel, T. G. and S. L. Cooper. 1989. Properties and biological interactions of polyurethane anionomers: Effect of sulfonate incorporation. J Biomed Mater Res 23:311–338. Grasel, T. G., D. C. Lee, A. Z. Okkema, T. J. Slowinski, and S. L. Cooper. 1988. Extraction of polyurethane block copolymers: Effects on bulk and surface properties and biocompatibility. Biomaterials 9:383–392. Grasel, T. G., J. A. Pierce, and S. L. Cooper. 1987. Effects of alkyl grafting on surface properties and blood compatibility of polyurethane block copolymers. J Biomed Mater Res 21:815–842. Greil, J., T. Spies, M. Boswald et al. 1999. Analysis of the acute cytotoxicity of the Erlanger silver catheter. Infection 27 Suppl 1:S34–S37. Gu, S. Y. and J. Ren. 2005. Process optimization and empirical modeling for electrospun poly(D, L-lactide) �bers using response surface methodology. Macromol Mater Eng 290:1097–1105. Guelcher, S. A. 2008. Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 14:3–17. Guidoin, R., M. Sigot, M. King, and M. F. Sigot-Luizard. 1992. Biocompatibility of the Vascugraft: Evaluation of a novel polyester urethane vascular substitute by an organotypic culture technique. Biomaterials 13:281–288. Han, D. K., K. D. Park, and Y. H. Kim. 1998. Sulfonated poly(ethylene oxide)-grafted polyurethane copolymer for biomedical applications. J Biomater Sci Polym Ed 9:163–174. Han, D. K., K. Park, K. D. Park, K. D. Ahn, and Y. H. Kim. 2006. In vivo biocompatibility of sulfonated PEOgrafted polyurethanes for polymer heart valve and vascular graft. Artif Organs 30:955–959. Hansen, O. G. 2007. Phthalate labelling of medical devices. Med Device Technol 18:10–12. Hansen, O. G. 2008. New developments in PVC. Med Device Technol 19:17–19. Hansen, C. L., E. Skordalakes, J. M. Berger, and S. R. Quake. 2002. A robust and scalable micro¥uidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci USA 99:16531–16536. Haugen, H., J. Aigner, M. Brunner, and E. Wintermantel. 2006. A novel processing method for injectionmolded polyether-urethane scaffolds. Part 2: Cellular interactions. J Biomed Mater Res B Appl Biomater 77:73–78. Henry, T. J. 1985. Guidelines for the Preclinical Safety Evaluation of Materials Used in Medical Devices. Washington, DC: Health Industry Manufacturers Association. Hergenrother, R. W., X. H. Yu, and S. L. Cooper. 1994. Blood-contacting properties of polydimethylsiloxane polyurea-urethanes. Biomaterials 15:635–640. Hess, F., R. Jerusalem, O. Reijnders et al. 1992. Seeding of enzymatically derived and subcultivated canine endothelial cells on �brous polyurethane vascular prostheses. Biomaterials 13:657–663. Heyde, M., M. Moens, L. Van Vaeck, K. M. Shakesheff, M. C. Davies, and E. H. Schacht. 2007. Synthesis and characterization of novel poly[(organo)phosphazenes] with cell-adhesive side groups. Biomacromolecules 8:1436–1445. Hill, S. S., B. R. Shaw, and A. H. Wu. 2001. The clinical effects of plasticizers, antioxidants, and other contaminants in medical polyvinylchloride tubing during respiratory and non-respiratory exposure. Clin Chim Acta 304:1–8. Hirt, T. D., P. Neuenschwander, and U. W. Suter. 1996. Telechelic diols from poly(r)-3hydroxybutyric acid and poly(r)-3-hydroxybutyric acid-co-(r)-3-hydroxyvaleric acid. Macromol Chem Phys 197:1609–1614. Hocking, P. J. and R. H. Marchessault. 1994. Chemistry and Technology of Biodegradable Polymers. London, U.K.: Chapman and Hall. Hodgins, D., J. M. Wasikiewicz, M. F. Grahn et al. 2007. Biocompatible materials developments for new medical implants. Med Device Technol 18:30, 32–35. Hoenich, N. A., R. Levin, and C. Pearce. 2005. Clinical waste generation from renal units: Implications and solutions. Semin Dial 18:396–400. Hollick, E. J., D. J. Spalton, and P. G. Ursell. 1999. Surface cytologic features on intraocular lenses: Can increased biocompatibility have disadvantages? Arch Ophthalmol 117:872–878. Hollick, E. J., D. J. Spalton, P. G. Ursell, and M. V. Pande. 1998. Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: Randomized comparison of the cellular reaction on the anterior lens surface. J Cataract Refract Surg 24:361–366. Holmes, D. R., A. R. Camrud, M. A. Jorgenson, W. D. Edwards, and R. S. Schwartz. 1994. Polymeric stenting in the porcine coronary artery model: Differential outcome of exogenous �brin sleeves versus polyurethane-coated stents. J Am Coll Cardiol 24:525–531. Hong, J., K. Nilsson Ekdahl, H. Reynolds, R. Larsson, and B. Nilsson. 1999. A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation and the effect of aspirin. Biomaterials 20:603–611. Hong, J. W., V. Studer, G. Hang, W. F. Anderson, and S. R. Quake. 2004. A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22:435–439. Hotta, A., E. Cochran, J. Ruokolainen et al. 2006. Semicrystalline thermoplastic elastomeric polyole�ns: Advances through catalyst development and macromolecular design. Proc Natl Acad Sci USA 103:15327–15332. Hsiue, G. H., S. D. Lee, and P. C. Chang. 1996. Surface modi�cation of silicone rubber membrane by plasma induced graft copolymerization as arti�cial cornea. Artif Organs 20:1196–1207. Hsu, S. H., Y. C. Kao, and Z. C. Lin. 2004. Enhanced biocompatibility in biostable poly(carbonate)urethane. Macromol Biosci 4:464–470. Hsu, S. H., C. M. Tang, and H. J. Tseng. 2006. Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res A 79:759–770. Hsu, S. H., C. M. Tang, and H. J. Tseng. 2008. Biostability and biocompatibility of poly(ester urethane)-gold nanocomposites. Acta Biomater 4:1797–1808. Hu, W. J., J. W. Eaton, T. P. Ugarova, and L. Tang. 2001. Molecular basis of biomaterial-mediated foreign body reactions. Blood 98:1231–1238. Huang, B., Y. Marois, R. Roy, M. Julien, and R. Guidoin. 1992. Cellular reaction to the Vascugraft polyesterurethane vascular prosthesis: In vivo studies in rats. Biomaterials 13:209–216. Huijberts, G. N., G. Eggink, P. de Waard, G. W. Huisman, and B. Witholt. 1992. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544. Hung, W. C., M. D. Shau, H. C. Kao, M. F. Shih, and J. Y. Cherng. 2009b. The synthesis of cationic polyurethanes to study the effect of amines and structures on their DNA transfection potential. J Control Release 133:68–76. Hunt, J. A., B. F. Flanagan, P. J. McLaughlin, I. Strickland, and D. F. Williams. 1996. Effect of biomaterial surface charge on the in¥ammatory response: Evaluation of cellular in�ltration and TNF alpha production. J Biomed Mater Res 31:139–144. Hunter, S. K., J. R. Scott, D. Hull, and R. L. Urry. 1988. The gamete and embryo compatibility of various synthetic polymers. Fertil Steril 50:110–116. Ifkovits, J. L. and J. A. Burdick. 2007. Review: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13:2369–2385. Imam, S. H., L. Chen, S. H. Gordon, R. L. Shogren, D. Weisleder, and R. V. Greene. 1998. Biodegradation of injection molded starch-poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blends in a natural compost environment. J Polym Environ 6:91–98. ISO. 1995. ISO 10993-7: Biological evaluation of medical devices. Part 7: Ethylene oxide sterilisation residuals. ISO. 1998. ISO 10993-13: Biological evaluation of medical devices. Part 13: Identi�cation and quanti�cation of degradation products from medical polymeric medical devices. ISO. 1999a. ISO 10993-5: Biological evaluation of medical devices. Part 5: Tests for in vitro cytotoxicity. ISO. 1999b. ISO 10993-9: Biological evaluation of medical devices. Part 9: Framework for identi�cation and quanti�cation of potential degradation products. ISO. 2002a. ISO 10993-4: Biological evaluation of medical devices. Part 4: Selection of tests for interaction with blood. ISO. 2002b. ISO 10993-17: Biological evaluation of medical devices. Part 7: Establishment of allowable limits for leachable substances. ISO. 2003a. ISO 10993-1: Biological evaluation of medical devices. Part 1: Evaluation and testing. ISO. 2003b. ISO 10993-3: Biological evaluation of medical devices. Part 3: Test for genotoxicity, carcinogenicity and reproductive toxicity. ISO. 2008. ISO 7405: Preclinical evaluation of biocompatibility of biomedical devices used in dentistry Test methods for dental materials. Ives, C. L., J. L. Zamora, S. G. Eskin et al. 1984. In vivo investigation of a new elastomeric vascular graft (Mitrathane). Trans Am Soc Artif Intern Organs 30:587–590. Iwamoto, R., K. Ohta, T. Matsuda, and K. Imachi. 1986. Quantitative surface analysis of Cardiothane 51 by FT-IR-ATR spectroscopy. J Biomed Mater Res 20:507–520. Jaakkola, J. J. and T. L. Knight. 2008. The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: A systematic review and meta-analysis. Environ Health Perspect 116:845–853. Jahangir, A. R., W. G. McClung, R. M. Cornelius, C. B. McCloskey, J. L. Brash, and J. P. Santerre. 2002. Fluorinated surface-modifying macromolecules: Modulating adhesive protein and platelet interactions on a polyether-urethane. J Biomed Mater Res 60:135–147. Jansen, B., M. Rinck, P. Wolbring, A. Strohmeier, and T. Jahns. 1994. In vitro evaluation of the antimicrobial ef�cacy and biocompatibility of a silver-coated central venous catheter. J Biomater Appl 9:55–70. Jayabalan, M., N. S. Kumar, K. Rathinam, and T. V. Kumari. 1991. In vivo biocompatibility of an aliphatic crosslinked polyurethane in rabbit. J Biomed Mater Res 25:1431–1432. Jeschke, M. G., V. Hermanutz, S. E. Wolf, and G. B. Koveker. 1999. Polyurethane vascular prostheses decreases neointimal formation compared with expanded polytetra¥uoroethylene. J Vasc Surg 29:168–176. Jiang, X., J. M. Ng, A. D. Stroock, S. K. Dertinger, and G. M. Whitesides. 2003. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. J Am Chem Soc 125:5294–5295. Jiao, Y. P. and F. Z. Cui. 2007. Surface modi�cation of polyester biomaterials for tissue engineering. Biomed Mater 2:R24–R37. Johnell, M., R. Larsson, and A. Siegbahn. 2005. The in¥uence of different heparin surface concentrations and antithrombin-binding capacity on in¥ammation and coagulation. Biomaterials 26:1731–1739. Johnson, H. J., S. J. Northup, P. A. Seagraves, P. J. Garvin, and R. F. Wallin. 1983. Biocompatibility test procedures for materials evaluation in vitro. I. Comparative test system sensitivity. J Biomed Mater Res 17:571–586. Jones, D. P. 1988. High quality silicones still dominate biomedical market after three decades. Elastomerics 120:12–16. Jongebloed, W. L., G. van der Veen, D. Kalicharan, M. V. van Andel, G. Bartman, and J. G. Worst. 1994. New material for low-cost intraocular lenses. Biomaterials 15:766–773. Kalicharan, D., W. L. Jongebloed, G. van der Veen, L. I. Los, and J. G. Worst. 1991. Cell-ingrowth in a silicone plombe. Interactions between biomaterial and scleral tissue after 8 years in situ: A SEM and TEM investigation. Doc Ophtalmol 78:307–315. Kalman, P. G., C. A. Ward, N. B. McKeown, D. McCullough, and A. D. Romaschin. 1991. Improved biocompatibility of silicone rubber by removal of surface entrapped air nuclei. J Biomed Mater Res 25:199–211. Kaluzny, J. J., W. Jozwicki, and H. Wisniewska. 2007. Histological biocompatibility of new, non-absorbable glaucoma deep sclerectomy implant. J Biomed Mater Res B Appl Biomater 81:403–409. Kannan, R. Y., H. J. Salacinski, D. S. Vara, M. Odlyha, and A. M. Seifalian. 2006. Review paper: Principles and applications of surface analytical techniques at the vascular interface. J Biomater Appl 21:5–32. Kao, W. J., A. Hiltner, J. M. Anderson, and G. A. Lodoen. 1994. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on strained poly(etherurethane urea) elastomers. J Biomed Mater Res 28:819–829. Kao, W. J., J. A. Hubbell, and J. M. Anderson. 1999. Protein-mediated macrophage adhesion and activation on biomaterials: A model for modulating cell behavior. J Mater Sci Mater Med 10:601–605. Karabanova, L. V., A. W. Lloyd, S. V. Mikhalovsky et al. 2006. Polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. J Mater Sci Mater Med 17:1283–1296. Kartalov, E. P., W. F. Anderson, and A. Scherer. 2006. The analytical approach to polydimethylsiloxane micro¥uidic technology and its biological applications. J Nanosci Nanotechnol 6:2265–2277. Kartalov, E. P. and S. R. Quake. 2004. Micro¥uidic device reads up to four consecutive base pairs in DNA sequencing-by-synthesis. Nucleic Acids Res 32:2873–2879. Kasemo, B. 1998. Biological surface science. Curr Opin Solid State Mater 3:451–459. Katbab, A. A., R. P. Burford, and J. L. Garnett. 1992. Radiation graft modi�cation of EPDM rubber. Int J Radiat Appl Instrum C Radiat Phys Chem 39:293–302. Kaur, I. P. and R. Smitha. 2002. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm 28:353–369. Kawashima, K. and H. Sato. 1997. Calcium effect on the membrane preparation of segmented poly(ether/ urethane/amide) (PEUN) as a biomedical material. J Biomater Sci Polym Ed 8:467–480. K eogh, J. R. and J. W. Eaton. 1994. Albumin binding surfaces for biomaterials. J Lab Clin Med 124:537–545. Keogh, J. R., M. F. Wolf, M. E. Overend, L. Tang, and J. W. Eaton. 1996. Biocompatibility of sulphonated polyurethane surfaces. Biomaterials 17:1987–1994. Khan, A. S., Z. Ahmed, M. J. Edirisinghe, F. S. Wong, and I. U. Rehman. 2008. Preparation and characterization of a novel bioactive restorative composite based on covalently coupled polyurethane-nanohydroxyapatite �bres. Acta Biomater 4:1275–1287. Kim, K., M. Yu, X. Zong et rate and hydrophilicity in poly(D,L-lactide) nano�ber applications. Biomaterials al. 2003. Control of degradation electrospun non-woven scaffolds for biomedical 24:4977–4985. Kirkpatrick, C. J. and C. Mittermayer. 1990. Theoretical and practical aspects of testing potential biomaterials in vitro. J Mater Sci Mater Med 1:9–13. Kleinsasser, N. H., K. Schmid, A. W. Sassen et al. 2006. Cytotoxic and genotoxic effects of resin monomers in human salivary gland tissue and lymphocytes as assessed by the single cell microgel electrophoresis (Comet) assay. Biomaterials 27:1762–1770. Kockro, R. A., J. A. Hampl, B. Jansen et al. 2000. Use of scanning electron microscopy to investigate the prophylactic ef�cacy of rifampin-impregnated CSF shunt catheters. J Med Microbiol 49:441–450. de Koning, G. J. M., H. M. M. van Bilsen, P. J. Lemstra et al. 1991. A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer 35:2090. Kossovsky, N. 1995. Can the silicone controversy be resolved with rational certainty? J Biomater Sci Polym Ed 7:97–100. Kossovsky, N. and C. J. Freiman. 1995. Physicochemical and immunological basis of silicone pathophysiology. J Biomater Sci Polym Ed 7:101–113. Kuncova-Kallio, J. and P. J. Kallio. 2006. PDMS and its suitability for analytical micro¥uidic devices. Conf Proc IEEE Eng Med Biol Soc 1:2486–2489. Kwon, I. K., S. Kidoaki, and T. Matsuda. 2005. Electrospun nano- to micro�ber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929–3939. Labow, R. S., J. P. Santerre, and G. Waghray. 1997. The effect of phospholipids on the biodegradation of polyurethanes by lysosomal enzymes. J Biomater Sci Polym Ed 8:779–795. Lafferty, R. M., B. Korsatko, and W. Korsatko. 1988. Biotechnology. Weinheim, Germany: VCH Verlagsgesellschaft. Lansman, S., P. Paakko, J. Ryhanen et al. 2005. Histologic analysis of bioabsorbable scleral buckling implants: An experimental study on rabbits. Retina 25:1032–1038. Lee, P. C., L. L. Huang, L. W. Chen, K. H. Hsieh, and C. L. Tsai. 1996a. Effect of forms of collagen linked to polyurethane on endothelial cell growth. J Biomed Mater Res 32:645–653. Lee, S. D., G. H. Hsiue, C. Y. Kao, and P. C. Chang. 1996b. Arti�cial cornea: Surface modi�cation of silicone rubber membrane by graft polymerization of pHEMA via glow discharge. Biomaterials 17:587–595. Leeper, H. M. and R. M. Wright. 1983. Elastomers in medicine. Rubber Chem Technol 56:523–556. Lehle, K., M. Stock, T. Schmid, S. Schopka, R. H. Straub, and C. Schmid. 2009. Cell-type speci�c evaluation of biocompatibility of commercially available polyurethanes. J Biomed Mater Res 90:312–318. Lelah, M. D. and S. L. Cooper. 1986. Polyurethanes in Medicine. Boca Raton, FL: CRC Press. Lelah, M. D., T. G. Grasel, J. A. Pierce, and S. L. Cooper. 1986. Ex vivo interactions and surface property relationships of polyetherurethanes. J Biomed Mater Res 20:433–468. Lelah, M. D., J. A. Pierce, L. K. Lambrecht, and S. L. Cooper. 1985. Polyetherurethane ionomers: Surface property/ex vivo blood compatibility relationships. J Colloid Interface Sci 104:422–439. de Lemos, M. L., L. Hamata, and T. Vu. 2005. Leaching of diethylhexyl phthalate from polyvinyl chloride materials into etoposide intravenous solutions. J Oncol Pharm Pract 11:155–157. Li, D. and J. Zhao. 1995. Surface biomedical effects of plasma on polyetherurethane. J Adhes Sci Technol 9:1249–1261. Lim, F., C. Z. Yang, and S. L. Cooper. 1994. Synthesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes. Biomaterials 15:408–416. Lim, F., X. H. Yu, and S. L. Cooper. 1993. Effects of oligoethylene oxide monoalkyl(aryl) alcohol ether grafting on the surface properties and blood compatibility of a polyurethane. Biomaterials 14:537–545. Lin-Gibson, S., S. Bencherif, J. A. Cooper et al. 2004. Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromolecules 5:1280–1287. Lindner, E., V. V. Cosofret, S. Ufer et al. 1994. Ion-selective membranes with low plasticizer content: Electroanalytical characterization and biocompatibility studies. J Biomed Mater Res 28:591–601. Link, J., B. Feyerabend, M. Grabener et al. 1996. Dacron-covered stent-grafts for the percutaneous treatment of carotid aneurysms: Effectiveness and biocompatibility-experimental study in swine. Radiology 200:397–401. Lipatov, Y. S. 1990. Peculiarities of self-organization in the production of interpenetrating polymer networks. J Macromol Sci Rev Macromol Chem Phys C30:209–231. Liu, J., M. Enzelberger, and S. Quake. 2002. A nanoliter rotary device for polymerase chain reaction. Electrophoresis 23:1531–1536. Liu, J., C. Hansen, and S. R. Quake. 2003. Solving the “world-to-chip” interface problem with a micro¥uidic matrix. Anal Chem 75:4718–4723. Lloyd, A. W. 2002. Interfacial bioengineering to enhance surface biocompatibility. Med Device Technol 13:18–21. Lobler, M., M. Sass, P. Michel, U. T. Hopt, C. Kunze, and K. P. Schmitz. 1999. Differential gene expression after implantation of biomaterials into rat gastrointestine. J Mater Sci Mater Med 10:797–799. Lodi, M., G. Cavallini, Biomaterials and immune towards PTFE and Dacron the leukocyte adherence 7:344–348. A. Susa, and M. Lanfredi. 1988. system: Cellular reactivity vascular substitutes pointed out by inhibition (LAI) test. Int Angiol Loff, S., T. Hannmann, U. Subotic, F. M. Reinecke, H. Wischmann, and J. Brade. 2008. Extraction of diethylhexylphthalate by home total parenteral nutrition from polyvinyl chloride infusion lines commonly used in the home. J Pediatr Gastroenterol Nutr 47:81–86. Loh, X. J., S. H. Goh, and J. Li. 2007. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomaterials 28:4113–4123. Loh, X. J., K. K. Tan, X. Li, and J. Li. 2006. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials 27:1841–1850. Lorenz, M. R., V. Holzapfel, A. Musyanovych et al. 2006. Uptake of functionalized, ¥uorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials 27:2820–2828. Luu, Y. K., K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou. 2003. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 89:341–353. Ma, Z., Z. Mao, and C. Gao. 2007. Surface modi�cation and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces 60:137–157. Macocinschi, D., D. Filip, M. Butnaru, and C. D. Dimitriu. 2009. Surface characterization of biopolyurethanes based on cellulose derivatives. J Mater Sci Mater Med 20:775–783. Mahdavi, A., L. Ferreira, C. Sundback et al. 2008. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc Natl Acad Sci USA 105:2307–2312. Maki, D. G., C. E. Weise, and H. W. Sara�n. 1977. A semiquantitative culture method for identifying intravenous-catheter-related infection. New Engl J Med 296:1305–1309. Maki, D. G., S. J. Wheeler, and S. M. Stolz. 1991. Study of a novel antiseptic-coated central venous catheter. Crit Care Med 19:99. Marchant, R. E., J. M. Anderson, K. Phua, and A. Hiltner. 1984a. in vivo biocompatibility studies. II. Biomer: Preliminary cell adhesion and surface characterization studies. J Biomed Mater Res 18:309–315. Marchant, R., A. Hiltner, C. Hamlin, A. Rabinovitch, R. Slobodkin, and J. M. Anderson. 1983. In vivo biocompatibility studies. I. The cage implant system and a biodegradable hydrogel. J Biomed Mater Res 17:301–325. Marchant, R. E., K. M. Miller, and J. M. Anderson. 1984b. In vivo biocompatibility studies. V. in vivo leukocyte interactions with Biomer. J Biomed Mater Res 18:1169–1190. Mardis, H. K., R. M. Kroeger, J. J. Morton, and J. M. Donovan. 1993. Comparative evaluation of materials used for internal ureteral stents. J Endourol 7:105–115. Marois, Y., R. Guidoin, D. Boyer et al. 1989. In vivo evaluation of hydrophobic and �brillar microporous polyetherurethane urea graft. Biomaterials 10:521–531. Martin, D. J., L. A. Warren, P. A. Gunatillake, S. J. McCarthy, G. F. Meijs, and K. Schindhelm. 2000. Polydimethylsiloxane/polyether-mixed macrodiol-based polyurethane elastomers: Biostability. Biomaterials 21:1021–1029. Martz, H., R. Paynter, J. C. Forest, A. Downs, and R. Guidoin. 1987. Microporous hydrophilic polyurethane vascular grafts as substitutes in the abdominal aorta of dogs. Biomaterials 8:3–11. Massa, T. M., M. L. Yang, J. Y. Ho, J. L. Brash, and J. P. Santerre. 2005. Fibrinogen surface distribution correlates to platelet adhesion pattern on ¥uorinated surface-modi�ed polyetherurethane. Biomaterials 26:7367–7376. Mathur, A. B., T. O. Collier, W. J. Kao et al. 1997. In vivo biocompatibility and biostability of modi�ed polyurethanes. J Biomed Mater Res 36:246–257. Maturri, L., A. Azzolini, G. L. Campiglio, and E. Tardito. 1991. Are synthetic prostheses really inert? Preliminary results of a study on the biocompatibility of Dacron vascular prostheses and Silicone skin expanders. Int Surg 76:115–118. McCoy, T. J., H. D. Wabers, and S. L. Cooper. 1990. Series shunt evaluation of polyurethane vascular graft materials in chronically AV-shunted canines. J Biomed Mater Res 24:107–129. McCulley, J. P. 2003. Biocompatibility of intraocular lenses. Eye Contact Lens 29:155–163. McMillin, C. R. 1994. Elastomers for biomedical application. Rubber Chem Technol 67:417. Menconi, M. J., T. Owen, K. A. Dasse, G. Stein, and J. B. Lian. 1992. Molecular approaches to the characterization of cell and blood/biomaterial interactions. J Card Surg 7:177–187. Miller, K. M. and J. M. Anderson. 1989. In vitro stimulation of �broblast activity by factors generated from human monocytes activated by biomedical polymers. J Biomed Mater Res 23:911–930. van Minnen, B., M. B. van Leeuwen, B. Stegenga et al. 2005. Short-term in vitro and in vivo biocompatibility of a biodegradable polyurethane foam based on 1,4-butanediisocyanate. J Mater Sci Mater Med 16:221–227. Mirzadeh, H., A. A. Katbab, and R. P. Burford. 1993. CO-pulsed laser induced surface grafting of acrylamide onto ethylene-propylene rubber. Int J Radiat Appl Instrum C Radiat Phys Chem 42:53–56. Mo, X. M., C. Y. Xu, M. Kotaki, and S. Ramakrishna. 2004. Electrospun P(LLA-CL) nano�ber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883–1890. Moharamzadeh, K., I. M. Brook, R. Van Noort, A. M. Scutt, K. G. Smith, and M. H. Thornhill. 2008. Development, optimization and characterization of a full-thickness tissue engineered human oral mucosal model for biological assessment of dental biomaterials. J Mater Sci Mater Med 19:1793–1801. Moreira Pda, L., P. R. Marreco, A. M. Moraes, M. L. Wada, and S. C. Genari. 2004. Analysis of cellular morphology, adhesion, and proliferation on uncoated and differently coated PVC tubes used in extracorporeal circulation (ECC). J Biomed Mater Res B Appl Biomater 69:38–45. Morrison, C., R. Macnair, C. MacDonald, A. Wykman, I. Goldie, and M. H. Grant. 1995. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured �broblasts and osteoblasts. Biomaterials 16:987–992. Murakami, Y., T. Endo, S. Yamamura, N. Nagatani, Y. Takamura, and E. Tamiya. 2004. On-chip micro-¥ow polystyrene bead-based immunoassay for quantitative detection of tacrolimus (FK506). Anal Biochem 334:111–116. Murty, M. S. and H. Sugiyama. 2004. Biology of N-methylpyrrole-N-methylimidazole hairpin polyamide. Biol Pharm Bull 27:468–474. Nadeenko, V. G., I. R. Gol’dina, Z. D’Iachenko O, and L. V. Pestova. 1997. Comparative informative value of chromosome aberrations and sister chromatid exchanges in the evaluation of metals in the environment. Gig Sanit 3:10–13. Naim, J. O., R. J. Lanzafame, and C. J. van Oss. 1995. The effect of silicone-gel on the immune response. J Biomater Sci Polym Ed 7:123–132. Nakabayashi, N. and D. F. Williams. 2003. Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials 24:2431–2435. Nakamura, A., Y. Ikarashi, T. Tsuchiya et al. 1990. Correlations among chemical constituents, cytotoxicities and tissue responses: In the case of natural rubber latex materials. Biomaterials 11:92–94. Nakamura, A., Y. Kawasaki, K. Takada et al. 1992. Difference in tumor incidence and other tissue responses to polyetherurethanes and polydimethylsiloxane in long-term subcutaneous implantation into rats. J Biomed Mater Res 26:631–650. Nakaoka, R., T. Tsuchiya, K. Kato, Y. Ikada, and A. Nakamura. 1997. Studies on tumor-promoting activity of polyethylene: Inhibitory activity of metabolic cooperation on polyethylene surfaces is markedly decreased by surface modi�cation with collagen but not with RGDS peptide. J Biomed Mater Res 35:391–397. National Heart and Lung Institute. 1971. Annual Report of the Medical Devices Applications Program of the National Heart and Lung Institute, Bethesda, MD, U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. Nijst, C. L., J. P. Bruggeman, J. M. Karp et al. 2007. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 8:3067–3073. Nitschke, M., G. Schmack, A. Janke, F. Simon, D. Pleul, and C. Werner. 2002. Low pressure plasma treatment of poly(3-hydroxybutyrate): Toward tailored polymer surfaces for tissue engineering scaffolds. J Biomed Mater Res 59:632–638. Nukavarapu, S. P., S. G. Kumbar, J. L. Brown et al. 2008. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 9:1818–1825. Nyilas, E. and R. S. Ward, Jr. 1977. Development of blood-compatible elastomers. V. Surface structure and blood compatibility of avcothane elastomers. J Biomed Mater Res 11:69–84. Okkema, A. Z., T. A. Giroux, T. G. Grasel, and S. L. Cooper. 1987. Ionic polyurethanes: Surface and blood contacting properties. MRS Symposium on Biomedical Materials and Devices, Boston, MA. Oloffs, A., C. Grosse-Siestrup, S. Bisson, M. Rinck, R. Rudolph, and U. Gross. 1994. Biocompatibility of silver-coated polyurethane catheters and silver-coated Dacron material. Biomaterials 15:753–758. Oshima, H. and M. Nakamura. 1994. A study on reference standard for cytotoxicity assay of biomaterials. Biomed Mater Eng 4:327–332. Owen, G. R., D. O. Meredith, I. ap Gwynn, and R. G. Richards. 2005. Focal adhesion quanti�cation - A new assay of material biocompatibility? Review. Eur Cell Mater 9:85–96; discussion 85–96. Ozdemir, K. G., H. Yilmaz, and S. Yilmaz. 2009. In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. J Biomed Mater Res B Appl Biomater 90:82–86. Pangman, W. J. 1958. U.S. Patent N° 2, 842, 775. Pariente, J. L., L. Bordenave, R. Bareille et al. 1998. First use of cultured human urothelial cells for biocompatibility assessment: Application to urinary catheters. J Biomed Mater Res 40:31–39. Park, H. and K. Park. 1996. Biocompatibility issues of implantable drug delivery systems. Pharm Res 13:1770–1776. Peek, G. J., R. Scott, H. M. Killer, and R. K. Firmin. 2002. An in vitro method for comparing biocompatibility of materials for extracorporeal circulation. Perfusion 17:125–132. Pernagallo, S., J. J. Diaz-Mochon, and M. Bradley. 2009. A cooperative polymer-DNA microarray approach to biomaterial investigation. Lab Chip 9:397–403. Phillips, R. E., M. C. Smith, and R. J. Thoma. 1988. Biomedical applications of polyurethanes: Implications of failure mechanisms. J Biomater Appl 3:207–227. Pinchuk, L. 1994. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes. J Biomater Sci Polym Ed 6:225–267. Pinchuk, L., Y. P. Kato, M. L. Eckstein, G. J. Wilson, and D. C. MacGregor. 1993. Polycarbonate urethanes as elastomeric materials for long-term implant applications. Transactions of the 16th Annual Meeting for the Society for Biomaterials, Charleston, SC. p. 22. Pinchuk, L., G. J. Wilson, J. J. Barry, R. T. Schoephoerster, J. M. Parel, and J. P. Kennedy. 2008. Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials 29:448–460. Piskin, E. 1994. Review of biodegradable polymers as biomaterials. J Biomater Sci Polymer Ed 6:775–795. Pizzoferrato, A., C. R. Arciola, E. Cenni, G. Ciapetti, and S. Sassi. 1995. In vitro biocompatibility of a polyurethane catheter after deposition of ¥uorinated �lm. Biomaterials 16:361–367. Poirier, Y., C. Nawrath, and C. Somerville. 1995. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology 13:142–150. Pollock, E., E. J. Andrews, D. Lentz, and K. Sheikh. 1981. Tissue ingrowth and porosity of biomer. Trans Am Soc Artif Intern Organs 27:405–409. Pomerantseva, I., N. Krebs, A. Hart, C. M. Neville, A. Y. Huang, and C. A. Sundback. 2009. Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res 91:1038–1047. Pritchett, J. W. 2008. Curved-stem hip resurfacing: Minimum 20-year followup. Clin Orthop Relat Res 466:1177–1185. Quake, S. R. and A. Scherer. 2000. From micro- to nanofabrication with soft materials. Science 290:1536–1540. Rakhorst, G., H. C. Van der Mei, W. Van Oeveren, H. T. Spijker, and H. J. Busscher. 1999. Time-related contact angle measurements with human plasma on biomaterial surfaces. Int J Artif Organs 22:35–39. Rambour, R. P. 1973. A review of crazing and fracture in thermoplastics. J Polym Sci Macromol Rev 7:1–154. Ratner, B. D. 1983. Surface characterization of biomaterials by electron spectroscopy for chemical analysis. Ann Biomed Eng 11:313–336. Ratner, B. D., T. Horbett, A. S. Hoffman, and S. D. Hauschka. 1975. Cell adhesion to polymeric materials: Implications with respect to biocompatibility. J Biomed Mater Res 9:407–422. Razzak, M. T., K. Otsuhata, Y. Tabata, F. Ohashi, and A. Takeuchi. 1988. Modi�cation of natural rubber tubes for biomaterials. I. radiation induced grafting of N,N dimethyl acrylamide onto natural rubber tubes. J Appl Polym Sci 36:645. Razzak, M. T., K. Otsuhata, Y. Tabata, F. Ohashi, and A. Takeuchi. 1989. Modi�cation of natural rubber tubes for biomaterials. II. Radiation induced grafting of N,N dimethylaminoethylacrylate (DMAEA) onto natural rubber (NR) tubes. J Appl Polym Sci 38:829. Rechavia, E., F. Litvack, M. C. Fishbien, M. Nakamura, and N. Eigler. 1998. Biocompatibility of polyurethanecoated stents: Tissue and vascular aspects. Cathet Cardiovasc Diagn 45:202–207. Reed, A. M., J. Potter, and M. Szycher. 1994. A solution grade biostable polyurethane elastomer: ChronoFlex AR. J Biomater Appl 8:210–236. Ren, Y. and D. Mahon. 2007. Evaluation of microwave irradiation for analysis of carbonyl sul�de, carbon disul�de, cyanogen, ethyl formate, methyl bromide, sulfuryl ¥uoride, propylene oxide, and phosphine in hay. J Agric Food Chem 55:32–37. Ren, T. B., T. Weigel, T. Groth, and A. Lendlein. 2008. Microwave plasma surface modi�cation of silicone elastomer with allylamine for improvement of biocompatibility. J Biomed Mater Res A 86:209–219. Richard, R., M. Schwarz, K. Chan, N. Teigen, and M. Boden. 2009. Controlled delivery of paclitaxel from stent coatings using novel styrene maleic anhydride copolymer formulations. J Biomed Mater Res A 90:522–532. Roach, P., D. Eglin, K. Rohde, and C. C. Perry. 2007. Modern biomaterials: A review - Bulk properties and implications of surface modi�cations. J Mater Sci Mater Med 18:1263–1277. Rodrigues, L., I. M. Banat, J. Teixeira, and R. Oliveira. 2007. Strategies for the prevention of microbial bio�lm formation on silicone rubber voice prostheses. J Biomed Mater Res B Appl Biomater 81:358–370. Rogers, J. A. and R. G. Nuzzo. 2005. Recent progress in soft lithography. Mater Today 8:50–56. Rose, S. F., S. Okere, G. W. Hanlon, A. W. Lloyd, and A. L. Lewis. 2005. Bacterial adhesion to phosphorylcholine-based polymers with varying cationic charge and the effect of heparin pre-adsorption. J Mater Sci Mater Med 16:1003–1015. Rosenbluth, S. A., G. R. Weddington, W. L. Guess, and J. Autian. 1965. Tissue culture method for screening toxicity of plastic materials to be used in medical practice. J Pharm Sci 54:156–159. Rosengren, A., L. Faxius, N. Tanaka, M. Watanabe, and L. M. Bjursten. 2005. Comparison of implantation and cytotoxicity testing for initially toxic biomaterials. J Biomed Mater Res A 75:115–122. Rubin, J. P. and M. J. Yaremchuk. 1997. Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: A comprehensive review of the literature. Plast Reconstr Surg 100:1336–1353. Saad, B., T. D. Hirt, M. Welti, G. K. Uhlschmid, P. Neuenschwander, and U. W. Suter. 1997. Development of degradable polyesterurethanes for medical applications: In vitro and in vivo evaluations. J Biomed Mater Res 36:65–74. Saad, B., S. Matter, G. Ciardelli et al. 1996. Interactions of osteoblasts and macrophages with biodegradable and highly porous polyesterurethane foam and its degradation products. J Biomed Mater Res 32:355–366. Santerre, J. P., K. Woodhouse, G. Laroche, and R. S. Labow. 2005. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 26:7457–7470. Santos, L., D. Rodrigues, M. Lira et al. 2008. Bacterial adhesion to worn silicone hydrogel contact lenses. Optom Vis Sci 85:520–525. Sato, O., Y. Tada, and A. Takagi. 1986. The biologic fate of Dacron double velour vascular prostheses: A clinicopathological study. Japan J Surg 19:301–311. Satoh, K., R. Nonaka, K. Ohyama, F. Nagai, A. Ogata, and M. Iida. 2008. Endocrine disruptive effects of chemicals eluted from nitrile-butadiene rubber gloves using reporter gene assay systems. Biol Pharm Bull 31:375–379. Schellhammer, F., M. Walter, A. Berlis, H. G. Bloss, E. Wellens, and M. Schumacher. 1999. Polyethylene terephthalate and polyurethane coatings for endovascular stents: Preliminary results in canine experimental arteriovenous �stulas. Radiology 211:169–175. Schendel, K. U., L. Erdinger, G. Komposch, and H. G. Sonntag. 1995. Neon-colored plastics for orthodontic appliances. Biocompatibility studies. Fortschr Kieferorthop 56:41–48. Schmalz, G. and D. Arenholt-Bindslev. 2009. Basic aspects. In Biocompatibility of Dental Materials, eds. Schmalz, G., Arenholt-Bindslev, D., pp. 1–12. Berlin, Germany: Springer-Verlag. Schmidt, D. R. and W. J. Kao. 2007. The interrelated role of �bronectin and interleukin-1 in biomaterialmodulated macrophage function. Biomaterials 28:371–382. Schoen, F. J., H. Harasaki, K. M. Kim, H. C. Anderson, and R. J. Levy. 1988. Biomaterial-associated calci�cation: Pathology, mechanisms, and strategies for prevention. J Biomed Mater Res 22:11–36. Schubert, M. A., M. J. Wiggins, J. M. Anderson, and A. Hiltner. 1997. Role of oxygen in biodegradation of poly(etherurethane urea) elastomers. J Biomed Mater Res 34:519–530. Schubert, M. A., M. J. Wiggins, K. M. DeFife, A. Hiltner, and J. M. Anderson. 1996. Vitamin E as an antioxidant for poly(etherurethane urea): In vivo studies. Student Research Award in the Doctoral Degree Candidate Category, Fifth World Biomaterials Congress (22nd Annual Meeting of the Society for Biomaterials), Toronto, Canada, May 29–June 2, 1996. J Biomed Mater Res 32:493–504. Schubert, M. A., M. J. Wiggins, M. P. Schaefer, A. Hiltner, and J. M. Anderson. 1995. Oxidative biodegradation mechanisms of biaxially strained poly(etherurethane urea) elastomers. J Biomed Mater Res 29:337–347. Schweikl, H., K. A. Hiller, A. Eckhardt et al. 2008. Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials 29:1377–1387. Shintani, H. 1995. Formation and elution of toxic compounds from sterilized medical products: Methylenedianiline formation in polyurethane. J Biomater Appl 10:23–58. Shukla, P. G., B. Kalidhass, A. Shah, and D. V. Palaskar. 2002. Preparation and characterization of microcapsules of water-soluble pesticide monocrotophos using polyurethane as carrier material. J Microencapsul 19:293–304. Sigler, M., T. Paul, and R. G. Grabitz. 2005. Biocompatibility screening in cardiovascular implants. Z Kardiol 94:383–391. Sigot-Luizard, M. F., M. Sigot, R. Guidoin et al. 1993. A novel microporous polyurethane blood conduit: Biocompatibility assessment of the UTA arterial prosthesis by an organo-typic culture technique. J Invest Surg 6:251–271. Simmons, A., J. Hyvarinen, R. A. Odell et al. 2004. Long-term in vivo biostability of poly(dimethylsiloxane)/ poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials 25:4887–4900. Singh, J. and K. K. Agrawal. 1992. Modi�cation of poly(vinyl chloride) for biocompatibility improvement and biomedical application. Polymer-Plastics Technology and Engineering 31:203–212. Singh, M., A. R. Ray, P. Vasudevan, K. Verma, and S. K. Guha. 1979. Potential biosoluble carriers: Biocompatibility and biodegradability of oxidized cellulose. Biomater Med Devices Artif Organs 7:495–512. Sohn, L. L., O. A. Saleh, G. R. Facer, A. J. Beavis, R. S. Allan, and D. A. Notterman. 2000. Capacitance cytometry: Measuring biological cells one by one. Proc Natl Acad Sci USA 97:10687–10690. Sokolowski, W., A. Metcalfe, S. Hayashi, L. Yahia, and J. Raymond. 2007. Medical applications of shape memory polymers. Biomed Mater 2:S23–S27. Sperling, L. H. and R. Hu. 2002. In Polymer Blends Handbook, ed. Utracki, L. A., Vol. 56. Dordrecht, the Netherlands: Kluwer. Sperling, L. H. and V. Misra. 1997. In IPNs around the World: Science and Engineering, eds. Kim, S. C., Sperling, L. H., Vol. 16. New York: Wiley. Spiller, D., P. Losi, E. Briganti et al. 2007. PDMS content affects in vitro hemocompatibility of synthetic vascular grafts. J Mater Sci Mater Med 18:1097–1104. Sprague, E. A. and J. C. Palmaz. 2005. A model system to assess key vascular responses to biomaterials. J Endovasc Ther 12:594–604. Stang, A. and I. Witte. 2009. Performance of the comet assay in a high-throughput version. Mutat Res 675:5–10. Stokes, K. B. 1983. The biostability of various polyether polyurethanes under stress. Medtronic, Inc., Minneapolis, MN. Stokes, K. B. 1988. Polyether polyurethanes: Biostable or not? J Biomater Appl 3:228–259. Stokes, K. and K. Cobian. 1982. Polyether polyurethanes for implantable pacemaker leads. Biomaterials 3:225–231. Stokes, K., R. McVenes, and J. M. Anderson. 1995. Polyurethane elastomer biostability. J Biomater Appl 9:321–354. Stokes, K. B., P. Urbanski, and R. Cobian. 1987. New test methods for the evaluation of stress cracking and metal catalysed oxidation in implanted polymers. In Polyurethanes in Biomedical Engineering II, ed. Planck, H., pp. 109–127. Amsterdam, the Netherlands: Elsevier. Sundback, C. A., J. Y. Shyu, Y. Wang et al. 2005. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26:5454–5464. Szelest-Lewandowska, A., B. Masiulanis, A. Klocke, and B. Glasmacher. 2003. Synthesis, physical properties and preliminary investigation of hemocompatibility of polyurethanes from aliphatic resources with castor oil participation. J Biomater Appl 17:221–236. Szelest-Lewandowska, A., B. Masiulanis, M. Szymonowicz, S. Pielka, and D. Paluch. 2007. Modi�ed polycarbonate urethane: Synthesis, properties and biological investigation in vitro. J Biomed Mater Res A 82:509–520. Szycher, M. 1988. Biostability of polyurethane elastomers: A critical review. J Biomater Appl 3:297–402. Szycher, M. and A. M. Reed. 1992. Biostable polyurethane elastomers. Med Device Technol 3:42–51. Szycher, M. and A. A. Siciliano. 1991. Polyurethane-covered mammary prosthesis: A nine year follow-up assessment. J Biomater Appl 5:282–322. Takahara, A., A. J. Coury, R. W. Hergenrother, and S. L. Cooper. 1991. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. J Biomed Mater Res 25:341–356. Tang, L. and J. W. Eaton. 1995. In¥ammatory responses to biomaterials. Am J Clin Pathol 103:466–471. Tare, R. S., F. Khan, G. Tourniaire, S. M. Morgan, M. Bradley, and R. O. Oreffo. 2009. A microarray approach to the identi�cation of polyurethanes for the isolation of human skeletal progenitor cells and augmentation of skeletal cell growth. Biomaterials 30:1045–1055. Tarnok, A., A. Mahnke, M. Muller, and R. J. Zotz. 1999. Rapid in vitro biocompatibility assay of endovascular stents by ¥ow cytometry using platelet activation and platelet-leukocyte aggregation. Cytometry 38:30–39. Tice, R. R., E. Agurell, D. Anderson et al. 2000. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221. Tickner, J. A., T. Schettler, T. Guidotti, M. McCally, and M. Rossi. 2001. Health risks posed by use of Di-2ethylhexyl phthalate (DEHP) in PVC medical devices: A critical review. Am J Ind Med 39:100–111. Toub, M. R. 1987. Technical innovations enhance commercial value of silicone rubber. Elastomerics 119:20–22. Trevisani, L., S. Sartori, M. R. Rossi et al. 2005. Degradation of polyurethane gastrostomy devices: What is the role of fungal colonization? Dig Dis Sci 50:463–469. Trowbridge, H. O. and R. C. Emling. 1997. In¯ammation. A Review of the Process. Carol Stream, IL: Quintessence Books. Tsai, C. C., M. L. Dollar, A. Constantinescu, P. V. Kulkarni, and R. C. Eberhart. 1991. Performance evaluation of hydroxylated and acylated silicone rubber coatings. Transactions of the American Society for Arti©cial Internal Organs Meeting 37(3):M192–193. Tsai, C. C., H. H. Huo, P. Kulkarni, and R. C. Eberhart. 1990. Biocompatible coating with high albumin af�nity. Transactions of the American Society for Arti©cial Internal Organs Meeting, pp. 307–310. Tsuchiya, T., K. Fukuhara, H. Hata et al. 1995a. Studies on the tumor-promoting activity of additives in biomaterials: Inhibition of metabolic cooperation by phenolic antioxidants involved in rubber materials. J Biomed Mater Res 29:121–126. Tsuchiya, T., H. Hata, and A. Nakamura. 1995b. Studies on the tumor-promoting activity of biomaterials: Inhibition of metabolic cooperation by polyetherurethane and silicone. J Biomed Mater Res 29:113–119. Tucci, M. G., M. Mattioli Belmonte, E. Toschi et al. 1996. Structural features of latex gloves in dental practice. Biomaterials 17:517–522. Van der Kamp, K. W. and W. Van Oeveren. 1994. Factor XII fragment and kallikrein generation in plasma during incubation with biomaterials. J Biomed Mater Res 28:349–352. Vasita, R., I. K. Shanmugam, and D. S. Katt. 2008. Improved biomaterials for tissue engineering applications: Surface modi�cation of polymers. Curr Top Med Chem 8:341–353. Vignon, D. 1995. Physiologie de l’hémostase. Encyclopédie Médico Chirurgicale Stomatologie–Odontologie 1:1–8. Elsevier Masson. Vijayasekaran, S., T. V. Chirila, Y. Hong et al. 1996. Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: Histopathological evaluation in the animal eye. J Biomater Sci Polym Ed 7:685–696. Von Recum, A. F. and M. LaBerge. 1995. Educational goals for biomaterials science and engineering: Prospective view. J Biomater Appl 6:137–144. Von Recum, A. F. and T. G. Van Kooten. 1995. The in¥uence of micro-topography on cellular response and the implications for silicone implants. J Biomater Sci Polym Ed 7:181–198. Vondracek, P. 1981. Some aspects of the medical application of silicone rubber. Int Polymer Sci Technol 8:16. Wacaser, B. A., M. J. Maughan, I. A. Mowat, T. L. Niederhauser, M. R. Linford, and R. C. Davis. 2003. Chemomechanical surface patterning and functionalization of silicon surfaces using an atomic force microscope. Appl Phys Lett 82:808–810. Wagner, J. L. and T. E. Hugli. 1984. Radioimmunoassay for anaphylatoxins: A sensitive method for determining complement activation products in biological ¥uids. Anal Biochem 136:75–88. Wang, Y., G. A. Ameer, B. J. Sheppard, and R. Langer. 2002. A tough biodegradable elastomer. Nat Biotechnol 20:602–606. Wang, D. A., L. X. Feng, J. Ji, Y. H. Sun, X. X. Zheng, and J. H. Elisseeff. 2003. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications. J Biomed Mater Res A 65:498–510. Wang, J. H., C. H. Yao, W. Y. Chuang, and T. H. Young. 2000. Development of biodegradable polyesterurethane membranes with different surface morphologies for the culture of osteoblasts. J Biomed Mater Res 51:761–770. Ward, R. S. 1995. Surface modi�cation prior to surface formation: Control of polymer surface properties via bulk composition. Med Plastics Biomater 2:34–41. Ward, R. S., K. A. White, R. S. Gill, and F. Lim. 1996. The effect of phase separation and endgroup chemistry on the in vivo biostability of polyurethanes. Transactions of the American Society for Arti©cial Internal Organs Meeting, Washington, DC. p. 17. Ward, R. S., K. A. White, R. S. Gill, and C. A. Wolcott. 1995. Development of biostable thermoplastic polyurethanes with oligomeric polydimethylsiloxane end groups. Transactions of the 21st Meeting of the Society for Biomaterials (March 18–22, 1995), San Francisco, CA. Weber, N., H. P. Wendel, and G. Ziemer. 2001. Gene monitoring of surface-activated monocytes in circulating whole blood using duplex RT-PCR. J Biomed Mater Res 56:1–8. Welsing, R. T., T. G. van Tienen, N. Ramrattan et al. 2008. Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: A 2-year follow-up study in dogs. Am J Sports Med 36:1978–1989. Werner, C. and H. J. Jacobasch. 1999. Surface characterization of polymers for medical devices. Int J Artif Organs 22:160–176. White, L. 1991. Clean TPEs �nd medical uses. Eur Rubber J 173:26–29. White, R. A. 1988. The effect of porosity on the variability of the neointima. An histological investigation on implanted synthetic vascular prostheses. Trans Am Soc Artif Intern Organs. pp. 95–100. Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber. 2001. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373. Whitford, M. J. 1984. The chemistry of silicone materials for biomedical devices and contact lenses. Biomaterials 5:298–300. Wilkes, G. L. and S. L. Samuels. 1973. Porous segmented polyurethanes—Possible candidates as biomaterials. J Biomed Mater Res 7:541–544. Williams, D. F. 2003. Biomaterials and tissue engineering in reconstructive surgery. Sadhana 28:563–574. Williams, S. K., T. Carter, P. K. Park, D. G. Rose, T. Schneider, and B. E. Jarrell. 1992. Formation of a multilayer cellular lining on a polyurethane vascular graft following endothelial cell sodding. J Biomed Mater Res 26:103–117. Williams, S. F., D. P. Martin, D. M. Horowitz, and O. P. Peoples. 1999. PHA applications: Addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25:111–121. Wilson, C. J., R. E. Clegg, D. I. Leavesley, and M. J. Pearcy. 2005. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng 11:1–18. Wolfaardt, J. F., P. Cleaton-Jones, J. Lownie, and G. Ackermann. 1992. Biocompatibility testing of a silicone maxillofacial prosthetic elastomer: Soft tissue study in primates. J Prosthet Dent 68:331–338. Wortman, R. S., K. Merritt, and S. A. Brown. 1983. The use of the mouse peritoneal cavity for screening for biocompatibility of polymers. Biomater Med Devices Artif Organs 11:103–114. Wu, H., A. Wheeler, and R. N. Zare. 2004. Chemical cytometry on a picoliter-scale integrated micro¥uidic chip. Proc Natl Acad Sci USA 101:12809–12813. Wutticharoenmongkol, P., N. Sanchavanakit, P. Pavasant, and P. Supaphol. 2006a. Novel bone scaffolds of electrospun polycaprolactone �bers �lled with nanoparticles. J Nanosci Nanotechnol 6:514–522. Wutticharoenmongkol, P., N. Sanchavanakit, P. Pavasant, and P. Supaphol. 2006b. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone �bers �lled with nanoparticles. Macromol Biosci 6:70–77. Xie, X., H. Tan, J. Li, and Y. Zhong. 2008. Synthesis and characterization of ¥uorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: A novel bilayered surface structure. J Biomed Mater Res A 84:30–43. Xinming, L., C. Yingde, A. W. Lloyd et al. 2008. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: A review. Cont Lens Anterior Eye 31:57–64. Xiong, X. Y., K. C. Tam, and L. H. Gan. 2006. Polymeric nanostructures for drug delivery applications based on Pluronic copolymer systems. J Nanosci Nanotechnol 6:2638–2650. Xu, H., H. Toghiani, and C. U. Pittman, Jr. 2000. Modeling domain mixing in semi-interpenetrating polymer networks composed of poly(vinyl chloride) and 5% to 15% of crosslinked thermosets. Polym Eng Sci 40:2027–2036. Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. 2005. Electrospinning of nano/micro scale poly(L-lactic acid) aligned �bers and their potential in neural tissue engineering. Biomaterials 26:2603–2610. Yannas, I. V., M. Zhang, and M. H. Spilker. 2007. Standardized criterion to analyze and directly compare various materials and models for peripheral nerve regeneration. J Biomater Sci Polym Ed 18:943–966. Yasuda, H. 2006. Biocompatibility of nano�lm-encapsulated silicone and silicone-hydrogel contact lenses. Macromol Biosci 6:121–138. Yim, E. S., B. Zhao, D. Myung et al. 2009. Biocompatibility of poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel particles in RAW 264.7 macrophage and MG-63 osteoblast cell lines. J Biomed Mater Res A 91:894–902. Yoda, R. 1998. Elastomers for biomedical applications. J Biomater Sci Polym Ed 9:561–626. Zhang, Z., M. W. King, R. Guidoin et al. 1994. Morphological, physical and chemical evaluation of the Vascugraft arterial prosthesis: Comparison of a novel polyurethane device with other microporous structures. Biomaterials 15:483–501. Zhao, Q., M. P. Agger, M. Fitzpatrick et al. 1990. Cellular interactions with biomaterials: In vivo cracking of pre-stressed Pellethane 2363–80A. J Biomed Mater Res 24:621–637. Zhao, O. H., C. R. Payet. distribution formation in J. M. Anderson, A. Hiltner, G. A. Lodoen, and 1992. Theoretical analysis on cell size and kinetics of foreign-body giant cell vivo on polyurethane elastomers. J Biomed Mater Res 26:1019–1038. Zhao, G. and S. E. Stevens, Jr. 1998. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biomaterials 11:27–32. Zhao, Q., N. Topham, J. M. Anderson, A. Hiltner, G. Lodoen, and C. R. Payet. 1991. Foreign-body giant cells and polyurethane biostability: In vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 25:177–183. Zia, K. M., M. Barikani, M. Zuber, I. A. Bhatti, and M. Barmar. 2009a. Surface characteristics of polyurethane elastomers based on chitin/1,4-butane diol blends. Int J Biol Macromol 44:182–185. Zia, K. M., M. Zuber, I. A. Bhatti, M. Barikani, and M. A. Sheikh. 2009b. Evaluation of biocompatibility and mechanical behavior of polyurethane elastomers based on chitin/1,4-butane diol blends. Int J Biol Macromol 44:18–22. 15 Chapter 15. Preparation and Applications of Modulated Surface Energy Biomaterials Aguilar, M. R., A. Gallardo et al. (2004). Modulation of proteins adsorption onto the surface of chitosan complexed with anionic copolymers. Real time analysis by surface plasmon resonance. Macromolecular Bioscience 4(7): 631–638. Aksoy, A. E., V. Hasirci et al. (2008). Surface modi�cation of polyurethanes with covalent immobilization of heparin. Macromolecular Symposia 269(1): 145–153. Alessandrini, A. and P. Facci (2005). AFM: A versatile tool in biophysics. Measurement Science and Technology 16(6): R65–R92. Alferiev, I. S., J. M. Connolly et al. (2006). Surface heparinization of polyurethane via bromoalkylation of hard segment nitrogens. Biomacromolecules 7(1): 317–322. Anderson, J. M. (2001). Biological responses to materials. Annual Review of Materials Science 31: 81–110. Anderson, D. G., J. A. Burdick et al. (2004). MATERIALS SCIENCE: Smart Biomaterials. Science 305(5692): 1923–1924. Anderson, J. M., A. Rodriguez et al. (2008). Foreign body reaction to biomaterials. Seminars in Immunology 20(2): 86–100. Andersson, A. S., K. Glasmastar et al. (2003). Cell adhesion on supported lipid bilayers. Journal of Biomedical Materials Research Part A 64A(4): 622–629. Andrady, A. L., H. S. Hamid et al. (2003). Effects of climate change and UV-B on materials. Photochemical and Photobiological Sciences 2(1): 68–72. Archambault, J. G. and J. L. Brash (2004a). Protein repellent polyurethane-urea surfaces by chemical grafting of hydroxyl-terminated poly(ethylene oxide): Effects of protein size and charge. Colloids and Surfaces B: Biointerfaces 33(2): 111–120. Archambault, J. G. and J. L. Brash (2004b). Protein resistant polyurethane surfaces by chemical grafting of PEO: Amino-terminated PEO as grafting reagent. Colloids and Surfaces B: Biointerfaces 39(1–2): 9–16. Arnaout, M. A., B. Mahalingam et al. (2005). Integrin structure, allostery, and bidirectional signaling. Annual Review of Cell and Developmental Biology 21(1): 381–410. Arnau, A. (2008). A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors 8(1): 370–411. Barber, T. A., S. L. Golledge et al. (2003). Peptide-modi�ed p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro. Journal of Biomedical Materials Research Part A 64A(1): 38–47. Barclay, A. N. (2003). Membrane proteins with immunoglobulin-like domains—A master superfamily of interaction molecules. Seminars in Immunology 15(4): 215–223. Behravesh, E. and A. G. Mikos (2003). Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels. Journal of Biomedical Materials Research Part A 66A(3): 698–706. Belu, A. M., D. J. Graham et al. (2003). Time-of-¥ight secondary ion mass spectrometry: Techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24(21): 3635–3653. Bhadriraju, K. and L. K. Hansen (2000). Hepatocyte adhesion, growth and differentiated function on RGDcontaining proteins. Biomaterials 21(3): 267–272. Bhargava, R. and I. W. Levin (2001). Fourier transform infrared imaging: Theory and practice. Analytical Chemistry 73(21): 5157–5167. Bi, H., S. Meng et al. (2006). Deposition of PEG onto PMMA microchannel surface to minimize nonspeci�c adsorption. Lab on a Chip 6(6): 769–775. Biran, R., K. Webb et al. (2001). Surfactant-immobilized �bronectin enhances bioactivity and regulates sensory neurite outgrowth. Journal of Biomedical Materials Research 55(1): 1–12. Boerakker, M. J., J. M. Hannink et al. (2002). Giant amphiphiles by cofactor reconstitution13. Angewandte Chemie International Edition 41(22): 4239–4241. Börner, H. G. (2009). Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences. Progress in Polymer Science 34(9): 811–851. Bosker, W. T. E., P. A. Iakovlev et al. (2005). BSA adsorption on bimodal PEO brushes. Journal of Colloid and Interface Science 286(2): 496–503. Boulmedais, F., B. Frisch et al. (2004). Polyelectrolyte multilayer �lms with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials 25(11): 2003–2011. Bowen, W. R., R. W. Lovitt et al. (2000). Application of atomic force microscopy to the study of micromechanical properties of biological materials. Biotechnology Letters 22(11): 893–903. Brown, L., T. Koerner et al. (2006). Fabrication and characterization of poly(methylmethacrylate) micro¥uidic devices bonded using surface modi�cations and solvents. Lab on a Chip—Miniaturisation for Chemistry and Biology 6(1): 66–73. Byun, J.-W., J.-U. Kim et al. (2004). Surface-grafted polystyrene beads with comb-like poly(ethylene glycol) chains: Preparation and biological application. Macromolecular Bioscience 4(5): 512–519. Carlisle, E. S., M. R. Mariappan et al. (2000). Enhancing hepatocyte adhesion by pulsed plasma deposition and polyethylene glycol coupling. Tissue Engineering 6(1): 45–52. Castner, D. G. and B. D. Ratner (2002). Biomedical surface science: Foundations to frontiers. Surface Science 500(1–3): 28–60. Cavalli, S., A. R. Tipton et al. (2006). The chemical modi�cation of liposome surfaces via a copper-mediated [3 + 2] azide-alkyne cycloaddition monitored by a colorimetric assay. Chemical Communications (30): 3193–3195. Cen, L., K. G. Neoh et al. (2004). Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer. Biomacromolecules 5(6): 2238–2246. Chan, K. L. and S. G. Kazarian (2004a). FTIR spectroscopic imaging of dissolution of a solid dispersion of nifedipine in poly(ethylene glycol). Molecular Pharmaceutics 1(4): 331–335. Chan, K. L. A. and S. G. Kazarian (2004b). Visualisation of the heterogeneous water sorption in a pharmaceutical formulation under controlled humidity via FT-IR imaging. Vibrational Spectroscopy 35(1–2): 45–49. Chapman, R. G., E. Ostuni et al. (2000). Surveying for surfaces that resist the adsorption of proteins. Journal of the American Chemical Society 122(34): 8303–8304. Chen, H., M. A. Brook et al. (2004a). Silicone elastomers for reduced protein adsorption. Biomaterials 25(12): 2273–2282. Chen, H., M. A. Brook et al. (2005a). Surface properties of PEO-silicone composites: Reducing protein adsorption. Journal of Biomaterials Science, Polymer Edition 16: 531–548. Chen, H., M. A. Brook et al. (2006). Generic bioaf�nity silicone surfaces. Bioconjugate Chemistry 17(1): 21–28. Chen, P. R., M. H. Chen et al. (2004b). Biocompatibility of NGF-grafted GTG membranes for peripheral nerve repair using cultured Schwann cells. Biomaterials 25: 5667–5673. Chen, Q., R. Förch et al. (2004c). Characterization of pulsed plasma polymerization allylamine as an adhesion layer for DNA adsorption/hybridization. Chemistry of Materials 16(4): 614–620. Chen, H., L. Yuan et al. (2008). Biocompatible polymer materials: Role of protein-surface interactions. Progress in Polymer Science 33(11): 1059–1087. Chen, H., Z. Zhang et al. (2005b). Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials 26(15): 2391–2399. Cheng, T. S., H. T. Lin et al. (2004). Surface ¥uorination of polyethylene terephthalate �lms with RF plasma. Materials Letters 58(5): 650–653. Cheng, Z. and S. H. Teoh (2004). Surface modi�cation of ultra thin poly(ε-caprolactone) �lms using acrylic acid and collagen. Biomaterials 25(11): 1991–2001. Chilkoti, A., B. D. Ratner et al. (1991). Plasma-deposited polymeric �lms prepared from carbonyl-containing volatile precursors: XPS chemical derivatization and static SIMS surface characterization. Chemistry of Materials 3(1): 51–61. Choi, H. S., Y. Kim Young-Sun et al. (2004). Plasma-induced graft co-polymerization of acrylic acid onto the polyurethane surface. Surface and Coatings Technology 182(1): 55–64. Ciof�, M. O. H., H. J. C. Voorwald et al. (2003). Surface energy increase of oxygen-plasma-treated PET. Materials Characterization 50(2–3): 209–215. Clare, T. L., B. H. Clare et al. (2005). Functional monolayers for improved resistance to protein adsorption: Oligo(ethylene glycol)-modi�ed silicon and diamond surfaces. Langmuir 21(14): 6344–6355. Combellas, C., A. Fuchs et al. (2004). Surface modi�cation of halogenated polymers. 6. Graft copolymerization of poly(tetra¥uoroethylene) surfaces by polyacrylic acid. Polymer 45(14): 4669–4675. Cornelius, R. M., J. G. Archambault et al. (2002). Adsorption of proteins from infant and adult plasma to biomaterial surfaces. Journal of Biomedical Materials Research 60(4): 622–632. Croll, T. I., A. J. O’Connor et al. (2004). Controllable surface modi�cation of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: Physical, chemical, and theoretical aspects. Biomacromolecules 5(2): 463–473. Croyle, M. A., S. M. Callahan et al. (2004). PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. Journal of Virology 78(2): 912–921. Cui, F. Z., Y. P. Jiao et al. (2008). Functionalization of polymer surface for nerve repair. Journal of Photopolymer Science and Technology 21(2): 231–244. Cui, F. Z. and Z. S. Luo (1999). Biomaterials modi�cation by ion-beam processing. Surface and Coating Technology 112(1–3): 278–285. Currie, E. P. K., W. Norde et al. (2003). Tethered polymer chains: Surface chemistry and their impact on colloidal and surface properties. Advances in Colloid and Interface Science 100–102: 205–265. Dalsin, J. L., B. H. Hu et al. (2003). Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society 125(14): 4253–4258. Dalton, B. A., C. D. McFarland et al. (1998). Polymer surface chemistry and bone cell migration. Journal of Biomaterials Science, Polymer Edition 9(8): 781–799. Daria, V. R., P. J. Rodrigo et al. (2002). Dynamic formation of optically trapped microstructure arrays for biosensor applications. Presented at Conference on Biomedical Applications of Micro-and-Nano Engineering, Melbourne, Victoria, Australia, Published in the proceedings of International Society for Optical Engineering, Bellingham, WA, pp. 41–48. Davis, F. F. (2002). The origin of pegnology. Advanced Drug Delivery Reviews 54(4): 457–458. De, S., R. Sharma et al. (2004). Enhancement of blood compatibility of implants by helium plasma treatment. 39th IEEE/IAS Annual Meeting (IEEE Industry Applications Society), Seattle, Washington, October, 2004. De, S., R. Sharma et al. (2005). Plasma treatment of polyurethane coating for improving endothelial cell growth and adhesion. Journal of Biomaterials Science, Polymer Edition 16(8): 973–989. De Silva, M. N., R. Desai et al. (2004). Micro-patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomedical Microdevices 6(3): 219–222. Deiters, A., T. A. Cropp et al. (2003). Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. Journal of the American Chemical Society 125(39): 11782–11783. Desai, S., D. Bodas et al. (2003). Tailor-made functional surfaces: Potential elastomeric biomaterials I. Journal of Biomaterials Science, Polymer Edition 14(12): 1323–1338. Dettin, M., M. T. Conconi et al. (2002). Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials. Journal of Biomedical Materials Research 60(3): 466–471. DeVolder R. J., K. H.-J. (2010). Three dimensionally ¥occulated proangiogenic microgels for neovascularization. Biomaterials 31(25): 6494–6501. Ding, Z., J. Chen et al. (2004). Immobilization of chitosan onto poly-L-lactic acid �lm surface by plasma graft polymerization to control the morphology of �broblast and liver cells. Biomaterials 25(6): 1059–1067. Dirks, A. J., S. S. Van Berkel et al. (2005). Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3 + 2] dipolar cycloaddition reaction. Chemical Communications (33): 4172–4174. Dixon, M. C. (2008). Quartz crystal microbalance with dissipation monitoring: Enabling real-time characterization of biological materials and their interactions. Journal of Biomolecular Techniques: JBT 19(3): 151–158. Dubas, S. T., P. Kittitheeranun et al. (2009). Coating of polyelectrolyte multilayer thin �lms on nano�brous scaffolds to improve cell adhesion. Journal of Applied Polymer Science 114(3): 1574–1579. Dufresne, M.-H. and J.-C. Leroux (2004). Study of the micellization behavior of different order amino block copolymers with heparin. Pharmaceutical Research 21(1): 160–169. Dupas-Bruzek, C., O. Robbe et al. (2009). Transformation of medical grade silicone rubber under Nd:YAG and excimer laser irradiation: First step towards a new miniaturized nerve electrode fabrication process. Applied Surface Science 255(21): 8715–8721. Dwek, R. A. (1996). Glycobiology: Toward understanding the function of sugars. Chemical Reviews 96(2): 683–720. Ebara, M., M. Yamato et al. (2004). Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Engineering 10(7–8): 1125–1135. E�menko, K., J. A. Crowe et al. (2005). Rapid formation of soft hydrophilic silicone elastomer surfaces. Polymer 46(22): 9329–9341. Ehrhardt, C., C. Kneuer, et al. (2004). Selectins—an emerging target for drug delivery. Advanced Drug Delivery Reviews 56(4): 527–549. Elbert, D. L. and J. A. Hubbell (1996). Surface treatments of polymers for biocompatibility. Annual Review of Materials Science 26(1): 365–394. Etienne, O., C. Picart et al. (2006). Polyelectrolyte multilayer �lm coating and stability at the surfaces of oral prosthesis base polymers: An in vitro and in vivo study. Journal of Dental Research 85(1): 44–48. Falconnet, D., G. Csucs et al. (2006). Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16): 3044–3063. Feng, W., J. Brash et al. (2004). Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. Journal of Polymer Science Part A: Polymer Chemistry 42(12): 2931–2942. Feng, W., S. Zhu et al. (2005). Adsorption of �brinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir 21(13): 5980–5987. Fernandez-Megia, E., J. Correa et al. (2006). A click approach to unprotected glycodendrimers. Macromolecules 39(6): 2113–2120. van der Flier, A. and A. Sonnenberg (2001). Function and interactions of integrins. Cell and Tissue Research 305(3): 285–298. Flores, S. M., A. Shaporenko et al. (2006). Control of surface properties of self-assembled monolayers by tuning the degree of molecular asymmetry. Surface Science 600(14): 2847–2856. Furuzono, T., K. Sonoda et al. (2001). A hydroxyapatite coating covalently linked onto a silicone implant material. Journal of Biomedical Materials Research 56(1): 9–16. Gallant, N. D., K. E. Michael et al. (2005). Cell adhesion strengthening: Contributions of adhesive area, integrin binding, and focal adhesion assembly. Molecular Biology of the Cell 16(9): 4329–4340. Geiger, B. and A. Bershadsky (2001). Assembly and mechanosensory function of focal contacts. Current Opinion in Cell Biology 13(5): 584–592. Geng, Y., D. E. Discher et al. (2006). Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): A platform for self-assembling hybrid amphiphiles13. Angewandte Chemie International Edition 45(45): 7578–7581. George, A. and W. G. Pitt (2002). Comparison of corneal epithelial cellular growth on synthetic cornea materials. Biomaterials 23(5): 1369–1373. Gobin, A. S. and J. L. West (2003). Effects of epidermal growth factor on �broblast migration through biomimetic hydrogels. Biotechnology Progress 19(6): 1781–1785. Goda, T., T. Konno et al. (2006). Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials 27(30): 5151–5160. Goddard, J. M. and J. H. Hotchkiss (2007). Polymer surface modi�cation for the attachment of bioactive compounds. Progress in Polymer Science 32(7): 698–725. Goddard, J. M. and J. H. Hotchkiss (2008). Tailored functionalization of low-density polyethylene surfaces. Journal of Applied Polymer Science 108(5): 2940–2949. Goldberg, M., R. Langer et al. (2007). Nanostructured materials for applications in drug delivery and tissue engineering. Journal of Biomaterials Science, Polymer Edition 18(3): 241–268. Goncalves, I. C., M. C. L. Martins et al. (2009). Protein adsorption and clotting time of pHEMA hydrogels modi�ed with C18 ligands to adsorb albumin selectively and reversibly. Biomaterials 30(29): 5541–5551. González-Benito, J. and J. L. Koenig (2006). Nature of PMMA dissolution process by mixtures of acetonitrile/ alcohol (poor solvent/nonsolvent) monitored by FTIR-imaging. Polymer 47(9): 3065–3072. Gottschalk, K. E., P. D. Adams et al. (2002). Transmembrane signal transduction of the α IIb β 3 integrin. Protein Science 11(7): 1800–1812. de Graaf, A. J., M. Kooijman et al. (2009). Nonnatural amino acids for site-speci�c protein conjugation. Bioconjugate Chemistry 20(7): 1281–1295. Green, R. J., M. C. Davies et al. (1999). Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials 20(4): 385–391. Green, R. J., R. A. Frazier et al. (2000). Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21(18): 1823–1835. Griesser, H. J., R. C. Chatelier et al. (1994). Growth of human cells on plasma polymers: Putative role of amine and amide groups. Journal of Biomaterials Science. Polymer Edition 5(6): 531–554. Griesser, H. J., P. G. Hartley et al. (2002). Interfacial properties and protein resistance of nano-scale polysaccharide coatings. Smart Materials and Structures 11(5): 652–661. Grif�ths, P. R., J. A. de Haseth. (2006). Fourier Transform Infrared Spectrometry, pp. 303–320. Hoboken, NJ: J. W. sons. Gristina, A. G. (1987). Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 237(4822): 1588–1595. Gümüşderelioğlu, M. and A. G. Karakeçili (2003). Uses of thermoresponsive and RGD/insulinmodi�ed poly(vinyl ether)-based hydrogels in cell cultures. Journal of Biomaterials Science, Polymer Edition 14: 199–211. Gupper, A., K. L. A. Chan et al. (2004). FT-IR imaging of solvent-induced crystallization in polymers. Macromolecules 37(17): 6498–6503. Gupper, A. and S. G. Kazarian (2005). Study of solvent diffusion and solvent-induced crystallization in syndiotactic polystyrene using FT-IR spectroscopy and imaging. Macromolecules 38(6): 2327–2332. Gupta, B., C. Plummer et al. (2002). Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) �lms: Characterization and human smooth muscle cell growth on grafted �lms. Biomaterials 23(3): 863–871. Ha, S. W., R. Hauert et al. (1997). Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications. Surface and Coatings Technology 96(2–3): 293–299. Hahn, S. K. and A. S. Hoffman (2005). Preparation and characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-L-lysine. International Journal of Biological Macromolecules 37(5): 227–231. Halperin, A. (1999). Polymer brushes that resist adsorption of model proteins: Design parameters. Langmuir 15(7): 2525–2533. Hamano, T., D. Chiba et al. (2002). Evaluation of a polyelectrolyte complex (PEC) composed of chitin derivatives and chitosan, which promotes the rat calvarial osteoblast differentiation. Polymers for Advanced Technologies 13(1): 46–53. Hasegawa, T., Y. Iwasaki et al. (2002). Preparation of blood-compatible hollow �bers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer. Journal of Biomedical Materials Research 63(3): 333–341. Hashimoto, K., H. Saito et al. (2006). Glycopolymeric inhibitors of beta-glucuronidase. III. Con�gurational effects of hydroxy groups in pendant glyco-units in polymers upon inhibition of beta-glucuronidase. Journal of Polymer Science Part A: Polymer Chemistry 44(16): 4895–4903. Hassane, F. S., B. Frisch et al. (2006). Targeted liposomes: Convenient coupling of ligands to preformed vesicles using “click chemistry”. Bioconjugate Chemistry 17(3): 849–854. He, P. and L. He (2009). Synthesis of surface-anchored DNA-polymer bioconjugates using reversible additionfragmentation chain transfer polymerization. Biomacromolecules 10(7): 1804–1809. He, J., X. Lü et al. (2007). Study of protein adsorption on biomaterial surfaces by SPR. Key Engineering Materials 342–343: 825–828. Heiden, A. P. v. d., G. M. Willems et al. (1998). Adsorption of proteins onto poly(ether urethane) with a phosphorylcholine moiety and in¥uence of preadsorbed phospholipid. Journal of Biomedical Materials Research 40(2): 195–203. Hench, L. L. and J. M. Polak (2002). Third-generation biomedical materials. Science 295(5557): 1014–1017. Hermanson, G. T., Ed. (1996). Bioconjugate Techniques. New York, Academic Press. Hermanson, G. T. (2008). Bioconjugate Techniques. Oxford, U.K.: Elsevier’s Science & Tecnology. Hernández, L., B. Vázquez et al. (2007). Acrylic bone cements with bismuth salicylate: Behavior in simulated physiological conditions. Journal of Biomedical Materials Research Part A 80(2): 321–332. Heurtault, B., P. Saulnier et al. (2003). Physico-chemical stability of colloidal lipid particles. Biomaterials 24(23): 4283–4300. Higuchi, A., K. Shirano et al. (2002). Chemically modi�ed polysulfone hollow �bers with vinylpyrrolidone having improved blood compatibility. Biomaterials 23(13): 2659–2666. Hoffart, V., Ubrich, N., Lamprecht, A., Bachelier, K., Vigneron, C., Lecompte, T., Hoffman, M., and P. Maincent (2003). Microencapsulation of low molecular weight heparin into polymeric particles designed with biodegradable and nonbiodegradable polycationic polymers. Drug Delivery 10: 1–7. Hoffman, A. S. and B. D. Ratner (2004). Nonfouling surfaces. In: B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, Eds., Biomaterials Science: An Introduction to Materials in Medicine, pp. 197–201. Oxford, U.K,: Elsevier’s Science & Tecnology. Hook A. L., A. D., Langer R., Williams P., Davies M. C., and M. R. Alexander (2010). High throughput methods applied in biomaterial development and discovery. Biomaterials 31(2): 187–198. Hook, F. F., J. Vörös et al. (2002). A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids and Surfaces B: Biointerfaces 24(2): 155–170. Hu, Y., S. R. Winn et al. (2003). Porous polymer scaffolds surface-modi�ed with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. Journal of Biomedical Materials Research Part A 64(3): 583–590. Huang, C.-J., T. P.-Y., and Y.-C. Chang (2010). Effects of extracellular matrix protein functionalized ¥uid membrane on cell adhesion and matrix remodelling.. Biomaterials 31(27): 7183–7195. Huang, J. and W. Xu (2010). Zwitterionic monomer graft copolymerization onto polyurethane surface through a PEG spacer. Applied Surface Science 256(12): 3921–3927. Huang, H., Y. Zhao et al. (2003). Enhanced osteoblast functions on RGD immobilized surface. Journal of Oral Implantology 29(2): 73–79. Hylton, D. M., S. W. Shalaby et al. (2005). Direct correlation between adsorption-induced changes in protein structure and platelet adhesion. Journal of Biomedical Materials Research Part A 73A(3): 349–358. Ishihara, K., T. Hasegawa et al. (2002). Protein adsorption-resistant hollow �bers for blood puri�cation. Arti©cial organs 26(12): 1014–1019. Ishihara, K., D. Nishiuchi et al. (2004). Polyethylene/phospholipid polymer alloy as an alternative to poly(vinylchloride)-based materials. Biomaterials 25(6): 1115–1122. Ishihara, K., H. Nomura et al. (1998). Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research 39(2): 323–330. Ishihara, K., T. Ueda et al. (1990). Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polymer Journal 22(5): 355–360. Israelachvili, J. and H. Wennerstrom (1996). Role of hydration and water structure in biological and colloidal interactions. Nature 379(6562): 219–225. Itoh, D., S. Yoneda et al. (2002). Enhancement of osteogenesis on hydroxyapatite surface coated with synthetic peptide (EEEEEEEPRGDT) in vitro. Journal of Biomedical Materials Research 62(2): 292–298. Iwasaki, Y., S. Uchiyama et al. (2002). A nonthrombogenic gas-permeable membrane composed of a phospholipid polymer skin �lm adhered to a polyethylene porous membrane. Biomaterials 23(16): 3421–3427. Iwata, R., P. Suk-In et al. (2004). Control of nanobiointerfaces generated from well-de�ned biomimetic polymer brushes for protein and cell manipulations. Biomacromolecules 5(6): 2308–2314. Jackeray, R., S. Jain et al. (2010). Surface modi�cation of nylon membrane by glycidyl methacrylate graft copolymerization for antibody immobilization. Journal of Applied Polymer Science 116(3): 1700–1709. Jandt, K. D. (2001). Atomic force microscopy of biomaterials surfaces and interfaces. Surface Science 491(3): 303–332. Janorkar, A. V., S. E. Proulx et al. (2006). Surface-con�ned photopolymerization of single- and mixed-monomer systems to tailor the wettability of poly(L-lactide) �lm. Journal of Polymer Science Part A: Polymer Chemistry 44(22): 6534–6543. Jaturanpinyo, M., A. Harada et al. (2004). Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. Bioconjugate Chemistry 15(2): 344–348. Jee, K. S., H. D. Park et al. (2004). Heparin conjugated polylactide as a blood compatible material. Biomacromolecules 5(5): 1877–1881. Joralemon, M. J., R. K. O’Reilly et al. (2005). Shell click-crosslinked (SCC) nanoparticles: A new methodology for synthesis and orthogonal functionalization. Journal of the American Chemical Society 127(48): 16892–16899. Joshi, J. M. and V. K. Sinha (2006). Graft copolymerization of 2-hydroxyethylmethacrylate onto carboxymethyl chitosan using CAN as an initiator. Polymer 47(6): 2198–2204. Jung, D., S. Yeo et al. (2006). Formation of amine groups by plasma enhanced chemical vapor deposition and its application to DNA array technology. Surface and Coatings Technology 200(9): 2886–2891. Junkar, I., A. Vesel et al. (2009). In¥uence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum 84(1): 83–85. Kao, W. J. and J. A. Hubbell (1998). Murine macrophage behavior on peptide-grafted polyethyleneglycolcontaining networks. Biotechnology and Bioengineering 59(1): 2–9. Kazarian, S. G. and K. L. A Chan (2003). “Chemical photography” of drug release. Macromolecules 36(26): 9866–9872. Kazarian, S. G. and K. L. A. Chan (2006). Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochimica et Biophysica Acta—Biomembranes 1758(7): 858–867. Kazarian, S. G., K. W. T. Kong et al. (2005). Spectroscopic imaging applied to drug release. Food and Bioproducts Processing 83(2 C): 127–135. Kenawy, E. R., F. I. Abdel-Hay et al. (2005). Biologically active polymers: Modi�cation and anti-microbial activity of chitosan derivatives. Journal of Bioactive and Compatible Polymers 20(1): 95–111. Kenawy, E. R., F. Imam Abdel-Hay et al. (2006). Synthesis and antimicrobial activity of some polymers derived from modi�ed amino polyacrylamide by reacting it with benzoate esters and benzaldehyde derivatives. Journal of Applied Polymer Science 99(5): 2428–2437. Kim, Y. H., D. K. Han et al. (2003). Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials 24(13): 2213–2223. Kim, Y. J., I. K. Kang et al. (2000). Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 21(2): 121–130. Kim, D. K., Y. K. Park et al. (2005). Removal ef�ciency of organic contaminants on Si wafer surfaces by the N2O ECR plasma technique. Materials Chemistry and Physics 91(2–3): 490–493. Kingshott, P., J. Wei et al. (2003). Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19(17): 6912–6921. Kirby, B. J. and E. F. Hasselbrink Jr (2004). Zeta potential of micro¥uidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25(2): 187–202. Kirsebom, H., M. R. Aguilar et al. (2007). Macroporous scaffolds based on chitosan and bioactive molecules. Journal of Bioactive and Compatible Polymers 22(6): 621–636. Klee, D., Z. Ademovic et al. (2003). Surface modi�cation of poly(vinylidene¥uoride) to improve the osteoblast adhesion. Biomaterials 24(21): 3663–3670. Klenkler, B. J., M. Grif�th et al. (2005). EGF-grafted PDMS surfaces in arti�cial cornea applications. Biomaterials 26(35): 7286–7296. Klok, H.-A. (2005). Biological-synthetic hybrid block copolymers: Combining the best from two worlds. Journal of Polymer Science Part A: Polymer Chemistry 43(1): 1–17. Koenig, A. L., V. Gambillara et al. (2003). Correlating �bronectin adsorption with endothelial cell adhesion and signaling on polymer substrates. Journal of Biomedical Materials Research Part A 64A(1): 20–37. Kolb, H. C., M. G. Finn et al. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie—International Edition 40(11): 2005–2021. Koo, L. Y., D. J. Irvine et al. (2002). Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. Journal of Cell Science 115(7): 1423–1433. Korematsu, A., Y. Takemoto et al. (2002). Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface. Biomaterials 23(1): 263–271. Kubies, D., L. Machová et al. (2003). Functionalized surfaces of polylactide modi�ed by Langmuir-Blodgett �lms of amphiphilic block copolymers. Journal of Materials Science: Materials in Medicine 14(2): 143–149. Kulbokaite, R., G. Ciuta et al. (2009). N-PEG’ylation of chitosan via “click chemistry” reactions. Reactive and Functional Polymers 69(10): 771–778. Kwang, H. L., H. K. Gu et al. (2009). Hydrophilic electrospun polyurethane nano�ber matrices for hMSC culture in a micro¥uidic cell chip. Journal of Biomedical Materials Research Part A 90(2): 619–628. Kwok, C. S., T. A. Horbett et al. (1999). Design of infection-resistant antibiotic-releasing polymersII. Controlled release of antibiotics through a plasma-deposited thin �lm barrier. Journal of Controlled Release 62(3): 301–311. Ladam, G., P. Schaaf et al. (2002). Protein adsorption onto auto-assembled polyelectrolyte �lms. Biomolecular Engineering 19(2–6): 273–280. Ladd, J., Z. Zhang et al. (2008). Zwitterionic polymers exhibiting high resistance to nonspeci�c protein adsorption from human serum and plasma. Biomacromolecules 9(5): 1357–1361. Ladmiral, V., E. Melia et al. (2004). Synthetic glycopolymers: An overview. European Polymer Journal 40(3): 431–449. Lamers, E., X. Frank Walboomers et al. (2010). The in¥uence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials 31(12): 3307–3316. Langer, R. and D. A. Tirrell (2004). Designing materials for biology and medicine. Nature 428(6982): 487–492. Lazos, D., S. Franzka et al. (2005). Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Langmuir 21(19): 8774–8784. Lebaron, R. G. and K. A. Athanasiou (2000). Extracellular matrix cell adhesion peptides: Functional applications in orthopedic materials. Tissue Engineering 6(2): 85–103. Leckband, D. and A. Prakasam (2006). Mechanism and dynamics of cadherin adhesion. Annual Review of Biomedical Engineering 8(1): 259–287. Lee, G. K., N. Maheshri et al. (2005). PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnology and Bioengineering 92(1): 24–34. Lee, D. Y., S. J. Park et al. (2006). A new strategy toward improving immunoprotection in cell therapy for diabetes mellitus: Long-functioning PEGylated islets in vivo. Tissue Engineering 12(3): 615–623. Lee, K. B., K. R. Yoon et al. (2003). Surface modi�cation of poly(glycolic acid) (PGA) for biomedical applications. Journal of Pharmaceutical Sciences 92(5): 933–937. Leonard, D., Y. Chevolot et al. (1998). ToF-SIMS and XPS study of photoactivatable reagents designed for surface glycoengineering: Part 2. Levenberg, S., R. Langer et al. (2004). Advances in tissue engineering. Current Topics in Developmental Biology, Vol. 61, pp. 113–134, San Diego, CA, Academic Press.. Lewis, A. L. (2000). Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces 18(3–4): 261–275. Li, L., S. Chen et al. (2005). Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate selfassembled monolayers: The molecular basis for nonfouling behavior. Journal of Physical Chemistry B 109(7): 2934–2941. Li, Y., K. G. Neoh et al. (2003). Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. Biotechnology and Bioengineering 84(3): 305–313. Li, Z. F. and E. Ruckenstein (2004). Grafting of poly(ethylene oxide) to the surface of polyaniline �lms through a chlorosulfonation method and the biocompatibility of the modi�ed �lms. Journal of Colloid and Interface Science 269(1): 62–71. Link, A. J., M. K. S. Vink et al. (2004). Presentation and detection of azide functionality in bacterial cell surface proteins. Journal of the American Chemical Society 126(34): 10598–10602. Linnola, R. J., L. Werner et al. (2000). Adhesion of �bronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes: Part 1: Histological sections. Journal of Cataract & Refractive Surgery 26(12): 1792–1806. Liu, X. and P. Ma (2004). Polymeric scaffolds for bone tissue engineering. Annals Biomedical Engineering 32: 477–486. Liu, J., T. Pan et al. (2004). Surface-modi�ed poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis. Analytical Chemistry 76(23): 6948–6955. López Donaire, M. L., J. Parra-Cáceres et al. (2009). Polymeric drugs based on bioactive glycosides for the treatment of brain tumours. Biomaterials 30(8): 1613–1626. Lu, L., P. Zhang et al. (2009). Study on partially oxidized sodium alginate with potassium permanganate as the oxidant. Journal of Applied Polymer Science 113(6): 3585–3589. Luk, Y. Y., M. Kato et al. (2000). Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16(24): 9604–9608. Lutz, J. F. (2007). 1,3-Dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angewandte Chemie, International Edition 46(7): 1018–1025. Lutz, J. F., H. G. Börner et al. (2006). Combining ATRP and “click” chemistry: A promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules 39(19): 6376–6383. Lutz, J. F. and H. G. Börner (2008). Modern trends in polymer bioconjugates design. Progress in Polymer Science 33: 1–39. Lutz, J. F., S. Pfeifer et al. (2007). In situ functionalization of thermoresponsive polymeric micelles using the “click” cycloaddition of azides and alkynes. QSAR and Combinatorial Science 26(11–12): 1151–1158. Lutz, J.-F. and Z. Zarafshani (2008). Ef�cient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Advanced Drug Delivery Reviews 60(9): 958–970. Ma, Z., Z. Mao et al. (2007). Surface modi�cation and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces 60(2): 137–157. Ma, W. X., C. Zhao et al. (2010). A novel method of modifying poly(ethylene terephthalate) fabric using supercritical carbon dioxide. Journal of Applied Polymer Science 117(4): 1897–1907. Macmanus, L. F., M. J. Walzak et al. (1999). Study of ultraviolet light and ozone surface modi�cation of polypropylene. Journal of Polymer Science Part A: Polymer Chemistry 37(14): 2489–2501. Manju, S. and S. Kunnatheeri (2010). Layer-by-Layer modi�cation of poly(methyl methacrylate) intra ocular lens: Drug delivery applications. Pharmaceutical Development and Technology 15(4): 379–385. Mann, B. K., R. H. Schmedlen et al. (2001). Tethered-TGF-[beta] increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22(5): 439–444. Mapili, G., Y. Lu et al. (2005). Laser-layered microfabrication of spatially patterned functionalized tissueengineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials 75(2): 414. Marchand-Brynaert, J., E. Detrait et al. (1999). Biological evaluation of RGD peptidomimetics, designed for the covalent derivatization of cell culture substrata, as potential promotors of cellular adhesion. Biomaterials 20(19): 1773–1782. Martins, G. V., J. F. Mano et al. (2010). Nanostructured self-assembled �lms containing chitosan fabricated at neutral pH. Carbohydrate Polymers 80(2): 570–573. Martins, M. C. L., B. D. Ratner et al. (2003a). Protein adsorption on mixtures of hydroxyl- and methylterminated alkanethiols self-assembled monolavers. Journal of Biomedical Materials Research Part A 67A(1): 158–171. Martins, M. C. L., D. Wang et al. (2003b). Albumin and �brinogen adsorption on PU-PHEMA surfaces. Biomaterials 24(12): 2067–2076. Marx, K. A. (2003). Quartz crystal microbalance: A useful tool for studying thin polymer �lms and complex biomolecular systems at the solution—Surface interface. Biomacromolecules 4(5): 1099–1120. Maskarinec, S. A. and D. A. Tirrell (2005). Protein engineering approaches to biomaterials design. Current Opinion in Biotechnology 16(4): 422–426. Mathieu, H. J., Y. Chevolot et al. (2003). Engineering and characterization of polymer surfaces for biomedical applications. Advances in Polymer Science 162: 1–34. McArthur, S. L. (2006). Applications of XPS in bioengineering. Surface and Interface Analysis 38(11): 1380–1385. McConachie, A., D. Newman et al. (1999). The effect on bioadhesive polymers either freely in solution or covalently attached to a support on human macrophages. Biomedical Sciences Instrumentation 35: 45–50. Merrett, K., R. M. Cornelius et al. (2002). Surface analysis methods for characterizing polymeric biomaterials. Journal of Biomaterials Science, Polymer Edition 13(6): 593–621. Michael, M. N., N. A. El-Zaher et al. (2004). Investigation into surface modi�cation of some polymeric fabrics by UV/ozone treatment. Polymer—Plastics Technology and Engineering 43(4): 1041–1052. Miller, D. C., A. Thapa et al. (2004). Endothelial and vascular smooth muscle cell function on poly(lactic-coglycolic acid) with nano-structured surface features. Biomaterials 25(1): 53–61. Miller-Chou, B. A. and J. L. Koenig (2002). FT-IR imaging of polymer dissolution by solvent mixtures. 3. Entangled polymer chains with solvents. Macromolecules 35(2): 440–444. Milton Harris, J. and R. B. Chess (2003). Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery 2(3): 214–221. Mitchell, S. A., A. H. C. Poulsson et al. (2005). Orientation and con�nement of cells on chemically patterned polystyrene surfaces. Colloids and Surfaces B: Biointerfaces 46(2): 108–116. Morimoto, N., Y. Iwasaki et al. (2002). Physical properties and blood compatibility of surface-modi�ed segmented polyurethane by semi-interpenetrating polymer networks with a phospholipid polymer. Biomaterials 23(24): 4881–4887. Morimoto, N., A. Watanabe et al. (2004). Nano-scale surface modi�cation of a segmented polyurethane with a phospholipid polymer. Biomaterials 25(23): 5353–5361. Moro, T., Y. Takatori et al. (2004). Surface grafting of arti�cial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Materials 3(11): 829–836. Morra, M. (2000). On the molecular basis of fouling resistance. Journal of Biomaterials Science, Polymer Edition 11: 547–569. Mosqueira, V. C. F., P. Legrand et al. (2000). Poly(d,l-lactide) nanocapsules prepared by a solvent displacement process: In¥uence of the composition on physicochemical and structural properties. Journal of Pharmaceutical Sciences 89(5): 614–626. Mouhib, T., D. A., Poleunis, C., Henry, M., and P. Bertrand (2010). C60 SIMS depth pro�ling of bovine serum albumin protein-coating �lms: A conformational study. Surface and Interface Analysis 42(6–7): 641–644. Muscariello, L., F. Rosso et al. (2005). A critical overview of ESEM applications in the biological �eld. Journal of Cellular Physiology 205(3): 328–334. Muthukrishnan, S., M. Zhang et al. (2005). Molecular sugar sticks: Cylindrical glycopolymer brushes. Macromolecules 38(19): 7926–7934. Nagahata, M., R. Nakaoka et al. (2005). The response of normal human osteoblasts to anionic polysaccharide polyelectrolyte complexes. Biomaterials 26(25): 5138–5144. Nam, Y. S., J. J. Yoon et al. (1999). Adhesion behaviours of hepatocytes cultured onto biodegradable polymer surface modi�ed by alkali hydrolysis process. Journal of Biomaterials Science, Polymer Edition 10(11): 1145–1158. Navarro, M., C. Aparicio et al. (2006). Development of a biodegradable composite scaffold for bone tissue engineering: Physicochemical, topographical, mechanical, degradation, and biological properties. Ordered Polymeric Nanostructures at Surfaces 200: 209–231. Niemeyer, C. M. (2001). Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angewandte Chemie International Edition 40(22): 4128–4158. Niu, X., Y. Wang et al. (2005). Arg-Gly-Asp (RGD) modi�ed biomimetic polymeric materials. Journal of Materials Science and Technology 21(4): 571–576. Noh, H. and E. A. Vogler (2006). Volumetric interpretation of protein adsorption: Mass and energy balance for albumin adsorption to particulate adsorbents with incrementally increasing hydrophilicity. Biomaterials 27(34): 5801–5812. Øiseth, S. K., A. Krozer et al. (2004). Ultraviolet light treatment of thin high-density polyethylene �lms monitored with a quartz crystal microbalance. Journal of Applied Polymer Science 92(5): 2833–2839. Okamura, Y., I. Maekawa et al. (2005). Hemostatic effects of phospholipid vesicles carrying �brinogen γ-chain dodecapeptide in vitro and in vivo. Bioconjugate Chemistry 16(6): 1589–1596. Olsson, A. L. J. V. D. M. H., Busscher, H. J., and P. K. Sharma (2010). Novel analysis of bacterium-substratum bond maturation measured using a quartz crystal microbalance. Langmuir 26(13): 11113–11117. Öner, D. and T. J. McCarthy (2000). Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16(20): 7777–7782. O’Reilly, R. K., M. J. Joralemon et al. (2006). Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 44(17): 5203–5217. Ortega-Vinuesa, J. L., P. Tengvall et al. (1998). Molecular packing of HSA, IgG, and �brinogen adsorbed on silicon by AFM imaging. Thin Solid Films 324(1–2): 257–273. O’Sullivan, C. K. and G. G. Guilbault (1999). Commercial quartz crystal microbalances—Theory and applications. Biosensors and Bioelectronics 14(8–9): 663–670. Ostuni, E., R. G. Chapman et al. (2001). A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18): 5605–5620. Otsuka, H., Y. Nagasaki et al. (2000). Surface characterization of functionalized polylactide through the coating with heterobifunctional poly(ethylene glycol)/polylactide block copolymers. Biomacromolecules 1(1): 39–48. Oyane, A., M. Uchida et al. (2005). Simple surface modi�cation of poly(ε-caprolactone) to induce its apatiteforming ability. Journal of Biomedical Materials Research Part A 75(1): 138–145. Pande, G. (2000). The role of membrane lipids in regulation of integrin functions. Current Opinion in Cell Biology 12(5): 569–574. Park, K.-H. (2002). Arg-Gly-Asp (RGD) sequence conjugated in a synthetic copolymer bearing a sugar moiety for improved culture of parenchymal cells (hepatocytes). Biotechnology Letters 24(17): 1401–1406. Park, K.-H., K. Na et al. (2004). Immobilization of Arg-Gly-Asp (RGD) sequence in sugar containing copolymer for culturing of pheochromocytoma (PC12) cells. Journal of Bioscience and Bioengineering 97(3): 207–211. Parker, A. P., P. A. Reynolds et al. (2005). Investigation into potential mechanisms promoting biocompatibility of polymeric biomaterials containing the phosphorylcholine moiety: A physicochemical and biological study. Colloids and Surfaces B: Biointerfaces 46(4): 204–217. Parrish, B., R. B. Breitenkamp et al. (2005). PEG- and peptide-grafted aliphatic polyesters by click chemistry. Journal of the American Chemical Society 127(20): 7404–7410. Pasche, S., J. Vörös et al. (2005). Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. The Journal of Physical Chemistry. B 109(37): 17545–17552. Perez-Luna, V. H., K. A. Hooper et al. (1997). Surface characterization of tyrosine-derived polycarbonates. Journal of Applied Polymer Science 63(11): 1467–1479. Petit, V. and J.-P. Thiery (2000). Focal adhesions: Structure and dynamics. Biology of the Cell 92(7): 477–494. Pippig, F., S. Sarghini et al. (2009). TFAA chemical derivatization and XPS. Analysis of OH and NHx polymers. Surface and Interface Analysis 41(5): 421–429. Plow, E. F., T. A. Haas et al. (2000). Ligand binding to integrins. Journal of Biological Chemistry 275(29): 21785–21788. Porter, A. E. (2006). Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron 37(8): 681–688. Poulsson, A. H. C., S. A. Mitchell et al. (2009). Attachment of human primary osteoblast cells to modi�ed polyethylene surfaces. Langmuir 25(6): 3718–3727. Prescher, J. A., D. H. Dube et al. (2004). Chemical remodelling of cell surfaces in living animals. Nature 430(7002): 873–877. Qu, X.-H., Q. Wu et al. (2005). Enhanced vascular-related cellular af�nity on surface modi�ed copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 26(34): 6991–7001. Quirk, R. A., W. C. Chan et al. (2001). Poly(-lysine)-GRGDS as a biomimetic surface modi�er for poly(lactic acid). Biomaterials 22(8): 865–872. Raja, K. S., Q. Wang et al. (2003). Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 4(3): 472–476. Rajagopalan, P., W. A. Marganski et al. (2004). Direct comparison of the spread area, contractility, and migration of balb/c 3T3 �broblasts adhered to �bronectin- and RGD-modi�ed substrata. Biophysical Journal 87(4): 2818–2827. Rao, G. R., Z. L. Wang et al. (1993). Microstructural effects on surface mechanical-properties of ion-implanted polymers. Journal of Materials Research 8(4): 927–933. Ratner, B. D. and S. J. Bryan (2004). Biomaterials: Where we have been and where we are going. Annual Review of Biomedical Engineering 6: 41–75. Reyes, C. D. and A. J. Garcia (2003). Engineering integrin-speci�c surfaces with a triple-helical collagenmimetic peptide. Journal of Biomedical Materials Research Part A 65A(4): 511–523. Reyes, C. D. and A. J. Garcia (2004). Alpha(2)beta(1) integrin-speci�c collagen-mimetic surfaces supporting osteoblastic differentiation. Journal of Biomedical Materials Research Part A 69A(4): 591–600. Reynhout, I. C., J. J. L. M. Cornelissen et al. (2007). Self-assembled architectures from biohybrid triblock copolymers. Journal of the American Chemical Society 129(8): 2327–2332. Rezania, A. and K. E. Healy (1999). Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnology Progress 15(1): 19–32. Richey, T., H. Iwata et al. (2000). Surface modi�cation of polyethylene balloon catheters for local drug delivery. Biomaterials 21(10): 1057–1065. Rinckenbach, S., J. Hemmerlé et al. (2008). Characterization of polyelectrolyte multilayer �lms on polyethylene terephtalate vascular prostheses under mechanical stretching. Journal of Biomedical Materials Research Part A 84(3): 576–588. Roach, P., D. Eglin et al. (2007). Modern biomaterials: A review—Bulk properties and implications of surface modi�cations. Journal of Materials Science: Materials in Medicine 18(7): 1263–1277. Roach, P., D. Farrar et al. (2005). Interpretation of protein adsorption: Surface-induced conformational changes. Journal of the American Chemical Society 127(22): 8168–8173. Rodrigues, S. N., I. C. Gonçalves et al. (2006). Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials 27(31): 5357–5367. Rodriguez Emmenegger, C., E. Brynda et al. (2009). Interaction of blood plasma with antifouling surfaces. Langmuir 25(11): 6328–6333. Rodríguez-Lorenzo, L. M., R. García-Carrodeguas et al. (2006). Wollastonite-poly(ethylmethacrylateco-vinylpyrrolydone) nanostructured materials: Mechanical properties and biocompatibility. Key Engineering Materials 309–311 II: 1149–1152. Rodríguez-Lorenzo, L. M., R. García-Carrodeguas et al. (2009). Synthesis, characterization, bioactivity and biocompatibility of nanostructured materials based on the wollastonite-poly(ethylmethacrylate-co- vinylpyrrolidone) system. Journal of Biomedical Materials Research Part A 88(1): 53–64. Roger, P., L. Renaudie et al. (2010). Surface characterizations of poly(ethylene terephthalate) �lm modi�ed by a carbohydrate-bearing photoreactive azide group. European Polymer Journal 46(7): 1594–1603. Rojo, L., J. M. Barcenilla et al. (2008). Intrinsically antibacterial materials based on polymeric derivatives of eugenol for biomedical applications. Biomacromolecules 9(9): 2530–2535. Romero-Sánchez, M. D., M. Surface modi�cations of a discharge and ultraviolet Materials Science 36(24): M. Pastor-Blas et al. (2001). vulcanized rubber using corona radiation treatments. Journal of 5789–5799. Rostovtsev, V. V., L. G. Green et al. (2002). A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie—International Edition 41(14): 2596–2599. Rowley, J. A. and D. J. Mooney (2002). Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research 60(2): 217–223. Sabbatini, L. and P. G. Zambonin (1996). XPS and SIMS surface chemical analysis of some important classes of polymeric biomaterials. Journal of Electron Spectroscopy and Related Phenomena 81(3): 285–301. Sagnella, S., E. Anderson et al. (2005). Human endothelial cell interaction with biomimetic surfactant polymers containing peptide ligands from the heparin binding domain of �bronectin. Tissue Engineering 11(1–2): 226–236. Sahlin, J. J. and N. A. Peppas (1997). Near-�eld FTIR imaging: A technique for enhancing spatial resolution in FTIR microscopy. Journal of Applied Polymer Science 63(1): 103–110. Sajeesh, S., K. Bouchemal et al. (2010). Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 74(2): 209–218. Salvagnini, C. and J. Marchand-Brynaert (2006). Immobilization of thrombin inhibitors on polyesters surface: An original approach towards materials blood compatibilization. Advanced Materials Forum Iii Parts 1 and 2 514–516: 961–965. Sánchez, J., G. Elgue et al. (1997). Inhibition of the plasma contact activation system of immobilized heparin: Relation to surface density of functional antithrombin binding sites. Journal of Biomedical Materials Research 37(1): 37–42. Sanchis, M. R., V. Blanes et al. (2006). Surface modi�cation of low density polyethylene (LDPE) �lm by low pressure O2 plasma treatment. European Polymer Journal 42(7): 1558–1568. Satriano, C., G. M. L. Messina et al. (2010). Surface immobilization of �bronectin-derived PHSRN peptide on functionalized polymer �lms—Effects on �broblast spreading. Journal of Colloid and Interface Science 341(2): 232–239. Schneider, S. W., M. E. Egan et al. (1999). Continuous detection of extracellular ATP on living cells by using atomic force microscopy. Proceedings of the National Academy of Sciences of the USA 96(21): 12180–12185. Schwartz, M. A. and M. H. Ginsberg (2002). Networks and crosstalk: Integrin signalling spreads. Nature Cell Biology 4(4): E65–E68. Scott, M. D. and A. M. Chen (2004). Beyond the red cell: Pegylation of other blood cells and tissues. Transfusion Clinique et Biologique 11(1): 40–46. Sebra, R. P., K. S. Masters et al. (2005). Surface grafted antibodies: Controlled architecture permits enhanced antigen detection. Langmuir 21(24): 10907–10911. Seo, J.-H., R. Matsuno et al. (2008). Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling-deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials 29(10): 1367–1376. Servoli, E., D. Maniglio et al. (2008). Quantitative analysis of protein adsorption via atomic force microscopy and surface plasmon resonance. Macromolecular Bioscience 8(12): 1126–1134. Servoli, E., D. Maniglio et al. (2009). Comparative methods for the evaluation of protein adsorption. Macromolecular Bioscience 9(7): 661–670. Sessler, J. L. and J. Jayawickramarajah (2005). Functionalized base-pairs: Versatile scaffolds for self-assembly. Chemical Communications (15): 1939–1949. Sham, M. L., J. Li et al. (2009). Cleaning and functionalization of polymer surfaces and nanoscale carbon �llers by uv/ozone treatment: A review. Journal of Composite Materials 43(14): 1537–1564. Shchipunov, Y. A., O. G. Mukhaneva et al. (2003). Polyelectrolyte complexes of naturally occurring fucoidans with cationically and hydrophobically modi�ed hydroxyethyl cellulose. Polymer Science Series A 45(3): 295–303. Sheardown, H., M. A. Brook et al. (2007). Cell Interactions with PDMS surfaces modi�ed with cell adhesion peptides using a generic method. Materials Science Forum 539–543(Part 1): 704–709. Shen, M., M. S. Wagner et al. (2003). Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir 19(5): 1692–1699. Sheng, Q., K. Schulten et al. (1995). Molecular dynamic simulation of immobilized arti�cial membranes. Journal of Physical Chemistry 99(27): 11018–11027. Shi, Q., Y. Huang et al. (2009). Hemoglobin conjugated micelles based on triblock biodegradable polymers as arti�cial oxygen carriers. Biomaterials 30(28): 5077–5085. Shin, H., S. Jo et al. (2002). Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modi�ed with Arg-Gly-Asp peptides and a poly(ethylene glycol) spacer. Journal of Biomedical Materials Research 61(2): 169–179. Shin, H., K. Zygourakis et al. (2004). Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modi�ed with an osteopontin-derived peptide. Biomaterials 25(5): 895–906. Sivakova, S. and S. J. Rowan (2005). Nucleobases as supramolecular motifs. Chemical Society Reviews 34(1): 9–21. Smeenk, J. M., M. B. J. Otten et al. (2005). Controlled assembly of macromolecular beta-sheet �brils13. Angewandte Chemie International Edition 44(13): 1968–1971. Smith, E., J. Yang et al. (2005). RGD-grafted thermoreversible polymers to facilitate attachment of BMP-2 responsive C2C12 cells. Biomaterials 26(35): 7329–7338. Stamm, M. (2008). Polymer Surfaces and Interfaces. Characterization, Modi©cation and Applications, pp. 1–16. Springer-Verlag, Berlin, Germany. Strola, S. C. G., Gilliand, D., Valsesia, A., Lisboa, P., and F. Rossi (2010). Comparison of surface activation processes for protein immobilization on plasma-polymerized acrylic acid �lms. Surface and Interface Analysis 42(6–7): 1311–1315. Sviridov, D. V. (2002). Chemical aspects of implantation of high-energy ions into polymeric materials. Russian Chemical Reviews 71(4): 315–327. Tai, B. C. U., A. C. A. Wan et al. (2010). Modi�ed polyelectrolyte complex �brous scaffold as a matrix for 3D cell culture. Biomaterials 31(23): 5927–5935. Tanzi, M. C. (2005). Bioactive technologies for hemocompatibility. Expert Review of Medical Devices 2(4): 473–492. Teare, D. O. H., C. Ton-That et al. (2000). Surface characterization and ageing of ultraviolet-ozone-treated polymers using atomic force microscopy and x-ray photoelectron spectroscopy. Surface and Interface Analysis 29(4): 276–283. Thom, V. H., G. Altankov et al. (2000). Optimizing cell-surface interactions by photografting of poly(ethylene glycol). Langmuir 16(6): 2756–2765. Thome, J., A. Holländer et al. (2003). Ultrathin antibacterial polyammonium coatings on polymer surfaces. Surface and Coatings Technology 174–175: 584–587. Tirrell, M., E. Kokkoli et al. (2002). The role of surface science in bioengineered materials. Surface Science 500(1–3): 61–83. Toworfe, G. K., R. J. Composto et al. (2004). Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. Journal of Biomedical Materials Research Part A 71A(3): 449–461. Travan, A., I. Donati et al. (2010). Surface modi�cation and polysaccharide deposition on BisGMA/TEGDMA thermoset. Biomacromolecules 11(3): 583–592. Tziampazis, E., J. Kohn et al. (2000). PEG-variant biomaterials as selectively adhesive protein templates: Model surfaces for controlled cell adhesion and migration. Biomaterials 21(5): 511–520. Van Kooten, T. G., H. T. Spijker et al. (2004). Plasma-treated polystyrene surfaces: Model surfaces for studying cell-biomaterial interactions. Biomaterials 25(10): 1735–1747. Vandencasteele, N., B. Nisol et al. (2008). Plasma-modi�ed PTFE for biological applications: Correlation between protein-resistant properties and surface characteristics. Plasma Processes and Polymers 5(7): 661–671. VandeVondele, S., J. Vörös et al. (2003). RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-speci�c protein adsorption while promoting cell adhesion. Biotechnology and Bioengineering 82(7): 784–790. Vasita, R., K. Shanmugam et al. (2008). Improved biomaterials for tissue engineering applications: Surface modi�cation of polymers. Current Topics in Medicinal Chemistry 8(4): 341–353. Vepari, C., D. Matheson et al. (2010). Surface modi�cation of silk �broin with poly(ethylene glycol) for antiadhesion and antithrombotic applications. Journal of Biomedical Materials Research Part A 93(2): 595–606. Verma, I. M. and N. Somia (1997). Gene therapy—Promises, problems and prospects. Nature 389(6648): 239–242. Vermette, P. and L. Meagher (2003). Interactions of phospholipid- and poly(ethylene glycol)-modi�ed surfaces with biological systems: Relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces 28(2–3): 153–198. Vesel, A., I. Junkar et al. (2008). Surface modi�cation of polyester by oxygen- And nitrogen-plasma treatment. Surface and Interface Analysis 40(11): 1444–1453. Vicente, T., Mota, J. P. B., Peixoto, C., Alves, P. M., and M. J. T. Carrondo (2010). Modeling protein binding and elution over a chromatographic surface probed by surface plasmon resonance. Journal of Chromatography A 1217(13): 2032–2041. Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science 74(1–3): 69–117. Wan, Y., X. Qu et al. (2004). Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. Biomaterials 25(19): 4777–4783. Wan, L.-S., Z.-K. Xu et al. (2005). Copolymerization of acrylonitrile with N-vinyl-2-pyrrolidone to improve the hemocompatibility of polyacrylonitrile. Polymer 46(18): 7715–7723. Wan, Y., J. Yang et al. (2003). Cell adhesion on gaseous plasma modi�ed poly-(L-lactide) surface under shear stress �eld. Biomaterials 24(21): 3757–3764. Wang, D.-a., C. G. Williams et al. (2003). Synthesis and characterization of a novel degradable phosphatecontaining hydrogel. Biomaterials 24(22): 3969–3980. Webb, K., K. D. Caldwell et al. (2001). A novel surfactant-based immobilization method for varying substratebound �bronectin. Journal of Biomedical Materials Research 54(4): 509–518. Weder, G. G.-G. O., Matthey, N., Montagne, F., Heinzelmann, H., Vörös, J., and M. Liley (2010). The quanti�cation of single cell adhesion on functionalized surfaces for cell sheet engineering. Biomaterials 31(25): 6436–6443. Wendel, H. P., N. Weber et al. (1999). Increased adsorption of high molecular weight kininogen to heparincoated arti�cial surfaces and correlation to hemocompatibility. Immunopharmacology 43(2–3): 149–153. Wendel, H. P. and G. Ziemer (1999). Coating-techniques to improve the hemocompatibility of arti�cial devices used for extracorporeal circulation. European Journal of Cardio-Thoracic Surgery 16(3): 342–350. Whitesides, George M. (2005). Nanoscience, nanotechnology, and chemistry13. Small 1(2): 172–179. Wierzbicka-Patynowski, I. and J. E. Schwarzbauer (2003). The ins and outs of �bronectin matrix assembly. Journal of Cell Science 116(16): 3269–3276. Willemsen, O. H., M. M. E. Snel et al. (2000). Biomolecular interactions measured by atomic force microscopy. Biophysical Journal 79(6): 3267–3281. Williams, D. F. (2008). On the mechanisms of biocompatibility. Ratner Symposium 2006, Maui, HI. Biomaterials 29(20): 2941–2953. Wu, P., M. Malkoch et al. (2005a). Multivalent, bifunctional dendrimers prepared by click chemistry. Chemical Communications (46): 5775–5777. Wu, Y. G., F. I. Simonovsky et al. (2005b). The role of adsorbed �brinogen in platelet adhesion to polyurethane surfaces: A comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. Journal of Biomedical Materials Research Part A 74A(4): 722–738. Wu, W. J., H. Z. Zhuang et al. (1997). Heterogeneous nucleation of calcium phosphates on solid surfaces in aqueous solution. Journal of Biomedical Materials Research 35(1): 93–99. Xiong, X. L. Q., Lu, J.-W., Guo, Z.-X., and J. Yu (2010). Poly(lactic acid)/soluble eggshell membrane protein blend �lms: Preparation and characterization. Journal of Applied Polymer Science 117(4): 1955–1959. Xu, Z. K., Q. W. Dai et al. (2004). Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: A novel approach. Langmuir 20(4): 1481–1488. Xu, L.-C. and C. A. Siedlecki (2007). Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28(22): 3273–3283. Xu, L. C. and C. A. Siedlecki (2009). Atomic force microscopy studies of the initial interactions between �brinogen and surfaces. Langmuir 25(6): 3675–3681. Xu, J., Y. Yuan et al. (2003). Ozone-induced grafting phosphorylcholine polymer onto silicone �lm grafting 2-methacryloyloxyethyl phosphorylcholine onto silicone �lm to improve hemocompatibility. Colloids and Surfaces B: Biointerfaces 30(3): 215–223. Yamada, K. M. and S. Even-Ram (2002). Integrin regulation of growth factor receptors. Nature Cell Biology 4(4): E75–E76. Yang, S. Y., D. Y. Kim et al. (2008). Stimuli-responsive hybrid coatings of polyelectrolyte multilayers and nanopatterned polymer brushes. Macromolecular Rapid Communications 29(9): 729–736. Yang, M. C. and W. C. Lin (2003). Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polymers for Advanced Technologies 14(2): 103–113. Yang, Y., M. C. Porté et al. (2003). Covalent bonding of collagen on poly(l-lactic acid) by gamma irradiation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 207(2): 165–174. Ye, H., Z. Gu et al. (2006). Kinetics of ultraviolet and plasma surface modi�cation of poly(dimethylsiloxane) probed by sum frequency vibrational spectroscopy. Langmuir 22(4): 1863–1868. Yoo, H. S., T. G. Kim et al. (2009) Surface-functionalized electrospun nano�bers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews 61: 1033–1042. Yoon, R. H., D. H. Flinn et al. (1997). Hydrophobic interactions between dissimilar surfaces. Journal of Colloid and Interface Science 185(2): 363–370. Yoshida, T. (2001). Synthesis of polysaccharides having speci�c biological activities. Progress in Polymer Science 26(3): 379–441. Yoshida, T., T. Akasaka et al. (1999). Synthesis of polymethacrylate derivatives having sulfated maltoheptaose side chains with anti-HIV activities. Journal of Polymer Science Part A: Polymer Chemistry 37(6): 789–800. Yoshinari, M., T. Kato et al. (2006). Adsorption behavior of antimicrobial peptide histatin 5 on PMMA. Journal of Biomedical Materials Research Part B: Applied Biomaterials 77(1): 47–54. You, L.-C., F.-Z. Lu et al. (2002). Glucose-sensitive aggregates formed by poly(ethylene oxide)-blockpoly(2-glucosyl-oxyethyl acrylate) with concanavalin A in dilute aqueous Medium. Macromolecules 36(1): 1–4. Yuan, Y., F. Ai et al. (2004a). Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone. Colloids and Surfaces B: Biointerfaces 35(1): 1–5. Yuan, J., L. Chen et al. (2004b). Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion. Colloids and Surfaces B: Biointerfaces 39(1–2): 87–94. Yuan, J., C. Mao et al. (2003a). Chemical grafting of sulfobetaine onto poly(ether urethane) surface for improving blood compatibility. Polymer International 52(12): 1869–1875. Yuan, Y., J. Zhang et al. (2003b). Surface modi�cation of SPEU �lms by ozone induced graft copolymerization to improve hemocompatibility. Colloids and Surfaces B: Biointerfaces 29(4): 247–256. Yuan, Y., X. Zang et al. (2004c). Grafting sulfobetaine monomer onto silicone surface to improve haemocompatibility. Polymer International 53(1): 121–126. Zamir, E. and B. Geiger (2001). Molecular complexity and dynamics of cell-matrix adhesions. Journal of Cell Science 114(20): 3583–3590. Zhang, Y., C. Chai et al. (2007). Fibronectin immobilized by covalent conjugation or physical adsorption shows different bioactivity on aminated-PET. Materials Science and Engineering: C 27(2): 213–219. Zhang, Z., T. Chao et al. (2006a). Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22(24): 10072–10077. Zhang, Z., S. Chen et al. (2006b). Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7(12): 3311–3315. Zhang, W., P. K. Chu et al. (2006c). Antibacterial properties of plasma-modi�ed and triclosan or bronopol coated polyethylene. Polymer 47(3): 931–936. Zhang, Z., R. Yoo et al. (2005). Neurite outgrowth on well-characterized surfaces: Preparation and characterization of chemically and spatially controlled �bronectin and RGD substrates with good bioactivity. Biomaterials 26(1): 47–61. Zhang, J., J. Yuan et al. (2003). Chemical modi�cation of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility. Colloids and Surfaces B: Biointerfaces 30(3): 249–257. Zhang, Z., M. Zhang et al. (2008). Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29(32): 4285–4291. Zhao, C., X. Liu et al. (2003). Blood compatible aspects of DNA-modi�ed polysulfone membrane—Protein adsorption and platelet adhesion. Biomaterials 24(21): 3747–3755. Zhou, J., J. Yuan et al. (2005). Platelet adhesion and protein adsorption on silicone rubber surface by ozoneinduced grafted polymerization with carboxybetaine monomer. Colloids and Surfaces B: Biointerfaces 41(1): 55–62. Zhu, Y., K. S. Chian et al. (2006a). Protein bonding on biodegradable poly(l-lactide-co-caprolactone) membrane for esophageal tissue engineering. Biomaterials 27(1): 68–78. Zhu, A. P., N. Fang et al. (2006b). Adhesion contact dynamics of 3T3 �broblasts on poly(lactide-coglycolide acid) surface modi�ed by photochemical immobilization of biomacromolecules. Biomaterials 27(12): 2566–2576. Zhu, Y., C. Gao et al. (2004a). Endothelial cell functions in vitro cultured on poly(l-lactic acid) membranes modi�ed with different methods. Journal of Biomedical Materials Research Part A 69(3): 436–443. Zhu, Y., C. Gao et al. (2004b). Endothelium regeneration on luminal surface of polyurethane vascular scaffold modi�ed with diamine and covalently grafted with gelatin. Biomaterials 25(3): 423–430. Zhu, H., J. Ji et al. (2004c). Construction of multilayer coating onto poly-(DL-lactide) to promote cytocompatibility. Biomaterials 25(1): 109–117. Zhu, Y., M. Otsubo et al. (2006c). Loss and recovery in hydrophobicity of silicone rubber exposed to corona discharge. Polymer Degradation and Stability 91(7): 1448–1454. Zhu, A., M. Zhang et al. (2002). Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials 23(23): 4657–4665. Zisch, A. H., U. Schenk et al. (2001). Covalently conjugated VEGF-�brin matrices for endothelialization. Journal of Controlled Release 72(1–3): 101–113. Zreiqat, H., F. A. Akin et al. (2003). Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. Journal of Biomedical Materials Research Part A 64A(1): 105–113. Zwaal, R. F. A., P. Comfurius et al. (1977). Membrane asymmetry and blood coagulation. Nature 268(5618): 358–360. 16 Chapter 16. Electrospinning for Regenerative Medicine 1. D. W. Hutmacher, T. Wood�eld, P. D. Dalton, and J. Lewis, in: C. Van Blitterswijk et al., Eds., Scaffold design and fabrication. Tissue Engineering (Academic Press, New York, 2008), pp. 403–450. 2. D. W. Hutmacher and A. K. Ekaputra, in: P. K. Chu and X. Liu, Eds., Design and fabrication principles of electrospinning of scaffolds. Biomaterials Fabrication and Processing Handbook ( Taylor & Francis Group, Boca Raton, FL, 2008), pp. 115–139. 3. P. D. Dalton, T. Wood�eld, and D. W. Hutmacher, Snapshot: Polymer scaffolds for tissue engineering (vol. 30, p. 701, 2009). Biomaterials 30, 2420 (Apr 2009). 4. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, Electrospun nano�brous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research 60, 613 (June 2002). 5. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Electrospinning of collagen nano�bers. Biomacromolecules 3, 232 (Mar–Apr 2002). 6. C. L. Casper, N. Yamaguchi, K. L. Kiick, and J. F. Rabolt, Functionalizing electrospun �bers with biologically relevant macromolecules. Biomacromolecules 6, 1998 (Jul–Aug 2005). 7. S. Y. Chew, J. Wen, E. K. F. Yim, and K. W. Leong, Sustained release of proteins from electrospun biodegradable �bers. Biomacromolecules 6, 2017 (Jul–Aug 2005). 8. J. J. Stankus, J. J. Guan, K. Fujimoto, and W. R. Wagner, Microintegrating smooth muscle cells into a biodegradable, elastomeric �ber matrix. Biomaterials 27, 735 (Feb 2006). 9. A. K. Ekaputra, G. D. Prestwich, S. M. Cool, and D. W. Hutmacher, Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9, 2097 (Aug 2008). 10. M. Simonet, O. D. Schneider, P. Neuenschwander, and W. J. Stark, Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polymer Engineering and Science 47, 2020 (Dec 2007). 11. O. D. Schneider et al., Cotton wool-like nanocomposite biomaterials prepared by electrospinning: In vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research Part B-Applied Biomaterials 84B, 350 (Feb 2008). 12. R. Gentsch, B. Bo ysen, A. Lankenau, and H. G. Borner, Single-step electrospinning of bimodal �ber meshes for ease of cellular in�ltration. Macromolecular Rapid Communications 31, 59 (Jan 2010). 13. S. J. Kim, D. H. Jang, W. H. Park, and B. M. Min, Fabrication and characterization of 3-dimensional PLGA nano�ber/micro�ber composite scaffolds. Polymer 51, 1320 (Mar 2010). 14. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Electrospinning: A whipping ¥uid jet generates submicron polymer �bers. Applied Physics Letters 78, 1149 (Feb 2001). 15. R. J. Deng et al., Melt electrospinning of low-density polyethylene having a low-melt ¥ow index. Journal of Applied Polymer Science 114, 166 (Oct 2009). 16. B. S. Jha et al., Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomaterialia 7, 203 (Jan 2011). 17. N. Shimada, H. Tsutsumi, K. Nakane, T. Ogihara, and N. Ogata, Poly(ethylene-co-vinyl alcohol) and nylon 6/12 nano�bers produced by melt electrospinning system equipped with a line-like laser beam melting device. Journal of Applied Polymer Science 116, 2998 (Jun 2010). 18. A. Zajicova et al., Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nano�ber scaffolds. Cell Transplant 19, 1281 (Jun 2011). 19. D. H. Sun, C. Chang, S. Li, and L. Lin, Near-�eld electrospinning. Nano Letters 6, 839 (Apr 2006). 20. S. N. Malakhov et al., Method of manufacturing nonwovens by electrospinning from polymer melts. Fibre Chemistry 41, 355 (Nov 2009). 21. D. H . Reneker, A. L. Yarin, H. Koombhongse, Bending instability of liquid jets of polymer solutions in Journal of Applied Physics 87, 4531 Fong, and S. electrically charged electrospinning. (May 2000). 22. D. W. Hutmacher and P. D. Dalton, Melt electrospinning. Chemistry-An Asian Journal 6, 44 (Jan 2011). 23. P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, and M. Moller, Electrospinning of polymer melts: Phenomenological observations. Polymer 48, 6823 (Nov 2007). 24. P. D. Dalton, N. T. Joergensen, J. Groll, and M. Moeller, Patterned melt electrospun substrates for tissue engineering. Biomedical Materials 3, 34109 (Sep 2008). 25. P. Zahedi, I. Rezaeian, S. O. Ranaei-Siadat, S. H. Jafari, and P. Supaphol, A review on wound dressings with an emphasis on electrospun nano�brous polymeric bandages. Polymers for Advanced Technologies 21, 77 (Feb 2010). 26. Y. K. W ang, T. Yong, and S. Ramakrishna, Nano�bres and their in¥uence on cells for tissue regeneration. Australian Journal of Chemistry 58, 704 (2005). 27. M. J. Beglou and A. K. Haghi, Electrospun biodegdadable and biocompatible natural nano�bers: A detailed review. Cellulose Chemistry and Technology 42, 441 (Oct–Dec 2008). 28. J. D. Schiffman and C. L. Schauer, A review: Electrospinning of biopolymer nano�bers and their applications. Polymer Reviews 48, 317 (2008). 29. D. I. Zeugolis et al., Electro-spinning of pure collagen nano-�bres—Just an expensive way to make gelatin? Biomaterials 29, 2293 (May 2008). 30. B. M . Min et al., Formation of silk �broin matrices with different texture and its cellular response to normal human keratinocytes. International Journal of Biological Macromolecules 34, 281 (Oct 2004). 31. X. H. Zhang, M. R. Reagan, and D. L. Kaplan, Electrospun silk biomaterial scaffolds for regenerative medicine. Advanced Drug Delivery Reviews 61, 988 (Oct 2009). 32. K. S. Rho et al., Electrospinning of collagen nano�bers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27, 1452 (Mar 2006). 33. S. S. Xu et al., Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin �brous membranes. Polymer 50, 3762 (Jul 2009). 34. Y. Ji et al., Electrospun three-dimensional hyaluronic acid nano�brous scaffolds. Biomaterials 27, 3782 (Jul 2006). 35. S. A. Sell, M. J. McClure, K. Garg, P. S. Wolfe, and G. L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews 61, 1007 (Oct 2009). 36. H. C. Chen, W. C. Jao, and M. C. Yang, Characterization of gelatin nano�bers electrospun using ethanol/ formic acid/water as a solvent. Polymers for Advanced Technologies 20, 98 (Feb 2009). 37. M. W. Frey, Electrospinning cellulose and cellulose derivatives. Polymer Reviews 48, 378 (2008). 38. H. M. Powell and S. T. Boyce, Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. Journal of Biomedical Materials Research Part A 84A, 1078 (Mar 2008). 39. R. A. Neal et al., Laminin nano�ber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Engineering Part C-Methods 15, 11 (Mar 2009). 40. H. S. Koh, T. Yong, C. K. Chan, and S. Ramakrishna, Enhancement of neurite outgrowth using nanostructured scaffolds coupled with laminin. Biomaterials 29, 3574 (Sep 2008). 41. R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura, Novel chitin and chitosan nano�bers in biomedical applications. Biotechnology Advances 28, 142 (Jan–Feb 2010). 42. L. Nivison-Smith, J. Rnjak, and A. S. Weiss, Synthetic human elastin micro�bers: Stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomaterialia 6, 354 (Feb 2010). 43. Y. Ner, J. A. Stuart, G. Whited, and G. A. Sotzing, Electrospinning nanoribbons of a bioengineered silkelastin-like protein (SELP) from water. Polymer 50, 5828 (Nov 2009). 44. M. C. McManus, E. D. Boland, D. G. Simpson, C. P. Barnes, and G. L. Bowlin, Electrospun �brinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model. Journal of Biomedical Materials Research Part A 81A, 299 (May 2007). 45. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin, Electrospinning of nano�ber �brinogen structures. Nano Letters 3, 213 (Feb 2003). 46. S. H. Teng, P. Wang, and H. E. Kim, Blend �bers of chitosan-agarose by electrospinning. Materials Letters 63, 2510 (Nov 2009). 47. J. X. Li et al., Electrospinning of hyaluronic acid (HA) and HA/gelatin blends. Macromolecular Rapid Communications 27, 114 (Jan 2006). 48. D. Puppi, A. M. Piras, N. Detta, D. Dinucci, and F. Chiellini, Poly(lactic-co-glycolic acid) electrospun �brous meshes for the controlled release of retinoic acid. Acta Biomaterialia 6, 1258 (Apr 2010). 49. L. Zhao et al., Preparation and cytocompatibility of PLGA scaffolds with controllable �ber morphology and diameter using electrospinning method. Journal of Biomedical Materials Research Part B-Applied Biomaterials 87B, 26 (Oct 2008). 50. J. M. Corey et al., The design of electrospun PLLA nano�ber scaffolds compatible with serum-free growth of primary motor and sensory neurons. Acta Biomaterialia 4, 863 (Jul 2008). 51. R. Inai, M. Kotaki, and S. Ramakrishna, Structure and properties of electrospun PLLA single nano�bres. Nanotechnology 16, 208 (Feb 2005). 52. G. H. Kim, Electrospun PCL nano�bers with anisotropic mechanical properties as a biomedical scaffold. Biomedical Materials 3, 25010 (Jun 2008). 53. G. Y. Liao, K. F. Jiang, S. B. Jiang, and H. Xia, Synthesis and characterization of biodegradable poly(epsilon-caprolactone)-b-poly(L-lactide) and study on their electrospun scaffolds. Journal of Macromolecular Science Part A-Pure and Applied Chemistry 47, 1116 (2010). 54. J. Zeng, X. S. Chen, Q. Z. Liang, X. L. Xu, and X. B. Jing, Enzymatic degradation of poly(L-lactide) and poly (epsilon-caprolactone) electrospun �bers. Macromolecular Bioscience 4, 1118 (Dec 2004). 55. T. Uyar and F. Besenbacher, Electrospinning of uniform polystyrene �bers: The effect of solvent conductivity. Polymer 49, 5336 (Nov 2008). 56. G. T. Kim et al., The morphology of electrospun polystyrene �bers. Korean Journal of Chemical Engineering 22, 147 (Jan 2005). 57. D. Grafahrend et al., Control of protein adsorption on functionalized electrospun �bers. Biotechnology and Bioengineering 101, 609 (Oct 2008). 58. D. G rafahrend et al., Biofunctionalized poly(ethylene glycol)-block-poly(epsilon-caprolactone) nano�bers for tissue engineering. Journal of Materials Science-Materials in Medicine 19, 1479 (Apr 2008). 59. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, Electrospun nano�brous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B-Applied Biomaterials 67B, 675 (Nov 2003). 60. A. Pedicini and R. J. Farris, Mechanical behavior of electrospun polyurethane. Polymer 44, 6857 (Oct 2003). 61. S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu, and S. Mantero, Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26, 4606 (Aug 2005). 62. K. Arayanarakul, N. Choktaweesap, D. Aht-ong, C. Meechaisue, and P. Supaphol, Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electrospinning of poly(ethylene oxide). Macromolecular Materials and Engineering 291, 581 (Jun 2006). 63. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. B. Tan, Controlled deposition of electrospun poly(ethylene oxide) �bers. Polymer 42, 8163 (Sep 2001). 64. H. Okuzaki, K. Kobayashi, and H. Yan, Non-woven fabric of poly(N-isopropylacrylamide) nano�bers fabricated by electrospinning. Synthetic Metals 159, 2273 (Nov 2009). 65. D. N. Rockwood, D. B. Chase, R. E. Akins, and J. F. Rabolt, Characterization of electrospun poly(Nisopropyl acrylamide) �bers. Polymer 49, 4025 (Aug 2008). 66. D. Grafahrend et al., Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with speci�c bioactivation. Nature Materials 10, 67 (Jan 2011). 67. E. Schnell et al., Guidance of glial cell. migration and axonal growth on electrospun nano�bers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 28, 3012 (Jul 2007). 68. H. J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3, 1233 (Nov–Dec 2002). 69. Z. X. Meng et al., Electrospinning of PLGA/gelatin randomly-oriented and aligned nano�bers as potential scaffold in tissue engineering. Materials Science and Engineering C-Materials for Biological Applications 30, 1204 (Oct 2010). 70. X. L. Deng, G. Sui, M. L. Zhao, G. Q. Chen, and X. P. Yang, Poly(L-lactic acid)/hydroxyapatite hybrid nano�brous scaffolds prepared by electrospinning. Journal of Biomaterials Science-Polymer Edition 18, 117 (2007). 71. B. Duan et al., A nano�brous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. European Polymer Journal 42, 2013 (Sep, 2006). 72. A. S. Asran, S. Henning, and G. H. Michler, Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nano�brous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer 51, 868 (Feb 2010). 73. M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E. Long, Correlations of solution rheology with electrospun �ber formation of linear and branched polyesters. Macromolecules 37, 1760 (Mar 2004). 74. H. R. Nie et al., Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9, 1362 (May 2008). 75. Y. Liu et al., Effects of solution properties and electric �eld on the electrospinning of hyaluronic acid. Carbohydrate Polymers 83, 1011 (2011). 76. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, Characterization of nano-structured poly(epsilon-caprolactone) nonwoven mats via electrospinning. Polymer 44, 1287 (Feb 2003). 77. K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, Mechanical behavior of electrospun �ber mats of poly(vinyl chloride)/polyurethane polyblends. Journal of Polymer Science Part B-Polymer Physics 41, 1256 (Jun 2003). 78. H. Fong, W . D. Liu, C. S. Wang, and R. A. Vaia, Generation of electrospun �bers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 43, 775 (Feb 2002). 79. W. W. Zuo et al., Experimental study on relationship between jet instability and formation of beaded �bers during electrospinning. Polymer Engineering and Science 45, 704 (May 2005). 80. C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, Ultratine electrospun polyamide-6 �bers: Effect of solution conditions on morphology and average �ber diameter. Macromolecular Chemistry and Physics 205, 2327 (Nov 2004). 81. C. X. Zhang, X. Y. Yuan, L. L. Wu, Y. Han, and J. Sheng, Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal 41, 423 (Mar 2005). 82. A. Patlolla, G. Collins, and T. L. Arinzeh, Solvent-dependent properties of electrospun �brous composites for bone tissue regeneration. Acta Biomaterialia 6, 90 (Jan 2010). 83. X. H. Zong et al., Structure and process relationship of electrospun bioabsorbable nano�ber membranes. Polymer 43, 4403 (Jul 2002). 84. Y. You, S. J. Lee, B. M. Min, and W. H. Park, Effect of solution properties on nano�brous structure of electrospun poly(lactic-co-glycolic acid). Journal of Applied Polymer Science 99, 1214 (Feb 2006). 85. Z. Jun, H. Q. Hou, A. Schaper, J. H. Wendorff, and A. Greiner, Poly-L-lactide nano�bers by electrospinning In¥uence of solution viscosity and electrical conductivity on �ber diameter and �ber morphology. E-Polymers, Paper 9 (Mar 2003). 86. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Micro- and nanostructured surface morphology on electrospun polymer �bers. Macromolecules 35, 8456 (Oct 2002). 87. Y. Z. Zhang et al., Coaxial electrospinning of (¥uorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nano�bers for sustained release. Biomacromolecules 7, 1049 (Apr 2006). 88. Z. G. Chen, B. Wei, X. M. Mo, and F. Z. Cui, Diameter control of electrospun chitosan-collagen �bers. Journal of Polymer Science Part B-Polymer Physics 47, 1949 (Oct 2009). 89. Y. Z. Zhang, Z. M. Huang, X. J. Xu, C. T. Lim, and S. Ramakrishna, Preparation of core-shell structured PCL-r-gelatin Bi-component nano�bers by coaxial electrospinning. Chemistry of Materials 16, 3406 (Sep 2004). 90. R. Kessick, J. Fenn, and G. Tepper, The use of AC potentials in electrospraying and electrospinning processes. Polymer 45, 2981 (Apr 2004). 91. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, The effect of processing variables on the morphology of electrospun nano�bers and textiles. Polymer 42, 261 (Jan 2001). 92. M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Electrospinning of polyurethane �bers. Polymer 43, 3303 (May 2002). 93. J. Ayutsede et al., Regeneration of Bombyx mori silk by electrospinning. Part 3: Characterization of electrospun nonwoven mat. Polymer 46, 1625 (Feb 2005). 94. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, Electrospun P(LLA-CL) nano�ber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25, 1883 (May 2004). 95. D. S. Katti, K. W. Robinson, F. K. Ko, and C. T. Laurencin, Bioresorbable nano�ber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research Part B-Applied Biomaterials 70B, 286 (Aug 2004). 96. F.-L. Zhou, R.-H. Gong, and I. Porat, Three-jet electrospinning using a ¥at spinneret. Journal of Materials Science 44, 5501 (2009). 97. C. Zhang, X. Y uan, L. Wu, Y. Han, and J. Sheng, Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal 41, 423 (2005). 98. N. Bolgen, Y. Z. Menceloglu, K. Acatay, I. Vargel, and E. Piskin, In vitro and in vivo degradation of non-woven materials made of poly(epsilon-caprolactone) nano�bers prepared by electrospinning under different conditions. Journal of Biomaterials Science-Polymer Edition 16, 1537 (2005). 99. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, The change of bead morphology formed on electrospun polystyrene �bers. Polymer 44, 4029 (Jun 2003). 100. P. D. Dalton, K. Klinkhammer, J. Salber, D. Klee, and M. Moller, Direct in vitro electrospinning with polymer melts. Biomacromolecules 7, 686 (Mar 2006). 101. N. Detta et al., Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol). Polymer International 59, 1558 (Nov 2010). 102. C. Wang et al., Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules 40, 7973 (Oct 2007). 103. S. R. Giv ens, K. H. Gardner, J. F. Rabolt, and D. B. Chase, High-temperature electrospinning of polyethylene micro�bers from solution. Macromolecules 40, 608 (Feb 2007). 104. D. G. Yu et al., Multicomponent amorphous nano�bers electrospun from hot aqueous solutions of a poorly soluble drug. Pharmaceutical Research 27, 2466 (Nov 2010). 105. C. Wang, C. H. Hsu, and J. H. Lin, Scaling laws in electrospinning of polystyrene solutions. Macromolecules 39, 7662 (Oct 2006). 106. J. P. Chen, K. H. Ho, Y. P. Chiang, and K. W. Wu, Fabrication of electrospun poly(methyl methacrylate) nano�brous membranes by statistical approach for application in enzyme immobilization. Journal of Membrane Science 340, 9 (Sep 2009). 107. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, Effects of parameters on nano�ber diameter determined from electrospinning model. Polymer 48, 6913 (Nov 2007). 108. T. J arusuwannapoom et al., Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene �bers. European Polymer Journal 41, 409 (Mar 2005). 109. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Controlling surface morphology of electrospun polystyrene �bers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 37, 573 (Jan 2004). 110. J.-Y. Park and I.-H. Lee, Relative humidity effect on the preparation of porous electrospun polystyrene �bers. Journal of Nanoscience and Nanotechnology 10, 3473 (2010). 111. S. De Vrieze et al., The effect of temperature and humidity on electrospinning. Journal of Materials Science 44, 1357 (Mar 2009). 112. G. Srinivasan and D. H. Reneker, Structure and morphology of small-diameter electrospun aramid �bers. Polymer International 36, 195 (Feb 1995). 113. R. Tzezana, E. Zussman, and S. Levenberg, A layered ultra-porous scaffold for tissue engineering, created via a hydrospinning method. Tissue Engineering Part C-Methods 14, 281 (Dec 2008). 114. E. Smit, U. Buttner, and R. D. Sanderson, Continuous yarns from electrospun �bers. Polymer 46, 2419 (Mar 2005). 115. M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, and K. H. Lee, Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research Part B-Applied Biomaterials 72B, 117 (Jan 2005). 116. A. Formhals, U. S. P. Of�ce, Ed. (1934). 117. A. Formhals, U. S. P. Of�ce, Ed. (1944). 118. W. E. Teo and S. Ramakrishna, A review on electrospinning design and nano�bre assemblies. Nanotechnology 17, R89 (Jul 2006). 119. P. D. Dalton, D. Klee, and M. Moller, Electrospinning with dual collection rings. Polymer 46, 611 (Jan 2005). 120. W. E. Teo and S. Ramakrishna, Electrospun �bre bundle made of aligned nano�bres over two �xed points. Nanotechnology 16, 1878 (Sep 2005). 121. K. Klinkhammer et al., Deposition of electrospun �bers on reactive substrates for in vitro investigations. Tissue Engineering Part C-Methods 15, 77 (Mar 2009). 122. K. Klinkhammer et al., Functionalization of electrospun �bers of poly(epsilon-caprolactone) with star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) for neuronal cell guidance. Journal of Materials Science-Materials in Medicine 21, 2637 (Sep 2010). 123. J. Gerardo-Nava et al., Human neural cell interactions with orientated electrospun nano�bers in vitro. Nanomedicine 4, 11 (Jan 2009). 124. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, The effect of processing variables on the morphology of electrospun nano�bers and textiles. Polymer 42, 261 (2001). 125. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An Introduction to Electrospinning and Nano©bers (World Scienti�c Publishing, Singapore, 2005). 126. D. M. Zhang and J. Chang, Electrospinning of three-dimensional nano�brous tubes with controllable architectures. Nano Letters 8, 3283 (Oct 2008). 127. D. M. Zhang and J. Chang, Patterning of electrospun �bers using electroconductive templates. Advanced Materials 19, 3664 (Nov 5, 2007). 128. J. Kameoka et al., A scanning tip electrospinning source for deposition of oriented nano�bres. Nanotechnology 14, 1124 (Oct 2003). 129. A. Subramanian, D. Vu, G. F. Larsen, and H. Y. Lin, Preparation and evaluation of the electrospun chitosan/PEO �bers for potential applications in cartilage tissue engineering. Journal of Biomaterials SciencePolymer Edition 16, 861 (2005). 130. T. A. K owalewski, S. Barral, and T. Kowalczyk, Modeling electrospinning of nano�bers. Iutam Symposium on Modelling Nanomaterials and Nanosystems 13, 279 (2009). 131. B. Sundaray et al., Electrospinning of continuous aligned polymer �bers. Applied Physics Letters 84, 1222 (Feb 2004). 132. E. Zussman, A. Theron, and A. L. Yarin, Formation of nano�ber crossbars in electrospinning. Applied Physics Letters 82, 973 (Feb 2003). 133. J. Stitzel et al., Controlled fabrication of a biological vascular substitute. Biomaterials 27, 1088 (Oct 2006). 134. S. Kidoaki, I. K. Kwon, and T. Matsuda, Mesoscopic spatial designs of nano- and micro�ber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26, 37 (Jan 2005). 135. A. Theron, E. Zussman, and A. L. Yarin, Electrostatic �eld-assisted alignment of electrospun nano�bres. Nanotechnology 12, 384 (Sep 2001). 136. C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Aligned biodegradable nano�brous structure: A potential scaffold for blood vessel engineering. Biomaterials 25, 877 (Feb 2004). 137. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Q. Zhang, Electrospun chitosan-based nano�bers and their cellular compatibility. Biomaterials 26, 6176 (Nov 2005). 138. P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase, Continuous electrospinning of aligned polymer nano�bers onto a wire drum collector. Nano Letters 4, 2215 (Nov 2004). 139. C. Chang, K. Limkrailassiri, and L. W. Lin, Continuous near-�eld electrospinning for large area deposition of orderly nano�ber patterns. Applied Physics Letters 93, 123111 (Sep 2008). 140. T. Han, D. H. Reneker, and A. L. Yarin, Buckling of jets in electrospinning. Polymer 48, 6064 (Sep 2007). 141. H. J. Zhou, T. B. Green, and Y. L. Joo, The thermal effects on electrospinning of polylactic acid melts. Polymer 47, 7497 (Oct 2006). 142. C. Hellmann et al., High precision deposition electrospinning of nano�bers and nano�ber nonwovens. Polymer 50, 1197 (Feb 2009). 143. T. D. Brown, P. D. Dalton, and D. W. Hutmacher, Direct writing by way of melt electrospinning. Advanced Materials 23, 5651 (Dec 2011). 144. S. Chung, A. K. Moghe, G. A. Montero, S. H. Kim, and M. W. King, Nano�brous scaffolds electrospun from elastomeric biodegradable poly(L-lactide-co-epsilon-caprolactone) copolymer. Biomedical Materials 4, 15019 (Feb 2009). 145. S. H. Park, T. G. Kim, H. C. Kim, D. Y. Yang, and T. G. Park, Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomaterialia 4, 1198 (Sep 2008). 146. M. Centola et al., Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2, 14102 (Mar 2010). 147. Q. P. Pham, U. Sharma, and A. G. Mikos, Electrospun poly(epsilon-caprolactone) micro�ber and multilayer nano�ber/micro�ber scaffolds: Characterization of scaffolds and measurement of cellular in�ltration. Biomacromolecules 7, 2796 (Oct 2006). 148. N. Ashammakhi, A. Ndreu, L. Nikkola, I. Wimpenny, and Y. Yang, Advancing tissue engineering by using electrospun nano�bers. Regenerative Medicine 3, 547 (Jul 2008). 149. M. Goldberg, R. Langer, and X. Q. Jia, Nanostructured materials for applications in drug delivery and tissue engineering. Journal of Biomaterials Science-Polymer Edition 18, 241 (Mar 2007). 150. C. M. Li, C. Vepari, H. J. Jin, H. J. Kim, and D. L. Kaplan, Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27, 3115 (Jun 2006). 151. Y. C. Fu, H. Nie, M. L. Ho, C. K. Wang, and C. H. Wang, Optimized bone regeneration based on sustained release from three-dimensional �brous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnology and Bioengineering 99, 996 (Mar 2008). 152. H. Nie, B. W . Soh, Y. C. Fu, and C. H. Wang, Three-dimensional �brous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnology and Bioengineering 99, 223 (Jan 2008). 153. H. M. Nie and C. H. Wang, Fabrication and characterization of PLGA/HAp scaffolds for delivery of BMP-2 plasmid composite DNA. Journal of Controlled Release 120, 111 (Jul 2007). 154. M. K. Horne, D. R. Nisbet, J. S. Forsythe, and C. L. Parish, Three-dimensional nano�brous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev 19, 843 (Jun 2010). 155. H. J. Lam, S. Patel, A. J. Wang, J. Chu, and S. Li, In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nano�bers. Tissue Engineering Part A 16, 2641 (Aug 2010). 156. S. Sahoo, L. T . Ang, J. C. H. Goh, and S. L. Toh, Growth factor delivery through electrospun nano�bers in scaffolds for tissue engineering applications. Journal of Biomedical Materials Research Part A 93A, 1539 (Jun 2010). 157. C. L. Casper, W. D. Yang, M. C. Farach-Carson, and J. F. Rabolt, Coating electrospun collagen and gelatin �bers with perlecan domain I for increased growth factor binding. Biomacromolecules 8, 1116 (Apr 2007). 158. S. Patel et al., Bioactive nano�bers: Synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Letters 7, 2122 (Jul 2007). 159. S. Y. Che w, R. F. Mi, A. Hoke, and K. W. Leong, Aligned protein-polymer composite �bers enhance nerve regeneration: A potential tissue-engineering platform. Advanced Functional Materials 17, 1288 (May 2007). 160. F. Wang, Z. Q. Li, K. Tamama, C. K. Sen, and J. J. Guan, Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 10, 2609 (Sep 2009). 161. X. Q. Li et al., Encapsulation of proteins in poly(L-lactide-co-caprolactone) �bers by emulsion electrospinning. Colloids and Surfaces B-Biointerfaces 75, 418 (Feb 2010). 162. H. Li et al., Controlled release of PDGF-bb by coaxial electrospun dextran/poly(L-lactide-co-epsiloncaprolactone) �bers with an ultra�ne core/shell structure. Journal of Biomaterials Science-Polymer Edition 21, 803 (2010). 163. Y. Lu, H. L. Jiang, K. H. Tu, and L. Q. Wang, Mild immobilization of diverse macromolecular bioactive agents onto multifunctional �brous membranes prepared by coaxial electrospinning. Acta Biomaterialia 5, 1562 (Jun 2009). 164. N. Bolgen, I. Vargel, P. Korkusuz, Y. Z. Menceloglu, and E. Piskin, In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. Journal of Biomedical Materials Research Part B-Applied Biomaterials 81B, 530 (May 2007). 165. D. Grafahrend, K.-H. Heffels, M. Beer, P. Gasteier, M. Möller, G. Boehm, P. D. Dalton, and J. Groll, Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with speci�c bioactivation. Nature Materials 10, 67–73 (2010). 166. H. S. Yoo, T. G. Kim, and T. G. Park, Surface-functionalized electrospun nano�bers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews 61, 1033 (Oct 2009). 167. M. Yoshida, R. Langer, A. Lendlein, and J. Lahann, From advanced biomedical coatings to multifunctionalized biomaterials. Polymer Revie ws 46, 347 (Oct–Dec 2006). 168. Z. W. Ma, K. Masaya, and S. Ramakrishna, Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-�ne �ber surfaces towards developing an af�nity membrane for albumin adsorption. Journal of Membrane Science 282, 237 (Oct 2006). 169. H. S. Kim and H. S. Yoo, MMPs-responsive release of DNA from electrospun nano�brous matrix for local gene therapy: In vitro and in vivo evaluation. Journal of Controlled Release 145, 264 (Aug 2010). 170. R. Losel, D. Grafahrend, M. Moller, and D. Klee, Bioresorbable electrospun �bers for immobilization of thiol-containing compounds. Macromolecular Bioscience 10, 1177 (Oct 2010). 171. J. B. Chiu et al., Electrospun nano�brous scaffolds for biomedical applications. Journal of Biomedical Nanotechnology 1, 115 (Jun 2005). 172. S. G. Kumbar, S. P. Nukavarapu, R. James, L. S. Nair, and C. T. Laurencin, Electrospun poly(lactic acidco-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29, 4100 (Oct 2008). 173. P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant, and P. Supaphol, Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone �bers �lled with nanoparticles. Macromolecular Bioscience 6, 70 (Jan 2006). 174. A. Neamnark, N. Sancha vanakit, P. Pavasant, R. Rujiravanit, and P. Supaphol, In vitro biocompatibility of electrospun hexanoyl chitosan �brous scaffolds towards human keratinocytes and �broblasts. European Polymer Journal 44, 2060 (Jul 2008). 175. C. A. Bashur, L. A. Dahlgren, and A. S. Goldstein, Effect of �ber diameter and orientation on �broblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials 27, 5681 (Nov 2006). 176. K. Park, Y . M. Ju, J. S. Son, K. D. Ahn, and D. K. Han, Surface modi�cation of biodegradable electrospun nano�ber scaffolds and their interaction with �broblasts. Journal of Biomaterials Science-Polymer Edition 18, 369 (2007). 177. R. A. Thakur, C. A. Florek, J. Kohn, and B. B. Michniak, Electrospun nano�brous polymeric scaffold with targeted drug release pro�les for potential application as wound dressing. International Journal of Pharmaceutics 364, 87 (Nov 19, 2008). 178. A. Saraf, L. S. Baggett, R. M. Raphael, F. K. Kasper, and A. G. Mikos, Regulated non-viral gene delivery from coaxial electrospun �ber mesh scaffolds. Journal of Controlled Release 143, 95 (Apr 2010). 179. S. P. Zhong et al., An aligned nano�brous collagen scaffold by electrospinning and its effects on in vitro �broblast culture. Journal of Biomedical Materials Research Part A 79A, 456 (Dec 2006). 180. C. H. Lee et al., Nano�ber alignment and direction of mechanical strain affect the ECM production of human ACL �broblast. Biomaterials 26, 1261 (Apr 2005). 181. M. Schindler et al., A synthetic nano�brillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 26, 5624 (Oct 2005). 182. J. Venugopal and S. Ramakrishna, Biocompatible nano�ber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Engineering 11, 847 (2005). 183. Z. X. Cai et al., Fabrication of chitosan/silk �broin composite nano�bers for wound-dressing applications. International Journal of Molecular Sciences 11, 3529 (Sep 2010). 184. J. Y. Chun et al., Epidermal cellular response to poly(vinyl alcohol) nano�bers containing silver nanoparticles. Colloids and Surfaces B-Biointerfaces 78, 334 (Jul 2010). 185. Y. Gui-Bo et al., Study of the electrospun PLA/silk �broin-gelatin composite nano�brous scaffold for tissue engineering. Journal of Biomedical Materials Research Part A 93A, 158 (Apr 2010). 186. F. Y. Hsu, Y. S. Hung, H. M. Liou, and C. H. Shen, Electrospun hyaluronate-collagen nano�brous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin �broblast cells. Acta Biomaterialia 6, 2140 (Jun 2010). 187. P. J. Kluger et al., Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: A novel scaffold material for soft tissue engineering. Journal of Materials Science-Materials in Medicine 21, 2665 (Sep 2010). 188. F. J. Liu et al., Effect of the porous microstructures of poly(lactic-co-glycolic acid)/carbon nanotube composites on the growth of �broblast cells. Soft Materials 8, 239 (2010). 189. S. J. Liu et al., Electrospun PLGA/collagen nano�brous membrane as early-stage wound dressing. Journal of Membrane Science 355, 53 (Jun 2010). 190. X. J. Loh, P. Peh, S. Liao, C. Sng, and J. Li, Controlled drug release from biodegradable thermoresponsive physical hydrogel nano�bers. Journal of Controlled Release 143, 175 (Apr 2010). 191. J. L. Lowery , N. Datta, and G. C. Rutledge, Effect of �ber diameter, pore size and seeding method on growth of human dermal �broblasts in electrospun poly(epsilon-caprolactone) �brous mats. Biomaterials 31, 491 (Jan 2010). 192. G. P. Ma et al., Organic-soluble chitosan/polyhydroxybutyrate ultra�ne �bers as skin regeneration prepared by electrospinning. Journal of Applied Polymer Science 118, 3619 (Dec 2010). 193. L. L. Wu et al., Composite �brous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. Journal of Biomedical Materials Research Part A 92A, 563 (Feb 2010). 194. K. Schenke-Layland et al., The use of three-dimensional nanostructures to instruct cells to produce extracellular matrix for regenerative medicine strategies. Biomaterials 30, 4665 (Sep 2009). 195. W. G. Cui, X. L. Zhu, Y. Yang, X. H. Li, and Y. Jin, Evaluation of electrospun �brous scaffolds of poly(DLlactide) and poly(ethylene glycol) for skin tissue engineering. Materials Science and Engineering C-Materials for Biological Applications 29, 1869 (Aug 2009). 196. L. Jeong et al., Plasma-treated silk �broin nano�bers for skin regeneration. International Journal of Biological Macromolecules 44, 222 (Apr 2009). 197. B. Marelli, A. Alessandrino, S. Fare, M. C. Tanzi, and G. Freddi, Electrospun silk �broin tubular matrixes for small vessel bypass grafting. Materials Technology 24, 52 (Mar 2009). 198. J. Meng et al., Enhancement of nano�brous scaffold of multiwalled carbon nanotubes/polyurethane composite to the �broblasts growth and biosynthesis. Journal of Biomedical Materials Research Part A 88A, 105 (Jan 2009). 199. Y. H. Nien et al., Fabrication and cell af�nity of poly(vinyl alcohol) nano�bers via electrospinning. Journal of Medical and Biological Engineering 29, 98 (2009). 200. L. S. Wray and E. J. Orwin, Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Engineering Part A 15, 1463 (Jul 2009). 201. F. Zhang, B. Q. Zuo, and L. Bai, Study on the structure of SF �ber mats electrospun with HFIP and FA and cells behavior. Journal of Materials Science 44, 5682 (Oct 2009). 202. E. Borg et al., Electrospinning of degradable elastomeric nano�bers with various morphology and their interaction with human �broblasts. Journal of Applied Polymer Science 108, 491 (Apr 2008). 203. N. Khanam, C. Mikoryak, R. K. Draper, and K. J. Balkus, Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomaterialia 3, 1050 (Nov 2007). 204. G. Kim and W . Kim, Highly porous 3D nano�ber scaffold using an electrospinning technique. Journal of Biomedical Materials Research Part B-Applied Biomaterials 81B, 104 (Apr 2007). 205. H. B. Deng et al., Layer-by-layer structured polysaccharides �lm-coated cellulose nano�brous mats for cell culture. Carbohydrate Polymers 80, 474 (Apr 2010). 206. M. F. Leong, K. S. Chian, P. S. Mhaisalkar, W. F. Ong, and B. D. Ratner, Effect of electrospun poly(D,L-lactide) �brous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. Journal of Biomedical Materials Research Part A 89A, 1040 (June, 2009). 207. I. Han et al., Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nano�ber matrices cocultured with hair follicular epithelial and dermal cells for biological wound dressing. Arti©cial Organs 31, 801 (Nov 2007). 208. Y. B. Zhu, M. F. Leong, W. F. Ong, M. B. Chan-Park, and K. S. Chian, Esophageal epithelium regeneration on �bronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nano�ber scaffold. Biomaterials 28, 861 (Feb 2007). 209. C. H. Kim, M. S. Khil, H. Y. Kim, H. U. Lee, and K. Y. Jahng, An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. Journal of Biomedical Materials Research Part B-Applied Biomaterials 78B, 283 (Aug 2006). 210. W. He et al., Tubular nano�ber scaffolds for tissue engineered small-diameter vascular grafts. Journal of Biomedical Materials Research Part A 90A, 205 (Jul 2009). 211. W. He et al., Biodegradable polymer nano�ber mesh to maintain functions of endothelial cells. Tissue Engineering 12, 2457 (Sep 2006). 212. P. Uttayarat et al., Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomaterialia 6, 4229 (Nov 2010). 213. A. Bianco et al., Microstructure and cytocompatibility of electrospun nanocomposites based on poly(epsilon-caprolactone) and carbon nanostructures. International Journal of Arti©cial Organs 33, 271 (May 2010). 214. Z. G. Chen, P. W. Wang, B. Wei, X. M. Mo, and F. Z. Cui, Electrospun collagen-chitosan nano�ber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia 6, 372 (Feb 2010). 215. Y. M. Ju, J. S. Choi, A. Atala, J. J. Yoo, and S. J. Lee, Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 31, 4313 (May 2010). 216. D. A. Rubenstein et al., In vitro biocompatibility of sheath-core cellulose-acetate-based electrospun scaffolds towards endothelial cells and platelets. Journal of Biomaterials Science-Polymer Edition 21, 1713 (2010). 217. K. H. Zhang, X. M. Mo, C. Huang, C. L. He, and H. S. Wang, Electrospun scaffolds from silk �broin and their cellular compatibility. Journal of Biomedical Materials Research Part A 93A, 976 (Jun 2010). 218. K. H. Zhang et al., Fabrication of silk �broin blended P(LLA-CL) nano�brous scaffolds for tissue engineering. Journal of Biomedical Materials Research Part A 93A, 984 (Jun 2010). 219. R. Chen, L. J. Qiu, Q. F. Ke, C. L. He, and X. M. Mo, Electrospinning thermoplastic polyurethanecontained collagen nano�bers for tissue-engineering applications. Journal of Biomaterials SciencePolymer Edition 20, 1513 (2009). 220. X. Q. Li et al., Sorbitan monooleate and poly(L-lactide-co-epsilon-caprolactone) electrospun nano�bers for endothelial cell interactions. Journal of Biomedical Materials Research Part A 91A, 878 (Dec 2009). 221. A. N. Veleva et al., Interactions between endothelial cells and electrospun methacrylic terpolymer �bers for engineered vascular replacements. Journal of Biomedical Materials Research Part A 91A, 1131 (Dec 2009). 222. P. Carampin et al., Electrospun polyphosphazene nano�bers for in vitro rat endothelial cells proliferation. Journal of Biomedical Materials Research Part A 80A, 661 (Mar 2007). 223. W. He, Z. W. Ma, T. Yong, W. E. Teo, and S. Ramakrishna, Fabrication of collagen-coated biodegradable polymer nano�ber mesh and its potential for endothelial cells growth. Biomaterials 26, 7606 (Dec 2005). 224. Z. W. Ma, M. Kotaki, T. Yong, W. He, and S. Ramakrishna, Surface engineering of electrospun polyethylene terephthalate (PET) nano�bers towards development of a new material for blood vessel engineering. Biomaterials 26, 2527 (May 2005). 225. C. Y. Xu, F. Yang, S. Wang, and S. Ramakrishna, In vitro study of human vascular endothelial cell function on materials with various surface roughness. Journal of Biomedical Materials Research Part A 71A, 154 (Oct 2004). 226. S. Welin, in: C. Van Blitterswijk et al., Eds., Ethical issues in tissue engineering. Tissue Engineering (Academic Press, New York, 2008), pp. 685–703. 227. D. E. Heath, J. J. Lannutti, and S. L. Cooper, Electrospun scaffold topography affects endothelial cell proliferation, metabolic activity, and morphology. Journal of Biomedical Materials Research Part A 94A, 1195 (Sep 2010). 228. J. Meng et al., Electrospun aligned nano�brous composite of MWCNT/polyurethane to enhance vascular endothelium cells proliferation and function. Journal of Biomedical Materials Research Part A 95A, 312 (Oct 2010). 229. C. Del Gaudio, A. Bianco, M. Folin, S. Baiguera, and M. Grigioni, Structural characterization and cell response evaluation of electrospun PCL membranes: Micrometric versus submicrometric �bers. Journal of Biomedical Materials Research Part A 89A, 1028 (Jun 2009). 230. G. Yin et al., Study on the properties of the electrospun silk �broin/gelatin blend nano�bers for scaffolds. Journal of Applied Polymer Science 111, 1471 (Feb 2009). 231. H. Inoguchi, T. Tanaka, Y. Maehara, and T. Matsuda, The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft. Biomaterials 28, 486 (Jan 2007). 232. I. K. Kwon, S. Kidoaki, and T. Matsuda, Electrospun nano- to micro�ber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26, 3929 (Jun 2005). 233. S. I. Jeong et al., Tissue-engineered vascular grafts composed of marine collagen and PLGA �bers using pulsatile perfusion bioreactors. Biomaterials 28, 1115 (Feb 2007). 234. J. J. Stankus et al., Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials 28, 2738 (Jun 2007). 235. E. D. Boland et al., Electrospinning collagen and elastin: Preliminary vascular tissue engineering. Frontiers in Bioscience 9, 1422 (May 2004). 236. J. Venugopal, L. L. Ma, T. Yong, and S. Ramakrishna, In vitro study of smooth muscle cells on polycaprolactone and collagen nano�brous matrices. Cell Biology International 29, 861 (2005). 237. E. Luong-Van et al., Controlled release of heparin from poly(epsilon-caprolactone) electrospun �bers. Biomaterials 27, 2042 (Mar 2006). 238. F. Xu et al., Improvement of cytocompatibility of electrospinning PLLA micro�bers by blending PVP. Journal of Materials Science-Materials in Medicine 20, 1331 (Jun 2009). 239. J. Venugopal, L. L. Ma, T. Yong, and S. Ramakrishna, In vitro study of smooth muscle cells on polycaprolactone and collagen nano�brous matrices. Cell Biology International 29, 861 (Oct 2005). 240. M. Shin, O. Ishii, T. Sueda, and J. P. Vacanti, Contractile cardiac grafts using a novel nano�brous mesh. Biomaterials 25, 3717 (Aug 2004). 241. O. Ishii, M. Shin, T. Sueda, and J. P. Vacanti, In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix–like topography. The Journal of Thoracic and Cardiovascular Surgery 130, 1358 (2005). 242. X. H. Zong et al., Electrospun �ne-textured scaffolds for heart tissue constructs. Biomaterials 26, 5330 (Sep 2005). 243. H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, and N. Kawaguchi, Micro and nano-scale in vitro 3D culture system for cardiac stem cells. Journal of Biomedical Materials Research Part A 94A, 1 (Jul 2010). 244. J. D. Fromstein et al., Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Engineering Part A 14, 369 (Mar 2008). 245. M. L. Focarete et al., Electrospun scaffolds of a polyhydroxyalkanoate consisting of omega-hydroxylpentadecanoate repeat units: Fabrication and in vitro biocompatibility studies. Journal of Biomaterials Science-Polymer Edition 21, 1283 (2010). 246. M. P . Prabhakaran, J. R. Venugopal, and S. Ramakrishna, Mesenchymal stem cell differentiation to neuronal cells on electrospun nano�brous substrates for nerve tissue engineering. Biomaterials 30, 4996 (Oct 2009). 247. J. K. Wise, A. L. Yarin, C. M. Megaridis, and M. Cho, Chondrogenic differentiation of human mesenchymal stem cells on oriented nano�brous scaffolds: Engineering the super�cial zone of articular cartilage. Tissue Engineering Part A 15, 913 (Apr 2009). 248. Y. M. K olambkar, A. Peister, A. K. Ekaputra, D. W. Hutmacher, and R. E. Guldberg, Colonization and osteogenic differentiation of different stem cell sources on electrospun nano�ber meshes. Tissue Engineering Part A 16, 3219 (Oct 2010). 249. R. S. Tuan, G. Boland, and R. Tuli, Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Research and Therapy 5, 32 (2003). 250. W. J. Li, R. Tuli, X. X. Huang, P. Laquerriere, and R. S. Tuan, Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nano�brous scaffold. Biomaterials 26, 5158 (Sep 2005). 251. W. J. Li et al., A three-dimensional nano�brous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26, 599 (Feb 2005). 252. H. Yoshimoto, Y . M. Shin, H. Terai, and J. P. Vacanti, A biodegradable nano�ber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24, 2077 (May 2003). 253. S. Ahn, Y. H. Koh, and G. Kim, A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation. Journal of Micromechanics and Microengineering 20, 129901 (Jun 2010). 254. J. H. Lee, N. G. Rim, H. S. Jung, and H. Shin, Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nano�bers containing poly lactic-co-(glycolic acid) and hydroxyapatite. Macromolecular Bioscience 10, 173 (Feb 2010). 255. L. Ren et al., Fabrication of gelatin-siloxane �brous mats via sol-gel and electrospinning procedure and its application for bone tissue engineering. Materials Science and Engineering C-Materials for Biological Applications 30, 437 (Apr 2010). 256. T. T. Ruckh, K. Kumar, M. J. Kipper, and K. C. Popat, Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nano�ber scaffolds. Acta Biomaterialia 6, 2949 (Aug 2010). 257. S. Soliman et al., Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomaterialia 6, 1227 (Apr 2010). 258. C. K. Chan et al., Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun �bers. Biomedical Materials 4, 35006 (Jun 2009). 259. L. Ghasemi-Mobarakeh et al., The thickness of electrospun poly (epsilon-caprolactone) nano�brous scaffolds in¥uences cell proliferation. International Journal of Arti©cial Organs 32, 150 (Mar 2009). 260. C. M. Li et al., Preliminary investigation of seeding mesenchymal stem cells on biodegradable scaffolds for vascular tissue engineering in vitro. Asaio Journal 55, 614 (Nov–Dec 2009). 261. H. Hong et al., Fabrication of a novel hybrid scaffold for tissue engineered heart valve. Journal of Huazhong University of Science and Technology-Medical Sciences 29, 599 (Oct 2009). 262. A. J. Meinel et al., Optimization strategies for electrospun silk �broin tissue engineering scaffolds. Biomaterials 30, 3058 (Jun 2009). 263. K. T. Shalumon et al., Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nano�brous scaffolds for tissue engineering applications. Carbohydrate Polymers 77, 863 (Jul 2009). 264. E. K. Ko et al., In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nano�ber meshes. Tissue Engineering Part A 14, 2105 (Dec 2008). 265. S. Srouji, T. Kizhner, E. Suss-Tobi, E. Livne, and E. Zussman, 3-D Nano�brous electrospun multilayered construct is an alternative ECM mimicking scaffold. Journal of Materials Science-Materials in Medicine 19, 1249 (Mar 2008). 266. Y. M. Kolambkar et al., An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32, 65 (Jan 2011). 267. B. Mavis, T. T. Demirtas, M. Gumusderelioglu, G. Gunduz, and U. Colak, Synthesis, characterization and osteoblastic activity of polycaprolactone nano�bers coated with biomimetic calcium phosphate. Acta Biomaterialia 5, 3098 (Oct 2009). 268. H. S. Yu, J. H. Jang, T. I. Kim, H. H. Lee, and H. W. Kim, Apatite-mineralized polycaprolactone nano�brous web as a bone tissue regeneration substrate. Journal of Biomedical Materials Research Part A 88A, 747 (Mar 2009). 269. C. Erisken, D. M. Kalyon, and H. J. Wang, Viscoelastic and biomechanical properties of osteochondral tissue constructs generated from graded polycaprolactone and beta-tricalcium phosphate composites. Journal of Biomechanical Engineering-Transactions of the Asme 132, 91013 (Sep 2010). 270. L. Francis et al., Simultaneous electrospin-electrosprayed biocomposite nano�brous scaffolds for bone tissue regeneration. Acta Biomaterialia 6, 4100 (Oct 2010). 271. S. Z. Fu et al., Preparation and characterization of nano-hydroxyapatite/poly(epsilon-caprolactone)poly(ethylene glycol)-poly(epsilon-caprolactone) composite �bers for tissue engineering. Journal of Physical Chemistry C 114, 18372 (Nov 2010). 272. H. M . Kim et al., Composite nano�ber mats consisting of hydroxyapatite and titania for biomedical applications. Journal of Biomedical Materials Research Part B-Applied Biomaterials 94B, 380 (Aug 2010). 273. E. J. Lee et al., Nanostructured poly(epsilon-caprolactone)-silica xerogel �brous membrane for guided bone regeneration. Acta Biomaterialia 6, 3557 (Sep 2010). 274. K. T. Noh, H. Y. Lee, U. S. Shin, and H. W. Kim, Composite nano�ber of bioactive glass nano�ller incorporated poly(lactic acid) for bone regeneration. Materials Letters 64, 802 (Apr 2010). 275. I. K. Shim et al., Novel three-dimensional scaffolds of poly((L)-lactic acid) micro�bers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Journal of Biomedical Materials Research Part B-Applied Biomaterials 95B, 150 (Oct 2010). 276. T. J. Shin, S. Y. Park, H. J. Kim, H. J. Lee, and J. H. Youk, Development of 3-D 277. Y. M. Shin, H. Shin, and Y. M. Lim, Surface modi�cation of electrospun poly(L-lactide-co-epsiloncaprolactone) �brous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells. Macromolecular Research 18, 472 (May 2010). 278. H. W. T ong, M. Wang, Z. Y. Li, and W. W. Lu, Electrospinning, characterization and in vitro biological evaluation of nanocomposite �bers containing carbonated hydroxyapatite nanoparticles. Biomedical Materials 5, 54111 (Oct 2010). 279. A. K. Ekaputra, Y . F. Zhou, S. M. Cool, and D. W. Hutmacher, Composite electrospun scaffolds for engineering tubular bone grafts. Tissue Engineering Part A 15, 3779 (Dec 2009). 280. D. Gupta, J. V enugopal, S. Mitra, V. R. G. Dev, and S. Ramakrishna, Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials 30, 2085 (Apr 2009). 281. Y. M. Kang, K. H. Kim, Y. J. Seol, and S. H. Rhee, Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method. Acta Biomaterialia 5, 462 (Jan 2009). 282. M. Ngiam et al., Fabrication of mineralized polymeric nano�brous composites for bone graft materials. Tissue Engineering Part A 15, 535 (Mar 2009). 283. H. W. Kim, H. H. Lee, and G. S. Chun, Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nano�ber �lled poly(lactic acid). Journal of Biomedical Materials Research Part A 85A, 651 (Jun 2008). 284. J. H. Jang, O. Castano, and H. W. Kim, Electrospun materials as potential platforms for bone tissue engineering. Advanced Drug Delivery Reviews 61, 1065 (Oct 2009). 285. A. R. Poole et al., Composition and structure of articular cartilage—A template for tissue repair. Clinical Orthopaedics and Related Research 1, S26 (Oct 2001). 286. E. B. Hunziker , Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage 10, 432 (Jun 2002). 287. T. J. Klein, J. Malda, R. L. Sah, and D. W. Hutmacher, Tissue engineering of articular cartilage with biomimetic zones. Tissue Engineering Part B-Reviews 15, 143 (Jun 2009). 288. T. J. Klein et al., Strategies for zonal cartilage repair using hydrogels. Macromolecular Bioscience 9, 1049 (Nov 10, 2009). 289. G. Kim, J. Son, S. Park, and W. Kim, Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromolecular Rapid Communications 29, 1577 (Oct 2008). 290. I. K. Shim et al., Chitosan nano-/micro�brous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. Journal of Biomedical Materials Research Part A 90A, 595 (Aug 2009). 291. W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, Biological response of chondrocytes cultured in three-dimensional nano�brous poly(epsilon-caprolactone) scaffolds. Journal of Biomedical Materials Research Part A 67A, 1105 (Dec 2003). 292. T. G. Kim, H. J. Chung, and T. G. Park, Macroporous and nano�brous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomaterialia 4, 1611 (Nov 2008). 293. L. Moroni, R. Schotel, D. Hamann, J. R. de Wijn, and C. A. van Blitterswijk, 3D �ber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Advanced Functional Materials 18, 53 (Jan 2008). 294. A. Thorvaldsson, H. Stenhamre, P. Gatenholm, and P. Walkenstrom, Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9, 1044 (Mar 2008). 295. I. S. Lee, O. H. Kwon, W. Meng, and I. K. Kang, Nanofabrication of microbial polyester by electrospinning promotes cell attachment. Macromolecular Research 12, 374 (Aug 2004). 296. K. J. Shields, M. J. Beckman, G. L. Bowlin, and J. S. Wayne, Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Engineering 10, 1510 (Sep 2004). 297. R. M. Smeal and P. A. Tresco, The in¥uence of substrate curvature on neurite outgrowth is cell type dependent. Experimental Neurology 213, 281 (Oct 2008). 298. R. M. Smeal, R. Rabbitt, R. Biran, and P. A. Tresco, Substrate curvature in¥uences the direction of nerve outgrowth. Annals of Biomedical Engineering 33, 376 (Jan 2005). 299. F. Y ang, R. Murugan, S. Wang, and S. Ramakrishna, Electrospinning of nano/micro scale poly(Llactic acid) aligned �bers and their potential in neural tissue engineering. Biomaterials 26, 2603 (May 2005). 300. T. B. Bini, S. J. Gao, S. Wang, and S. Ramakrishna, Poly(l-lactide-co-glycolide) biodegradable micro�bers and electrospun nano�bers for nerve tissue engineering: An in vitro study. Journal of Materials Science 41, 6453 (Oct 2006). 301. D. Gupta et al., Aligned and random nano�brous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomaterialia 5, 2560 (Sep 2009). 302. U. Assmann et al., Fiber scaffolds of polysialic acid via electrospinning for peripheral nerve regeneration. Journal of Materials Science-Materials in Medicine 21, 2115 (Jul 2010). 303. R. C. de Guzman, J. A. Loeb, and P. J. VandeVord, Electrospinning of matrigel to deposit a basal laminalike nano�ber surface. Journal of Biomaterials Science-Polymer Edition 21, 1081 (2010). 304. H. B. Wang et al., Creation of highly aligned electrospun poly-L-lactic acid �bers for nerve regeneration applications. Journal of Neural Engineering 6, 16001 (Feb 2009). 305. J. W. Xie et al., Conductive core-sheath nano�bers and their potential application in neural tissue engineering. Advanced Functional Materials 19, 2312 (Jul 2009). 306. L. Yao, N. O’Brien, A. Windebank, and A. Pandit, Orienting neurite growth in electrospun �brous neural conduits. Journal of Biomedical Materials Research Part B-Applied Biomaterials 90B, 483 (Aug 2009). 307. M. P. Prabhakaran, J. Venugopal, C. K. Chan, and S. Ramakrishna, Surface modi�ed electrospun nano�brous scaffolds for nerve tissue engineering. Nanotechnology 19, 455102 (Nov 2008). 308. M. P. Prabhakaran et al., Electrospun biocomposite nano�brous scaffolds for neural tissue engineering. Tissue Engineering Part A 14, 1787 (Nov 2008). 309. W. N. Chow, D. G. Simpson, J. W. Bigbee, and R. J. Colello, Evaluating neuronal and glial growth on electrospun polarized matrices: Bridging the gap in percussive spinal cord injuries. Neuron Glia Biology 3, 119 (2007). 310. P. D . Dalton, L. Flynn, and M. S. Shoichet, Manufacture of poly(2-hydroxyethyl methacrylate co-m ethyl methacrylate) hydrogel tubes for use as nerve guidance channels. Biomaterials 23, 3843 (Sep 2002). 311. D. E. Birk and R. Mayne, Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in �bril diameter. European Journal of Cell Biology 72, 352 (1997). 312. K. L. Moffat et al., Novel nano�ber-based scaffold for rotator cuff repair and augmentation. Tissue Engineering Part A 15, 115 (2009). 313. B. Inanc, Y. E. Arslan, S. Seker, A. E. Elcin, and Y. M. Elcin, Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nano�brous membrane scaffolds. Journal of Biomedical Materials Research Part A 90A, 186 (Jul 2009). 314. S. Zhang et al., Gelatin nano�brous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research Part A 90A, 671 (Sep 2009). 315. M. C. Bottino, V. Thomas, and G. M. Janowski, A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomaterialia 7, 216 (2011). 316. S. Sahoo, H. Ouyang, J. C. H. Goh, T. E. Tay, and S. L. Toh, Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Engineering 12, 91 (Jan 2006). 317. S. Sahoo, J. C.-H. Goh, and S. L. Toh, Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomedical Materials 2, 169 (2007). 318. S. Sahoo, S. L. Toh, and J. C.-H. Goh, PLGA nano�ber-coated silk micro�brous scaffold for connective tissue engineering. Journal Biomedical Material Research Part B: Applied Biomaterials 95B, 19 (2010). 319. C. Vaquette et al., Aligned poly(L-lactic-co-e-caprolactone) electrospun micro�bers and knitted structure: A novel composite scaffold for ligament tissue engineering. Journal of Biomedical Materials Research Part A 94A, 1270 (Sep 2010). 320. C. A. Bashur, R. D. Shaffer, L. A. Dahlgren, S. A. Guelcher, and A. S. Goldstein, Effect of �ber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Engineering Part A 15, 2435 (Sep 2009). 321. J. W. S. Hayami, D. C. Surrao, S. D. Waldman, and B. G. Amsden, Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. Journal of Biomedical Materials Research Part A 92A, 1407 (Mar 2010). 322. D. C. Surrao, J. W. S. Hayami, S. D. Waldman, and B. G. Amsden, Self-crimping, biodegradable, electrospun polymer micro�bers. Biomacromolecules 11, 3624 (2010). 323. S. L. Woo, J. M. Hollis, D. J. Adams, R. M. Lyon, and S. Takai, Tensile properties of the human femuranterior cruciate ligament complex. The effects of specimen age and orientation. American Journal of Sport Medicine 19, 217 (1991). 324. F. Mei et al., Improved biological characteristics of poly(L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8, 3729 (Dec 2007). 325. S. H. Shang, F. Yang, X. R. Cheng, X. F. Walboomers, and J. A. Jansen, The effect of electrospun �bre alignment on the behaviour of rat periodontal ligament cells. European Cells and Materials 19, 180 (Jan–Jun 2010). 326. P. K. Lam et al., Development and evaluation of a new composite Laserskin graft. The Journal of Trauma 47, 918 (Nov 1999). 327. S. Heydarkhan-Hagvall et al., Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29, 2907 (Jul 2008). 328. A. Bianco et al., Electrospun poly(epsilon-caprolactone)/Ca-de�cient hydroxyapatite nanohybrids: Microstructure, mechanical properties and cell response by murine embryonic stem cells. Materials Science and Engineering C-Materials for Biological Applications 29, 2063 (Aug 2009). 329. D. R. Nisbet, A. E. Rodda, M. K. Horne, J. S. Forsythe, and D. I. Finkelstein, Neurite in�ltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 30, 4573 (Sep 2009). 330. B. W. Tillman et al., The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials 30, 583 (Feb 2009). 331. H. Q. Cao, K. McHugh, S. Y. Chew, and J. M. Anderson, The topographical effect of electrospun nano�brous scaffolds on the in vivo and in vitro foreign body reaction. Journal of Biomedical Materials Research Part A 93A, 1151 (Jun 2010). 332. J. L. Ifko vits, K. Wu, R. L. Mauck, and J. A. Burdick, The in¥uence of �brous elastomer structure and porosity on matrix organization. Plos One 5, e15717 (2010). 333. P. D. Dalton, A. R. Harvey, M. Oudega, and G. W. Plant, in: C. Van Blitterswijk et al., Eds., Tissue engineering of the nervous system. Tissue Engineering (Academic Press, New York, 2008), pp. 611–647. 334. I. P. Clements et al., Thin-�lm enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 30, 3834 (Aug 2009). 335. E. Seyedjafari, M. Soleimani, N. Ghaemi, and I. Shabani, Nanohydroxyapatite-coated electrospun poly(L-lactide) nano�bers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 11, 3118 (Nov 2010). 336. A. Nandakumar, L. Yang, P. Habibovic, and C. van Blitterswijk, Calcium phosphate coated electrospun �ber matrices as scaffolds for bone tissue engineering. Langmuir 26, 7380 (May 18, 2010). 337. M. Shin, H. Yoshimoto, and J. P. Vacanti, In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nano�brous scaffold. Tissue Engineering 10, 33 (2004). 338. S. Srouji et al., A model for tissue engineering applications: Femoral critical size defect in immunode�cient mice. Tissue Eng Part C Methods 17, 597 (May 2011). 339. W. J. Li et al., Evaluation of articular cartilage repair using biodegradable nano�brous scaffolds in a swine model: A pilot study. Journal of Tissue Engineering and Regenerative Medicine 3, 1 (Jan 2009). 340. J. P. Chen and C. H. Su, Surface modi�cation of electrospun PLLA nano�bers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomaterialia 7, 234 (Jan 2011). 341. W. Wang et al., Effects of Schwann cell alignment along the oriented electrospun chitosan nano�bers on nerve regeneration. Journal of Biomedical Materials Research Part A 91A, 994 (Dec 2009). 342. S. Panseri et al., Electrospun micro- and nano�ber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnology 8, 39 (Apr 2008). 343. W. Wang et al., Enhanced nerve regeneration through a bilayered chitosan tube: The effect of introduction of glycine spacer into the CYIGSK sequence. Journal of Biomedical Materials Research Part A 85A, 919 (Jun 2008). 344. B. Nottelet et al., Factorial design optimization and in vivo feasibility of poly(epsilon-caprolactone)micro- and naro�ber-based small diameter vascular grafts. Journal of Biomedical Materials Research Part A 89A, 865 (Jun 2009). 345. T. Sun, D. Norton, R. J. Mckean, J. W. Haycock, A. J. Ryan, and S. MacNeil, Development of a 3D cell culture system for investigating cell interactions with electrospun �bers, Biotechnology and Bioengineering 97, 1318–1328 (2007). 17 Chapter 17. Polymeric Nanoparticles for Targeted Delivery of Bioactive Agents and Drugs Agnihotri, S.A., Mallikarjuna, N.N., and Aminabhavi, T.M. 2004. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 100: 5–28. Asanuma, H., Nakai, K., Sanada, S., Minamino, T., Takashima, S., Ogita, H., Fujita, M., Hirata, A. et al. 2007. S-nitrosylated and pegylated hemoglobin, a newly developed arti�cial oxygen carrier, exerts cardioprotection against ischemic hearts. J. Mol. Cell. Cardiol. 42(5): 924–930. Azarmi, S., Tao, X., Chen, H., Wang, Z., Finlay, W.H., Loebenberg, R., and Roa, W.H. 2006. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int. J. Pharm. 319(1–2): 155–161. Bagalkot, V., Farokhzad, O.C., Langer, R., Jon, S. 2006. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. Engl. 45: 8149–8152. Bilati, U., Allemann, E., and Doelker, E. 2005. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 24: 67–75. Bilensoy, E., Gurkaynak, O., Ertan, M., Murat, A., and Atilla, H. 2008. Development of nonsurfactant cyclodextrin nanoparticles loaded with anticancer drug paclitaxel. J. Pharm. Sci. 97: 19. Brannon-Peppas, L. and Blanchette, J.O. 2004. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56: 1649–1659. Brody, E.N. and Gold, L.J. 2000. Aptamers as therapeutic and diagnostic agents. Biotechnol. 74: 5–13. Byrne, J.D., Betancourt, T., and Brannon-Peppas, L. 2008. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 60: 1615–1626. Castro, C.I. and Briceno, J.C. 2010. Per¥uorocarbon-based oxygen carriers: Review of products and trials. Artif. Organs 34(8): 622–634. Chapman, A.P. 2002. PEGylated antibodies and antibody fragments for improved therapy: A review. Adv. Drug Deliv. Rev. 54(4): 531–545. Chattopadhyay, P., Huff, R., and Shekunov, B.Y. 2006. Drug encapsulation using supercritical ¥uid extraction of emulsions. J. Pharm. Sci. 95(3): 667–679. Chiellini, F., Bartoli, C., Dinucci, D., Piras, A.M., Anderson, R., and Croucher, T. 2007. Bioeliminable polymeric nanoparticles for proteic drug delivery. Int. J. Pharm. 343(1–2): 90–97. Chiellini, E., Chiellini, F., and Solaro, R. 2006. Bioerodible polymeric nanoparticles for targeted delivery of proteic drugs. J. Nanosci. Nanotechnol. 6(9/10): 3040–3047. Chiellini, F., Piras, A.M., Fiumi, C., Anderson, R., Muckova, M., Bartoli, C., Dinucci, D. et al. 2006. Bioerodible/ bioeliminable nanoparticles as versatile vectors for the targeted and controlled release of protein drugs, bioactive principles and as oxygen carriers. 20th European Conference on Biomaterials. September 27– October 1. Cité des Congrès, Nantes, France. Chithrani, B.D., Stewart, J., Allen, C., and Jaffray, D.A. 2009. Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 5(2): 118–127. Cho, K., Wang, X., Nie, S., Chen, Z., and Shin, D.M. 2008. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5): 1310–1316. Cirstoiu-Hapca, A., Bossy-Nobs, L., Buchegger, F., and Gurny, F. 2007. Differential tumor cell targeting of antiHER2 (Herceptin ® ) and anti-CD20 (Mabthera ® ) coupled nanoparticles. Int. J. Pharm. 331(2): 190–196. Clark, L.C. and Gollan, F. 1966. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 152(3730): 1755–1756. Coester, C.J., Langer, K., van Briesen, H., and Kreuter, J. 2000. Gelatin nanoparticles by two step desolvation, a new preparation method, surface modi�cations and cell uptake. J. Microencapsul. 17: 187–193. Cowdall, J., Davies, J., Roberts, M., Carlsson, A., Solaro, R., Chiellini, E., Chiellini, F. et al. 1999a. Microparticles based on hybrid polymeric materials for controlled release of biologically active molecules. A process for preparing the same and their uses for in vivo and in vitro therapy, prophylaxis and diagnostics. PCT Int. Appl. WO9902131. Cowdall, J., Davies, J., Roberts, M., Carlsson, A., Solaro, R., Chiellini, E., Chiellini, F. et al. 1999b. Microparticles for controlled delivery of biologically active molecules. PCT Int. Appl. WO9902135. Crowder, T.M., Rosati, J.A., Schroeter, J.D., Hickey, A.J., and Martonen, T.B. 2002. Fundamental effects of particle morphology on lung delivery: Predictions of stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm. Res. 19(3): 239–245. De Rosa, G., Larobina, D., La Rotonda, M., Musto, P., Quaglia, F., and Ungaro, F. 2005. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: The case of insulin/ hydroxypropyl-beta-cyclodextrin system. J. Control. Release 102(1): 71–83. Desgouilles, S., Vauthier, C., Bazile, D., Vacus, J., Grossiord, J.L., Veillard, M., and Couvreur, P. 2003. The design of nanoparticles obtained by solvent evaporation: A comprehensive study. Langmuir 19: 9504–9510. Dessy, A., Kubowicz, S., Alderighi, M., Bartoli, C., Piras, A.M., Schmid, R., and Chiellini, F. 2011a. Dead Sea Minerals loaded polymeric nanoparticles. Colloids Surf. B Biointerfaces 87(2): 236–242. Dessy, A., Piras, A.M., Schirò, G., Levantino, M., Cupane, A., and Chiellini, F. 2011b. Hemoglobin loaded polymeric nanoparticles: Preparation and characterizations. Eur. J. Pharm. Sci. 43: 57–64. Determan, M.D., Cox, J.P., Seifert, S., Thiyagarajan, P., and Mallapragada, S.K. 2005. Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer 46: 6933–6946. Dinucci, D., Bartoli, C., Piras, A.M., and Chiellini, F. 2007. Intracellular fate investigation of bioeliminable polymers and relative nanoformulates by confocal laser scanning microscopy. 7th International Symposium on Frontiers in Biomedical Polymers. June 24–27. Ghent, Belgium. Dong, Y. and Feng, S.S. 2004. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25: 2843–2849. Douglas, K.L. and Tabrizian, M. 2005. Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. J. Biomater. Sci. Polym. Ed. 16(1): 43–56. Ehrlich, P. 1906. In: Collected Studies on Immunity, John Wiley, New York, p. 442. Ellington, A.D. and Szostak, J.W. 1990. In vitro selection of RNA molecules that bind speci�c ligands. Nature 346: 818–822. Elversson, J. and Millqvist-Fureby, A. 2005. Aqueous two-phase systems as a formulation concept for spraydried protein. Int. J. Pharm. 294(1–2): 73–87. Errico, C., Bartoli, C., Chiellini, F., and Chiellini, E. 2009a. Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J. Biomed. Biotechnol.: 1–10. Errico, C., Gazzarri, M., and Chiellini, F. 2009b. A novel method for the preparation of retinoic acid loaded nanoparticles. Int. J. Mol. Sci. 10: 2336–2347. Farokhzad, O.C. 2004. Nanoparticle–aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 64: 7668–7672. Farokhzad, O.C. and Langer, R. 2009. Impact of nanotechnology on drug delivery. ACS Nano 3(1): 16–20. Finkelstein, A., McClean, D., KarKaname Takizawa, S., Varghese, K., Baek, N., Park, K. et al. 2003. Local drug delivery via a coronary stent with programmable. Release Pharmacokinetics Circ. 107: 777. Fonseca, C., Simoes, S., and Gaspar, R. 2002. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro antitumoral activity. J. Control. Release 83: 273–286. Francis, J.W., Bastia, E., Matthews, C.C., Parks, D.A., Schwarzschild, M.A., Brown, R.H., and Fishman, P.S. 2004. Tetanus toxin fragment C as a vector to enhance the delivery of proteins to the CNS. Brain Res. 1011: 7–13. Furusawa, K., Terao, K., Nagasawa, N., Yoshii, F., Kubota, K., and Dobashi, T. 2004. Nanometer-sized gelatin particles prepared by means of gamma-ray irradiation. Colloid Polym. Sci. 283(2): 229–233. Goldberg, M., Langer, R., and Jiaj, X. 2007. Nanostructured materials for applications in drug delivery and tissue engineering. Biomater. Sci. Polym. Ed. 18(3): 241–268. Goletz, S.P., Christensen, A., Kristensen, P., Blohm, D., Tomlinson, I., Winter, G., and Karsten, U. 2002. Selection of large diversities of antiidiotypic antibody fragments by phage display. J. Mol. Biol. 315(5): 1087–1097. Gupta, K., Ganguli, M., Pasha, S., and Maiti, S. 2006. Nanoparticle formation from poly(acrylic acid) and oppositely charged peptides. Biophys. Chem. 119: 303–306. Gupta, A.K., Gupta, M., Yarwood, S.J., and Curtis, A.S. 2004. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human �broblasts. J. Control. Release 95(2): 197–207. Hoeffel, C., Mulé, S., Romaniuk, B., Ladam-Marcus, V., Bouché, O., and Marcus, C. 2009. Advances in radiological imaging of gastrointestinal tumors. Crit. Rev. Oncol. Hematol. 69(2): 153–167. Hoffman, A.S. 2008. The origins and evolution of “controlled” drug delivery systems. J. Control. Release 132: 153–163. Hruby′, M., Konàk, C., and Ulbrich, K. 2005. Polymeric micellar pH-sensitive drug delivery system for doxo rubicin. J. Control. Release 103: 137–148. Hsiue, G.H., Wang, C.H., Lo, C.L., Wang, C.H., Li, J.P., and Yang, J.L. 2006. Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(l-lactide) diblock copolymer for application in drug delivery. Int. J. Pharm. 317: 69–75. Hu, T., Manjula, B.N., Li, D., Brenowitz, M., and Acharya, S.A. 2007. In¥uence of intramolecular cross-links on the molecular, structural and functional properties of PEGylated haemoglobin. Biochem. J. 402(1): 143–151. Jeong, Y.I., Cho, C.S., Kim, S.H., Ko, K.S., Kim, S.I., Shim, Y.H. et al. 2001. Preparation of poly (DL-lactidecoglycolide) nanoparticles without surfactant. J. Appl. Polym. Sci. 80: 2228–2236. Johnson, O.L., Cleland, J.L., Lee, H.J., Charnis, M., Duenas, E., Jaworowicz, W. et al. 1996. A month-long effect from a single injection of microencapsulated human growth hormone. Nat. Med. 2: 795–799. Kashyap, N., Modi, S., Jain, J.P., Bala, I., Hariharan, S., Bharadwaj, R. et al. 2004. Polymers for advanced drug delivery. CRIPS 5: 7–12. Khaw, B., Jose, D.S., and Wiiliam, H.C. 2007. Cytoskeletal-antigen speci�c immunoliposome targeted in vivo preservation of myocardial viability. J. Control. Release 120: 35–40. Kim, D.H. and Martin, D.C. 2006. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 27: 3031–3037. Kubiak, C., Manil, L., and Couvreur, P. 1988. Sorbtive properties of antibodies onto cyanoacrylic nanoparticles. Int. J. Pharm. 41: 181–187. Lee, L.S., Conover, C., Shi, C., Whitlow, M., and Filpula, D. 1999. Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycon: A comparison of conjugating chemistries and compounds. Bioconjug. Chem. 10(6): 973–981. Leuenberger, H. 2002. Spray freeze-drying—The process of choice for low water soluble drugs? J. Nanopart. Res. 4: 111–119. Li, D., Manjula, B.N., and Acharya, A.S. 2006. Extension arm facilitated PEGylation of hemoglobin: Correlation of the properties with the extent of PEGylation. Protein J. 25(4): 263–274. Li, X., Anton, X., Arpagaus, C., Belleteix, F., and Vandamme, T.F. 2010. Nanoparticles by spray drying using innovative new technology: The Büchi nano spray dryer B-90. J. Control. Release 147: 304–310. Liu, X.M., Yang, Y.Y., and Leong, K.W. 2003. Thermally responsive polymeric micellar nanoparticles selfassembled from cholesteryl end-capped random poly(N-isopropylacrylamide-co-N,N-imethylacrylamide): Synthesis, temperature-sensitivity, and morphologies. J. Colloid. Interface Sci. 266: 295–293. Lupold, S.E. 2002. Identi�cation and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-speci�c membrane antigen. Cancer Res. 62: 4029–4033. Maeda, H., Bharate, G.Y., and Daruwalla, J. 2009. Polymeric drugs for ef�cient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 71(3): 409–419. Mandal, S.C. and Mandal, M. 2010. Current status and future prospects of new drug delivery system. Pharma. Times 42(4): 13–16. McBain, S.C., Yiu, H.P., and Dobson, J. 2008. Magnetic nanoparticles for drug and gene delivery. Int. J. Nanomed. 3: 169–180. Meziani, M.J., Pathak, P., Desai, T., and Sun, Y.P. 2006. Supercritical ¥uid processing of nanoscale particles from biodegradable and biocompatible polymers. Ind. Eng. Chem. Res. 45(10): 3420–3424. Min, H.K., Park, K., Kim, Y.S. et al. 2008. Hydrophobically modi�ed glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J. Control. Release 127: 208–218. Mishima, K. 2008. Biodegradable particle formation for drug and gene delivery using supercritical ¥uid and dense gas. Adv. Drug Deliv. Rev. 60: 411–432. Mu, L., Teo, M.M., Ning, H.Z., Tan, C.S., and Feng, S.S. 2005. Novel powder formulations for controlled delivery of poorly soluble anticancer drug: Application and investigation of TPGS and PEG in spray-dried particulate system. J. Control. Release 103: 565–575. Müller, S. 2009. Magnetic ¥uid hyperthermia therapy for malignant brain tumours—An ethical discussion. Nanomedicine 5(4): 387–393. Muzzarelli, R.A.A. and Muzzarelli, C. 2005. Chitosan chemistry: Relevance to the biomedical sciences. Adv. Polym. Sci. 186: 151–209. Ness, P.M. and Cushing, M.M. 2007. Oxygen therapeutics pursuit of an alternative to the donor red blood cell. Arch. Pathol. Lab. Med. 131(5): 734–741. O’Donnell, P. and McGinity, J. 1997. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 28: 25–42. Palmer, T.N., Caldercourt, M.A., and Kingaby, R.O. 1984. Liposome drug delivery in chronic ischemia. Biochem. Soc. Trans. 12: 344–345. Pan, B., Cui, D., Sheng, Y., Ozkan, C., Gao, F., He, R., Li, Q., Xu, P., and Huang, T. 2007. Dendrimer-modi�ed magnetic nanoparticles enhance ef�ciency of gene delivery system. Cancer Res. 67: 8156–8163. Panyam, J. and Labhasetwar, V. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55: 329–347. Panyam, J., Williams, D., Dash, A., Leslie-Pelecky, D., and Labhasetwar, V. 2004. Solid-state solubility in¥uences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci. 93(7): 1804–1814. Pape, A. 2007. Alternatives to allogeneic blood transfusions. Best Pract. Res. Clin. Anaesthesiol. 21(2): 221–239. Park, T.G., Lu, W., and Crotts, G. 1995. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D,L–lactic acid–co–glycolic acid) microspheres. J. Control. Release 33: 211–222. Park, J.H., Ye, M., and Park, K. 2005. Biodegradable Polymers for microencapsulation of drugs. Molecules 10: 146–161. Parveen, S., Misra, R., and Sahoo, S.K. 2011. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: 1–20. Pawar, R., Ben-Ari, A., and Domb, A.J. 2004. Protein and peptide parental controlled delivery. Expert Opin. Biol. Ther. 4(8): 1203–1212. Peer, D., Kar, J.M., Hong, S.P., Farokhzad, O.C., Margalit, M., and Langer, R. 2007. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2: 751–760. Piras, A.M., Chiellini, F., Fiumi, C., Bartoli, C., and Chiellini, E. 2007. A new biocompatible nanoparticle delivery system for targeted release of �brinolytic drugs. Int. J. Pharm. 357(1–2): 260–271. Piras, A.M., Nikkola, L., Chiellini, F., Ashammakhi, N., and Chiellini, E. 2006. Bioerodible electrospun �bers for the controlled release of conventional and protein drugs. 20th European Conference on Biomaterials. September 27–October 1. Nantes, France. Rao, J.P. and Geckeler, K.E. 2011. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36: 887–913. Riess, J.G. 2001. Oxygen carriers (‘blood substitutes’) Raison d’etre, chemistry, and some physiology. Chem. Rev. 101(9): 2797–2894. Roa, W.H., Azarmi, S., Al-Hallak, M.H.D., Finlay, W.H., Magliocco, A.M., and Löbenberg, R. 2011. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J. Control. Release 150: 49–55. Rosca, I.D., Watari, F., and Uo, M. 2004. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J. Control. Release 99(2): 271–280. Rossler, B., Kreuter, J., and Scherer, D. 1995. Collagen microparticles: Preparation and properties. J. Microencapsul. 12: 49–57. Scriven, L.E. and Sternling, C.V. 1960. The marangoni effects. Nature 187(4733): 186–188. Seki, J., Sonoke, S., Saheki, A., Fukui, H., Sasaki, H., and Mayumi, T. 2004. A nanometer lipid emulsion, lipid nano-sphere (LNS(R)), as a parenteral drug carrier for passive drug targeting. Int. J. Pharm. 273(1–2): 75–83. Sham, J.O.-H., Zhang, Y., Finlay, W.H., Roa, W.H., and Lobenberg, R. 2004. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int. J. Pharm. 269(2): 457–467. Shangguan, D., Li, Y., Tang, Z., Cao, Z.C., Chen, H.W., Mallikaratchy, P., Sefah, K., Yang, C.J., and Tan, W. 2006. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103: 11838–11843. Sharma, A., Arora, A., Grewal, P., Dhillon, V.K., and Kumar, V. 2011. Recent innovations in delivery of arti�cial blood substitute: A review. Int. J. App. Pharm. 3(2): 1–5. Si-Feng, S. 2004. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev. Med. Devices 1(1): 115–125. Solaro, R., Chiellini, F., and Battisti, A. 2010. Targeted delivery of protein drugs by nanocarriers. Materials 3: 1928–1980. Stacy, K.M. 2005. Therapeutic MAbs: Saving lives and making millions. The Scientist: 17–19. Sun, Y.P., Meziani, M.J., Pathak, P., and Qu, L. 2005. Polymeric nanoparticles from rapid expansion of supercritical ¥uid solution. Chem. Eur. J. 11: 1366–1373. Suri, S.S., Fenniri, H., and Singh, B. 2007. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2:16. Takada, S., Uda, Y., Toguchi, H., and Ogawa, Y. 1995. Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers. PDA J. Pharm. Sci. Technol. 49(4): 180–184. Tang, Z.W., Shangguan, D., Wang, K.M., Shi, H., Sefah, K, Mallikratchy, P., Chen, H.W., Li, Y., and Tan, W.H. 2007. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem. 79: 4900–4907. Timko, B.P., Whitehead, K., Gao, W., Kohane, D.S., Farokhzad, O., Anderson, D., and Langer, R. 2011. Advances in drug delivery. Ann. Rev. Mater. Res. 41: 1–20. Turek, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment—RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249: 505–510. Van Dijk, M.A. and van de Winkel, J.G. 2001. Human antibodies as next generation therapeutics. Curr. Opin. Chem. Biol. 5(4): 368–374. Vandervoort, J. and Ludwig, A. 2007. Ocular drug delivery: nanomedicine applications. Nanomedicine 2(11): 21. Vasir, J.K., Reddy, M.K., and Labhasetwar, V.D. 2005. Nanosystems in drug targeting: Opportunities and challenges. Curr. Nanosci. 1: 47–64. Vauthier, C. and Bouchemal, K. 2008. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 26(5): 1025–1058. Veronese, F.M. and Caliceti, P. 2002. Drug delivery systems. In: R. Barbucci, ed., Integrated Biomaterials Science, pp. 833–873. Academic/Plenum Publishers, New York. Veronese, F.M. and Pasut, G. 2005. PEGylation, successful approach to drug delivery. Drug Discov. Today 10(21): 1451–1458. Wagner, V., Dullaart, A., Bock, A.K., and Zweck, A. 2006. The emerging nanomedicine landscape. Nat. Biotechnol. 24(10): 1211–1217. Wang, S., Su, H., Chen, K., Armijo, A., Lin, W., Wang, Y. et al. 2009. A supramolecular approach for preparation of size-controlled nanoparticles. Angew. Chem. 121(24): 4408–4412. Wei, H., Zhang, X.Z., Zhou, Y., Cheng, S.X., and Zhuo, R.X. 2006. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 27: 2028–2034. Williams, A.S., Camilleri, J.P., Goodfellow, R.M., and Williams, B.D. 1996. A single intra-articular injection of liposomally conjugated methotrex- ate suppresses joint in¥ammation in rat antigen-induced arthritis. Br. J. Rheumatol. 35: 719–724. Yeo, Y., Chen, A.U., Basaran, O.A., and Park, K. 2004. Solvent exchange method: A novel microencapsulation technique using dual microdispensers. Pharm. Res. 21(8): 1419–1427. Zambaux, M.F., Bonneaux, F., Gref, R., Dellacherie, E., and Vigneron, C. 1999. Preparation and characterization of protein C-loaded PLA nanoparticles. J. Control. Release 60(2–3): 179–188. Zhang, L. 2007. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. Chem. Med. Chem. 2: 1268–1271. Zhang, T., Brown, J., Oakley, R.J., and Faul, C.F.J. 2009. Towards functional nanostructures: Ionic selfassembly of polyoxometalates and surfactants. Curr. Opin. Colloid Interface Sci. 14(2): 62–70. Zhang, Z. and Feng, S.S. 2006. In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Biomacromolecules 7: 1139–1146. 18 Chapter 18. Polymeric Materials Obtained through Biocatalysis 1. Kobayashi, S. and A. Makino, Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chemical Reviews, 2009. 109(11): 5288–5353. 2. Weijers, C.A.G.M., M.C.R. Franssen, and G.M. Visser, Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnology Advances, 2008. 26(5): 436–456. 3. van der Vlist, J. and K. Loos, Transferases in polymer chemistry, in Enzymatic Polymerization, A.R.A. Palmans and A. Heise, Eds. 2011, Springer, Berlin, Germany, pp. 21–54. 4. Öhrlein, R., Glycosyltransferase-catalyzed synthesis of non-natural oligosaccharides, in Biocatalysis: From Discovery to Application, W.-D. Fessner, Ed. 1999, Springer Verlag, Berlin, Germany, pp. 227–254. 5. Glaser, L., The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. Journal of Biological Chemistry, 1958. 232(2): 627–636. 6. Flowers, H.M. et al., Biosynthesis of cellulose in vitro from guanosine diphosphate d-glucose with enzymic preparations from Phaseolus aureus and Lupinus albus. Journal of Biological Chemistry, 1969. 244(18): 4969–4974. 7. Murata, T. and T. Usui, Enzymatic synthesis of oligosaccharides and neoglycoconjugates. Bioscience, Biotechnology, and Biochemistry, 2006. 70(5): 1049–1059. 8. Zhang, Y. et al., Glycopolymers: The future antiadhesion drugs, in Polymer Biocatalysis and Biomaterials II, H.N. Cheng and R.A. Gross, Eds. 2008, American Chemical Society, Washington, DC, pp. 342–361. 9. Degu chi, K.S., H. Genzou, I. Masahito, N. Hiroaki, and N. Shinichiro, Oligosaccharide synthesizer. 2006. United States Patent 7070988. 10. Johnson, K.F.H., D.J. Bezila, D.E. Taylor, J. Simala-grant, and D. Rasko, Synthesis of oligosaccharides, glycolipids, and glycoproteins using bacterial glycosyltransferases. 2009, Neose Technologies, Inc., Horsham, PA, Governors of the University of Alberta, Edmonton, Alberta, Canada. United States Patent 7524655. 11. Nilsson, I.K.G.L., Method for synthesis of oligosaccharides. 1993, Procur AB, Lund, SE. United States Patent 5246840. 12. Roth, S.G., Apparatus for glycosyltransferase-catalyzed saccharide synthesis. 2003, The Trustees of the University of Pennsylvania, Philadelphia, PA. United States Patent 6544778. 13. Boons, G.-J. and K. Hale, Organic Synthesis with Carbohydrates. 2000, Shef�eld Academic Press, Shef�eld, U.K., Vol. xi, 336pp. 14. Wong, C.H. et al., Enzymes in organic synthesis: Application to the problems of carbohydrate recognition (part 2). Angewandte Chemie International Edition in English, 1995. 34(5): 521–546. 15. Homann, A. and J. Seibel, Towards tailor-made oligosaccharides—Chemo-enzymatic approaches by enzyme and substrate engineering. Applied Microbiology and Biotechnology, 2009. 83(2): 209–216. 16. Frey, P.A. and A.D. Hegeman, Enzymatic Reaction Mechanisms. 2007, Oxford University Press, Oxford, U.K., Vol. xviii, 831pp. 17. Palm, D. et al., The role of pyridoxal 5′-phosphate in glycogen phosphorylase catalysis. Biochemistry, 1990. 29(5): 1099–1107. 18. Ohdan, K. et al., Phosphorylase coupling as a tool to convert cellobiose into amylose. Journal of Biotechnology, 2007. 127(3): 496–502. 19. Fujii, K. et al., Bioengineering and application of novel glucose polymers. Biocatalysis and Biotransformation, 2003. 21(4–5): 167–172(6). 20. Yanase, M., T. Takaha, and T. Kuriki, α-Glucan phosphorylase and its use in carbohydrate engineering. Journal of the Science of Food and Agriculture, 2006. 86(11): 1631–1635. 21. Kadokawa, J.-I. and S. Kobayashi, Polymer synthesis by enzymatic catalysis. Current Opinion in Chemical Biology, 2010. 14(2): 145–153. 22. Kaneko, Y., K. Beppu, and J.-I. Kadokawa, Amylose selectively includes a speci�c range of molecular weights in poly(tetrahydrofuran)s in vine-twining polymerization. Polymer Journal, 2009. 41(9): 792–796. 23. Kaneko, Y. et al., Selectivity and priority on inclusion of amylose toward guest polyethers and polyesters in vine-twining polymerization. Polymer Journal, 2009. 41(4): 279–286. 24. van der Vlist, J. et al., Synthesis of branched polyglucans by the tandem action of potato phosphorylase and Deinococcus geothermalis glycogen branching enzyme. Macromolecular Rapid Communications, 2008. 29(15): 1293–1297. 25. Faijes, M. and A. Planas, In vitro synthesis of arti�cial polysaccharides by glycosidases and glycosynthases. Carbohydrate Research, 2007. 342(12–13): 1581–1594. 26. Plou, F.J., A.G.D. Segura, and A. Ballesteros, Application of glycosidases and transglycosidases in the synthesis of oligosaccharides, in Industrial Enzymes, J. Polaina and A.P. MacCabe, Eds. 2007, Springer, Dordrecht, the Netherlands, pp. 141–157. 27. Koshland, D.E., Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews, 1953. 28(4): 416–436. 28. Vocadlo, D.J. and G.J. Davies, Mechanistic insights into glycosidase chemistry. Current Opinion in Chemical Biology, 2008. 12(5): 539–555. 29. Kobayashi, S. et al., Novel method for polysaccharide synthesis using an enzyme: The �rst in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. Journal of the American Chemical Society, 1991. 113(8): 3079–3084. 30. Kobayashi, S., Challenge of synthetic cellulose. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(4): 693–710. 31. Okada, G., D.S. Genghof, and E.J. Hehre, The predominantly nonhydrolytic action of alpha amylases on [alpha]-maltosyl ¥uoride. Carbohydrate Research, 1979. 71(1): 287–298. 32. Kobayashi, S. and M. Ohmae, Enzymatic polymerization to polysaccharides. Enzyme-Catalyzed Synthesis of Polymers, 2006. 194: 159–210. 33. Linh ardt, R.J. and M. Weïwer, Synthesis of glycosaminoglycans and their oligosaccharides in Comprehensive Glycoscience, Volume 1, J. Kamerling et al., Eds. 2007, Elsevier science, Oxford, U.K., pp. 713–745. 34. Plou, F. et al., Glucosyltransferases acting on starch or sucrose for the synthesis of oligosaccharides. Canadian Journal of Chemistry, 2002. 80(6): 743–752. 35. Monsan, P., M. Remaud-Siméon, and I. André, Transglucosidases as ef�cient tools for oligosaccharide and glucoconjugate synthesis. Current Opinion in Microbiology, 2010. 13(3): 293–300. 36. Vasur, J. et al., Synthesis of cyclic β-glucan using laminarinase 16A glycosynthase mutant from the basidiomycete Phanerochaete chrysosporium. Journal of the American Chemical Society, 2010. 132(5): 1724–1730. 37. Williams, S.J. and S.G. Withers, Glycosyl ¥uorides in enzymatic reactions. Carbohydrate Research, 2000. 327(1–2): 27–46. 38. Perugino, G. et al., Oligosaccharide synthesis by glycosynthases. Trends in Biotechnology, 2004. 22(1): 31–37. 39. Hommalai, G. et al., Enzymatic synthesis of cello-oligosaccharides by rice BGlu1 β-glucosidase glycosynthase mutants. Glycobiology, 2007. 17(7): 744–753. 40. Shaikh, F. and S. Withers, Teaching old enzymes new tricks: Engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochemistry and Cell Biology, 2008. 86(2): 169–177. 41. Mackenzie, L.F. et al., Glycosynthases: Mutant glycosidases for oligosaccharide synthesis. Journal of the American Chemical Society, 1998. 120(22): 5583–5584. 42. Drone, J. et al., Thermus thermophilus glycosynthases for the ef�cient synthesis of galactosyl and glucosyl-(1→3)-glycosides. European Journal of Organic Chemistry, 2005. 2005(10): 1977–1983. 43. Müllegger, J. et al., Thermostable glycosynthases and thioglycoligases derived from thermotoga maritima β-glucuronidase. ChemBioChem, 2006. 7(7): 1028–1030. 44. Wilkinson, S.M. et al., Escherichia coli glucuronylsynthase: An engineered enzyme for the synthesis of β-glucuronides. Organic Letters, 2008. 10(8): 1585–1588. 45. Fort, S. et al., Highly ef�cient synthesis of β(1 → 4)-oligo- and -polysaccharides using a mutant cellulase. Journal of the American Chemical Society, 2000. 122(23): 5429–5437. 46. Hrmova, M. et al., Mutated barley (1,3)-β-d-glucan endohydrolases synthesize crystalline (1,3)-β-dglucans. Journal of Biological Chemistry, 2002. 277(33): 30102–30111. 47. Faijes, M. et al., In vitro synthesis of a crystalline (1→3, 1→4)-beta-d-glucan by a mutated (1→3, 1→4)-beta-d-glucanase from Bacillus. Biochemical Journal, 2004. 380(Pt 3): 635. 48. Gullfot, F. et al., Functional characterization of xyloglucan glycosynthases from GH7, GH12, and GH16 scaffolds. Biomacromolecules, 2009. 10(7): 1782–1788. 49. Volova, T., Polyhydroxyalkanoates—Plastic Materials of the 21st Century: Production, Properties, Applications. 2004, Nova Science Pub Inc., Hauppauge, New York. 50. Guisan, J., Immobilization of Enzymes and Cells. 2006, Humana Press Inc., Totowa, NJ. 51. Gross, R.A., M. Ganesh, and W. Lu, Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends in Biotechnology, 2010. 28(8): 435–443. 52. Heise, A. and A. Palmans, Hydrolases in polymer chemistry: Chemoenzymatic approaches to polymeric materials, in Enzymatic Polymerisation, A.R.A. Palmans and A. Heise, Eds. 2011, Springer, Berlin, Germany, pp. 79–113. 53. Bencze, L.C. et al., CaL-B a highly selective biocatalyst for the kinetic resolution of furylbenzthiazole2-yl-ethanols and acetates. Tetrahedron: Asymmetry, 2010. 21(16): 1999–2004. 54. Bencze, L.C. et al., Synthesis of enantiomerically enriched (R)- and (S)-benzofuranyl- and benzo[b]thiophenyl-1,2-ethanediols via enantiopure cyanohydrins as intermediates. Tetrahedron: Asymmetry, 2010. 21(4): 443–450. 55. Brem, J. et al., Lipase-catalyzed kinetic resolution of racemic 1-(10-alkyl-10H-phenothiazin-3-yl)ethanols and their butanoates. Tetrahedron: Asymmetry, 2010. 21(16): 1993–1998. 56. Mahapatro, A., A. Kumar, and R.A. Gross, Mild, solvent-free ω-hydroxy acid polycondensations catalyzed by Candida antarctica lipase B. Biomacromolecules, 2004. 5(1): 62–68. 57. Mahapatro, A. et al., Solvent-free adipic acid/1,8-octanediol condensation polymerizations catalyzed by Candida antarctica lipase B. Macromolecules, 2003. 37(1): 35–40. 58. Ajima, A. et al., Polymerization of 10-hydroxydecanoic acid in benzene with polyethylene glycol-modi�ed lipase. Biotechnology Letters, 1985. 7(5): 303–306. 59. Ebata, H. and S. Matsumura, Polyricinoleate composition and process for producing the same. 2007. United States Patent application 0270550 (2009). 60. Noll, O. and H. Ritter, Enzymes in polymer chemistry, 9. Polymerizable oligoesters from cholic acid via lipase catalyzed condensation reactions. Macromolecular Rapid Communications, 1996. 17(8): 553–557. 61. Berkane, C. et al., Lipase-catalyzed polyester synthesis in organic medium. Study of ring–chain equilibrium. Macromolecules, 1997. 30(25): 7729–7734. 62. Okumura, S., M. Iw ai, and Y. Tominaga, Synthesis of ester oligomer by Aspergillus niger lipase. Agricultural and Biological Chemistry, 1984. 48(11): 2805–2808. 63. Kobayashi, S., Lipase-catalyzed polyester synthesis—A green polymer chemistry. Proceedings of the Japan Academy, Series B, 2010. 86(4): 338–365. 64. Hilker, I. et al., Chiral polyesters by dynamic kinetic resolution polymerization. Angewandte Chemie International Edition, 2006. 45(13): 2130–2132. 65. Albertsson, A.-C. and I.K. Varma, Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules, 2003. 4(6): 1466–1486. 66. Knan i, D., A. Gutman, and D. Kohn, Enzymatic polyesteri�cation in organic media. Enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear hydroxyesters. II. Ring-opening polymerization of ε-caprolactone. Journal of Polymer Science Part A: Polymer Chemistry, 1993. 31(5): 1221–1232. 67. Varma, I.K. et al., Enzyme catalyzed synthesis of polyesters. Progress in Polymer Science, 2005. 30(10): 949–981. 68. Uyama, H. and S. Kobayashi, Enzymic ring-opening polymerization of lactones catalyzed by lipase. Chemistry Letters, 1993. 7: 1149–1150. 69. Kobayashi, S., Enzymatic ring-opening polymerization of lactones by lipase catalyst: Mechanistic aspects. Macromolecular Symposia, 2006. 240(1): 178–185. 70. Córdova, A. et al., Lipase-catalysed formation of macrocycles by ring-opening polymerisation of [epsilon]-caprolactone. Polymer, 1998. 39(25): 6519–6524. 71. Matsumura, S., Enzymatic synthesis of polyesters via ring-opening polymerization, in Enzyme-Catalyzed Synthesis of Polymers, S. Kobayashi, H. Ritter, and D. Kaplan, Eds. 2006, Springer, Berlin, Germany, pp. 95–132. 72. Kobayashi, S., Recent developments in lipase-catalyzed synthesis of polyesters. Macromolecular Rapid Communications, 2009. 30(4–5): 237–266. 73. Nobes, G.A.R., R.J. Kazlauskas, and R.H. Marchessault, Lipase-catalyzed ring-opening polymerization of lactones: A novel route to poly(hydroxyalkanoate)s. Macromolecules, 1996. 29(14): 4829–4833. 74. Shimada, K. et al., Poly-(L)-malic acid: A new protease inhibitor from Penicillium cyclopium. Biochemical and Biophysical Research Communications, 1969. 35(5): 619. 75. Liu, S. and A. Steinbüchel, Investigation of poly(β-l-malic acid) production by strains of Aureobasidium pullulans. Applied Microbiology and Biotechnology, 1996. 46(3): 273–278. 76. Matsumura, S. and S. Yoshikawa, Biodegradable poly(carboxylic acid) design in Agricultural and Synthetic Polymers, Biodegradability and Utilization, J.E. Glass and G. Swift, Eds. 1990, ACS Symposium Series, American Chemical Society, Washington, DC. 77. Küllmer, K. et al., Lipase-catalyzed ring-opening polymerization of α-methyl-δ-valerolactone and α-methyl-ε-caprolactone. Macromolecular Rapid Communications, 1998. 19(2): 127–130. 78. Nishida, H. et al., Synthesis of metal-free poly(1,4-dioxan-2-one) by enzyme-catalyzed ring-opening polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(9): 1560–1567. 79. Kikuchi, H., H. Uyama, and S. Kobayashi, Lipase-catalyzed enantioselective copolymerization of substituted lactones to optically active polyesters. Macromolecules, 2000. 33(24): 8971–8975. 80. Peeters, J.W. et al., Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: Mechanistic considerations. Macromolecules, 2005. 38(13): 5587–5592. 81. van Buijtenen, J. et al., Switching from S- to R-selectivity in the Candida antarctica lipase B-catalyzed ring-opening of ω-methylated lactones: Tuning polymerizations by ring size. Journal of the American Chemical Society, 2007. 129(23): 7393–7398. 82. Veld, M.A.J. et al., Lactone size dependent reactivity in Candida antarctica lipase B: A molecular dynamics and docking study. ChemBioChem, 2009. 10(8): 1330–1334. 83. Geus, M.D. et al., Insights into the initiation process of enzymatic ring-opening polymerization from monofunctional alcohols using liquid chromatography under critical conditions. Biomacromolecules, 2008. 9(2): 752–757. 84. Uyama, H., S. Suda, and S. Kobayashi, Enzymatic synthesis of terminal-functionalized polyesters by initiator method. Acta Polymerica, 1998. 49(12): 700–703. 85. Takwa, M. et al., Lipase catalyzed HEMA initiated ring-opening polymerization: In situ formation of mixed polyester methacrylates by transesteri�cation. Biomacromolecules, 2008. 9(2): 704–710. 86. Bisht, K.S. et al., Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization. Journal of the American Chemical Society, 1998. 120(7): 1363–1367. 87. Uyama, H., H. Kikuchi, and S. Kobayashi, Single-step acylation of polyester terminals by enzymatic ring-opening polymerization of 12-dodecanolide in the presence of acyclic vinyl esters. Bulletin of the Chemical Society of Japan, 1997. 70(7): 1691–1695. 88. Kobayashi, S., H. Kikuchi, and H. Uyama, Lipase-catalyzed ring-opening polymerization of 1,3-dioxan2-one. Macromolecular Rapid communications, 1997. 18(7): 575–579. 89. Matsumura, S., K. Tsukada, and K. Toshima, Enzyme-catalyzed ring-opening polymerization of 1,3-dioxan-2-one to poly(trimethylene carbonate). Macromolecules, 1997. 30(10): 3122–3124. 90. Bisht, K.S. et al., Lipase-catalyzed ring-opening polymerization of trimethylene carbonate † . Macromolecules, 1997. 30(25): 7735–7742. 91. He, F., Immobilized porcine pancreas lipase for polymer synthesis, in Polymer Biocatalysis and Biomaterials II, H.N. Cheng1 and R.A. Gross, Eds. 2008, American Chemical Society, Washington, DC, pp. 144–154. 92. Wu, R., T.F. Al-Azemi, and K.S. Bisht, Functionalized polycarbonate derived from tartaric acid: Enzymatic ring-opening polymerization of a seven-membered cyclic carbonate. Biomacromolecules, 2008. 9(10): 2921–2928. 93. Albertsson, A.-C. and R.K. Srivastava, Recent developments in enzyme-catalyzed ring-opening polymerization. Advanced Drug Delivery Reviews, 2008. 60(9): 1077–1093. 94. Reihmann, M. and H. Ritter, Synthesis of phenol polymers using peroxidases, in Enzyme-Catalyzed Synthesis of Polymers, S. Kobayashi, H. Ritter, and D. Kaplan, Eds. 2006, Springer, Berlin, Germany, pp. 1–49. 95. Valderrama, B., M. Ayala, and R. Vazquez-Duhalt, Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chemistry & Biology, 2002. 9(5): 555–565. 96. Dordick, J.S., M.A. Marletta, and A.M. Klibanov, Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnology and Bioengineering, 1987. 30(1): 31–36. 97. Montellano, P.R.O.D., Catalytic mechanisms on heme peroxidases, in Biocatalysis Based on Heme Peroxidases, E. Torres and M. Ayala, Eds. 2010, Springer-Verlag, Berlin, Germany, pp. 79–105. 98. Kobayashi, S. et al., Regio- and chemo-selective polymerization of phenols catalyzed by oxidoreductase enzyme and its model complexes. Macromolecular Symposia, 2001. 175(1): 1–10. 99. Mita, N. et al., Precise structure control of enzymatically synthesized polyphenols. Bulletin of the Chemical Society of Japan, 2004. 77(8): 1523–1527. 100. Ayyagari, M., J. Akkara, and D. Kaplan, Solvent-enzyme-polymer interactions in the molecular-weight control of poly(m-cresol) synthesized in nonaqueous media in Enzymes in Polymer Synthesis, A.C. Society, Ed. 1998, ACS Symposium Series, American Chemical Society, Washington, DC. 101. Fukuoka, T. et al., Peroxidase-catalyzed oxidative polymerization of 4,4′-dihydroxydiphenyl ether. Formation of α,ω-hydroxyoligo(1,4-phenylene oxide) through an unusual reaction pathway. Macromolecules, 2000. 33(24): 9152–9155. 102. Ikeda, R. et al., Enzymatic oxidative polymerization of 4-hydroxybenzoic acid derivatives to poly(phenylene oxide)s. Polymer International, 1998. 47(3): 295–301. 103. Mita, N. et al., Enzymatic oxidative polymerization of phenol in an aqueous solution in the presence of a catalytic amount of cyclodextrin. Macromolecular Bioscience, 2002. 2(3): 127–130. 104. Xu, Y.P., G.L. Huang, and Y.T. Yu, Kinetics of phenolic polymerization catalyzed by peroxidase in organic media. Biotechnology and Bioengineering, 1995. 47(1): 117–119. 105. Uyama, H., H. Kurioka, and S. Kobayashi, Novel bienzymatic catalysis system for oxidative polymerization of phenols. Polymer Journal, 1997. 29(2): 190–192. 106. An, E.S. et al., Peroxidase-catalyzed copolymerization of syringaldehyde and bisphenol A. Enzyme and Microbial Technology, 2010. 46(3–4): 287–291. 107. Cañas, A.I. and S. Camarero, Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnology Advances, 2010. 28(6): 694–705. 108. Yoshida, H., Chemistry of lacquer (urshi), part 1. Journal of Chemical Society, 1883. 43: 472–486. 109. Piontek, K., M. Antorini, and T. Choinowski, Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. Journal of Biological Chemistry, 2002. 277(40): 37663. 110. Riva, S., Laccases: Blue enzymes for green chemistry. Trends in Biotechnology, 2006. 24(5): 219–226. 111. Kunamneni, A. et al., Engineering and applications of fungal laccases for organic synthesis. Microbial Cell Factories, 2008. 7(1): 32. 112. Chandra, R., C. Felby , and A. Ragauskas, Improving laccase-facilitated grafting of 4-hydroxybenzoic acid to high-kappa kraft pulps. Journal of Wood Chemistry and Technology, 2005. 24(1): 69–81. 113. Parravano, G., Chain reactions induced by enzymic systems. Journal of the American Chemical Society, 1951. 73(1): 183–184. 114. Derango, R. et al., Enzyme-mediated polymerization of acrylic monomers. Biotechnology Techniques, 1992. 6(6): 523–526. 115. Ikeda, R. et al., Laccase-catalyzed polymerization of acrylamide. Macromolecular Rapid Communications, 1998. 19(8): 423–425. 116. Emer y, O. et al., Free-radical polymerization of acrylamide by horseradish peroxidase-mediated initiation. Journal of Polymer Science Part A: Polymer Chemistry, 1997. 35(15): 3331–3333. 117. Singh, A., D. Ma, and D.L. Kaplan, Enzyme-mediated free radical polymerization of styrene. Biomacromolecules, 2000. 1(4): 592–596. 118. Durand, A. et al., Enzyme-mediated radical initiation of acrylamide polymerization: Main characteristics of molecular weight control. Polymer, 2001. 42(13): 5515–5521. 119. Kalra, B. and R.A. Gross, Horseradish peroxidase mediated free radical polymerization of methyl methacrylate. Biomacromolecules, 2000. 1(3): 501–505. 120. Uyama, H. et al., Chemoselective polymerization of a phenol derivative having a methacryl group by peroxidase catalyst. Macromolecules, 1998. 31(2): 554–556. 19 Chapter 19. Polymer-Based Colloidal Aggregates as a New Class of Drug Delivery Systems 1. H. Ringsdorf, Structure and properties of pharmacologically active polymers, J. Polym. Sci. Polym. Symp., 51, 1975, 135–153. 2. E.W. Neuse, Synthetic polymers as drug delivery vehicles in medicine, Metal Based Drugs, 2008, 1–19; doi: 10.1155/2008/469531. 3. D.D. Lasic, Liposomes in Gene Delivery, Boca Raton, FL, CRC Press, 1997. 4. I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis, Adv. Drug. Deliv. Rev., 54, 2002, 631–651. 5. K. Cho, X. Wang, Z.C. Chen, D.M. Shin, Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res., 14, 2008, 1310–1316. 6. M. Nahar, T. Dutta, S. Murugesan, V. Rajkumar, M. Tare, S. Saraf, N.K. polymeric nanoparticles: an ef�cient active delivery of bioactives, Crit. Carr. Syst., 23, 2006, 259–318. A. Asthana, D. Mishra, Jain, Functional and promising tool for Rev. Ther. Drug. 7. O. Pillai, R. Panchagnula, Polymers in drug delivery, Curr. Opin. Chem. Biol., 5, 2001, 447–451. 8. B. Sumer, J. Gao, Theranostic nanomedicine for cancer, Nanomedicine, 3, 2008, 137–140. 9. K. Kostarelos, Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science, Adv. Colloid Interface Sci., 106, 2003, 147–168. 10. H. Bader, H. Ringsdorf, B. Schmidt, Water soluble polymers in medicine, Angew. Makromol. Chem., 123/124, 1984, 457–485. 11. E. Blanco, C.W. Kessinger, B.D. Sumer, J. Gao, Multifunctional micellar nanomedicine for cancer therapy, Exp. Biol. Med., 234, 2009, 123–131. 12. K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: design characterization and biological signi�cance, Adv. Drug Deliver Rev., 47, 2001, 113–131. 13. A. Harada, H. Togawa, K. Kataoka, Physico-chemical properties and nuclease resistance of antisense-oligonucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol) poly(L-lysine) block copolymers, Eur. J. Pharm. Sci., 13, 2001, 35–42. 14. S. Zuzzi, C. Cametti, G. Onori, S. Sennato, S. Tacchi, Polyion-induced cluster formation in different colloidal polyparticle aqueous suspensions, Langmuir, 25, 2009, 5910–5917. 15. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, Characterization and antcancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer, Cancer Res., 50, 1990, 1693–1700. 16. M. Yokoyama, T. Okano, Y. Sakurai, H. Ekimoto, C. Shibazaki, K. Kataoka, Toxicity and antitumor activity against solid tumors of micelle- forming polymeric anticancer drug and its extremely long circulation in blood, Cancer Res., 51, 1991, 3229–3236. 17. V.P. T orchilin, A.N. Lukyanov, Z. Gao, B. Papahadiopoulos -Stenberg, Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs, Proc. Natl. Acad. Sci., USA, 100, 2003, 6039–6044. 18. V.P. Torchilin, PEG-based micelles as carriers of contrast agents for different imaging modalities, Adv. Drug Deliv. Rev., 54, 2002, 235–252. 19. E. Nakamura, K. Makino, T. Okano, T. Yamamoto, M. Yokoyama, A polymeric micelle MRI contrast agent with changeable relaxivity, J. Control. Release, 114, 2006, 325–333. 20. G. Zhang, R. Zhang, X. Wen, L. Li, C. Li, Micelles based on biodegradable poly(L-glutamic acid)b-polylactide with paramagnetic Gd ions chelated to the shell layer as a potenntial nanoscale MRI-visible delyvery system, Biomacromolecules, 9, 2008, 36–42. 21. N. Nasongka, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.F. Chin, A.D. Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer- targeted MRI-ultrasensitive drug delivery system, Nano Lett., 6, 2006, 2427–2430. 22. X.-B. Xiong, A. Mahmud, H. Uludag, A. Lavasanifar, Multifuctional polymeric micelles for enhanced intracellular delivery of Doxorubicin to metastatic cancer cells, Pharm. Res., 25, 2008, 2555–2566. 23. Y. Sayed-Sweet, D.M. Hedstrand, R. Spinder, D.A. Tomalia, Hydrophobically modi�ed poly(amidoamine) (PAMAM) dendrimers:their properties at the air-water interface and use as nanoscopic container molecules, J. Mater. Chem., 7, 1997, 1199–1205. 24. Y. C hen, Z. Shen, H. Frey, J. Perez-Prieto, S.-E. Stiriba, Synergistic assembly of hyperbranched polyethylenimine and fatty acids leading to unusual supramolecular nanocapsules, Chem. Commun., 48, 2005, 755–757. 25. M.C. Jones, H. Gao, J.C. Leroux, Reverse polymeric micelles for pharmaceutical applications, J. Control. Release, 132, 2008, 208–215. 26. L. Cheng, D. Cao, Effect of tail architecture on self-assembly of amphiphiles for polymeric micelles, Langmuir, 25, 2009, 2749–2756. 27. Y. Matsumura, Poly(amino acid) micelle nanocarriers in preclinical and clinical studies, Adv. Drug Deliv. Rev., 60, 2008, 899–914. 28. H. Chou, W. Arkeley, H. Safran, S. Graziano, C. Chung, T. Williams, B. Cole, T. Kennedy, Multiinstutional phase II trial of paclitaxel, carboplatin and concurrent radiation therapy for locally advanced non-smallcell lung cancer, J. Clin. Oncol., 16, 1998, 3316–3322. 29. H. Uchino, Y. Matsumura, T. Negishi, F. Koizumi, T. Hayashi, T. Honda, Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats, Br. J. Cancer, 93, 2005, 678–687. 30. X.W. Wei, C.Y.Gong, S. Shi, S.Z. Fu, K. Men, S. Zeng, X. L. Zeng et al. Self-assembled Honokiolloaded micelles based on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymer, Int. J. Pharm., 369, 2009, 170–175. 31. H. Liu, C. Zang, A. Emde, M.D. Planas-Silva, M. Roshe, A. Kuhnl, C.O. Schulz, E. Elstner, K. Possinger, J. Eucker, Anti-tumor effect of Honokiol alone and in combination with other anticancer agents in breast cancer, Eur. J. Pharm., 591, 2008, 43–51. 32. S.E. Yang, M.T. Hsieh, T.H. Tsai, S.L. Hsu, Down modulation of Bcl-XL, release of cytochrome c and sequential activation opases during Honokiol-induced apoptosis in human squamous lung cancer CH27 cells, Biochem. Pharmacol., 63, 2002, 1641–1651. 33. W.F. F ong, K.W. Tse Anfernee, K.H. Poon, C. Wang, Magnolon and Honokiol enhance HL-60 human leukemia cell differentiation induced by 1.25-dihydroxyvitamin D3 and retinoic acid, Int. J. Biochem. Cell. Biol., 37, 2005, 427–441. 34. B.M. Discher, Y .Y. Won, D.S. Ege, J.C. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymerosomes: tough vesicles made from diblock copolymers, Science, 284, 1999, 1143–1146. 35. F. Meng, Z. Zhong, J. Feijen, Stimuli-responsive polymerosomes for programmed drug delivery, Biomacromolecules, 10, 2009, 197–209. 36. H. Shen, A. Eisenberg, Morphological phase diagram for a ternary system of block copolymer PS310-bPAA52/H 2 O, J. Phys. Chem. B, 103, 1999, 9473–9487. 37. M. Antonietti, S. Foster, Vesicles and liposomes. A self assembly principle beyond lipids, Adv. Mater., 15, 2003, 1323–1333. 38. J.C.M. Lee, H. Bermudez, B.M. Discher, M.A.Won, Y.-Y. Bates, D.E. Discher, Preparation, stability and in vitro performance of vesicles made with diblock copolymers, Biotechnol. Bioeng., 73, 2001, 135–145. 39. E. Lorenceau, A.S. Utada, D.R. Link, G. Cristobal, M. Joanicott, D.A. Weitz, Generation of polymerosomes from double emulsions, Langmuir, 21, 2005, 9138–9186. 40. F. Ahmed, E.D. Discher, Self-poroting polymerosomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles, J. Control. Release, 96, 2004, 37–53. 41. C. Nardin, T. Hirt, J. Leukel, W. Meier, Polymerized ABA triblock copolymer vesicles, Langmuir, 16, 2000, 1035–1041. 42. S. Rameez, H. Alosta, A.F. Palmer, Biocampatible and biodegradable polymerosomes encapsulated hemoglobin: a potential oxygen carrier, Bioconj. Chem., 19, 2008, 1025–1032. 43. L. Ayres, P. Hans, J. Adams, D.W.P.M. Loewik, J.C.M. van Hest, Peptide-polymer vesicles prepared by atom transfer radical polymerization, J. Polym. Sci. Part A Polym. Chem., 43, 2005, 6355–6366. 44. J. Ding, G. Liu, Water soluble hollow nanospheres as potential drug carriers, J. Phys. Chem. B, 102, 1998, 6107–6113. 45. H. Ringsdorf, B. Schlarb, J. Venzmer, Molekulare architektur und funktion von polymeren orientierten systemen, J. Angew. Chem., 100, 1988, 117–121. 46. E. Donath, G.B. Sukhoruk ov, F. Caruso, S.A. Davis, H. Möhwald, Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes, Angew. Chem. Int. Ed. Engl., 37, 1998, 2202–2205. 47. H. Huang, E.E. Remsen, T. Kowalewski, K.L. Wooley, Nanocages derived from shell cross-linked micelle templates, J. Am. Chem. Soc., 121, 1999, 3805–3806. 48. O. Rathore, D.Y. Sogah, Self-assembly of beta-sheets into nanostructures by poly(alanine) segments incorporated in multiblock copolymers inspired by spider silk, J. Am. Chem. Soc., 123, 2001, 5231–5239. 49. F. Checot, S. Lecommandoux, Y. Gnanou, H.A. Klok, Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers, Angew. Chem. Int. Ed., 41, 2001, 1339–1343. 50. S. Kimura, T. Kidchob, Y. Imanishi, Controlled release from amphiphilic polymer aggregates, Polym. Adv. Technol., 12, 2001, 85–95. 51. T. Kidchob, S. Kimura, Y. Imanishi, Thermoresponsive release from poly(L-lactic acid) microcapsules containing poly(N-isopropylacrylamide) gel, J. Chem. Soc. Perkin Trans., 2, 1997, 2195–2199. 52. M. van Dijk, T.H. Smith, F.M. Arnoe, E.H. Burger, P.I. Wuisman, The use of poly-L-lactic acid in lumbar interbody cages: design and biomechanical evaluation in vitro, Eur. Spine J., 12, 2003, 34–42. 53. A.G. Anderopoulos, E.C. Hatzi, M. Doxastakis, Controlled release systems based on poly(lactic acid). An in vitro and in vivo study, J. Mater. Sci. Mater. Med., 11, 2000, 393–397. 54. Y.M. Lin, A.R. Boccaccini, J.M. Polak, A.E. Bishop, V. Maquet, Biocompatibility of poly-dl-lactic acid (pdlla) for lung tissue engineering, J. Biomater. Appl., 21, 2006, 109–118. 55. R.Langer, J.P. Vacanti, Tissue engineering, Science, 260, 1993, 920–926. 56. J. Klompmaker, H.W.B. Jansen, R.P.H. Verth, J.H. deGroot, A.J. Nijenhuius, J.A. Pennings, Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs, Biomaterials, 12, 1991, 810–816. 57. C. Berkland, M.J. Kipper, B. Barasimhan, K. Kim, D.W. Pack, Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres, J. Control. Release, 94, 2004, 129–141. 58. M. He, Z. Zhao, L. Yin, C. Tang, C. Yin, Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers, Int. J. Pharm., 373, 2009, 165–173. 59. F. Kratz, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles, J. Control. Release, 132, 2008, 171–183. 60. N. Desai, V. Trieu, Z. Yao, L. Louie, S. Ci, A. Yang, C. Tao, T. De, B. Beals, D. Dykes, P. Noker, R. Yao, E. Labao, M. Hawkins, P. Soon-Shiong, Increased antitumor activity, intratumor paclitaxel concentration and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel, Clin. Cancer Res., 12, 2006, 1317–1324. 61. M. Hamidi, A. Azadi, P. Ra�ei, Hydrogel nanoparticles in drug delivery, Adv. Drug Deliv. Rev., 60, 2008, 1638–1649. 62. M.N. Mason, A.T. Metters, C.N. Bowman, K.S.Anseth, Predicting controlled release behavior of degradable PLA-b-PEG-b-PLA hydrogels, Macromolecules, 34, 2001, 4630–4635. 63. G.M. Cruise, D.S. Scharp, J.A. Hubbell, Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels, Biomaterials, 19, 1998, 1287–1294. 64. T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique, Polysaccharide hydrogels for modi�ed release formulations, J. Control. Release, 119, 2007, 5–24. 65. C.C. Lin, A.T. Metters, Hydrogels in controlled release formulation: network, design and mathematical modeling, Adv. Drug. Deliv. Rev., 58, 2006, 1379–1408. 66. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogel in pharmaceutical formulation, Eur. J. Pharm. Biopharm., 50, 2000, 27–46. 67. P. Bawa, V. Pillay, Y.E. Choonara, C. du Toit, Stimuli-responsive polymers and their applications in drug delivery, Biomed. Mater., 4, 2009, 022001–022015. 68. K.S. Soppimath, T.M. Aminabhavi, A.M. Dave, S.G. Kumbar, W.E. Rudzinski, Stimulus-responsive “smart” hydrogels as novel drug delivery systems, Drug. Dev. Ind. Pharm., 28, 2002, 957–974. 69. L.H. Gan, D.G. Roshan, X.J. Loh, Y.Y. Gan, New stimuli responsive copolymers and N- acryloyl -N′- alkyl piperazine and methyl methacrylate and their hydrogels, Polymer, 42, 2001, 65–69. 70. E.S. Gil, S.A. Hudson, Stimuli-responsive polymers and their bioconjugates, Prog. Polym. Sci., 29, 2004, 1173–1222. 71. T. Farhan, O. Azzaroni, W.T.S. Huck, AFM study of cationically charged polymer brushes: switching between soft and hard matter, Soft Matter, 1, 2005, 66–68. 72. S.S. Pennadam, K. Firman, C. Alexander, D.G. Gorecki, Protein-polymer nano-machines. Towards synthetic control of biological processes, J. Nanobiotechnol., 2, 2004, 8–22. 73. Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug. Deliv. Rev., 53, 2001, 321–339. 74. T. Aoki, M. Muramatsu, A. Nishina, K. Sanui, N. Ogata, Thermosensityvity of optically active hydrogels constructed with N-(1)-(hydroxymethyl) propylmethacrylamide, Macromol. Biosci., 4, 2004, 943–949. 75. C.-L. Lo, S.-J. Lin, H.C. Tsai, W.H. Chan, C.H. Tsai, C.D.H. Cheng, G.H. Hsiue, Mixed micelle systems formed from critical micellar concentration and temperature-sensitive diblock copolymers for doxorubicin delivery, Biomaterials, 30, 2009, 3961–3970. 76. E.E. Carpenter, Iron nanoparticles as potential magnetic carriers, J. Ma gn. Mater., 225, 2001, 17–20. 77. A. Mamada, T. Tanaka, D. Kungwachakun, M. Irie, Photo-induced phase transition of gels, Macromolecules, 23, 1990, 1517–1519. 78. K. Sumaru, M. Kameda, T. Kanamori, T. Shinbo, Characteristic phase transition of aqueous solutions of poly(N-isopropylacrylamide) functionalized with sphirobenzopyran, Macromolecules, 37, 2004, 4949–4955. 79. K. Nakamae, T. Nizuka, T. Miyata, M. Furukawa, T. Nishino, K. Kato, T. Inoue, A.S. Hoffman, Lysozyme loading and release from hydrogels carrying pendant phosphate groups, J. Biomater. Sci. Polym. Ed., 9, 1997, 43–53. 80. L.C. Dong, A.S. Hof fman, A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery, J. Control. Release, 15, 1991, 141–152. 81. K. Nakamae, T. Nizuka, T. Miyata, T. Uragami, A.S. Hoffman, Y. Kanzaki, Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems, N. Ogata, S.W.Kim, J.Feijen, T.Okano Eds., Springer-Verlag, Tokyo, Japan 1996. 82. C. Alexander, K.M. Shakesheff, Responsive polymers at the biology/materials science interface, Adv. Mater., 18, 2006, 3321–3328. 83. D. Le Garrec, J. Taillefer, J.E. van Lier, V. Lenaerts, J.-C. Leroux, Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model, J. Drug Target., 10, 2002, 420–437. 84. G.-D. Zang, N. Nishiyama, A. Harada, D.-L. Jiang, T. Aida, K. Kataoka, pH-sensitive assembly of highharvesting dendrimer zinc porphyrin bearing peripheral groups of primary amine poly(ethylene glycol)b-poly(aspartic acid) in aqueous solution, Macromolecules, 36, 2003, 1304–1309. 85. C.F. van Nostrum, Polymeric micelles to deliver photosentisizers for photodynamic therapy, Adv. Drug Deliv. Rev., 56, 2004, 9–16. 86. Y.Kakizawa, K. Kataoka, Block copolymer micelles for delivery of gene and related compounds, Adv. Drug Deliv. Rev., 54, 2002, 203–222. 87. B. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery, Adv. Drug Deliv. Res., 58, 2006, 1655–1670. 88. P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery, Drug Discov. Today, 7, 2002, 569–579. 89. A. Serres, M. Baudys, S.W. Kim, Temperature and pH-sensitive polymers for human calcitonin delivery, Pharm. Res., 13, 1996, 196–201. 90. Y.H. Kim, Y.H. Bae, S.W. Kim, pH-temperature sensitive polymers for macromolecular drug loading and release, J. Control. Release, 28, 1994, 143–152. 91. K. Hada, M. Porkov, M. Shamis, R.A. Lerner, C.F. Barbas, D. Shabat, Single triggered trimeric prodrugs, Angew. Chem. Int. Ed., 44, 2005, 716–720. 92. T. Miyata, J. Jikihara, K. Nakamae, A.S. Hoffman, Preparation of reversible glucose-responsive hydrogels by covalent immobilization of lecitin in polymeric networks having pendant glucose, J. Biomater. Sci. Polym. Ed., 15, 2004, 1085–1098. 93. C.M. Dorski, F.J. Doyle, N.A. Peppas, Preparation and characterization of glucose sensitive P(MAA-g-EG) hydrogels, Polym. Mater. Sci. Eng. Proceed., 76, 1997, 281–282. 20 Chapter 20. Photoresponsive Polymers for Control of Cell Bioassay Systems Akiyama, H. and Tamaoki, N. 2004. Polymers derived from N-isopropylacrylamide and azobenzene- containing acrylamides: Photoresponsive af�nity to water. J. Polym. Sci. A Polym. Chem. 42: 5200. Albertsson, P.-A. 1958. Partition of proteins in liquid polymer–polymer two-phase systems. Nature 182: 709. Andersson, H. and van den Berg, A. 2004. Lab-on-Chips for Cellomics, Kluwer Academic Publishers, Dordrecht, the Netherlands. Cell culture chamber Patterned culture system fabricated on photoresponsive substrate Drug supply at arbitrary amount and timing Photoresponsive hydrogel Light Drug A Drug B Drug C FIGURE 20.22 Construction of integrated cell bioassay system fully controlled by light irradiation. Andersson, E. and Hahn-Hagerdal, B. 1990. Bioconversion in aqueous two-phase systems. Enzyme Microb. Technol. 12: 242. Ashkin, A. 1970. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24: 156. Ashkin, A. 1992. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61: 569. Ashkin, A. and Dziedzic, J. M. 1989a. Internal cell manipulation using infrared laser traps. Proc. Natl. Acad. Sci. USA 86: 7914. Ashkin, A. and Dziedzic, J. M. 1989b. Optical trapping and manipulation of single living cells using infra-red laser beams. Ber. Bunsenges. Phys. Chem. 93: 254. Caprioli, L., Mele, E., Angilè, F. E. et al. 2007. Photocontrolled wettability changes in polymer microchannels doped with photochromic molecules. Appl. Phys. Lett. 91: 113113. Chee, M., Yang, R., Hubbel, E. et al. 1996. Accessing genetic information with high-density DNA arrays. Science 274: 610. Chen, G., Svec, F., and Knapp, D. R. 2008. Light-actuated high pressure-resisting microvalve for on-chip ¥ow control based on thermo-responsive nanostructured polymer. Lab Chip 8: 1198. Desponds, A. and Freitag, R. 2003. Synthesis and characterization of photoresponsive N-isopropylacrylamide cotelomers. Langmuir 19: 6261. Edahiro, J., Sumaru, K., Tada, Y., Ohi, K., Takagi, T., Kameda, M., Shinbo, T., Kanamori, T., and Yoshimi, Y. 2005a. In-situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 6: 970. Edahiro, J., Sumaru, K., Takagi, T., Kanamori, T., and Shinbo, T. 2006. Photoresponse of an aqueous two- phase system composed of photochromic dextran. Langmuir 22: 5224. Edahiro, J., Sumaru, K., Takagi, T., Shinbo, T., Kanamori, T., and Sudoh, M. 2008. Analysis of photo-induced hydration of a photochromic poly(N-isopropylacrylamide)—Spiropyran copolymer thin layer by quartz crystal microbalance. Eur. Polym. J. 44: 300. Edahiro, J., Yamada, M., Seike, S., Kakigi, Y., Miyanaga, K., Nakamura, M., Kanamori, T., and Seki, M. 2005b. Separation of cultured strawberry cells producing anthocyanins in aqueous two-phase system. J. Biosci. Bioeng. 100: 449. Fissi, A., Pieroni, O., Balestreri, E., and Amato, C. 1996. Photoresponsive polypeptides. photomodulation of the macromolecular structure in poly(N((phenylazophenyl)sulfonyl)-l-lysine). Macromolecules 29: 4680. Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767. Fujita, K., Kobayashi, M., Kawano, S., Yamanaka, M., and Kawata, S. 2007. High-resolution confocal microscopy by saturated excitation of ¥uorescence. Phys. Rev. Lett. 99: 228105. Fukuda, J. and Nakazawa, K. 2005. Orderly arrangement of hepatocyte spheroids on a microfabricated chip. Tissue Eng. 11: 1254. Fukuda, J., Sakai, Y., and Nakazawa, K. 2006. Novel hepatocyte culture system developed using microfabrication and collagen/PEG microcantact printing. Biomaterials 27: 1061. Garcia, A., Marquez, M., Cai, T. et al. 2007. Photo-, thermally, and pH-responsive microgels. Langmuir 23: 224. Goodman, M. and Falxa, M. L. 1967. Conformational aspects of polypeptide structure. XXIII. Photoisomerization of azoaromatic polypeptides. J. Am. Chem. Soc. 89: 3863. Guan, Y., Lilley, T. H., Treffry, T. E., Zhou, C.-L., and Wilkinson, P. B. 1996. Use of aqueous two-phase systems in the puri�cation of human interferon-alphal from recombinant E. coli. Enzyme Microb. Technol. 19: 446. Hattori, A., Moriguchi, H., Ishiwata, S., and Yasuda, K. 2004. A 1480-nm/1064-nm dual wavelength photothermal eching system for non-contact three-dimensional microstructure generation into agar microculture chip. Sens. Actuat. B Chem. 100: 455. Hosokawa, Y., Takabayashi, J., Shukunami, C., Hiraki, Y., and Masuhara, H. 2004. Nondestructive isolation of single cultured animal cells by femtosecond laser- induced shockwave. Appl. Phys. A 79: 795. Hua, Z., Pal, R., Srivannavit, O., Burns, M. A., and Gulari, E. 2008. A light writable micro¥uidic ¥ash memory: Optically addressed actuator array with latched operation for micro¥uidic applications. Lab Chip 8: 488. Hui, E. E. and Bhatia, S. N. 2007. Microscale control of cell contact and spacing via three-component surface patterning. Langmuir 23: 4103. Irie, M. and Hosoda, M. 1985. Photoresponsive polymers. Reversible solution viscosity change of poly (N,Ndimethylacrylamide) with pendant triphenylmethane leucohydroxide residues in methanol. Makromol. Chem. Rapid Commun. 6: 533. Irie, M., Iwayanagi, T., and Taniguchi, Y. 1985. Photoresponsive polymers. 7. Reversible solubility change of polystyrene having pendant spirobenzopyran groups and its application to photoresists. Macromolecules 18: 2418. Irie, M. and Kunwatchakun, D. 1986. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19: 2476. Irie, M., Menju, A., and Hayashi, K. 1979. Photoresponsive polymers. Reversible solution viscosity change of poly (methyl methacrylate) having spirobenzopyran side groups. Macromolecules 12: 1176. Ishihara, K., Okazaki, A., Negishi, N. et al. 1982. Photo-induced change in wettability and binding ability of azoaromatic polymers. J. Appl. Polym. Sci. 27: 239. Ito, Y., Chen, G., Guan, Y., and Imanishi, Y. 1997. Patterned immobilization of thermoresponsive polymer. Langmuir 13: 2756. Iwanaga, S., Smith, N., Fujita, K., Kawata, S., and Nakamura, O. 2006. Slow Ca 2+ wave stimulation using low repetition rate femtosecond pulsed irradiation. Opt. Express 14: 717. Kawata, S., Ono, A., and Verma, P. 2008. Subwavelength colour imaging with a metallic nanolens Nat. Photon. 2: 438. Khetani, S. R. and Bhatia, S. N. 2008. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26: 120. Kiessling, L. L. and Cairo, C.W. 2003. Hitting the sweet spot. Nat. Biotechnol. 20: 234. Kikuchi, K., Sumaru, K., Edahiro, J. et al. 2009. Stepwise assembly of micropatterned co-cultures using photoresponsive culture surfaces and its application to hepatic tissue arrays. Biotechnol. Bioeng. 1003: 552. Kimura, K., Kaneshige, M., and Yokoyama, M. 1995. Cation complexation, photochromism, and photoresponsive ion-conducting behavior of crowned malachite green leuconitrile. Chem. Mater. 7: 945. Kitamura, K., Tokunaga, M., Iwane, A. H., and Yanagida, T. 1999. A single myosin head moves along an actin �lament with regular steps of 5.3 nanometres. Nature 397: 129. Kodzwa, M. G., Staben, M. E., and Rethwisch, D. G. 1999. Photoresponsive control of ion -exchange in leucohydroxide containing hydrogel membranes. J. Membr. Sci. 158: 85. Kono, K., Nishihara, Y., and Takagishi, T. 1995. Photoresponsive permeability of polyelectrolyte complex capsule membrane containing triphenylmethane leucohydroxide residues. J. Appl. Poly. Sci. 56: 707. Kröger, R., Menzel, H., and Hallensleben, M. L. 1994. Light controlled solubility change of polymers: Copolymers of N,N-dimethylacrylamide and 4-phenylazophenyl acrylate. Macromol. Chem. Phys. 195: 2291. Kungwatchakun, D. and Irie, M. 1988. Photoresponsive polymers. Photocontrol of phase separation temperature of aqueous solutions of Poly(N-isopropylacrylamide) with pendant azobenzene groups. Makromol. Chem. Rapid. Commun. 9: 243. Mamada, A., Tanaka, T., Kungwatchakun, D., and Irie, M. 1990. Photoinduced phase transition of gels. Macromolecules 23: 1517. Menju, A., Hayashi, K., and Irie, M. 1981. Photoresponsive polymers. 3. Reversible solution viscosity change of poly (methacrylic acid) having spirobenzopyran pendant groups in methanol. Macromolecules 14: 755. Moriguchi, H., Wakamoto, Y., Sugio, Y., Takahashi, K., Inoue, I., and Yasuda, K. 2002. An agar-microchamber cell-cultivation system: Flexible change of microchamber shapes during cultivation by photo-thermal etching. Lab Chip 2: 125. Nakanishi, J., Kikuchi, Y., Inoue, S., Yamaguchi, K., Takarada, T., and Maeda. M. 2007. Spatiotemporal control of migration of single cells on a photoactivatable cell microarray. J. Am. Chem. Soc. 129: 6694. Nakanishi, J., Kikuchi, Y., Takarada, T., Nakayama, H., Yamaguchi, K., and Maeda, M. 2004. Photoactivation of a substrate for cell adhesion under standard ¥uorescence microscopes. J. Am. Chem. Soc. 126: 16314. Nakanishi, J., Takarada, T., Yamaguchi, K., and Maeda, M. 2008. Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal. Sci. 24: 67. Nakayama, Y., Furumoto, A., Kidoaki, S., and Matsuda, T. 2003. Photocontrol of cell adhesion and proliferation by a photoinduced cationic polymer surface. Photochem. Photobiol. 77: 480. Nakazawa, K., Izumi, Y., Fukuda, J., and Yasuda, T. 2006. Hepatocyte spheroid culture on a poly-dimethylsiloxane chip having microcavities. J. Biomater. Sci. Polym. Ed. 17: 859. Norde, W. and Gage, D. 2004. Interaction of bovine serum albumin and human blood plasma with PEOtethered surfaces: In¥uence of PEO chain length, grafting density, and temperature. Langmuir 20: 4162. O’Brien, P. J., Irwin, W., Diaz, D. et al. 2006. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell- based model using high content screening. Arch. Toxicol. 80: 580. Otsuka, H., Hirano, A., Nagasaki, Y., Okano, T., Horiike, Y., and Kataoka, K. 2004. Two-dimensional multiarray formation of hepatocyte spheroids on a microfabricated PEG-brush surface. Chem. Bio. Chem. 5: 850. Park, J.-M., Cho, Y.-K., Lee, B.-S., Lee, J.-G., and Ko, C. 2007. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal micro¥uidic devices. Lab Chip 7: 557. Pieroni, O., Fissi, A., Houben, J. L., and Ciardelli, F. 1985. Photoinduced aggregation changes in photochromic polypeptides. J. Am. Chem. Soc. 107: 2990. Pieroni, O., Fissi, A., Viegi, A., Fabbri, D., and Ciardelli, F. 1992. Modulation of the chain conformational of spiropyran-containing poly(L-lysine) by the combined action of visible light and solvent. J. Am. Chem. Soc. 114: 2734. Pieroni, O., Houben, J. L., Fissi, A., Costantino, P., and Ciardelli, F. 1980. Reversible conformational changes induced by light in poly(L-glutamic acid) with photochromic side chains. J. Am. Chem. Soc. 102: 5913. Pierschbacher, M. D. and Ruoslahti, E. 1984. Cell attachment activity of �bronectin can be duplicated by small synthetic fragments of the molecule. Nature 309: 30. Sakai, Y. and Nakazawa, K. 2007. Technique for the control of spheroid diameter using microfabricated chips. Acta Biomater. 3: 1033. Sershen, S. R., Mensing, G. A., Ng, M., Halas, N. J., Beebe, D. J., and West, J. L. 2005. Independent optical control of micro¥uidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv. Mater. 17: 1366. Shimoboji, T., Larenas, E., Fowler, T., Kulkarni, S., Hoffman, A. S., and Stayton, P. S. 2002. Photoresponsive polymer–enzyme switches. Proc. Natl. Acad. Sci. USA 99: 16592. Singhvi, R., Kumar, A., Lopez, P., Stephanopoulos, G. N., Wang, D. I., Whitesides, G. M., and Ingber, D. E. 1994. Engineering cell shape and function. Science 264: 696. Smets, G., Braeken, J., and Irie, M. 1978. Photomechanical effects in photochromic systems. Pure Appl. Chem. 50: 845. Smith, N. I., Iwanaga, S., Beppu, T., Fujita, K., Nakamura, O., and Kawata, S. 2006. Photostimulation of two types of Ca 2+ waves in rat pheochromocytoma PC12 cells by ultrashort pulsed near-infrared laser irradiation. Laser Phys. Lett. 3: 154. Sugiura, S., Sumaru, K., Ohi, K., Hiroki, K., Takagi, T., and Kanamori, T. 2007. Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens. Actuat. A: Phys. 140: 176. Sugiura, S., Szilagyi, A., Sumaru, K. et al. 2009. On-demand micro¥uidic control by micropatterned light irradiation of a photoresponsive hydrogel sheet. Lab Chip 9: 196. Suh, K. Y., Seong, J., Khademhosseini, A., Laibainis, P. E., and Langer, R. 2004. A simple soft lithographic route to fabrication of poly(ethyleneglycol) microstructures for protein and cell patterning. Biomaterials 25: 557. Sumaru, K., Kameda, M., Kanamori, T., and Shinbo, T. 2004a. Characteristic phase transition of aqueous solution of poly(N-isopropylacrylamide) functionalized with spirobenzopyran. Macromolecules 37: 4949. Sumaru, K., Kameda, M., Kanamori, T., and Shinbo, T. 2004b. Reversible and ef�cient proton dissociation of spirobenzopyran-functionalized poly(N-isopropylacrylamide) in aqueous solution triggered by light irradiation and temporary temperature rise. Macromolecules 37: 7854. Sumaru, K., Ohi, K., Takagi, T., Kanamori, T., and Shinbo, T. 2006. Photo-responsive properties of poly(Nisopropylacrylamide) hydrogel partly modi�ed with spirobenzopyran. Langmuir 22: 4353. Suzuki, A. and Tanaka, T. 1990. Phase transition in polymer gels induced by visible light. Nature 346: 345. Szaniszlo, P., Rose, W. A., Wang, N. et al. 2006. Scanning cytometry with a LEAP: Laser-enabled analysis and processing of live cells in situ. Cytometry 69A: 641. Szilagyi, A., Sumaru, K., Sugiura, S. et al. 2007. Rewritable microrelief formation on photoresponsive hydrogel layers. Chem. Mater. 19: 2730. Tada, Y., Edahiro, J., Sumaru, K. et al. 2006b. Fabrication of a ¥ow-type micro cell chip based on photoinduced cell capturing. Proceedings of the μTAS 2006 1: 966. Tada, Y., Sumaru, K., Kameda, M. et al. 2006a. Development of a photoresponsive cell culture surfaces: Regional enhancement of living cell adhesion induced by local light irradiation. J. Appl. Polym. Sci. 100: 495. Tamura, T., Sakai, Y., and Nakazawa, K. 2008. Two-dimensional microarray of HepG2 spheroids using collagen/polyethylene glycol micropatterned chip. J. Mater. Sci. Mater. Med. 19: 2071. Tjerneld, F., Persson, I., Albertsson, P.–A., and Hahn-Hagerdal, B. 1985. Enzymatic hydrolysis of cellulose in aqueous two-phase systems. I. Partition of cellulases from Trichoderma reesei. Biotechnol. Bioeng. 27: 1036. Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K., and Jacobson, K. A. 1983. Studies on the mechanism of polyethylene glycol-mediated cell fusion using ¥uorescent membrane and cytoplasmic probes. J. Cell Biol. 96: 151. Ziauddin, J. and Sabatini, D. M. 2001. Microarrays of cells expressing de�ned cDNAs. Nature 411: 107. 21 Chapter 21. Lignin in Biological Systems Akao, Y., Seki, N., Nakagawa, Y. et al. 2004. A highly bioactive lignophenol derivative from bamboo lignin exhibits a potent activity to suppress apoptosis induced by oxidative stress in human neuroblastoma SH-SY5Y cells. Bioorg. Med. Chem. 12: 4791–4801. Bach Knudsen, K. E., Serena, A., Kjaer, A. K. et al. 2003. Rye bread in the diet of pigs enhances the formation of enterolactone and increases its levels in plasma, urine and feces. J. Nutr. 133: 1368–1375. Baurhoo, B., Ruiz-Deria, C. A., and Zhao, X. 2008. Puri�ed lignin: Nutritional and health impacts on farm animals—A review. Anim. Feed Sci. Technol. 144: 175–184. Begum, N. A., Nicolle, C., Mila, I. et al. 2004. Dietary lignins are the precursors of mammalian lignans in rats. J. Nutr. 134: 120–127. Boeriu, C. G., Bravo, D., Gosselink, R. J. A. et al. 2004. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crop. Prod. 20: 205–218. Catignani, G. L. and Carter, M. E. 1982. Antioxidant properties of lignin. J. Food Sci. 47: 1745–1748. Csonka, F. A., Phillips, M., and Breese Jones, D. 1929. Studies of lignin metabolism. J. Biol. Chem. LXXXV: 65–75. Dizhbite, T., Telysheva, G., Jurkjana, V., and Viesturs, U. 2004. Characterization of the radical scavenging activity of lignins-natural antioxidants. Bioresour. Technol. 95: 309–317. Garcia, L., Abajo, C., del Campo, J. et al. 2006. Antioxidant effect of Ligmed—A on humane erythrocytes in vitro. Pharmacologyonline 3: 514–519. Haggans, C. J., Hutchins, A. M., Olson, B. A. et al. 1999. Effect of ¥axseed consumption on urinary estrogen metabolites in postmenopausal women. Nutr. Cancer 33: 188–195. Ichimura, T., Otake, T., Mori H. et al. 1999. HIV-1 Protease inhibition and anti-HIV effect of natural and synthetic water soluble lignin-like substances. Biosci. Biotechnol. Biochem. 63: 2202–2204. Ichimura, T., Watanabe, O., and Maruyama, S. 1990. Inhibition of HIV-1 protease by water-soluble lignin-like substance in an edible mushroom, Fusciporia oblique. Agric. Biol. Chem. 54: 479–487. Jenab, M. and Thompson, Lu. 1996. The in¥uence of ¥ax seed on colon carcinogenesis and beta-glucuronidase activity. Carcinogenesis 17: 1343–1348. Koracevic, D., Koracevic, G., Djordjevic, V. et al. 2001. Method for measurement of antioxidant activity in human ¥uids. J. Clin. Pathol. 54: 356–361. Kosikova, B., Slamenova, D., Mikulasova, M. et al. 2002. Reduction of carcinogensis by bio-based lignin derivatives. Biomass Bioenergy 23: 153–159. Labaj, J., Slameoova, D., Lazarova, M., and Kosikova, B. 2004. Lignin-stimulated reduction of oxidative DNA lesions in testicular cells and lymphocytes of sprague-dawley rats in vitro and ex vivo. Nutr. Cancer 50: 198–205. Le Digabel, F. and Averous, L. 2006. Effects of lignin content on the properties of lignocellulose-based composites. Carbohydr. Polym. 66: 537–545. Lu, F. J., Chu, L. H., and Gau, R. J. 1998. Free radical-scavenging properties of lignin. Nutr. Cancer 30: 31–38. Mikulasova, M. and Kosikova, B. 2003. Modulation of mutagenicity of various mutagens by lignin derivatives. Mutat. Res. 535: 171–180. Mitjans, M., Garcia, L., Marrero, E. et al. 2001. Study of Ligmed-A, an antidiarrheal drug based on lignin, on rat small intestine enzyme activity and morphometry. J. Vet. Pharmacol. Ther. 24: 349–351. Nelson, J. L., Alexander, J. W., Gianotti, L. et al. 1994. In¥uence of dietary �ber on microbial growth in vitro and bacterial translocation after burn injury in mice. Nutrition 10: 32–33. Nicolle, C., Manach, C., Morand, C. et al. 2002. Mammaliann lignan formation in rats fed a wheat bran diet. J. Agric. Food Chem. 50: 6222–6226. Novikova, N. L., Ostrovskaya, M. R., Kozhova, M. O. et al. 1998. The Biological Properties of LigninContained Compounds. Abstract of Posters, p. 125, Institute of Organic Chemistry, Novosibirsk, Russia. Okazaki, M., Akimoto, K., and Sorimaki, K. 1996. Polyanion induced preferential multinucleation in macrophages at low level of TNF-α secretion. Cell Struct. Funct. 21: 277–282. Parasad, K. 1997. Dietary ¥ax seed in prevention of hypercholesterolemic atherosclerosis. Atherosclerosis 132: 69–76. Perez-Perez, E. M., Rodriguez-Malaver, J. A., and Dumitrieva, N. 2005. Antioxidant activity of lignin from black liquor. In Proceedings of the 7th ILI Forum-Barcelona, Barcelona, Spain, pp. 191–194. Popa, V. I. 2007. Lignin and sustainable development. Cellulose Chem. Technol. 41: 591–593. Ranby, B. 2001. Degradation of important polymer materials—An overview of basic reactions. In Recent Advances in Environmentally Compatible Polymers, eds. J. F. Kennedy, G. O. Phillips, and P. A. Williams, Guest Editor Hyoe Hatakeyama, pp. 3–14. Cambridge, U.K.: Woodhead Publishing Limited. Re, R., Proteggente, A. R., Saija, A. et al. 2003. The compositional characterization and antioxidant activity of fresh juices from Sicilian sweet orange (Citrus sinensis L. Osbeck) varieties. Free Radic. Res. 37: 681–687. Rickard, S. E., Yuan, Y. V., and Thomson, L. U. 2000. Plasma insulin-like growth factor levels in rats are reduced by dietary supplementation of ¥axseed or its lignan seicoisolariciresinol diglycoside. Cancer Lett. 161: 47–55. Sakagami, H., Hashimoto, K., Suzuki, F. et al. 2005. Molecular requirements of lignin-carbohydrate complexes for expression of unique biological activities. Phytochemistry 66: 2108–2120. Sakagami, H., Kawazoe, Y., Toshinari Oh-Hara, T. et al. 1991. Stimulation of human perripheral blood polymorphonuclear cell iodination by lignin—Related substances. J. Leukoc. Biol. 49: 277–282. Sorimachi, K. 1992. Differential response of lignin derivatives between tumor and normal tissue derived cell lines: Effects on cellular adhesion and cell growth. Cell Biol. Int. Rep. 16: 249–257. Sorimachi, K., Akimoto, K., Niwa, A. et al. 1997. Delayed cytocidal effect of lignin derivatives on virally transformed rat �broblasts. Cancer Detect. Prev. 22: 111–117. Sorimachi, K., Akimoto, K., Tsuru, K. et al. 1995. Secretion of TNF-α from macrophage following induction with induction with a lignin derivatives. Cell Biol. Int. Rep. 19: 833–838. Sorimachi, K., Akimoto, K., Yamazaki, S. et al. 1990. Multinucleation of macrophages with water-solubilized lignin derivatives in vitro. Cell Struct. Funct. 15: 317–322. Sorimachi, K., Akimoto, K., and Yamazaki, S. 2003. Modulation of interleukin-8 and nitric oxide synthase mRNA levels by interferon-γ in macrophages stimulated with lignin derivatives and lipopolysaccharides. Cancer Detect. Prev. 27: 1–4. Suzuki, H., Iiyama, K., Yoshida, O. et al. 1990. Structural characterization of the immunoactive and antiviral water solubilized lignin in an extract of the culture medium of Lentinus edodes Mycelia (LEM). Agric. Biol. Chem. 54: 479–487. Suzuki, H., Okubo, A., Yamzaki, S. et al. 1998. Inhibition of the infectivity and cytopathic effect of human immunode�ciency virus by water-soluble lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). Biosci. Biotechnol. Biochem. 62: 575–577. Tanaka, S., Sakata, Y., Morimoto, K. et al. 2001. In¥uence of natural and synthetic compounds on cell surface expression of cell adhesion molecules, ICAm-1 and VCAM-1. Planta Med. 67: 108–113. Telysheva, G., Dizhbite, T., Lebedeva, G. et al. 2005. Lignin products for decontamination of environment objects from pathogenic microorganisms and pollutants. In Proceedings of the 7th ILI Forum, Barcelona, Spain, pp. 71–74. Telysheva, G., Dizhbite, T., Tirzite, D., and Jurjane, V. 2000. Applicability of a free radical (DPPH·) method for estimation of antioxidant activity of lignin and its derivatives. In: Proceedings of the 5th International Lignin Institute, Forum, Commercial Outlets for New Lignins and De©nitions of New Projects, Bordeaux, France, pp. 153–160. Toh, K., Yokoyama, H., Takahashi, C. et al. 2007. Effect of herb lignin on the growth of enterobacteria. J. Gen. Appl. Microbiol. 53: 201–205. Tollner, L. T., Overstreet, W. J., Li, W. M. et al. 2002. Lignosulfonic acid blocks in vitro fertilization of macaque oocytes when sperm are treated either before or after capacitation. J. Androl. 23: 889–898. Vinardell, M. P., Ugartondo, V., and Mitjans, M. 2005. Antioxidant and photoprotective action of lignins from different sources assessed in human red blood cells. In Proceedings of the 7th ILI Forum, Barcelona, Spain, pp. 75–77. 22 Chapter 22. Carbohydrate-Derived Self-Crosslinkable In Situ Gelable Hydrogels for Modulation of Wound Healing 1. Wilgus, T.A. 2008. Immune cells in the healing skin wound: in¥uential players at each stage of repair. Pharm Res 58:112–116. 2. Balakrishnan, B., Mohanty, M., Umashankar, P.R., Jayakrishnan, A. 2005. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342. 3. Yusof, N., Ha�za, A.H.A., Zohdi, R.M., Bakar, Z.A.M. 2007. Development of honey hydrogel dressing for enhanced wound healing. Rad Phys Chem 76:1767–1770. 4. Garcia, Y., Wilkins, B., Collighan, R.J., Grif�n, M., Pandit, A. 2008. Towards development of a dermal rudiment for enhanced wound healing response. Biomaterials 29:857–868. 5. Raym ent, E.A., Dargaville, T.R., Shooter, G.K., George, G.A., Upton, Z. 2008. Attenuation of protease activity in chronic wound ¥uid with bisphosphonate-functionalised hydrogels. Biomaterials 29:1785–1795. 6. Peppas, N.A., Bures, P ., Leobandung, W., Ichikawa, H. 2000. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. 7. Shu, X.Z., Liu, Y ., Palumbo, F.S., Luo, Y., Prestwich, G.D. 2004. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348. 8. Klouda, L., Hacker , M.C., Kretlow, J.D., Mikos, A.G. 2009. Cytocompatibility evaluation of amphiphilic, thermally responsive and chemically crosslinkable macromers for in situ forming hydrogels. Biomaterials 30:4558–4566. 9. Coviello, T., Matricardi, P., Marianecci, C., Alhaique, F. 2007. Polysaccharide hydrogels for modi�ed release formulations. J Control Release 119:5–24. 10. Tammi, M.I., Day, A.J., Turley, E.A. 2002. Hyaluronan and homeostasis: a balancing act. J Biol Chem 277:4581–4584. 11. Morra, M. 2005. Engineering of biomaterials surfaces by hyaluronan. Biomacromolecules 6: 1205–1223. 12. Slevin, M., Krupinski, J., Gaffney, J., Matou, S., West, D., Delisser, H., Savani, R.C., Kumar, S. 2007. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol 26:58–68. 13. Hornebeck W. 2003. Down-regulation of tissue inhibitor of matrix metalloprotease-1 (TIMP-1) in aged human skin contributes to matrix degradation and impaired cell growth and survival. Pathol Biol 51:569–573. 14. Segura, T., Anderson, B.C., Chung, P.H., Webber, R.E., Shull, K.R., Shea, L.D. 2005. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26:359–371. 15. Baumann, M. D., Kang, C.E, Stanwick, J.C., Wang, Y., Kim, H., Lapitsky, Y., Shoichet, M.S. 2009. An injectable drug delivery platform for sustained combination therapy. J Control Release 138:205–213. 16. Shu, X.Z., Liu, Y ., Palumbo, F., Prestwich, G.D. 2003. Disul�de-crosslinked hyaluronan-gelatin hydrogel �lms: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 24:3825–3834. 17. Esposito, E., Meneg atti, E., Cortesi, R. 2005. Hyaluronan-based microspheres as tools for drug delivery: a comparative study. Inter J Pharm 288:35–49. 18. Jia, X.Q., Burdick, J.A., Kobler, J., Clifton, R.J., Rosowski, J.J., Zeitels, S.M. et al. 2004. Synthesis and characterization of in situ cross–linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration. Macromolecules 37:3239–3248. 19. Kogan, G., Šoltés, L., Stern, R., Schiller, J., Mendichi, R. 2008. Hyaluronic acid: its function and degradation in in vivo systems. Stud Nat Prod Chem 34:789–882. 20. Tomihata, K., Ikada, Y. 1997. Crosslinking of hyaluronic acid with glutaraldehyde, J Polym Sci Part A Polym Chem 35:3553–3559. 21. Jia, X., Colombo, G., Padera, R., Langer, R., Kohane, D.S. 2004. Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials 25:4797–4804. 22. Croce, M.A., Dyne, K., Boraldi, F., Quaglino, D.Jr., Cetta, G., Tiozzo, R., Pasquali, R.I. 2001. Hyaluronan affects protein and collagen synthesis by in vitro human skin �broblasts. Tissue Cell 33:326–331. 23. Meyer, L.J., Russell, S.B., Russell, J.D., Trupin, J.S., Egbert, B.M., Shuster, S., Stern, R. 2000. Reduced hyaluronan in keloid tissue and cultured keloid �broblasts. J Invest Dermatol 114:953–959. 24. Xu, H., Ma, L., Shi, H., Gao, C., Han, C. 2007. Chitosan–hyaluronic acid hybrid �lm as a novel wound dressing: in vitro and in vivo studies. Polym Adv Technol 18:869–875. 25. Cai, S., Liu, Y., Shu, X.Z., Prestwich, G.D. 2005. Injectable glycosaminoglycan hydrogels for controlled release of human basic �broblast growth factor. Biomaterials 26:6054–6067. 26. Witte, S.H., Olaif a, A.K., Lewis, A.J., Eggleston, R.B., Halper, J., Kietzmann, M., Baeumer, W., Mueller, E. 2009. Application of exogenous esteri�ed hyaluronan to equine distal limb wounds. J Equine Veter Sci 29:197–205. 27. Cana, H.K., 2005. Effect of preparation and Carbohydr Polym Denizlia, B.K., Gunera, A., Rzaev, Z.M.O. functional crosslinking agents on swelling properties of dextran hydrogels. 59:51–56. 28. Nowako wska, M., Zapotoczny, S., Sterzel, M., Kot, E. 2004. Novel water-soluble photosensitizers from dextrans. Biomacromolecules 5:1009–1014. 29. Suda, E.J., Thomas, K.E., Pabst, T.M., Mensah, P., Ramasubramanyan, N., Gustafson, M.E., Hunter, A.K. 2009.Comparison of agarose and dextran-grafted agarose strong ion exchangers for the separation of protein aggregates. J Chromatogr A 1216:5256–5264. 30. Hiem stra, C., Zhong, Z., van Steenbergen, M.J., Hennink, W.E., Feijen, J. 2007. Release of model proteins and basic �broblast growth factor from in situ forming degradable dextran hydrogels. J Control Release 122:71–78. 31. Pitarresi, G., Palumbo, F.S., Giammona, G., Casadei, M.A., Moracci, F.M. 2003. Biodegradable hydrogels obtained by photocrosslinking of dextran and polyaspartamide derivatives. Biomaterials 24:4301–4313. 32. Cadee, J.A., de Groot, C.J., Jiskoot, W., den Otter, W., Hennink, W.E. 2002. Release of recombinant human interleukin-2 from dextran-based hydrogels. J Control Release 78:1–13. 33. Hornig, S., Bunjes, H., Heinze, T. 2009. Preparation and characterization of nanoparticles based on dextran–drug conjugates. J Colloid Interface Sci 338:56–62. 34. Vercoutter-Edouart, A.S., Dubreucq, G., Vanhoecke, B., Rigaut, C., Renaux, F., Correia, L.D., Lemoine, J., Bracke, M., Michalski, J.C., Correia, J. 2008. Enhancement of PDGF-BB mitogenic activity on human dermal �broblasts by biospeci�c dextran derivatives. Biomaterials 29:2280–2292. 35. Rouet, V., Meddahi-Pelle, A., Miao, H.Q., Vlodavsky, I., Caruelle, J.P., Barritault, D. 2006. Heparin-like synthetic polymers, named RGTAs, mimic biological effects of heparin in vitro. J Biomed Mater Res A 78:792–797. 36. Logeart-Avramoglou, D., Huynh, R., Chaubet, F., Sedel, L., Meunier, A. 2002. Interaction of speci�cally chemically modi�ed dextrans with transforming growth factor beta-1: potentiation of its biological activity. Biochem Pharmacol 63:129–137. 37. Banz, Y., Gajanayake, T., Matozan, K., Yang, Z., Rieben, R. 2009. Dextran sulfate modulates MAP kinase signaling and reduces endothelial injury in a rat aortic clamping model. J Vasc Surg 50:161–170. 38. Huynh, R., Chaubet, F ., Jozefonvicz, J. 2001. Anticoagulant properties of dextran methylcarboxylate benzylamide sulfate (DMCBSu): a new generation of bioactive functionalized dextran. Carbohydr Res 332:75–83. 39. Meddahi, A., Bree, F., Papy-Garcia, D., Gautron, J., Barritault, D., Caruelle, J.P. 2002. Pharmacological studies of RGTA, a heparan sulfate mimetic polymer, ef�cient on muscle regeneration. J Biomed Mater Res 62:525–531. 40. Papy-Garcia, D., Barbosa, I., Duchesnay, A., Saadi, S., Caruelle, J.P., Barritault, D. et al. 2002. Glycosaminoglycan mimetics (RGTA) modulate adult skeletal muscle satellite cell proliferation in vitro. J Biomed Mater Res 62:46–55. 41. Barbosa, I., Morin, C., Garcia, S., Duchesnay, A., Oudghir, M., Jenniskens, G. et al. 2005. A synthetic glycosaminoglycan mimetic (RGTA) modi�es natural glycosaminoglycan species during myogenesis. J Cell Sci 118:253–264. 42. Garcia-Filipe, S., Barbier-Chasse�ere, V., Alexakis, C., Huet, E., Ledoux, D., Kerros, M.E. et al. 2007. RGTA OTR4120, a heparan sulfate mimetic, is a possible long-term active agent to heal burned skin. J Biomed Mater Res A 80:75–84. 43. Escartin, Q., Lallam-Laroye, C., Baroukh, B., Morvan, F.O., Caruelle, J.P., Godeau, G. et al. 2003. A new approach to treat tissue destruction in periodontitis with chemically modi�ed dextran polymers. FASEB J 17:644–651. 44. Lallam-Laroye, C., Escartin, Q., Zlowodzki, A.S., Barritault, D., Caruelle, J.P., Baroukh, B. et al. 2006. Periodontitis destructions are restored by synthetic glycosaminoglycan mimetic. J Biomed Mater Res A 79:675–683. 45. Blanquaert, F., Carpentier, G., Morvan, F., Caruelle, J.P., Barritault, D., Tardieu, M. 2003. RGTA modulates the healing pattern of a defect in a monolayer of osteoblastic cells by acting on both proliferation and migration. J Biomed Mater Res A 64:525–532. 46. Alexakis, C., Mestries, P., Garcia, S., Petit, E., Barbier, V., Papy-Garcia, D. et al. 2004. Structurally different RGTAs modulate collagen-type expression by cultured aortic smooth muscle cells via different pathways involving �broblast growth factor-2 or transforming growth factor-beta1. FASEB J 18:1147–1149. 47. Mestries, P., Alexakis, C., Papy-Garcia, D., Duchesnay, A., Barritault, D., Caruelle, J.P. et al. 2001. Speci�c RGTA increases collagen V expression by cultured aortic smooth muscle cells via activation and protection of transforming growth factor-beta1. Matrix Biol 20:171–181. 48. Ledoux, D., Pap y-Garcia, D., Escartin, Q., Sagot, M.A., Cao, Y., Barritault, D. et al. 2000. Human plasmin enzymatic activity is inhibited by chemically modi�ed dextrans. J Biol Chem 275:29383–29390. 49. Ledoux, D., Merciris, D., Barritault, D., Caruelle, J.P. 2003. Heparin-like dextran derivatives as well as glycosaminoglycans inhibit the enzymatic activity of human cathepsin G. FEBS Lett 537:23–29. 50. Zhang, H., Gu, C., Wu, H., Fan, L., Li, F., Yang, F., Yang, Q. 2007. Immobilization of derivatized dextran nanoparticles on konjac glucomannan/chitosan �lm as a novel wound dressing. BioFactors 30:227–240. 51. Bhatnagar, A., Sillanpää, M. 2009. Applications of chitin- and chitosan-derivatives for the detoxi�cation of water and wastewater — A short review. Adv Colloid Interface Sci 152:26–38. 52. Wang, Q., Zhang, J., Wang, A. 2009. Preparation and characterization of a novel pH-sensitive chitosan-gpoly(acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78:731–737. 53. Majeti, N.V., K umar, R. 2000. A review of chitin and chitosan applications. React Funct Polym 46:1–27. 54. Boucard, Chancerelle, hydrogels of third-degree N., Viton, C., Agay, D., Mari, E., Roger, T., Y., Domard, A. 2007. The use of physical chitosan for skin regeneration following burns. Biomaterials 28:3478–3488. 55. Chang, Y.Y., Chen, S.J., Liang, H.C., Sung, H.W., Lin, C.C., Huang, R.N. 2004.The effect of galectin 1 on 3T3 cell proliferation on chitosan membranes. Biomaterials 25:3603–3611. 56. Dutkiewicz, J.K. 2002. Superabsorbent materials from shell�sh waste—A review. J Biomed Mater Res 63:373–381. 57. Kandile, N.G., Nasr, A.S. 2009. Environment friendly modi�ed chitosan hydrogels as a matrix for adsorption of metal ions, synthesis and characterization. Carbohydr Polym 78:753–759. 58. Felix, L., Hernandez, J., Arguelles-Monal, W.M., Goycoolea, F.M. 2005. Kinetics of gelation and thermal sensitivity of N-isobutyryl chitosan hydrogels. Biomacromolecules 6:2408–2415. 59. Huang, R., Chen, G., Yang, B., Gao, C. 2008. Positively charged composite nano�ltration membrane from quaternized chitosan by toluene diisocyanate cross-linking. Sep Purif Technol 61:424–429. 60. Tiera, M.J., Qiu, X.P., Bechaouch, S., Shi, Q., Fernandes, J.C., Winnik, F.M. 2006. Synthesis and characterization of phosphorylcholine-substituted chitosans soluble in physiological pH conditions. Biomacromolecules 7:3151–3156. 61. Zhang, C., Qu, G., Sun, Y., Wu, X., Yao, Z., Guo, Q., Ding, Q., Yuan, S., Shen, Z., Ping, Q., Zhou, H. 2008. Pharmacokinetics, biodistribution, ef�cacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials 29:1233–1241. 62. Lu, G., Kong, L., Sheng, B., Wang, G., Gong, Y., Zhang, X. 2007. Degradation of covalently crosslinked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. Eur Polym J 43:3807–3818. 63. Jiang, H., Wang, Y., Huang, Q., Li, Y., Xu, C., Zhu, K., Chen, W. 2005. Biodegradable hyaluronic acid/Ncarboxyethyl chitosan/protein ternary complexes as implantable carriers for controlled protein release. Macromol Biosci 5:1226–1233. 64. Badawy, M.E.I., Rabea, E.I., Rogge, T.M., Stevens, C.V., Smagghe, G., Steurbaut, W., Hofte, M. 2004. Synthesis and fungicidal activity of new N, O-acyl chitosan derivatives. Biomacromolecules 5:589–595. 65. Zhu, A., Shan, B., Yuan, Y., Shen, J. 2003. Preparation and blood compatibility of phosphorylcholinebonded O-butyrylchitosan. Polym Int 52:81–85. 66. Ueno, H., Yamada, H., Tanaka, I., Kaba, N., Matsuura, M., Okumura, M., Kadosawa, T., Fujinaga, T. 1999. Accelerating e!ects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20:1407–1414. 67. Ishiharaa, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito,Y., Yura, H., Matsuia, T., Hattoria, H., Uenoyama, M., Kurita, A. 2002. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23:833–840. 68. Alemdaroglu, C., Degim, Z., Celebi, N.C., Zor, F., Ozturk, S., Erdogan, D. 2006. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32:319–327. 69. Boudet, C., Lliopoulos, L., Poncelet, O., Cloitre, M. 2005. Control of the chemical cross-linking of gelatin by a thermosensitive polymer: example of switchable reactivity. Biomacromolecules 6:3073–3078. 70. Broderick, E.P., O’Halloran, D.M., Rochev, Y.A., Grif�n, M., Collighan, R.J., Pandit, A.S. 2005. Enzymatic stabilization of gelatin-based scaffolds. J Biomed Mater Res Part B 72B:37–42. 71. Hurley, P.A., Clarke, M., Crook, J.M., Wise, A.K., Shepherd, R.K. 2003. Cochlear immunochemistry: a new technique based on gelatin embedding. J Neurosci 129:81–86. 72. Gaspard, S., Oujja, M., Abrusci, C., Catalina, F., Lazare, S., Desvergne, J.P., Castillejo, M. 2008. Laser induced foaming and chemical modi�cations of gelatine �lms. J Photochem Photobiol A 193:187–192. 73. Liang, H.C., Chang, W .H., Liang, H.F., Lee, M.H., Sung, H.W. 2004.Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J Appl Polym Sci 91: 4017–4026. 74. Sent hilkumar, K.S., Saravanan, K.S., Chandra, G., Sindhu, K.M., Jayakrishnan, A., Mohanakumar, K.P. 2007. Unilateral implantation of dopamine-loaded biodegradable hydrogel in the striatum attenuates motor abnormalities in the 6-hydroxydopamine model of hemi-parkinsonism. Behav Brain Res 184:11–18. 75. Balakrishnan, B., Jayakrishnan, A. 2005. Self-crosslinkable biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26: 3941–3951. 76. Balakrishnan, B., Jayakrishnan, A. 2005. Oxidized chondroitin sulfate-crosslinked gelatin matrixes: a new class of hydrogels. Biomaterials 6: 2040–2048. 77. Hong, S.R., Chong, M.S., Lee, S.B., Lee, Y.M., Song, K.W., Park, M.H., Hong, S.H. 2004. Biocompatibility and biodegradation of crosslinked gelatin/hyaluronic acid sponge in rat subcutaneous tissue. J Biomater Sci: Polym Ed 15: 201–214. 78. Pate l, Z.S., Yamamoto, M., Ueda, H., Tabata, Y., Mikos, A.G. 2008. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater 4:1126–1138. 79. Huang, Y., On yeri, S., Siewe, M., Moshfeghian, A., Madihally, S.V. 2005. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627. 80. Yamamoto, M., T akahashi, Y., Tabata, Y. 2003. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24:4375–4383. 81. van Luyn, M.J.A., van Wachem, P.B., Dijkstra, P.J., Olde Damink, L.H.H., Feijen, J. 1995. Calci�cation of subcutaneously implanted collagen in relation to cytotoxicity, cellular interactions and crosslinking. J Mater Sci Mater Med 11:169–175. 82. Grif�n, M., Casadio, R., Bergamini, C.M. 2002. Transglutaminases: Nature’s biological glues. Biochem J 368:377–396. 83. Crescenzi, V., Francescangeli, A., Taglienti, A. 2005. New gelatin-based hydrogels via enzymatic networking. J Biomed Mater Res Part B: 72B:37–42. 84. Gu, Y.S., Matsumura, Y., Yamaguchi, S., Mori, T. 2001. Action of proteinglutaminase on alpha-lactalbumin in the native and molten globule states. J Agric Food Chem 49:5999–6005. 85. Kang, Y.N., Kim, H., Shin, W.S., Woo, G., Moon, T.W. 2003. Effect of disul�de bond reduction on bovine serum albumin-stabilized emulsion gel formed by microbial transglutaminase. J Food Sci 68:2215–2220. 86. Deng, C.M., He, L.Z., Zhao, M., Yang, D., Liu, Y. 2007. Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydr Polym 69: 583–589. 87. Wang, T.W., Sun, J.S., Wu, H.C., Tsuang, Y.H., Wang, W., Lin, F.H. 2006. The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 27:5689–5697. 88. Balakrishnan, B., Mohanty, M., Fernandez, A.C., Mohananc, P.V., Jayakrishnan, A. 2006. Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 27:1355–1361. 89. Ulubayram, K.A., Cakar, N., Korkusuz, P., Ertan, C., Hasirci, N. 2001. EGF containing gelatin-based wound dressings. Biomaterials 22:1345–1356. 90. Weng, L., Romano v, A., Rooney, J., Chen, W. 2008. Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials 29, 3905–3913. 91. Yin, L., Fei, L., Cui, F., Tang, C., Yin, C. 2007. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266. 92. Roughley, P., Hoemann, C., DesRosiers, E., Mwale, F., Antoniou, J., Alini, M. 2006. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 27:388–396. 93. Chen, L., Tian, Z., Du, Y. 2004. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732. 94. Crompton, K.E., Prankerd, R.J., Paganin, D.M., Scott, T.F., Horne, M.K., Finkelstein, D.I., Gross, K.A., Forsythe, J.S. 2005. Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem 117:47–53. 95. Draye, J., Delaey, B., Van de Voorde, A., Van Den Bulcke, A., Bogdanov, B., Schacht, E. 1998. In vitro release characteristic of bioactive molecules from dextran dialdehyde crosslinked gelatin hydrogels �lms. Biomaterials19:99–107. 96. Weng, L., Chen, X., Chen, W. 2007. Rheological properties of in situ crosslinkable hydrogels from dextran and chitosan derivatives. Biomacromolecules 8:1109–1115. 97. Winter, H.H., Chambon, F. 1986. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382. 98. Lee, K.Y., Bouhadir , K.H., Mooney, D.J. 2000. Degradation behavior of covalent crosslinked poly(aldehyde guluronate) hydrogels. Macromolecules 33:97–101. 99. Weng, L., P an, H., Chen, W. 2008. Self-crosslinkable hydrogels composed of partially oxidized hyaluronan and gelatin: in vitro and in vivo responses. J Biomed Mater Res 85A: 352–365 100. Tamada, Y., Ikada, Y. 2004. Fibroblast growth on polymer surface and biosynthesis of collagen. J Biomed Mater Res 28:783–789. 101. Ohno, T., Y oo, M.J., Swanson, E.R., Hirano, S., Ossoff, R.H., Rousseau, B. 2009. Regenerative effects of basic �broblast growth factor on extracellular matrix production in aged rat vocal folds. Ann Otol Rhinol Laryngol 118:559–564. 102. Mo, X.M., Xu, C.Y ., Kotaki, M., Ramakrishna, S. 2004. Electrospun P(LLA-CL) nano�ber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883–1890. 103. Liu, X.F., Guan, Y.L., Yang, D.Z., Li, Z., Yao, K.D. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335. 104. Ueno, H., Mori, T ., Fujinaga, T. 2001. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52:105–115. 105. Berg er, J., Reist, M., Mayer, J.M., Felt, O., Gurny, R. 2004. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52. 106. Shu, X.Z., Ghosh, K., Liu, Y., Palumbo, F.S., Luo, Y., Clark, R.A., Prestwich, G.D. 2004. Attachment and spreading of �broblasts on an RGD peptide–modi�ed injectable hyaluronan hydrogel. J Biomed Mater Res A 68:365–375. 107. Bouhadir, K.H., Hausman, D.S., Mooney, D.J. 1999. Synthesis of cross-linked poly(aldehyde guluronate) hydrogels. Polymer 40:3575–3584. 108. Guan, Y.L., Shao, L., Yao, K.D. 1996. A study on correlation between water state and swelling kinetics of chitosan-based hydrogels. J Appl Polym Sci 61:2325–2335. 109. Strauss, G., Kral, H. 1982. Borate complexes of amphotericin-B: polymeric species and aggregates in aqueous solutions. Biopolymers 21:459–470. 110. Suzuki, Y., Nishimura, Y., Tanihara, M., Suzuki, K., Nakamura, T., Shimizu, Y., Yamawaki, Y., Kakimaru, Y. 1998. Evaluation of a novel alginate gel dressing: cytotoxicity to �broblasts in vitro and foreign-body reaction in pig skin in vivo. J Biomed Mater Res 39:317–322. 111. Aivd, B., Bogdanov, B., Rooze, N.D., Schacht, E.H., Cornelissen, M., Berghmans, H. 2000. Structural and rheological properties of methacrylamide modi�ed gelatin hydrogels. Biomacromolecules 1:31–38. 112. Rudraraju, V.S., Wyandt, C.M. 2005. Rheology of microcrystalline cellulose and sodium carboxymethyl cellulose hydrogels using a controlled stress rheometer: part II. Inter J Pharm 292:63–73. 113. Santoveña, A., Álvarez-Lorenzo, C., Concheiro, A., Llabrés, M., Fariña, J.B. 2004. Rheological properties of PLGA �lm-based implants: correlation with polymer degradation and SPf66 antimalaric synthetic peptide. Biomaterials 25:925–931. 114. Santiago, L.Y., Nowak, R.W., Rubin, J.P., Marra, K.G. 2006. Peptide-surface modi�cation of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27:2962–2969. 115. Stabenfeldt, S.E., Garcia, A.J., Laplaca, M.C. 2006. Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J Biomed Mater Res A 77: 718–725. 116. Seo, S.J., Choi, Y.J., Akaike, T., Higuchi, A., Cho, C.S. 2006. Alginate/Galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. Tissue Eng 12: 33–44. 117. Hwang, N.S., Kim, M.S., Sampattavanich, S., Baek, J.H., Zhang, Z., Elisseeff, J. 2006. Effects of threedimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 24: 284–291. 118. Sontjens, S.H., Nettles, D.L., Carnahan, M.A., Setton, L.A., Grinstaff, M.W. 2006. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 7: 310–316. 119. DeLong, S.A., Gobin, A.S., West, J.L. 2005. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J Control Release 109:139–148. 120. Stevens, M.M., Mayer, M., Anderson, D.G., Weibel, D.B., Whitesides, G.M., Langer, R. 2005. Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials 26: 7636–7641. 121. Mironov, V., Kasyanov, V., Shu, X.Z., Eisenberg, C., Eisenberg, L., Gonda, S., Trusk, T., Markwald, R.R., Prestwich, G.D. 2005. Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials 26: 7628–7635. 122. Mahoney, M.J., Anseth, K.S. 2006. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27:2265–2274. 123. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. 2002. Cell junctions, cell adhesion, and the extracellular matrix. In: Molecular Biology of the Cell (4th edn.), Chapter 19, Garland Publishing, New York. 124. Tian, W.M., Hou, S.P., Ma, J., Zhang, C.L., Xu, Q.Y., Lee, I.S., Li, H.D., Spector, M., Cui, F.Z. 2005. Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng 11:513–525. 125. Clark, R.A.F. 1996. Wound repair: overview and general considerations. In: R.A.F. Clark, Ed., The Molecular and Cellular Biology of Wound Repair (2nd edn.), Plenum, New York, pp. 3–35. 126. Silva, E.A., Moone y, D.J. 2004. Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol 64:181–205. 127. Young, J.J., Cheng, K.M., Tsou, T.L., Liu, H.W., Wang, H.J. 2004. Preparation of cross-linked hyaluronic acid �lm using 2-chloro-1-methylpyridinium iodide or water-soluble 1- ethyl - (3, 3- dimethylaminopropyl) carbodiimide. J Biomater Sci Polym Ed 15:767–780. 128. Danielsson, C., Ruault, S., Basset-Dardare, A., Frey, P. 2006. Modi�ed collagen ¥eece, a scaffold for transplantation of human bladder smooth muscle cells. Biomaterials 27:1054–1060. 129. Ratner, B.D., Hof fman, A.S., Schoen, F.J., Lemons, J.E. 2004. Biomaterials Science: An Introduction to Materials in Medicine (2nd edn.), Elsevier, Amsterdam, the Netherlands. 130. Vural, B., Cantürk, N.Z., Esen, N., Solakoglu, S., Cantürk, Z., Kirkali, G., Sökmensüer, C. 1999. Hum Reprod 14:49–54. 131. Boland, G.M., Weigel, R.J. 2006. Formation and prevention of postoperative abdominal adhesions. J Surg Res 132:3–12. 132. Becker, J.M., Dayton, M.T., Fazio, V.W. et al. 1996. Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable membrane: a prospective, randomized, double-blind multicenter study. J Am Coll Surg 183:297–306. 133. Gago, L.A., Saed, G.M., Chauhan, S. et al. 2003. Sepra�lm (modi�ed hyaluronic acid and carboxymethylcellulose) acts as a physical barrier. Fertil Steril 80:612–616. 134. Liakakos, T., Thomakos, N., Fine, P.M. et al. 2001. Peritoneal adhesions: etiology, pathophysiology, and clinical signi�cance. Recent advances in prevention and management. Dig Surg 18:260–273. 135. Liu, Y., Shu, X.Z., Prestwich, G.D. 2007. Reduced postoperative intraabdominal adhesions using Carbylan-SX, a semisynthetic glycosaminoglycan hydrogel. Fertil Steril 87:940–948. 136. Lundorff, P., van Geldorp, H., Tronstad, S.E. et al. 2001. Reduction of postsurgical adhesions with ferric hyaluronate gel: a European study. Hum Reprod 16:1982–1988. 137. Falabella, C.A., Melendez, M.M., Weng, L., Chen, W. 2009. Novel macromolecular crosslinking hydrogel to reduce intra-abdominal adhesions, J. Surg. Res., 159:772–778. 138. DiZerega, G.C.J.D. 2001. Peritoneal repair and post-surgical adhesion formation. Hum Reprod Update 7:547–555. 139. Harris, E.S., Morg an, R.F., Rodeheaver, G.T. 1995. Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery 117:663–669. 140. Arnold, P.B., Green, C.W., Foresman, P.A. et al. 2000. Evaluation of resorbable barriers for preventing surgical adhesions. Fertil Steril 73:157–161. 141. Dunn, R., Lyman, M.D., Edelman, P.G. et al. 2001. Evaluation of the SprayGel adhesion barrier in the rat cecum abrasion and rabbit uterine horn adhesion models. Fertil Steril 75:411–416. 142. Cadee, J.A., van Luyn, M.J., Brouwer, L.A. et al. 2000. In vivo biocompatibility of dextran-based hydrogels. J Biomed Mater Res 50:397–404. 143. Numanoglu, V., Cihan, A., Salman, B. et al. 2007. Comparison between powdered gloves, powder-free gloves and hyaluronate/carboxymethylcellulose membrane on adhesion formation in a rat caecal serosal abrasion model. Asian J Surg 30:96–101. 144. Risberg, B. 1997. Adhesions: preventive strategies. Eur J Surg Suppl 577:32–39. 145. Anderson, J.M. 2004. In¥ammation, wound healing, and the foreign body response. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Eds., Biomaterials Science: An Introduction to Materials in Medicine, Elsevier Academic Press, San Diego, CA, p. 296. 146. Chuang, Y.C., Fan, C.N., Cho, F.N. et al. 2008. A novel technique to apply a Sepra�lm (hyaluronatecarboxymethylcellulose) barrier following laparoscopic surgeries. Fertil Steril 90:1959–1963. 147. Weng, L., Iv anova, N.D., Zakhaleva, J., Chen, W. 2008. In vitro and in vivo suppression of cellular activity by guanidinoethyl disul�de released from hydrogel microspheres composed of partially oxidized hyaluronan and gelatin. Biomaterials 29:4149–4156. 148. Suzuki, E., Umezaw a, K. 2006. Inhibition of macrophage activation and phagocytosis by a novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin. Biomed Pharmacother 60:578–586. 149. Amy, C., Gao, Q., John, K.W. 2007. Macrophage matrix metalloproteinase-2/-9 gene and protein expression following adhesion to ECM-derived multifunctional matrices via integrin complexation. Biomaterials 28:285–298. 150. Maresz, K., Ponomarev , E.D., Barteneva, N., Tan, Y., Manna, M.K., Dittel, B.N. 2008. IL-13 induces the expression of the alternative activation marker Ym1 in a subset of testicular macrophages. J Reprod Immunol 78:140–148. 151. Coleman, J.W. 2001. Nitric oxide in immunity and in¥ammation. Inter Immunopharmacol 1:1397–1406. 152. Cantoni, O., Palomba, L., Guidarelli, A., Tommasini, I., Cerioni, L., Sestili, P. 2002. Cell signaling and cytotoxicity by peroxynitrite. Environ Health Perspect 110:823–825. 153. Lee, R.H., Efron, D., Tantry, U., Barbul, A. 2001. Nitric oxide in the healing wound: a time-course study. J Surg Res 101:104–108. 154. Schwentker, A., Vodovotz, Y., Weller, R., Billiar, T.R. 2002. Nitric oxide and wound repair: role of cytokines. Nitric Oxide 7:1–10. 155. Kibbe, M., Billiar, T., Tzeng, E. 1999. Inducible nitric oxide synthase and vascular injury. Cardiovasc Res 43:650–657. 156. Isenberg, C., Kolmann, H.L. 2005. Neurocutaneous angiomatosis: manifestation with cystic tumors. Nervenarzt 76:202–204. 157. Mabley, J.G., Pacher, P., Bai, P., Wallace, R., Goonesekera, S., Virag, L. et al. 2004. Suppression of intestinal polyposis in Apcmin/+ mice by targeting the nitric oxide or poly(ADP-ribose) pathways. Mut Res 548:107–116. 158. Suarez-Pinzon, W.L., Mable y, J.G., Strynadaka, K., Power, R.F., Szabo, C., Rabinovitch, A. 2001. An inhibitor of inducible nitric oxide synthase and scavenger of peroxynitrite prevents diabetes development in NOD mice. J Autoimmunity 16:449–455. 159. Paquette, D.W., Rosenberg, A., Lohinai, Z., Southan, G.J., Williams, R.C., Offenbacher, S. et al. 2006. Inhibition of experimental gingivitis in beagle dogs with topical mercatoalkylguanidines. J Periodontol 77:385–391. 160. Wong, H.L., Wang, M.X., Cheung, P.T., Yao, K.M., Chan, B.P. 2007. A 3D collagen microsphere culture system for GDNF-secreting HEK293 cells with enhanced protein productivity. Biomaterials 28:5369–5380. 161. Yun, Y.H., Goetz, D.J., Yellen, P., Chen, W. 2004. Hyaluronan microspheres for sustained gene delivery and site-speci�c targeting. Biomaterials 25:147–157. 162. Agnihotri, S.A., Aminabhavi, T.M. 2006. Novel interpenetrating network chitosan-poly(ethylene oxide-gacrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm 324:103–115. 163. Cortesi, R., Esposito, E., Osti, M., Squarzoni, G., Menegatti, E., Davis, S.S. et al. 1999. Dextran crosslinked gelatin microspheres as a drug delivery system. Eur J Pharm Biopharm 47:153–160. 164. Dinarvand, R., Rahmania, E., Farboda, E. 2003. Gelatin microspheres for the controlled release of alltrans-retinoic acid topical formulation and drug delivery evaluation. Iranian J Pharm Res 2:47–50. 165. Patil, S.D., P apadmitrakopoulos, F., Burgess, D.J. 2007. Concurrent delivery of dexamethasone and VEGF for localized in¥ammation control and angiogenesis. J Control Release 117:68–79. 166. O’Donnell, P.B., McGinity, J.W. 1997. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 28:25–42. 167. Bernatchez, S.F., Parks, P.J., Gibbons, D.F. 1996. Interaction of macrophages with �brous materials in vitro. Biomaterials 17:2077–2086. 168. Esposito, A., Sannino, A., Cozzolino, A., Quintiliano, S.N., Lamberti, M., Ambrosio, L. et al. 2005. Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110. 169. Gamal-Eldeen, A.M., Amer, H., Helmy, W.A., Talaat, R.M., Ragab, H. 2007. Chemically-modi�ed polysaccharide extract derived from Leucaena leucocephala alters Raw 264.7 murine macrophage functions. Int Immunopharm 7:871–888. 170. Bredt, D.S., Snyder, S.H. 1994. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195. 171. Vijayasekaran, S., Fitton, J.H., Hicks, C.R., Chirila, T.V., Crawford, G.J., Constable, I.J. 1998. Cell viability and in¥ammatory response in hydrogel sponges implanted in the rabbit cornea. Biomaterials 19:2255–2267. 172. Xa, Z., Trif�tt, J.T . 2006. A review on macrophage responses to biomaterials. Biomed Mater 1:1–9. 173. Witte, M.B., Barbul, A. 1997. General principles of w ound healing. Surg Clin North Am 77:509–528. 174. Enoch, S., Leaper, D.J. 2005. Basic science of wound healing. Sur gery 23:37–42. 23 Chapter 23. Dental and Maxillofacial Surgery Applications of Polymers 1. K. R. St. John. Biocompatibility of dental materials. Dent. Clin. N. Am. 51:747–760 (2007). 2. J. C. Wataha. Principles of bicompatibility for dental practitioners. J. Prosthet. Dent. 86:203–209 (2001). 3. D. F. Williams. On the mechanisms of biocompatibility. Biomater. 29:2941–2953 (2008). 4. V. B. Michelsen, H. Lygre, R. Shålevik, A. B. Tveit, E. Solheim. Identi�cation of organic eluates from four polymer-based dental �lling materials. Eur. J. Oral Sci. 111:263–271 (2003). 5. M. Taira, H. Urabe, T. Hirose, K. Wakasa, M. Yamaki. Analysis of photo-initiators in visible-light-cured dental composite resins. J. Dent. Res. 67:24–28 (1988). 6. G. J. Sun, K. H. Chae. Properties of 2,3-butanedione and 1-phenyl-1,2-propanedione as new photosensitizers for visible light cured dental resin composites. Polymer 41:6205–6212 (2000). 7. K. L. Van Landuyt, J. Snauwaert, J. De Munck, M. Peumans, Y. Yoshida, A. Poitevin, E. Coutinho, K. Suzuki, P. Lambrechts, B. Van Meerbeek. Systematic review of the chemical composition of contemporary dental adhesives. Biomater. 28:3757–3785 (2007). 8. D. N. Raith, J. E. Palamara, H. H. Messer. Temperature change, dentinal ¥uid ¥ow and cuspal displacement during resin composite restoration. J. Oral Rehabil. 34:693–701 (2007). 9. S. A. Faraj, B. Ellis. The effect of processing temperatures on the exotherm, porosity and properties of acrylic denture base. Br. Dent. J. 147:209–212 (1979). 10. L. G. Lopes, E. B. Franco, J. C. Pereira, R. F. L. Mondelli. Effect of light-curing units and activation mode on polymerization shrinkage and shrinkage stress of composite resins. J. Appl. Oral Sci. 16:35–42 (2008). 11. J. L. Ferracane, J. C. Mitchem, J. R. Condon, R. Todd. Wear and marginal breakdown of composites with various degrees of cure. J. Dent. Res. 76:1508–1516 (1997). 12. L. Feng, B. I. Suh, Acrylic resins resisting oxygen inhibition during free-radical photocuring. I. Formulation attributes. J. Appl. Pol. Sci. 112:1565–1571 (2009). 13. S. Fujisawa, Y. Kadoma. Action of eugenol as a retarder against polymerization of methyl methacrylate by benzoyl peroxide. Biomaterials 18:701–703 (1997). 14. W. D. Cook, P. M. Standish. Polymerization kinetics of resin-based restorative materials. J. Biomed. Mater. Res. 17:275–282 (1983). 15. C. A. Lapp, G. S. Schuster. Effects of DMAEMA and 4-methoxyphenol on gingival �broblast growth, metabolism, response to interleukin-1. J. Biomed. Mater. Res. 60:30–35 (2002). 16. M. Reed, H. Fujiwara, D. C. Thompson. Comparative metabolism, covalent binding and toxicity of BHT congeners in rat liver slices. Chem. Biol. Interact. 138:155–170 (2001). 17. D. C. Smith. A new dental cement. Br. Dent. J. 124:381–384 (1968). 18. A. D. Wilson, B. E. Kent. A new translucent cement for dentistry. The glass ionomer cement. Br. Dent. J. 132:133–135 (1972). 19. A. D. Wilson, S. Crisp, G. Abel. Characterization of glass-ionomer cements. 4. Effect of molecular weight on physical properties. J. Dent. 5:117–120 (1977). 20. P. V. Hatton, I. M. Brook. Characterisation of the ultrastructure of glass-ionomer (poly-alkenoate) cement. Br. Dent. J. 173:275–277 (1992). 21. The Academy of Prosthodontics. The glossary of prosthodontic terms. J. Prosthet. Dent. 94:21–38 (2005). 22. E. E. Hill. Dental cements for de�nitive luting: a review and practical clinical considerations. Dent. Clin. N. Am. 51:643–658 (2007). 23. D. Edelhoff, M. Özcan. To what extent does the longevity of �xed dental prostheses depend on the function of the cement? Clin. Oral Impl. Res. 18(supplement 3):193–204 (2007). 24. J. O. Burgess, B. K. Norling, H. R. Rawls, J. L. Ong. Directly placed esthetic restorative materials—the continuum. Comp. Contin. Ed. Dent. 17:731–732,734 (1996). 25. R. L. Bowen. U. S. Patent 3,066,112 (1962). 26. F. M. Burke, N. J. Ray, R J. McConnell. Fluoride-containing restorative materials. Int. Dent. J. 56:33–43 (2006). 27. A. D. Wilson. Resin-modi�ed glass-ionomer cements. Int. J. Prosthodont. 3:425–429 (1990). 28. J. W. Nicholson. Polyacid-modi�ed composite resins (“compomers”) and their use in clinical dentistry. Dent. Mater. 23:615–622 (2007). 29. G. Eliades, A. Kakaboura, G. Palaghias. Acid-base reaction and ¥uoride release pro�les in visible lightcured polyacid-modi�ed composite restoratives (compomers). Dent. Mater. 14:57–63 (1998). 30. J. W. McLean, J. W. Nicholson, A. D. Wilson. Proposed nomenclature for glass-ionomer dental cements and related materials. Quint. Int. 25:587–589 (1994). 31. J. W. Nicholson, M. A. McKenzie. The properties of polymerizable luting cements. J. Oral Rehabil. 26:767–774 (1999). 32. C. H. Lloyd, L. Mitchell. The fracture toughness of tooth coloured restorative materials. J. Oral Rehabil. 11:257–272 (1984). 33. R. W. Phillips. Advancements in adhesive restorative dental materials. J. Dent. Res. 45:1662–1667 (1966). 34. A. D. Wilson, H. J. Prosser, D. M. Powis. Mechanism of adhesion of polyelectrolyte cements to hydroxyapatite. J. Dent. Res. 62:590–592 (1983). 35. M. J. Tyas. The effect of dentine conditioning with polyacrylic acid on the clinical performance of glass ionomer cement. Aust. Dent. J. 38:46–48 (1993). 36. M. G. Buonocore. A simple method of increasing the adhesion of acrylic �lling materials to enamel surfaces. J. Dent. Res. 34:849–853 (1955). 37. M. G. Buonocore, A. Matsui, A. J. Gwinnett. Penetration of resin dental materials into enamel surfaces with reference to bonding. Archs. Oral Biol. 13:61–70 (1968). 38. A. J. Gwinnett, L. W. Ripa. Penetration of pit and �ssure sealants into conditioned human enamel in vivo. Archs. Oral Biol. 18:435–439 (1973). 39. G. W. Marshall Jr, S. J. Marshall, J. H. Kinney, M. Balooch. The dentin substrate: structure and properties related to bonding. J. Dent. 25:441–458 (1997). 40. F. R. T ay, D. H. Pashley. Have dentin adhesives become too hydrophilic? J. Can. Dent. Assoc. 69:726– 731 (2003). 41. Gebr. De Trey Aktiengesellschaft. Swiss Patent 278,946 (1951). 42. I. R. H. Kramer , J. W. McLean. Alterations in the staining reactions of dentine resulting from a constituent of a new self-polymerizing resin. Brit. Dent. J. 93:150–153 (1952). 43. W. H. Douglas. Clinical status of dentine bonding agents. J. Dent. 17:209–215 (1989). 44. I. Watanabe, N. Nakabayashi, D. H. Pashley. Bonding to ground dentin by a phenyl-P self-etching primer. J. Dent. Res. 73:1212–1220 (1994). 45. T. Fusayama. New Concepts in Operative Dentistry. p. 118. Quintessence Publishing, Chicago, IL (1980). 46. J. Perdigão. New dev elopments in dental adhesion. Dent. Clin. N. Am. 51:333–357 (2007). 47. N. Nakabayashi, K. Kojima, E. Masuhara. The promotion of adhesion by the in�ltration of monomers into tooth substrates. J. Biomed. Mater. Res. 16:265–273 (1982). 48. S. Uno, W. J. Finger. Effects of acidic conditioners on dentine demineralization and dimension of hybrid layers. J. Dent. 24:211–216 (1996). 49. M. Hashimoto, H. Ohno, K. Endo, M. Kaga, H. Sana, H. Oguchi. The effect of hybrid layer thickness on bond strength: demineralized dentin zone of the hybrid layer. Dent. Mater. 16:406–411 (2000). 50. N. Nakabayashi, T. Saimi. Bonding to intact dentin. J. Dent. Res. 75:1706–1715 (1996). 51. B. Van Meerrbeck, J. Perdigão, P. Lambrechts, G. Vanherle. The clinical performance of adhesives. J. Dent. 26:1–20 (1998). 52. L. Breschi, A. Mazzoni, A. Ruggeri, M. Cadenaro. Dental adhesion review: aging and stability of the bonded interface. Dent. Mater. 24:90–101 (2008). 53. M. Peumans, P. Kanumilli, J. De Munck, K. Van Landuyt, P. Lambrechts, B. Van Meerbeek. Clinical effectiveness of contemporary adhesives: a systematic review of current clinical trials. Dent. Mater. 21:864–881 (2005). 54. J. De Munck, K. Van Landuyt, M. Peumans, A. Poitevin, P. Lambrechts, M. Braem, B. Van Meerbeek. A critical review of the durability of adhesion to tooth tissue: methods and results. J. Dent. Res. 84:118– 132 (2005). 55. S. Inoue, K. Koshiro, Y. Yoshida, J. De Munck, K. Nagakane, K. Suzuki, H. Sano, B. Van Meerbeek. Hydrolytic stability of self-etch adhesives bonded to dentin. J. Dent. Res. 84:1160–1164 (2005). 56. K. L. Van Landuyt, Y. Yoshida, I. Hirata, J. Snauwaert, J. De Munck, M. Okazaki, K. Suzuki, P. Lambrechts, B. Van Meerbeck. In¥uence of the chemical structure of functional monomers on their adhesive performance. J. Dent. Res. 87:757–761 (2008). 57. Y. Yoshida, K. Nagakane, R. Fukuda, Y. Nakayama, M. Okazaki, H. Shintani, S. Inoue et al. Comparative study on adhesive performance of functional monomers. J. Dent. Res. 83:454–458 (2004). 58. K. L. Van Landuyt, J. De Munck, J. Snauwaert, E. Continho, A. Poitevin, Y. Yoshida, S. Inoue et al. Monomer-solvent phase separation in one-step self-etch adhesives. J. Dent. Res. 184:183–188 (2005). 59. K. L. Van Landuyt, J. Snauwaert, J. De Munck, E. Continho, A. Poitevin, Y. Yoshida, K. Suzuki, P. Lambrechts, B. Van Meerbeek. Origin of interfacial droplets with one-step adhesives. J. Dent. Res. 86:739–744 (2007). 60. A. F. Reis, M. Giannini, P. N. R. Pereira. Long-term TEM analysis of the nanoleakage patterns in resindentin interfaces produced by different bonding strategies. Dent. Mater. 23:1164–1172 (2007). 61. K. L. Van Landuyt, J. Snauwaert, M. Peumans, J. De Munck. The role of HEMA in one-step self-etch adhesives. Dent. Mater. 24:1412–1419 (2008). 62. M. G . Brackett, F. R. Tay, W. W. Brackett, A. Dib, F. A. Dipp, S. Mai, D. H. Pashley. In vivo chlorhexidine stabilization of hybrid layers of an acetone-based dentin adhesive. Oper. Dent. 34:379–383 (2009). 63. R. Stanislawczuk, R. C. Amaral, C. Zander-Hrande, D. Gagler, A. Reis, A. D. Loguercio. Chlorhexidinecontaining acid conditioner preserves the longevity of resin-dentin bonds. Oper. Dent. 34:481–490 (2009). 64. H. Hosaka, Y. Nishitani, J. Tagami, M. Yoshiyama, W. W. Brackett, K. A. Agee, F. R. Tay, D. H. Pashley. Durability of resin-dentin bonds to water- vs. ethanol-saturated dentin. J. Dent. Res. 88:146–151 (2009). 65. J. P. Matinlinna, L. V. J. Lassila. M. Özcan, A. Yli-Urpo, P. K. Vallittu. An introduction to silanes and their clinical applications in dentistry. Int. J. Prosthodont. 17:155–164 (2004). 66. M. B. Blatz, A. Sadan, M. Kern. Resin-ceramic bonding: a review of the literature. J. Prosthet. Dent. 89:268–274 (2003). 67. R. L. Bertolotti. Adhesion to porcelain and metal. Dent. Clin. N. Am . 51:433–451 (2007). 68. U.S. Department of health and Human Services. Oral Health in America: A Report of the Surgeon General. U. S. Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health: Washington, DC; Rockford, IL; Bethesda, MD (2000). 69. S. M. Adair. The role of sealants in caries prevention programs. J. Calif. Dent. Assoc. 31:221–227 (2003). 70. R. Welbury , M. Raadal, N. A. Lygidakis. EAPD guidelines for the use of pit and �ssure sealants. Eur. J. Paediatric Dent. 5:179–184 (2004). 71. L. W. Ripa. Sealants revisited: an update of the effectiveness of pit-and-�ssure sealants. Caries Res. 27 (supplement 1):77–82 (1993). 72. R. J. Simonsen. Preventive resin restorations and sealants in light of current evidence. Dent. Clin. N. Am. 49:815–823 (2005). 73. R. C. Parkhouse, G. B. Winter. A �ssure sealant containing methyl-2-cyanoacrylate as a caries preventive agent. A clinical evaluation. Br. Dent. J. 130:16–19 (1971). 74. D. C. Birdsell, P. J. Bannon, R. B. Webb. Harmful effects of near-ultraviolet radiation used for polymerization of a sealant and a composite resin. J. Am. Dent. Assoc. 94:311–314 (1977). 75. K. C. Young, M. Hussey, F. C. Gillespie, K. W. Stephen. The performance of ultraviolet lights used to polymerize �ssure sealants. J. Oral Rehabil. 4:181–191 (1977). 76. I. E. Ruyter. Unpolymerized surface layers on sealants. Acta Odont. Scan. 39:27–32 (1981). 77. N. Olea, R. Pulgar, P. Pérez, F. Olea-Serrano, A. Rivas, A. Novillo-Fertrell, V. Pedraza, A. M. Soto, C. Sonnenschein. Estrogenicity of resin-based composites and sealants used in dentistry. Environ. Health Perspect. 104:298–305 (1996). 78. R. Joskow , D. B. Barr, J. R. Barr, A. M. Calafat, L. L. Needham, C. Rubin. Exposure to bisphenol A from bis-glycidyl dimethacrylate-based dental sealants. J. Am. Dent. Assoc. 137:353–362 (2006). 79. A. Azarpazhooh, P. A. Main. Is there a risk of harm or toxicity in the placement of pit and �ssue sealant materials? A systematic review. J. Can. Dent. Assoc. 74:179–183 (2008). 80. J. H. Warford II, J. H. W arford III, E.C. Combe. U. S. Patent 6,620,859 (2003). 81. A. Ahovuo-Saloranta, A. Hiiri, A. Norblad, M. Mäkelä, H. V. Worthington. Pit and �ssure sealants for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database of Systematic Reviews 2008, Issue 4. Art No.: CD001830. DOI: 10.1002/14651858.CD001830.pub3. 82. E. M. Oong, S. O. Grif�n, W. G. Kohn, B. F. Gooch, P. W. Cau�eld. The effect of dental sealants on bacteria levels in caries lesions. A review of the evidence. J. Am. Dent. Assoc. 139:271–278 (2008). 83. S. O. Grif�n, E. Oong, W. Kohn, B. Vidakovic, B. F. Gooch, J. Bader, J. Clarkson, M. R. Fontana, D. M. Meyer, R. G. Roozier, J. A. Weintraub, D. T. Zero. The effectiveness of sealants in managing caries lesions. J. Dent. Res. 87:169–174 (2008). 84. R. J. Feigal, I. Quelhas. Clinical trial of a self-etching adhesive for sealant application: success at 24 months with Prompt L-Pop. Am J. Dent. 16:249–251 (2003). 85. A. Peutzfeldt, L. A. Nielsen. Bond strength of a sealant to primary and permanent enamel: phosphoric acid versus self-etching adhesive. Pediatr. Dent. 26:240–244 (2004). 86. J. Perdigão, J. W. Fundingsland, S. Duarte Jr, M. Lopes. Microtensile adhesion of sealants to intact enamel. Int. J. Paediatric Dent. 15:342–348 (2005). 87. R. J. Feigal. Self-etch adhesives for sealants? J. Esthetic Restorative Dent. 19:69–70 (2007). 88. R. M. Puppin-Rontani, M. E. Baglioni-Gouvea, M. F. deGoes, F. Garcia-Godoy. Compomer as a pit and �ssure sealant: effectiveness and retention after 24 months. J. Dent. Child. 73:31–36 (2006). 89. N. Yakut, H. Sönmez. Resin composite sealant vs. polyacid-modi�ed resin composite applied to post eruptive mature and immature molars: two year clinical study. J. Clin. Pediatr. Dent. 30:215–218 (2006). 90. N. Beiruti, J. E. Frencken, M. A. van’t Hof, W. H. Van Palenstein Helderman. Caries-preventive effect of resin-based and glass ionomer sealants over time: a systematic review. Commun. Dent. Oral Epidemiol. 34:403–409 (2006). 91. R. J. Simonsen. Pit and �ssure sealant: review of the literature. Pediatr. Dent. 24:393–414 (2002). 92. J. Beauchamp, P. W. Cau�eld, J. J. Crall, K. Donly, R. Feigal, B. Gooch, A. Ismail, W. Kohn, M. Siegal, R. Simonsen. Evidence-based clinical recommendations for the use of pit-and-�ssure sealants. J. Am. Dent. Assoc. 139:257–267 (2008). 93. A. Azarpazhooh, P. A. Main. Pit and �ssure sealants in the prevention of dental caries in children and adolescents: a systematic review. J. Can. Dent. Assoc. 74:171–177 (2008). 94. American Society for T esting and Materials. Standard Practice for Care and Use of Athletic Mouth Protectors. American Society for Testing and Materials, Philadelphia, PA, F 697–00 (2006). 95. American Dental Association. The importance of using mouthguards. J. Am. Dent. Assoc. 135:1061 (2004). 96. R. E. Going, R. E. Loehman, M. S. Chan. Mouthguard materials: their physical and mechanical properties. J. Am. Dent. Assoc. 89:132–138 (1974). 97. J. B. Park, K. L. Shaull, B. Overton, K. J. Donly. J. Prosthet. Dent. 72:373–380 (1994). 98. J. B . Fontelles, C. Clarke. Directive 2005/84/EC of the European Parliament. Off. J. Eur. Union, 48:40–43 (2005). 99. T. E. Gould, S. G. Piland, J. Shin, C. E. Hoyle, S. Nazarenko. Characterization of mouthguard materials: physical and mechanical properties of commercialized products. Dent. Mater. 25:771–780 (2009). 100. ADA Council on Access, Prevention and Interprofessional relations and ADA Council on Scienti�c Affairs. Using mouthguards to reduce the incidence and severity of sports-related oral injuries. J. Am. Dent. Assoc. 137:1712–1720 (2006). 101. A. Picozzi. Mouth protectors. Dent. Clin. N. Am. 19:385–387 (1975). 102. J. J . Knapik, S. W. Marshall, R. B. Lee, S. S. Darakjy, S. B. Jones, T. A. Mitchener, G. C. delaCruz, B. H. Jones. Mouthguards in sport activities. Sports Med. 37:117–144 (2007). 103. D. J. Howells, P. Jones. In vitro evaluation of a cyanoacrylate bonding agent. Br J. Ortho. 16:75–78 (1989). 104. D. Millett, N. Mandall, J. Hickman, R. Mattick, A.-M. Glenny. Adhesives for �xed orthodontic bands. A systematic review. Angle Orthod. 79:193–199 (2009). 105. T. Eliades. Orthodontic materials research and applications: part 1. Current status and projected future developments in bonding and adhesives. Am J. Orthod. Dentofacial Orthop. 130:445–451 (2006). 106. T. Eliades, A. Hiskia, G. Eliades, A. E. Athanasiou. Assessment of bisphenol-A release from orthodontic adhesives. Am J. Orthod. Dentofacial Orthop. 131:72–75 (2007). 107. T. Eliades, V . Gioni, D. Kletsas, A. E. Athanasiou, G. Eliades. Oestrogenicity of orthodontic adhesive resins. Eur. J. Orthod. 29:404–407 (2007). 108. L. Gorelick, A. M. Geiger, A. J. Gwinnett. Incidence of white spot formation after bonding and banding. Am. J. Orthod. 81:93–98 (1982). 109. S. Imran. Fluoride varnish reduces white spot lesions during orthodontic treatment. Evid. Based Dent. 9:81 (2008). 110. A. W. Benham, P. M. Campbell, P. H. Buschang. Effectiveness of pit and �ssure sealants in reducing white spot lesions during orthodontic treatment. A pilot study. Angle Orthod. 79:338–345 (2009). 111. F. Heravi, R. Rashed, L. Raziee. The effects of bracket removal on enamel. Aust. Orthod. J. 24:110–115 (2008). 112. C. S. Chen, M. L. Hsu, K. D. Chang, S. H. Kuang, P. T. Chen, Y. W. Gung. Failure analysis: enamel fracture after debonding orthodontic brackets. Angle Orthod. 78:1071–1077 (2008). 113. C. Nattrass, A. J. Ireland, C. R. Lovell. Latex allergy in an orthognathic patient and implications for clinical management. Br. J. Oral Maxillofac. Surg. 37:11–13 (1999). 114. C. Bertoncini, E. Cioni, B. Grampi, P. Gandini. In vitro properties’ change of latex and non-latex orthodontic elastics. Prog. Orthod. 7:76–84 (2006). 115. P. Gandini, R. Gennai, C. Bertoncini, S. Massironi. Experimental evaluation of latex-free orthodontic elastics’ behaviour in dynamics. Prog. Orthod. 8:88–99 (2007). 116. M. L. Kerse y, K. E. Glover, G. Heo, D. Raboud, P. W. Major. A comparison of dynamic and static testing of latex and nonlates orthodontic elastics. Angle Orthod. 73:181–186 (2003). 117. M. Peumans, B. V an Meerbeek, P. Lambrechts, G. Vanherle. Porcelain veneers: a review of the literature. J. Dent. 28:163–177 (2000). 118. G. J. Christensen. Have porcelain veneers arri ved? J. Am. Dent. Assoc. 122:81 (1991). 119. J. R. Calamia, C. S. Calamia. Porcelain laminate veneers: reasons for 25 years of success. Dent. Clin. N. Am. 51:399–417 (2007). 120. D. Layton, T. Walton. An up to 16-year prospective study of 304 porcelain veneers. Int. J. Prosthod. 20:389–396 (2007). 121. F. J. T. Burke, M. G. D. Kelleher. Perspectives. The “daughter test” in elective esthetic dentistry. J. Esthet. Restor. Dent. 21:143–146 (2009). 122. A. D. Puckett, J. G. Fitchie, P. C. Kirk, J. Gamblin. Direct composite restorative materials. Dent. Clin. N. Am. 51:659–675 (2007). 123. M. N. Mandikos, G. P. McGivney, E. Davis, P. J. Bush, J. M. Carter. A comparison of the wear resistance and hardness of indirect composite resins. J. Prosthet. Dent. 85:386–395 (2001). 124. F. Lutz, R. W. Phillips. A classi�cation and evaluation of composite resin systems. J. Prosthet. Dent. 50:480–488 (1983). 125. A. C. Shortall, W . M. Palin, P. Burtscher. Refractive index mismatch and monomer reactivity in¥uence composite curing depth. J. Dent. Res. 87:84–88 (2008). 126. R. W. Hasel. U. S Patent 5,944,527 (1999). 127. A. Nuray, L. E. Tam, D. McComb. Flow, strength, stiffness and radiopacity of ¥owable resin composites. J. Can. Dent. Assoc. 69:516–521 (2003). 128. R. D. Jackson, M. Morgan. The new posterior resins and a simpli�ed placement technique. J. Am. Dent. Assoc. 131:375–383 (2000). 129. K. F. Leinfelder , S. C. Bayne. E. J. Swift Jr. Packable composites: overview and technical considerations. J. Esthet. Dent. 11:234–249 (1999). 130. A. P eutzfeldt. Resin composites in dentistry: the monomer systems. Eur. J. Oral Sci. 105:97–116 (1997). 131. K. Tanaka, M. Taira, H. Shintani, K. Wakasa, M. Yamaki. Residual monomers (TEGDMA and BisGMA) of a set visible-light-cured dental composite resin when immersed in water. J. Oral Rehabil. 18:353–362 (1991). 132. W. Spahl, H. Budzikiewicz, W. Guersten. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J. Dent. 26:137–145 (1998). 133. U. Ortengren, H. Wellendorf, S. Karlsson, I. E. Ruyter. Water sorption and solubility of dental composites and identi�cation of monomers released in an aqueous environment. J. Oral Rehabil. 28:1106–1115 (2001). 134. Y. Issa, D. C. Watts, P. A. Brunton, C. M. Waters, A. J. Duxbury. Resin composite monomers alter MTT and LDH activity of human gingival �broblasts in vitro. Dent. Mater. 20:12–20 (2004). 135. D. H. Lee, N. R. Kim, B.-S. Lim, Y.-K. Lee, H.-C. Yang. Effects of TEGDMA and HEMA on the expression of COX-2 and iNOS in cultures murine macrophage cells. Dent. Mater. 25:240–246 (2009). 136. J. P. Santerre, L. Shajii, B. W. Leung. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit. Rev. Oral Biol. Med. 12:136–151 (2001). 137. T. Nihei, A. Dabanoglu, T. Teranaka, S. Kurata, K. Ohashi, Y. Kondo, N. Yoshino, R. Hickel, K.-H. Kunzelmann. Three-body-wear resistance of the experimental composites containing �ller treated with hydrophobic silane coupling agents. Dent. Mater. 24:760–764 (2008). 138. L. Lindqvist, C. E. Nord, P. O. Söder. Origin of esterase in human whole saliva. Enzyme 22:165–175 (1977). 139. Y. Finer, J. P. Santerre. Salivary esterase activity and its association with the biodegradation of dental composites. J. Dent. Res. 83:22–26 (2004). 140. Y. Finer, J. P. Santerre. In¥uence of silanated �ller content on the biodegradation of bisGMA/TEGDMA dental composite resins. J. Biomed. Mater. Res. 81A:75–84 (2007). 141. J. L. Drummond. Degradation, fatigue, and failure of resin dental composite materials. J. Dent. Res. 87:710–719 (2008). 142. N. Moszner, U. Salz. New developments of polymeric dental composites. Prog. Polym. Sci. 26:535–576 (2001). 143. R. R. Braga, R. Y. Ballester, J. L. Ferracane. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review, Dent. Mater. 21:962–970 (2005). 144. M. J . M. Coelho Santos, G. C. Santos Jr, H. Nagem Filho, R. F. L. Mondelli, O. El-Mowafy. Effect of light curing method on volumetric polymerization shrinkage of resin composites. Oper. Dent. 29:157–161 (2004). 145. R. L. Sakaguchi, A. Versluis, W. H. Douglas. Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dent. Mater. 13:233–239 (1997). 146. D. Tantbirojn, A. Versluis, M. R. Pintado, R. DeLong, W. H. Douglas. Tooth deformation patterns in molars after composite restoration. Dent. Mater. 20:535–542 (2004). 147. J. M. Antonucci, J. W. Stansbury, S. Venz. Synthesis and properties of poly¥uorinated prepolymer multifunctional urethane methacrylate. Poly. Mater. Sci. Eng. 59:388–396 (1988). 148. J. W. Stansbury. Cyclopolymerizable monomers for use in dental resin composites. J. Dent. Res. 69:844– 848 (1990). 149. V. P . Thompson, E. F. Williams, W. J. Bailey. Dental resins with reduced shrinkage during hardening. J. Dent. Res. 58:1522–1532 (1979). 150. J. W. Stansb ury, W. J. Bailey. Evaluation of spiro orthocarbonate monomers capable of polymerizing with expansion as ingredients in dental composite materials. In: C. G. Gebelein, R. L. Dunn (eds.). Progress in Biomedical Polymers, Plenum Press, New York, pp. 133–139 (1990). 151. J. W. Stansb ury. Synthesis and evaluation of new oxaspiro monomers for double ring-opening polymerization. J. Dent. Res. 71:1408–1412 (1992). 152. E. J. Moon, J. Y. Lee, C. K. Kim, B. H. Cho. Dental restorative composites containing 2,2-Bis-[4-(2hydroxy-3-methacryloyloxy propoxy) phenyl] propane derivatives and spiro orthocarbonates. J. Biomed. Mater. Res. Part B: Appl. Biomater. 73B:338–346 (2005). 153. M. T rujillo-Lemon, J. Ge, H. Lu, J. Tanaka, J. W. Stansbury. Dimethacrylate derivatives of dimer acid. J. Polym. Sci. Part A Polym. Chem. 44:3921–3929 (2006). 154. C. A. Khatri, J. W. Stansbury, C. R. Schultheisz, J. M. Antonucci. Synthesis, characterization and evaluation of urethane derivatives of bis-GMA. Dent. Mater. 19:584–588 (2003). 155. J. W. Stansb ury, J. M. Antonucci. Dimethacrylate monomers with various ¥uorine contents and distributions. Dent. Mater. 15:166–173 (1999). 156. S. Kurata, N. Yamazaki. New matrix polymers for photo-activated resin composites using di-α¥uoroacrylic acid derivatives. Dent. Mater. J. 27:434–540 (2008). 157. N. Moszner, U. Salz. Chapter 2: Composites for dental restoratives. In: S. S. Shalaby, U. Salz (eds.). Polymers for Dental and Orthopedic Applications, CRC Press, Boca Raton, FL, pp. 13–67 (2007). 158. W. Weinmann, C. Thalacker, R. Guggenberger. Siloranes in dental composites. Dent. Mater. 21:68–74 (2005). 159. V. Miletic, V. Ivanovic, B. Dzeletovic, M. Lezaja, Temperature changes in silorane-, ormocer-, and dimethacrylate-based composites and pulp chamber roof during light-curing. J. Esther. Restor. Dent. 21:122–132 (2009). 160. N. Ilie, R. Hickel. Macro-, micro- and nano-mechanical investigations on silorane and methacrylatebased composites. Dent. Mater. 25:810–819 (2009). 161. S. Duarte Jr, J.-H. Park, F. M. Varjão, A. Sadan. Nanoleakage, ultramorphological characteristics, and microtensile bond strengths of a new low-shrinkage composite to dentin after arti�cial aging. Dent. Mater. 25:589–600 (2009). 162. H. Wolter, W. Storch, H. Ott. New inorganic/organic copolymers (Ormocer ® s) for dental applications. In: A. K. Cheetham, C. J. Brinker, M. L. Mecartney, C. Sanchez (eds.). Material Research Society Symposium Proceedings, San Francisco, CA, April 4–8, 1994, Vol. 346, pp. 143–149. Materials Research Society, Pittsburgh, PA (1994). 163. D. A. Tagtekin, F. C. Yanikoglu, F. O. Bozkurt, B. Kogoglu, H. Sur. Selected characteristics of an Ormocer and a conventional hybrid resin composite. Dent. Mater. 20:487–497 (2004). 164. J. M. Meyer, M. A. Cattani-Lorente, V. Dupuis. Compomers: between glass-ionomer cements and composites. Biomaterials 19:529–539 (1998). 165. J. W. Nicholson. Glass-ionomers in medicine and dentistry. Proc. Instn. Mech. Engrs. Part H, 212:121–126 (1998). 166. B. L. Chadwick, P. M. H. Dummer, F. D. Dunstan, A. S. M. Gilmour, R. J. Jones, C. J. Phillips, J. Rees, S. Richmond, J. Stevens, E. T. Treasure. What type of �lling? Best practice in dental restorations. Quality in Health Care 8:202–207 (1999). 167. R. S. Gatewood. Endodontic materials. Dent. Clin. N. Am. 51:695–712 (2007). 168. L. Spångberg. Biological effects of root end �lling materials. II. Effect in vitro of water-soluble components of root canal �lling materials in HeLa cells. Odontol. Revy. 20:133–145 (1969). 169. L. Spångberg. Biological effects of root end �lling materials. IV. Effect in vitro of solubilized root canal �lling materials in HeLa cells. Odontol. Revy. 20:289–299 (1969). 170. J. Moshonov, M. Trope, S. Friedman. Retreatment ef�cacy 3 months after obturation using glass ionomer cement, zinc oxide-eugenol, and epoxy resin sealers. J. Endod. 20:90–92 (1994). 171. R. Raina, R. J. Loushine, R. N. Weller, F. R. Tay, D. H. Pashley. Evaluation of the quality of the apical seal in Resilon/Epiphany and Gutta-Percha/AH plus-�lled root canals by using a ¥uid �ltration approach. J. Endod. 33:944–948 (2007). 172. S. Bouillaguet, J. C. Wataha, F. R. Tay, M. G. Brackett, P. E. Lockwood. Initial in vitro biological response to contemporary endodontic sealers. J. Endod. 32:989–992 (2006). 173. S. M ai, Y. K. Kim, N. Hirashi, J. Ling, D. H. Pashley, F. R. Tay. Evaluation of the true self-etching potential of a fourth generation self-adhesive methacrylate resin-based sealer. J. Endod. 35:870–874 (2009). 174. F. R . Tay, D. H. Pashley. Monoblocks in root canals: a hypothetical or a tangible goal. J. Endod. 22:391–398 (2007). 175. E. S . Reeh, E. C. Combe. New core and sealer materials for root canal obturation and retro�lling. J. Endod. 28:520–523 (2002). 176. S. Buchan, R.W. Peggie. Role of ingredients in alginate impression compounds. J. Dent. Res. 45:1120– 1129 (1966). 177. W. D. Cook. Alginate dental impression materials: chemistry, structure and properties. J. Biomed. Mater. Res. 20:1–24 (1986). 178. N. N allamuthu, M. Braden, M. P. Patel. Dimensional changes of alginate dental impression materials. J. Mater. Sci.: Mater. Med. 17:1205–1210 (2006). 179. J. G. Stannard, R. G. Craig. Modifying the setting rate of an addition-type silicone impression material. J. Dent. Res. 58:1377–1382 (1979). 180. C. Shen, Chapter 9 of Phillips’ Science of Dental Materials. 11th edn., In: K. J. Anusavice (eds.). Saunders, Philadelphia, PA, pp. 216–217 (2003). 181. A. Sadan. Hydrophilic vin yl polysiloxane impression materials. Pract. Proc. Aesthet. Dent. 17:310 (2005). 182. E. Kotsiomiti, A. Tzialla, K. Hatjivasiliou. Accuracy and stability of impression materials subjected to chemical disinfection – a literature review. J. Oral Rehabil. 35:291–299 (2008). 183. D. G. Gratton, S. A. Aquilino. Interim restorations. Dent. Clin. N. Am. 48:487–497 (2004). 184. C. M. Becker , C. C. Swoope, C. A. Schwalm. Emergency dentures. J. Prosthet. Dent. 32:514–519 (1974). 185. R. E. Ogle, S. E. Sorensen, E. A. Lewis. A new visible light-cured resin system applied to removable prosthodontics. J. Prosthet. Dent. 56:497–504 (1986). 186. A. M. Diaz-Arnold, M. A. Vargas, K. L. Shuall, J. E. Laffoon, F. Qian. Flexural and fatigue strengths of denture base resin. J. Prosthet. Dent. 100:47–51 (2008). 187. R. Diwan, E. C. Combe, A. A. Grant. The use of microwave energy to cure acrylic resins. Clin. Mater. 12:117–120 (1993). 188. S. Sadamori, T. Gane�yanti, T. Hamada, T. Arima. In¥uence of thickness and location on the residual monomer content of denture base cured by three processing methods. J. Prosthet. Dent. 72:19–22 (1994). 189. J. F. McCabe, R. M. Basker. Tissue sensitivity to acrylic resin. Br. Dent. J. 140:347–350 (1976). 190. J. H. Jorge, E. T. Giampaolo, A. L. Machado, C. E. Vergani. Cytotoxicity of denture base acrylic resins: a literature review. J. Prosthet. Dent. 90:190–193 (2003). 191. D. C . Jagger, A. Harrison, K. D. Jandt. The reinforcement of dentures. J. Oral Rehabil. 26:185–194 (1999). 192. G. D. Stafford, J. F. Bates, R. Huggett, R. W. Handley. A review of the properties of some denture base polymers. J. Dent. 8:292–306 (1980). 193. R. A. Rodford. Further development and evaluation of high-impact-strength denture base materials. J. Dent. 18:151–157 (1990). 194. C. K. Schreiber. The clinical application of carbon �bre/polymer denture bases. Br. Dent. J. 137:21–22 (1974). 195. J. M. Berrong, R. M. Weed, J. M. Young. Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study. Int. J. Prosthodont. 3:391–395 (1990). 196. P. K. Vallittu, V. P. Lassila, R. Lappalainen. Acrylic resin �bre composite. Part I: The effect of �bre concentration on fracture resistance. J. Prosthet. Dent. 71:607–612 (1994). 197. P. K. Vallittu, V. P. Lassila, R. Lappalainen. Transverse strength and fatigue of denture acrylic glass �ber composite. Dent. Mater. 10:116–121 (1994). 198. P. K. Vallittu, K. Narva. Impact strength of a modi�ed glass �ber poly(methyl methacrylate). Int J. Prosthodont. 10:142–148 (1997). 199. M. Braden, K. W. M. Davy, S. Parker, N. H. Ladizesky, I. M. Ward. Denture base poly (methyl methacrylate) reinforced with ultra-high molulus polyethylene �bres. Brit. Dent. J. 164:109–113 (1988). 200. D. L. Gutteridge. Reinforcement of poly (methyl methacrylate) with ultra-high-modulus polyethylene �bre. J. Dent. 20:50–54 (1992). 201. N. H. Ladizesky , T. W. Chow. Reinforcement of complete denture bases with continuous high performance polyethylene �bres. J. Prosthet. Dent. 68:934–939 (1992). 202. J. L. Gilbert, D. S. Ney, E. P. Lautenschlager. Self reinforced composite poly (methyl methacrylate): static and fatigue properties. Biomaterials 16:1043–1055 (1995). 203. P. K. V allittuil, V. P. Lassila. Effect of metal strengthener’s surface roughness on fracture resistance of acrylic denture base material. J. Oral Rehabil. 19:385–391 (1992). 204. P. K. Vallittu. Effect of some properties of metal strengtheners on the fracture resistance of acrylic denture base material. J. Oral Rehabil. 20:241–248 (1993). 205. G. L. Polyzois. Reinforcement of denture acrylic resin. The effect of metal inserts and denture resin type on fracture resistance. Eur. J. Prosthodont. Rest. Dent. 3:275–278 (1995). 206. K. E. Bloodworth, P. J. Render. Dental acrylic resin radiopacity: literature review and survey of practitioners’ attitudes. J. Prosthet. Dent. 67:121–123 (1992). 207. N. Yunus, A. A. Rashid, L.L. Azmi, M. I. Abu-Hassan. Some ¥exural properties of a nylon denture base polymer. J. Oral Rehabil. 32:65–71 (2005). 208. P. Pfeiffer , N. An, P. Schmage. Repair strengths of hypoallergenic denture base materials. J. Prosthet. Dent. 100:292–301 (2008). 209. A. C. Murphy , R. G. Hill. Fracture toughness of tooth acrylics. J. Mater. Sci. Mater. Med. 14:1011–1015 (2003). 210. S. Suzuki. In vitro wear of nano-composite denture teeth. J. Prosthodont . 13:238–243 (2004). 211. K. R. Reis, G. Bonfante, L. F. Pegoraro, P. C. Conti, P. C. Oliveira, O. B. Kaizer. In vitro wear resistance of three types of poly(methyl methacrylate) denture teeth. J. Appl. Oral Sci. 16:176–180 (2008). 212. J. M. Clancy , D. B. Boyer. Comparative bond strengths of light-cured, heat-cured, and autopolymerizing denture resins to denture teeth. J. Prosthet. Dent. 61:457–462 (1989). 213. P. K. Vallittu, I. E. Ruyter, R. Nat. The swelling phenomenon of acrylic resins polymer teeth at the interface with denture base polymers. J. Prosthet. Dent. 78:194–199 (1997). 214. W. W. Chase. Tissue conditioning utilizing dynamic adaptive stress. J. Prosthet. Dent. 11:804–815 (1961). 215. H. Murata, Y. Narasaki, T. Hamada, F. F. McCabe. An alcohol-free tissue conditioner—A laboratory study. J. Dent. 34:307–315 (2006). 216. M. Braden, P. S. Wright, S. Parker. Soft lining materials—A review. Eur. J. Prosthodont. Rest. Dent. 3:163–174 (1995). 217. D. R. Radford, S. J. Challacombe, J. D. Walter. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit. Rev. Oral Biol. Med. 10:99–116 (1999). 218. S. Parker, D. Martin, M. Braden. Soft acrylic resin materials containing a polymerisable plasticiser I: Mechanical properties. Biomater. 19:1695–1701 (1988). 219. S. Parker, D. Martin, M. Braden. Soft acrylic resin materials containing a polymerisable plasticiser II: Water absorption characteristics. Biomaterials 20:55–60 (1999). 220. I. Hayakawa, N. Akiba, E. Keh, Y. Kasuga. Physical properties of a new denture lining material containing a ¥uoroalkyl methacrylate polymer. J. Prosthet. Dent. 96:53–58 (2006). 221. J. E. Grasso. Denture adhesives: changing attitudes. J . Am. Dent. Assoc. 127:90–96 (1996). 222. J. E. Grasso. Denture adhesives. Dent. Clin. N. Am. 48:721–733 (2004). 223. A. H. Melcher. On the repair potential of periodontal tissues. J. P eriodont. 256–260 (1976). 224. A. H. Melcher. Healing of wounds in the periodontium. In: A. H. Melcher, W. H. Bowen (eds.). Biology of the Periodontium, Academic Press, London, U.K., pp. 497–529 (1969). 225. F. Isidor, T. Karring, S. Nyman. J. Lindhe. The signi�cance of coronal growth of periodontal ligament tissue for new attachment formation. J. Clin. Periodont. 13:145–150 (1986). 226. S. Nyman, J. Lindhe, T. Karring, H. Rylander. New attachment following surgical treatment of human periodontal disease. J. Clin. Periodont. 9:290–296 (1982). 227. M. R. Urist. Bone: formation by autoinduction. Science 150(698):893–899 (1965). 228. J. D. Bashutski, H.-M. Wang. Periodontal and endodontic regeneration. J. Endod. 35:321–328 (2009). 229. P. I. Branemark, B. O. Hannson, R. Adell, U. Breine, J. Lindstrom, O. Hallen, A. Ohman. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. Suppl. 16:1–132 (1977). 230. H. Schliephake, D. Scharnweber. Chemical and biological functionalization of titanium for dental implants. J. Mater. Chem. 18:2404–2414 (2008). 231. A.Tezel, G. H. Fredrickson. The science of hyaluronic acid dermal �llers. J. Cosmetic and Laser Ther. 10:35–42 (2008). 232. D. W. Buck, A. Alam, J. Y. S. Kim. Injectable �llers for facial rejuvenation: a review. J. Plast. Reconstr. Aesth. Surg. 62:11–18 (2008). 233. J. L . Cohen. Understanding, avoiding and managing dermal �ller complications. Derm. Surg. 34:S92–S99 (2008). 234. K. C. Smith. Re versible vs. nonreversible �llers in facial aesthetics: concerns and considerations. Derm. Online J. 14:3 (2008). 235. A. J. Valauri. Maxillofacial prosthetics. Aesth. Plast. Surg. 6:159–164 (1982). 236. J. C. Lemon, S. Kiat-amnuay, L. Gettleman, J. W. Martin, M. S. Chambers. Fixed prosthetic rehabilitation: preprosthetic surgical techniques and biomaterials. Curr. Opin. Otolaryngol. Head Neck Surg. 13:255–262 (2005). 237. H. Huber, S. P. Studer. Materials and techniques in maxillofacial prosthodontic rehabilitation. Oral Maxillofac. Surg. Clin. N. Am. 14:73–93 (2002). 238. T. Aziz, M. Waters, R. Jagger. Analysis of the properties of silicone rubber maxillofacial prosthetic materials. J. Dent. 31:67–74 (2003). 239. A. K. Hulterström, A. Berglund, I. E. Ruyter. Wettability, water sorption and water solubility of seven silicone elastomers used for maxillofacial prostheses. J. Mater. Sci Mater. Med. 19:225–231 (2008). 240. J. J. Gary, C. T. Smith. Pigments and their application in maxillofacial elastomers: a literature review. J. Prosthet. Dent. 80:204–208 (1998). 241. S. P. Haug, B. K. Moore, C. J. Andres. Color stability and colorant effect on maxillofacial elastomers. Part II: Weathering effect on physical properties. J. Prosthet. Dent. 81:423–430 (1999). 242. J. H. Lai, L. L. Wang, C. C. Ko, R. L. DeLong, J. S. Hodges. New organosilicon maxillofacial prosthetic materials. Dent. Mater. 18:281–286 (2002). 243. Y. Han, S. Kiat-amnuay, J. M. Powers, Y. Zhao. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J. Prosthet. Dent. 100:465–473 (2008). 244. S. O. Bartlett, D. J. Moore. Ocular prosthesis: a physiologic system. J. Prosthet. Dent. 29:450–459 (1973). 245. Y. Grossman, I. Savion. The use of a light-polymerized resin-based obturator for the treatment of the maxillofacial patient. J. Prosthet. Dent. 94:289–292 (2005). 246. G. T. Grant, R. M. Taft, S. T. Wheeler. Practical application of polyurethane and Velcro in maxillofacial prosthetics. J. Prosthet. Dent. 85:281–283 (2001). 247. S. Kiat-amnuay, P. J. Waters, D. Roberts, L. Gettleman. Adhesive retention of silicone and chlorinated polyethylene for maxillofacial prostheses. J. Prosthet. Dent. 99:483–488 (2008). 248. H. Kurunmäki, R. Kantola, M. M. Hatamleh, D. C. Watts, P. K. Vallittu. A �ber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report. J. Prosthet. Dent. 100:348–352 (2008). 249. A. Vasanthan, K. Satheesh, W. Hoopes, P. Lucaci, K. Williams, J. Rapley. Comparing suture strengths for clinical applications: a novel in vitro study. J. Periodontol. 80:618–624 (2009). 250. R. J. Shaw, T. W. Negus, T. K. Mellor. A prospective evaluation of the longevity of resorbable sutures in oral mucosa. Brit. J. Oral Maxillofac. Surg. 34:252–254 (1996). 251. R. Gassner. Wound closure materials. Oral Maxillofac. Surg. Clin. 14:95–104 (2002). 252. D. F. Williams. On the nature of biomaterials. Biomaterials 30:5897–5909 (2009). 24 Chapter 24. Biomaterials as Platforms for Topical Administration of Therapeutic Agents in Cutaneous Wound Healing Akopian, G., Nunnery, S. P., Piangenti, J. et al. 2006. Outcomes of conventional wound treatment in a comprehensive wound center. Am. Surg., 72, 314–317. Amery, C. M. 2005. Growth factors and the management of the diabetic foot. Diabet. Med., 22, 12–14. Anderson, J. M., Rodriguez, A. and Chang, D. T. 2008. Foreign body reaction to biomaterials. Semin. Immunol., 20, 86–100. Aoyagi, S., Onishi, H. and Machida, Y. 2007. Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int. J. Pharm., 330, 138–145. Arakawa, T., Prestrelski, S. J., Kenney, W. C. and Carpenter, J. F. 2001. Factors affecting short-term and longterm stabilities of proteins. Adv. Drug Deliv. Rev., 46, 307–326. Arul, V., Kartha, R. and Jayakumar, R. 2007. A therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices. Life Sci., 80, 275–284. Bader, R. A. and Kao, W. J. 2009. Modulation of the keratinocyte-�broblast paracrine relationship with gelatinbased semi-interpenetrating networks containing bioactive factors for wound repair. J. Biomater. Sci. Polym. Ed., 20, 1005–1030. Bao, P., Kodra, A., Tomic-Canic, M. et al. 2009. The role of vascular endothelial growth factor in wound healing. J. Surg. Res., 153, 347–358. Benito-Ruiz, J., Guisantes, E. and Serra-Renom, J. M. 2006. Porcine dermal collagen: A new option for softtissue reconstruction of the lip. Plast. Reconstr. Surg., 117, 2517–2519. Bhattarai, N., Gunn, J. and Zhang, M. 2010. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 62, 83–99. Blair, S. D., Backhouse, C. M., Harper, R., Matthews, J. and McCollum, C. N. 1988. Comparison of absorbable materials for surgical haemostasis. Br. J. Surg., 75, 69–71. Boateng, J. S., Matthews, K. H., Stevens, H. N. E. and Eccleston, G. M. 2008. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci., 97, 2892–2923. Bota, P. C. S., Collie, A. M. B., Puolakkainen, P. et al. 2010. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J. Biomed. Res. A, 95A, 649–657. Braund, R., Hook, S. M., Greenhill, N. and Medlicott, N. J. 2009. Distribution of �broblast growth factor-2 (FGF-2) within model excisional wounds following topical application. J. Pharm. Pharmacol., 61, 193–200. Braund, R., Hook, S. and Medlicott, N. J. 2007a. The role of topical growth factors in chronic wounds. Curr. Drug Deliv., 4, 195–204. Braund, R., Tucker, I. G. and Medlicott, N. J. 2007b. Hypromellose �lms for the delivery of growth factors for wound healing. J. Pharm. Pharmacol., 59, 367–372. Brem, H. and Tomic-Canic, M. 2007. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest., 117, 1219–1222. Burgess, W. H. and Maciag, T. 1989. The heparin-binding (�broblast) growth factors family of proteins. Annu. Rev. Biochem., 58, 575–606. Burns, J. L., Mancoll, J. S. and Phillips, L. G. 2003. Impairments to wound healing. Clin. Plast. Surg., 30, 47–56. Chan, R. K., Liu, P. H., Pietramaggiori, G. et al. 2006. Effect of recombinant platelet-derived growth factor (Regranex®) on wound closure in genetically diabetic mice. J. Burn Care Res., 27, 202–205. Chang, D. T., Jones, J. A., Meyerson, H. et al. 2008. Lymphocyte/macrophage interactions: Biomaterial surface-dependent cytokine, chemokine and matrix protein production. J. Biomed. Mater. Res., 87, 676–687. Choi, Y. S., Lee, S. B., Hong, S. R. et al. 2001. Studies on gelatin-based sponges. Part III: A comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. J. Mater. Sci. Mater. Med., 12, 67–73. Clark, R. A. F. 1995. Wound repair: Overview and general considerations. In: R.A.F. Clark (ed.) The Molecular and Cellular Biology of Wound Repair, 2nd edn. New York: Plenum Press. Cross, S. and Roberts, M. S. 1999. De�ning a model to predict the distribution of topically applied growth factors and other solutes in excisional full-thickness wounds. J. Invest. Dermatol., 112, 36–41. Davidson, J. M. 2007. Growth factors: The promise and the problems. Int. J. Lower Extrem. Wounds, 6, 8–10. Dieckmann, C., Renner, R., Milkova, L. and Simon, J. C. 2010. Regenerative medicine in dermatology: Biomaterials, tissue engineering, stem cells, gene transfer and beyond. Exp. Derm., 19, 697–706. Doyle, J. W., Roth, T., Smith, R. M., Li, Y. Q. and Dunn, R. M. 1996. Effects of calcium alginate on cellular wound healing processes modelled in vitro. J. Biomed. Mater. Res., 32, 561–568. Embil, J. M., Papp, K., Sibbald, G. et al. 2000. Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower extremity diabetic ulcers: An open-label clinical evaluation of ef�cacy. Wound Repair Regen., 8, 162–168. Field, C. K. and Kerstein, M. D. 1994. Overview of wound healing in a moist environment. Am. J. Surg., 167 (Suppl 1A), 2S–6S. Franz, M. G., Robson, M. C., Steed, D. L. et al. 2008. Guidelines to aid healing of acute wounds by decreasing impediments of healing. Wound Repair Regen., 16, 723–748. Franz, M. G., Steed, D. L. and Robson, M. C. 2007. Optimizing healing of the acute wound by minimizing complications. Curr. Prob. Surg., 44, 691–763. Frokjaer, S. and Otzen, D. E. 2005. Protein drug stability: A formulation challenge. Nat. Rev. Drug Disc., 4, 298–306. Fu, X., Li, X., Cheng, B., Chen, W. and Sheng, Z. 2005. Engineered growth factors and cutaneous wound healing: Success and possible questions in the past 10 years. Wound Repair Regen., 13, 122–130. Gospodarowicz, D. and Cheng, J. 1986. Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol., 128, 475–484. Greenhalgh, D. G. 2003. Wound healing and diabetes mellitus. Clin. Plast. Surg., 30, 37–45. Heggers, J. P. 2003. Assessing and controlling wound infection. Clin. Plast. Surg., 30, 25–35. Hinchliffe, R. J., Valk, G. D., Apelqvist, J. et al. 2008. Speci�c guidelines on wound and wound-bed management. Diabet. Met. Res. Rev., 24 (Suppl. 1), S188–S189. Ho, Y. C., Mi, F. L., Sung, H. W. and Kuo, P. L. 2009. Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Int. J. Pharm., 376, 69–75. Ichioka, S., Harii, K., Nakahara, M. and Sato, Y. 1998. An experimental comparison of hydrocolloid and alginate dressings, and the effect of calcium ions on the behaviour of alginate gel. Scand. J. Plast. Reconstr. Surg. Hand Surg., 32, 311–316. Jeffcoate, W. J., Price, P. and Harding, K. G. 2004. Wound healing and treatments for people with diabetic foot ulcer. Diabetes. Metab. Res. Rev., 20, S78–S89. Kamolz, L. P., Lumenta, D. B., Kitzinger, H. B. and Frey, M. 2008. Tissue engineering for cutaneous wounds: An overview of current standards and possibilities. Eur. Surg., 40, 19–26. Khor, E. and Lim, L. Y. 2003. Implantable applications of chitin and chitosan. Biomaterials, 24, 2339–2349. Kiritsy, C. P., Lynch, A. B. and Lynch, S. E. 1993. Role of growth factors in cutaneous wound healing: A review. Crit. Rev. Oral Biol. Med., 4, 729–760. Lawrence, W. T. and Diegelmann, R. F. 1994. Growth factors in wound healing. Clin. Dermatol., 12, 157–169. Lazarus, G. S., Cooper, D. M., Knighton, D. R. et al. 1994. De�nitions and guidelines for assessment of wounds and evaluation of healing. Arch. Dermatol., 130, 489–493. Leaper, D. J. and Durani, P. 2008. Topical antimicrobial therapy of chronic wounds healing by secondary intention using iodine products. Int. Wound J., 5, 361–368. Liu, B. S., Yao, C. H. and Fang, S. S. 2008. Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing. Macromol. Biosci., 8, 432–440. MacLeod, T. M., Cambrey, A., Williams, G., Sanders, R. and Green, C. J. 2008. Evaluation of Permacol™ as a cultured skin equivalent. Burns, 34, 1169–1175. Macleod, T. M., Williams, G., Sanders, R. and Green, C. J. 2005. Histological evaluation of Permacol™ as a subcutaneous implant over a 20-week period in the rat model. Br. J. Plast. Surg., 58, 518–532. Magnusson, B. M., Anissimov, Y. G., Cross, S. E. and Roberts, M. S. 2004. Molecular size as the main determinant of solute maximum ¥ux across the skin. J. Invest. Dermatol., 122, 993–999. Mekkes, J. R., Loots, M. A. M., Van der Wal, A. C. and Bos, J. D. 2003. Causes, investigation and treatment of leg ulceration. Br. J. Dermatol., 148, 388–401. Meng, X., Tian, F., Yang, J. et al. 2010. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J. Mater. Sci. Mater. Med., 21, 1751–1759. Menon, G. K. 2002. New insight into skin structure: Scratching the surface. Adv. Drug Deliv. Rev., 54 (Suppl. 1), S3–S17. Milic, D. J., Zivic, S. S., Bogdanovic, D. C., Karanovic, N. D. and Golubovic, D. C. 2009. Risk factors related to the failure of venous ulcers to heal with compression treatment. J. Vasc. Surg., 49, 1242–1247. Miller, M. J. and Patrick, C. W. 2003. Tissue engineering. Clin. Plast. Surg., 30, 91–103. Milstone, A. M., Passaretti, C. L. and Perl, T. M. 2008. Chlorhexidine: Expanding the armamentarium for infection control and prevention. Clin. Infect. Dis., 46, 274–281. Monaco, J. L. and Lawrence, W. T. 2003. Acute wound healing: An overview. Clin. Plast. Surg., 30, 1–12. Mulder, G., Tallis, A. J., Marshall, V. T. et al. 2009. Treatment of nonhealing diabetic foot ulcers with a platelet derived growth factor gene-activated matrix (GAM501): Results of a phase 1/2 trial. Wound Rep. Regen., 17, 772–779. Papanas, N. and Maltezos, E. 2007. Growth factors in the treatment of diabetic foot ulcers: New technologies, any promises? Int. J. Low. Extrem. Wounds, 6, 37–53. Papanas, N. and Maltezos, E. 2010. Bene�t-risk assessment of becaplermin in the treatment of diabetic foot ulcers. Drug Saf., 33, 455–461. Priya, S. G., Jungvid, H. and Kumar, A. 2008. Skin tissue engineering for tissue repair and regeneration. Tissue Eng. Part B Rev., 14, 105–118. Rees, R. S., Robson, M. C., Smiell, J. M., Perry, B. H. and The Pressure Ulcer Study, G. 1999. Becaplermin gel in the treatment of pressure ulcers: A phase II randomized, double-blind, placebo-controlled study. Wound Repair Regen., 7, 141–147. Reimer, K., Vogt, P. M., Broegmann, B. et al. 2000. An innovative topical drug formulation for wound healing and infection treatment: In vitro and in vivo investigations of a povidone-iodine liposome hydrogel. Dermatology, 201, 235–241. Robson, M. C. and Barbul, A. 2006. Guidelines for the best care of chronic wounds. Wound Repair Regen., 14, 647–648. Robson, M. C., Dubay, D. A., Wang, X. and Franz, M. G. 2004. Effect of cytokine growth factors on the prevention of acute wound failure. Wound Repair Regen., 12, 38–43. Rosenberg, A. S. 2006. Effects of proteins aggregates: An immunological perspective. AAPS J., 8, E501–E507. Rossi, S., Marciello, M., Sandri, G. et al. 2007. Wound dressings based on chitosans and hyaluronic acid for the release of chlorhexidine diacetate in skin ulcer therapy. Pharm. Dev. Technol., 12, 415–422. Ryan, C. M., Schoenfeld, D. A., Thorpe, W. P. et al. 1998. Objective estimates of the probability of death from burn injuries. N. Engl. J. Med., 338, 362–366. Sakiyama-Elbert, S. E. and Hubbell, J. A. 2000. Development of �brin derivatives for controlled release of heparin-binding growth factors. J. Control. Release, 65, 389–402. Scaffer, C. J. and Nanney, L. B. 1996. Cell biology of wound healing. Int. Rev. Cytol., 169, 151–158. Sen, C. K., Gordillo, G. M., Roy, S. et al. 2009. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen., 17, 763–771. Shevchenko, R. V., Sibbons, P. D., Sharpe, J. R. and James, S. E. 2008. Use of a novel porcine collagen paste as a dermal substitute in full-thickness wounds. Wound Repair Regen., 16, 198–207. Singer, A. J. and Clark, R. A. F. 1999. Cutaneous wound healing. N. Engl. J. Med., 341, 734–746. Singer, A. J. and Dagum, A. B. 2008. Current management of acute cutaneous wounds. N. Engl. J. Med., 359, 1037–1046. Smiell, J. M. 1998. Clinical safety of becaplermin (rhPDGF-BB) gel. Am. J. Surg., 176 (Suppl 2A), 68S–73S. Smiell, J. M., Wieman, J., Steed, D. L. et al. 1999. Ef�cacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: A combined analysis of four randomized studies. Wound Repair Regen., 7, 335–346. Sulea, D., Albu, M. G., Ghica, M. V. et al. 2011. Characterization and in vitro release of chlorhexidine digluconate contained in type I collagen porous matrices. Rev. Roum. Chim., 56, 65–71. Tanihara, M., Suzuki, Y., Yamamoto, E., Noguchi, A. and Mizushima, Y. 2001. Sustained release of basic �broblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J. Biomed. Mater. Res., 56, 216–221. Thomsen, P. D. 1994. What is Infection? Am. J. Surg., 167 (Suppl 1), 7S–11S. Tredget, E. E., Shankowsky, H. A., Groeneveld, A. and Burrell, R. 1998. A matched-pair, randomised study evaluating the ef�cacy and safety of Acticoat silver-coated dressing for the treatment of burn wounds. J. Burn Care Rehabil., 19, 531–537. Walker, R. B. and Smith, E. W. 1996. The role of percutaneous penetration enhancers. Adv. Drug Deliv. Rev., 18, 295–301. Werner, S. and Grose, R. 2003. Regulation of wound healing by growth factors and cytokines. Physiol. Rev., 83, 835–870. Winter, G. D. 1962. Formation of the scab and the rate of epithelialization of super�cial wounds in the skin of the young domestic pig. Nat. Biotechnol., 193, 293–294. Wong, C., Inman, E., Spaethe, R. and Helgerson, S. 2003. Fibrin-based biomaterials to deliver human growth factors. Thromb. Haemost., 89, 573–582. Yamaguchi, Y. and Yoshikawa, K. 2001. Cutaneous wound healing: An update. J. Dermatol., 28, 521–534. Yudanova, T. N. and Reshetov, I. V. 2006. Modern wound dressings: Manufacturing and properties. Pharm. Chem. J., 40, 24–31. Zakrewska, M., Wiedlocha, A., Szlachcic, A., Krowarsch, D. and Otlewski, J. 2009. Increased protein stability of FGF-1 can compensate for its reduced af�nity for heparin. J. Biol. Chem., 284, 25388. Zhang, Y., Lim, C. T., Ramakrishna, R. and Huang, Z. M. 2005. Recent developments of polymer nano�bres for biomedical and biotechnological applications. J. Mater. Sci. Mater. Med., 16, 933–946. Zilberman, M., Golerkansky, E., Elsner, J. J. and Berdicevsky, I. 2009. Gentamicin-eluting bioresorbable composite �bres for wound healing applications. J. Biomed. Mater. Res., 89A, 654–666. 25 Chapter 25. Polymers for Artificial Joints 1. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. 2005. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 87(7):1487–1497. 2. Malchau H, Herberts P, Eisler T, Garellick G, Söderman P. 2002. The swedish total hip replacement register. J Bone Joint Surg Am 84 (Suppl 2):2–20. 3. Sierra RJ, Cooney WP 4th, Pagnano MW, Trousdale RT, and Rand, JA. 2004. Reoperations after 3200 revision TKAs: Rates, etiology, and lessons learned. Clin Orthop Relat Res 425:200–206. (b) O H 3 CO OCH 3 OCH 3 O Si O O n m (a) HO Si Si OH OH OH OH Apatite – O O O O O O O O Si Si Ca 2+ Ca 2+ Ca 2+ PO 4 3– OH – O – Body �uid Bone cement (d) 5 mm Bone Bone cement (c) Bone cement surface Apatite layer 0 d 10 μm 10 μm 7 d FIGURE 25.25 Schematic illustration of bone bioactive PMMA bone cement: (a) concept of bone bioactive cement, (b) chemical structure, (c) apatite formation in simulated body soaking ¥uid by SEM observation, and (d) pQCT image after 9 weeks implantation, Animal experiment. 4. Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS. 2003. Factors affecting the durability of primary total knee prostheses. J Bone Joint Surg Am 85(2):259–265. 5. Orthopedic medical device market in Japan 2007. In: Medical Bionics (Arti©cial Organ) Market 2007. Tokyo, Japan: Yano Research Institute, Ltd., pp. 275–344. 6. Harris WH. 1995. The problem is osteolysis. Clin Orthop Relat Res 311:46–53. 7. Sochart DH. 1999. Relationship of acetabular wear to osteolysis and loosening in total hip arthroplasty. Clin Orthop Relat Res 363:135–150. 8. ASTM F648-07, 2007. Standard speci�cation for ultra-high-molecular-weight polyethylene powder and fabricated form for surgical implants. West Conshohocken, PA: ASTM International. 9. ISO 5834-1, 2007. Implants for surgery—Ultra-high-molecular-weight polyethylene—Part 1: Powder form., Geneva, Switzerland: International Organization for Standardization. 10. Charnley J. 1961. Arthroplasty of the hip. A new operation. Lancet 27;1(7187):1129–1132. 11. Dupont JA, Charnley J. 1972. Low-friction arthroplasty of the hip for the failures of previous operations. J Bone Joint Surg Br 54(1):77–87. 12. Isaac GH, Dowson D, Wroblewski BM. 1996. An investigation into the origins of time-dependent variation in penetration rates with Charnley acetabular cups—Wear, creep or degradation? Proc Inst Mech Eng H 210(3):209–216. 13. Kurtz SM, Muratoglu OK, Evans M, Edidin AA. 1999. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20(18):1659–1688. 14. Wright TM, Bartel DL. 1986. The problem of surface damage in polyethylene total knee components. Clin Orthop Relat Res 205:67–74. 15. Connelly GM, Rimnac CM, Wright TM, Hertzberg RW, Manson JA. 1984. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene. J Orthop Res 2(2):119–125. 16. Oonishi H, Takayama Y, Tsuji E. 1992. Improvement of polyethylene by irradiation in arti�cial joints. Radiat Phys Chem 39(6):495–504. 17. Kyom oto M, Ueno M, Kim SC, Oonishi H, Oonishi H. 2007. Wear of ‘100 Mrad’ cross-linked polyethylene: Effects of packaging after 30 years real-time shelf-aging. J Biomater Sci Polym Ed 18(1):59–70. 18. Grobbelaar CJ, Du Plessis TA, Marais F. 1978. The radiation improvement of polyethylene prostheses: A preliminary study. J Bone Joint Surg Br 60:370–374. 19. Oonishi H, Wakitani S, Murata N, Saito M, Imoto K, Kim S, Matsuura M. 2000. Clinical experience with ceramics in total hip replacement. Clin Orthop Relat Res 379:77–84. 20. Wroblewski BM, Siney PD, Dowson D, Collins SN. 1996. Prospective clinical and joint simulator studies of a new total hip arthroplasty using alumina ceramic heads and cross-linked polyethylene cups. J Bone Joint Surg Br 78(2):280–285. 21. Li S, Burstein AH. 1994. Ultra-high molecular weight polyethylene. The material and its use in total joint implants. J Bone Joint Surg Am 76(7):1080–1090. 22. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH. 2001. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. J Arthroplasty 16(2):149–160. 23. Oonishi H, Kim SC, Takao Y, Kyomoto M, Iwamoto M, Ueno M. 2006. Wear of highly cross-linked polyethylene acetabular cup in Japan. J Arthroplasty 21(7):944–949. 24. McKellop H, Shen FW, Lu B, Campbell P, Salovey R. 2000. Effect of sterilization method and other modi�cations on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. A hip-simulator study. J Bone Joint Surg Am 82(12):1708–1725. 25. Dowd JE, Sychterz CJ, Young AM, Engh CA. 2000. Characterization of long-term femoral-head-penetration rates. Association with and prediction of osteolysis. J Bone Joint Surg Am 82(8):1102–1107. 26. Oparaugo PC, Clarke IC, Malchau H, Herberts P. 2001. Correlation of wear debris-induced osteolysis and revision with volumetric wear-rates of polyethylene: A survey of 8 reports in the literature. Acta Orthop Scand 72(1):22–28. 27. Röhrl S, Nivbrant B, Mingguo L, Hewitt B. 2005. In vivo wear and migration of highly cross-linked polyethylene cups a radiostereometry analysis study. J Arthroplasty 20(4):409–413. 28. Martell JM, Verner JJ, Incavo SJ. 2003. Clinical performance of a highly cross-linked polyethylene at two years in total hip arthroplasty: A randomized prospective trial. J Arthroplasty 18(7 Suppl 1):55–59. 29. Krushell RJ, Fingeroth RJ, Cushing MC. 2005. Early femoral head penetration of a highly cross-linked polyethylene liner vs a conventional polyethylene liner. A case controlled study. J Arthroplasty 20(7 Suppl 3):73–76. 30. D’Antonio JA, Manley MT, Capello WN, Bierbaum BE, Ramakrishnan R, Naughton M, Sutton K. 2005. Five-year experience with Cross�re highly cross-linked polyethylene. Clin Orthop Relat Res 441:143–150. 31. Heisel C, Silva M, dela Rosa MA, Schmalzried TP. 2004. Short-term in vivo wear of cross-linked polyethylene. J Bone Joint Surg Am 86:748–751. 32. Sychterz CJ, Engh CA Jr, Engh CA. 2004. A prospective, randomized clinical study comparing Marathon and Enduron polyethylene acetabular liners: 3 year results. J Arthroplasty 19:258. 33. Engh CA Jr, Stepniewski AS, Ginn SD, Beykirch SE, Sychterz-Terefenko CJ, Hopper RH Jr, Engh CA. 2006. A randomized prospective evaluation of outcomes after total hip arthroplasty using cross-linked Marathon and non-cross-linked Enduron polyethylene liners. J Arthroplasty 21(6 Suppl 2):17–25. 34. Digas G, Karrholm J, Thanner J, Malchau H, Herberts P. 2003. Highly cross-linked polyethylene in cemented THA: Randomized study of 61 hips. Clin Orthop Relat Res 417:126–138. 35. Manning DW, Chiang PP, Martell JM, Galante JO, Harris WH. 2005. In vivo comparative wear study of traditional and highly cross-linked polyethylene in total hip arthroplasty. J Arthroplasty 20:880–886. 36. Hopper RH Jr, Young AM, Orishimo KF, McAuley JP. 2003. Correlation between early and late wear rates in total hip arthroplasty with application to the performance of Marathon cross-linked polyethylene liners. J Arthroplasty 18(7 Suppl 1):60–67. 37. Digas G, Karrholm J, Thanner J, Malchau H, Herberts P. 2004. Highly cross-linked polyethylene in total hip arthroplasty: Randomized evaluation of penetration rate in cemented and uncemented sockets using radiostereometric analysis. Clin Orthop Relat Res 429:6–16. 38. Bragdon CR, Barrett S, Martell JM, Greene ME, Malchau H, Harris WH. 2006. Steady-state penetration rates of electron beam-irradiated, highly cross-linked polyethylene at an average 45-month follow-up. J Arthroplasty 21:935–943. 39. Dorr LD, Wan Z, Shahrdar C, Sirianni L, Boutary M, Yun A. 2005. Clinical performance of a Durasul highly cross-linked polyethylene acetabular liner for total hip arthroplasty at �ve years. J Bone Joint Surg Am 87:1816–1821. 40. Ries MD, Scott ML, Jani S. 2001. Relationship between gravimetric wear and particle generation in hip simulators: Conventional compared with cross-linked polyethylene. J Bone Joint Surg Am 83 (Suppl 2):116–122. 41. Bradford L, Kurland R, Sankaran M, Kim H, Pruitt LA, Ries MD. 2004. Early failure due to osteolysis associated with contemporary highly cross-linked ultra-high molecular weight polyethylene. A case report. J Bone Joint Surg Am 86(5):1051–1056. 42. Moro T, T akatori Y, Ishihara K, Kyomoto M, Nakamura K, Kawaguchi H. 2009. Progress of research in osteoarthritis. Invention of longer lasting arti�cial joints. Clin Calcium 19(11):1629–1637. 43. Shibata N, Tomita N. 2005. The anti-oxidative properties of α-tocopherol in γ-irradiated UHMWPE with respect to fatigue and oxidation resistance. Biomaterials 26(29):5755–5762. 44. Suzuki M, Lee T , Miyagi J, Kobayashi T, Sasho T, Nakagawa K, Fujiwara K, Nishimura N, Kuramoto K, Moriya H, Takahashi K. 2010. Evaluation of vitamin E added ultra high molecular weight polyethylene in total knee arthroplasty. Joint ¥uid concentrations of tocopherol and matrix metalloproteinase 9. J Bone Joint Surg Br 92-B (Suppl I): 131. 45. Brach Del Prever EM, Bistol� A, Bracco P, Costa L. 2009. UHMWPE for arthroplasty: Past or future? J Orthop Traumatol 10(1):1–8. 46. Yoshida H, Morita Y, Ikeuchi K. 2003. Biological lubrication of hydrated surface layer in small intestine. In: Dowson D, editor. Tribological Research and Design for Engineering Systems. Amsterdam, the Netherlands: Elsevier, pp. 425–428. 47. Buckwalter JA, Rosenberg L. 1983. Structural changes during development in bovine fetal epiphyseal cartilage. Coll Relat Res 3(6):489–504. 48. Obara T, Mabuchi K, Iso T, Yamaguchi T. 1997. Increased friction of animal joints by experimental degeneration and recovery by addition of hyaluronic acid. Clin Biomech (Bristol, Avon) 12(4):246–252. 49. Ishikawa Y, Hiratsuka K, Sasada T. 2006. Role of water in the lubrication of hydrogel. Wear 261:500–504. 50. Long�eld MD, Dowson D, Walker PS, Wright V. 1969. “Boosted lubrication” of human joints by ¥uid enrichment and entrapment. Biomed Eng 4(11):517–522. 51. Ikeuchi K, Kusaka J, Yamane D, Fujita S. 1999. Time-dependent wear process between lubricated soft materials. Wear 229:656–659. 52. Milner ST. 1991. Polymer brushes. Science 251:905–914. 53. Nagasaki Y, Kataoka K. 1996. An intelligent polymer brush. Trends Polym Sci 4(2):59–64. 54. Edmondson S, Osborne VL, Huck WTS. 2004. Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33:14–22. 55. Dyer DJ. 2006. Photoinitiated synthesis of grafted polymers. In: Abe A et al., editors. Advances in Polymer Science. Berlin, Germany: Springer-Verlag, pp. 47–65. 56. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung UI, Nakamura K, Kawaguchi H. 2004. Surface grafting of arti�cial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater 3:829–837. 57. Moro T, Takatori Y, Ishihara K, Nakamura K, Kawaguchi H. 2006. 2006 Frank Stinch�eld Award: Grafting of biocompatible polymer for longevity of arti�cial hip joints. Clin Orthop Relat Res 453:58–63. 58. Moro T, Kawaguchi H, Ishihara K, Kyomoto M, Karita T, Ito H, Nakamura K, Takatori Y. 2009. Wear resistance of arti�cial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads. Biomaterials 30(16):2995–3001. 59. Ishihara K, Ueda T, Nakabayashi N. 1990. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 22(5):355–360. 60. Brash JL. 2000. Exploiting the current paradigm of blood-material interactions for the rational design of blood-compatible materials. J Biomater Sci Polym Ed 11(11):1135–1146. 61. Zwaal RF, Comfurius P, van Deenen LL. 1977. Membrane asymmetry and blood coagulation. Nature 268(5618):358–360. 62. Hayward JA, Chapman D. 1984. Biomembrane surfaces as models for polymer design: The potential for haemocompatibility. Biomaterials 5(3):135–142. 63. Yamazaki K, Saito S, Tomioka H, Miyagishima M, Kobayashi K, Miyake T, Ishii H, Kawai A, Aomi S, Tagusari O, Niwaya K, Nakatani T, Kobayashi J, Kitamura S, Kihara S, Kurosawa H. 2006. Clinical trial of EVAHEART: Next generation left ventricular assist device. Circulation J 70 (Suppl 1):59. 64. Myers GJ, Gardiner K, Ditmore SN, Swyer WJ, Squires C, Johnstone DR, Power CV, Mitchell LB, Ditmore JE, Cook B. 2005. Clinical evaluation of the Sorin Synthesis oxygenator with integrated arterial �lter. J Extra Corpor Technol 37(2):201–206. 65. Myer s GJ, Johnstone DR, Swyer WJ, McTeer S, Maxwell SL, Squires C, Ditmore SN et al. 2003. Evaluation of Mimesys phosphorylcholine (PC)-coated oxygenators during cardiopulmonary bypass in adults. J Extra Corpor Technol 35(1):6–12. 66. Faja det J, Wijns W, Laarman GJ, Kuck KH, Ormiston J, Münzel T, Popma JJ, Fitzgerald PJ, Bonan R, Kuntz RE; ENDEAVOR II Investigators. 2006. Randomized, double-blind, multicenter study of the Endeavor zotarolimus-eluting phosphorylcholine-encapsulated stent for treatment of native coronary artery lesions: Clinical and angiographic results of the ENDEAVOR II trial. Circulation 114(8):798–806. 67. Gershlick A, Kandzari DE, Leon MB, Wijns W, Meredith IT, Fajadet J, Popma JJ, Fitzgerald PJ, Kuntz RE; ENDEAVOR Investigators. 2007. Zotarolimus-eluting stents in patients with native coronary artery disease: Clinical and angiographic outcomes in 1,317 patients. Am J Cardiol 100(8B):45M–55M. 68. Kandzari DE, Leon MB. 2006. Overview of pharmacology and clinical trials program with the zotarolimus-eluting endeavor stent. J Interv Cardiol 19(5):405–413. 69. Sakurai R, Hongo Y, Yamasaki M, Honda Y, Bonneau HN, Yock PG, Cutlip D, Popma JJ, Zimetbaum P, Fajadet J, Kuntz RE, Wijns W, Fitzgerald PJ; ENDEAVOR II Trial Investigators. 2007. Detailed intravascular ultrasound analysis of Zotarolimus-eluting phosphorylcholine-coated cobalt-chromium alloy stent in de novo coronary lesions (results from the ENDEAVOR II trial). Am J Cardiol 100(5):818–823. 70. Kandzari DE, Leon MB, Popma JJ, Fitzgerald PJ, O’Shaughnessy C, Ball MW, Turco M et al. 2006. Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: A randomized controlled trial. J Am Coll Cardiol 48(12):2440–2447. 71. Abizaid A, Popma JJ, Tanajura LF, Hattori K, Solberg B, Larracas C, Feres F, Costa Jde R Jr, Schwartz LB. 2007. Clinical and angiographic results of percutaneous coronary revascularization using a trilayer stainless steel-tantalum-stainless steel phosphorylcholine-coated stent: The TriMaxx trial. Catheter Cardiovasc Interv 70(7):914–919. 72. Abizaid A, Lansky AJ, Fitzgerald PJ, Tanajura LF, Feres F, Staico R, Mattos L et al. 2007. Percutaneous coronary revascularization using a trilayer metal phosphorylcholine-coated zotarolimus-eluting stent. Am J Cardiol 99(10):1403–1408. 73. Han SH, Ahn TH, Kang WC, Oh KJ, Chung WJ, Shin MS, Koh KK, Choi IS, Shin EK. 2006. The favorable clinical and angiographic outcomes of a high-dose dexamethasone-eluting stent: Randomized controlled prospective study. Am Heart J 152(5):887, e1–e7. 74. Kwok OH, Chow WH, Law TC, Chiu A, Ng W, Lam WF, Hong MK, Popma JJ. 2005. First human experience with angiopeptin-eluting stent: A quantitative coronary angiography and three-dimensional intravascular ultrasound study. Catheter Cardiovasc Interv 66(4):541–546. 75. Airoldi F, Di Mario C, Ribichini F, Presbitero P, Sganzerla P, Ferrero V, Vassanelli C et al. 2005. 17-Betaestradiol eluting stent versus phosphorylcholine-coated stent for the treatment of native coronary artery disease. Am J Cardiol 96(5):664–667. 76. Rodriguez A, Rodríguez Alemparte M, Fernández Pereira C, Sampaolesi A, da Rocha Loures Bueno R, Vigo F, Obregón A, Palacios IF; LASMAL investigators. 2005. Latin American randomized trial of balloon angioplasty vs coronary stenting for small vessels (LASMAL): Immediate and long-term results. Am J Med 118(7):743–751. 77. Bakhai A, Booth J, Delahunty N, Nugara F, Clayton T, McNeill J, Davies SW, Cumberland DC, Stables RH; SV Stent Investigators. 2005. The SV stent study: A prospective, multicentre, angiographic evaluation of the BiodivYsio phosphorylcholine coated small vessel stent in small coronary vessels. Int J Cardiol 102(1):95–102. 78. Shinozaki N, Yok oi H, Iwabuchi M, Nosaka H, Kadota K, Mitsudo K, Nobuyoshi M. 2005. Initial and follow-up results of the BiodivYsio phosphorylcholine coated stent for treatment of coronary artery disease. Circ J 69(3):295–300. 79. Hausleiter J, Kastrati A, Mehilli J, Schühlen H, Pache J, Dotzer F, Glatthor C, Siebert S, Dirschinger J, Schömig A; ISAR-SMART-2 Investigators. 2004. A randomized trial comparing phosphorylcholinecoated stenting with balloon angioplasty as well as abciximab with placebo for restenosis reduction in small coronary arteries. J Intern Med 256(5):388–397. 80. Boland JL, Corbeij HA, Van Der Giessen W, Seabra-Gomes R, Suryapranata H, Wijns W, Hanet C et al. 2000. Multicenter evaluation of the phosphorylcholine-coated biodivYsio stent in short de novo coronary lesions: The SOPHOS study. Int J Cardiovasc Intervent 3(4):215–225. 81. Kuiper KK, Nordrehaug JE. 2000. Early mobilization after protamine reversal of heparin following implantation of phosphorylcholine-coated stents in totally occluded coronary arteries. Am J Cardiol 85(6):698–702. 82. Grenadier E, Roguin A, Hertz I, Peled B, Boulos M, Nikolsky E, Amikam S, Kerner A, Cohen S, Beyar R. 2002. Stenting very small coronary narrowings (<2 mm) using the biocompatible phosphorylcholinecoated coronary stent. Catheter Cardiovasc Interv 55(3):303–308. 83. Kyomoto M, Moro T, Konno T, Takadama H, Yamawaki N, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. 2007. Enhanced wear resistance of modi�ed cross-linked polyethylene by grafting with poly(2-methacryloyloxyethyl phosphorylcholine). J Biomed Mater Res A 82(1):10–17. 84. Kyomoto M, Moro T, Miyaji F, Hashimoto M, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. 2008. Effect of 2-methacryloyloxyethyl phosphorylcholine concentration on photo-induced graft polymerization of polyethylene in reducing the wear of orthopaedic bearing surface. J Biomed Mater Res A 86(2):439–447. 85. Kyomoto M, Moro T, Miyaji F, Hashimoto M, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. 2009. Effects of mobility/immobility of surface modi�cation by 2-methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for arti�cial joints. J Biomed Mater Res A 90(2):362–371. 86. Brown SA, Hastings RS, Mason JJ, Moet A. 1990. Characterization of short-�bre reinforced thermoplastics for fracture �xation devices. Biomaterials 11(8):541–547. 87. Kurtz SM, Devine JN. 2007. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869. 88. Wang A, Lin R, Stark C, Dumbleton JH. 1999. Suitability and limitations of carbon �ber reinforced PEEK composites as bearing surfaces for total joint replacements. Wear 225–229:724–727. 89. Joyce TJ, Rieker C, Unsworth A. 2006. Comparative in vitro wear testing of PEEK and UHMWPE capped metacarpophalangeal prostheses. Biomed Mater Eng 16(1):1–10. 90. Latif AM, Mehats A, Elcocks M, Rushton N, Field RE, Jones E. 2008. Pre-clinical studies to validate the MITCH PCR Cup: A ¥exible and anatomically shaped acetabular component with novel bearing characteristics. J Mater Sci: Mater Med 19(4):1729–1736. 91. Yu S, Hariram KP, Kumar R, Cheang P, Aik KK. 2005. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 26(15):2343–2352. 92. Fan JP, Tsui CP, Tang CY, Chow CL. 2004. In¥uence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials 25(23):5363–5373. 93. Kyomoto M, Ishihara K. 2009. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly(ether-ether-ketone) by photo-irradiation. ACS Appl Mater Interfaces 1(3):537–542. 94. Kyomoto M, Moro T, Takatori Y, Kawaguchi H, Nakamura K, Ishihara K. 2010. Self-initiated surface grafting with poly(2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone). Biomaterials 31(6):1017–1024. 95. Giancaterina S, Rossi A, Rivaton A, Gardette JL. 2000. Photochemical evolution of poly(ether ether ketone). Polym Degrad Stab 68(1):133–144. 96. Wang H, Brown HR, Li Z. 2007. Aliphatic ketones/water/alcohol as a new photoinitiating system for the photografting of methacrylic acid onto high-density polyethylene. Polymer 48(4):939–948. 97. Yang W, Rånby B. 1999. Photoinitiation performance of some ketones in the LDPE–acrylic acid surface photografting system. Eur Polym J 35(8):1557–1568. 98. Qiu C, Nguyen QT, Ping Z. 2007. Surface modi�cation of cardo polyetherketone ultra�ltration membrane by photo-grafted copolymers to obtain nano�ltration membranes. J Membr Sci 295(1–2):88–94. 99. Nguyen HX, Ishida H. 1986. Molecular analysis of the melting behaviour of poly(aryl-ether-etherketone). Polymer 27(9):1400–1405. 100. Cole KC, Casella IG. 1992. Fourier transform infrared spectroscopic study of thermal degradation in �lms of poly(etheretherketone). Thermochim Acta 211:209–228. 101. Qiu KY, Si K. 1996. Grafting reaction of macromolecules with pendant amino groups via photoinitiation with benzophenone. Macromol Chem Phys 197:2403–2413. 102. Kuehn KD, Ege W, Gopp U. 2005. Acrylic bone cements: Composition and properties. Orthop Clin North Am 36(1):17–28. 103. Charnley J. 1964. The bonding of prostheses to bone by cement. J Bone J oint Surg Br 46:518–529. 104. Buchholz HW, Elson RA, Engelbrecht E, Lodenkämper H, Röttger J, Siegel A. 1981. Management of deep infection of total hip replacement. J Bone Joint Surg Br 63(3):342–353. 105. Wahlig H, Dingeldein E. 1980. Antibiotics and bone cements. Experimental and clinical long-term observations. Acta Orthop Scand 51(1):49–56. 106. Hope PG, Kristinsson KG, Norman P, Elson RA. 1989. Deep infection of cemented total hip arthroplasties caused by coagulase-negati ve staphylococci. J Bone Joint Surg Br 71(5):851–855. 107. Ishihara K, Arai J, Nakabayashi N, Morita S, Furuya K. 1992. Adhesive bone cement containing hydroxyapatite particle as bone compatible �ller. J Biomed Mater Res 26(7):937–945. 108. Lee RR, Ogiso M, Watanabe A, Ishihara K. 1997. Examination of hydroxyapatite �lled 4-META/MMATBB adhesive bone cement in vitro and in vivo environment. J Biomed Mater Res 38(1):11–16. 109. Morita S, Kaw achi S, Yamamoto H, Shinomiya K, Nakabayashi N, Ishihara K. 1999. Total hip arthroplasty using bone cement containing tri-n-butylborane as the initiator. J Biomed Mater Res 48(5):759–763. 110. Sakai T, Morita S, Shinomiya K, Watanabe A, Nakabayashi N, Ishihara K. 2000. Prevention of �brous layer formation between bone and adhesive bone cement: In vivo evaluation of bone impregnation with 4-META/MMA-TBB cement. J Biomed Mater Res 52(1):24–29. 111. Sakai T, Morita S, Shinomiya K, Watanabe A, Nakabayashi N, Ishihara K. 2000. In vivo evaluation of the bond strength of adhesive 4-META/MMA-TBB bone cement under weight-bearing conditions. J Biomed Mater Res 52(1):128–134. 112. Ohtsuki C, Miyazaki T , Kyomoto M, Tanihara M, Osaka A. 2001. Development of bioactive PMMA-based cement by modi�cation with alkoxysilane and calcium salt. J Mater Sci: Mater Med 12(10–12):895–899. 113. Miyazaki T, Ohtsuki C, Kyomoto M, Tanihara M, Mori A, Kuramoto K. 2003. Bioactive PMMA bone cement prepared by modi�cation with methacryloxypropyltrimethoxysilane and calcium chloride. J Biomed Mater Res A 67(4):1417–1423.