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Abstract

ARToolkit is a very successful and robust marker system used for Augmented
Reality (AR), its robust performance has spawned many applications in AR
and computer vision. ARToolkit consists of several 2D planar fiducial marker
patterns and software that recognizes and identifies these markers in images.
It functions well in finding markers, however its performance with respect to
false positive detections and inter-marker confusion could use improvement.
Quite often markers are confused for one another or falsely detected in the
background. ARToolkit markers consist of a square black border enclosing a
pattern that is compared to several stored patterns by correlation. This paper
proposes a method to robustify this marker system by replacing this correlation
step with a digital symbol method. The interior greyscale pattern is replaced
by a digital pattern of 36 bits which contains a unique ID number protected
from false detection with the digital code techniques of checksums and forward
error correction (FEC). This proposed new system, ARTag has a very low
and numerically quantifiable error rate, has a reduced processing time, and
can encode up to 2046 different unique ID’s with no need to store patterns.
Experimental results are shown validating this method.
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1 Introduction

Designing markers to add to the environment for robust detection in camera and video
imagery is a computer vision application useful to Augmented Reality, position track-
ing, photo-modeling and robot navigation. Augmented Reality (AR) or Mized Reality
consists of rendering virtual objects in real imagery, and is typically intended for ap-
plications using a head mounted display (HMD). The camera image for a monocular
system, or the images from two cameras in a binocular system, are overlaid with ren-
dered virtual objects and then presented to the eyepiece displays inside the HMD. If
the pose of a camera on an HMD is correctly determined, the virtual objects can be
rendered onto the camera image(s) with correct location and perspective to provide
the illusion of being present.

The HMD or camera’s pose can be determined with magnetic field, radio, active
LED or laser beacons; or most simply and inexpensively, with passive marker patterns
and computer vision. The future promises passive camera localization systems using
only the natural environment, but for now the most robust and available systems use
patterns or objects added to the environment for the vision system to detect in order
to localize the camera.

2D planar patterns can be added to the environment and recognized in the camera
images. A 2D planar marker system consists of both a set of planar patterns and the
associated computer vision algorithms to recognize them in an image. Some sytems
allow the full six degrees of freedom of pose as required for augmented reality systems.
3D objects can be rendered using the position of the recognized pattern in the image
(if some intrinsic camera parameters are known). Pose information can be extracted
from the homography [15] that describes the pattern to image plane mapping.

Metrics describing performance of fiducial marker systems are; 1) the false positive
rate, 2) the inter-marker confusion rate, and 3) the false negative rate. The false
positive rate is the rate of falsely reporting the presence of a marker when none is
present. The inter-marker confusion rate is the rate of when a marker is detected,
but the wrong id was given, i.e. one marker was mistaken for another. Finally, and
possibly the least serious, is the false negative rate, where a marker is present in an
image but not reported. The false positive and false negative rates are at odds with
one another, and represent a tradeoff between missing a marker and seeing a non-
existent one. With ARToolkit, this is directly manipulated by the user by setting a
threshold confidence parameter. With ARTag, this tradeoff was done in the algorithm
design when the the number of digital bits of checksum was balanced with the number
of bit errors the error correction would be set to correct.

Several 2D pattern systems are available (Section 2), of which A RToolkit [13, 16]
applications constitute a large share of AR systems (ISMAR [8] is an augmented
reality conference with many ARToolkit application papers). Zhang [21] performs a
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survey of several fiducial marker systems including ARToolkit with respect to pro-
cesssing time, identification, image position accuracy with respect to viewing angle
and distance. ARToolkit is popular becaue it is simple, robust, and freely available.
It is a successful and popular system consisting of a square black marker on a white
background. If a marker is successfully located, the four corners are used to compute
the camera pose for rendering virtual objects to augment natural imagery.

ARToolkit markers consist of a square black border enclosing a pattern that is
compared to several stored patterns. The marker recognition occurs in two stages;
firstly recognizing quadrilateral contours that could be the markers’ outside bound-
aries, and secondly by correlating this interior pattern with the known patterns. This
paper proposes a method to robustify this marker system by replacing this second
step with a digital symbol method. In this proposed method, this interior pattern
is replaced with a 6x6 grid of square regions of solid black or white colouring. This
encodes a 36-bit binary code which is a encoded form of a smaller 10 bit ID number
with checksums and error correction redundancy. This system is called ARTag.

As with ARToolkit, ARTag locates potential marker projections in an image by
first finding the four sided border contour, and using the corner points to create a
sampling grid to extract an appearance vector. ARToolkit (usually) uses a 16x16 grid
of interior points, sampled with 256 grey levels. ARTag only samples a 6x6 grid in
the interior, and thresholds to extract a 36-bit code of single 0’ or "1’ symbols. This
digital code is analyzed digitally instead of comparing greyscale image patches by
correlation. The different approach is conceptually similar to the difference between
digital radio communications such as modern cell phones, and analog radio. A non-
linear decision is made early in the processing path and the analog signal quantized to
one of several discrete levels with subsequent processing performed on digital symbols.

As with ARToolkit, all four possible rotation configurations are tried. Forward
error correction (FEC) is used to robustify the system and can recover the 10 bit ID
code with several of the interior region bits occluded or erroneously sampled.

There are three main advantages to this system; an almost zero false detection rate,
a simpler system requiring no stored patterns, and a smaller marker size. The first
is the principle motivator for ARTag, it reduces the probability of falsely identifying
one marker for another, or a piece of the background as a marker, to a probability of
< %0.0079.

2 Planar Marker Systems

Many of the practical machine vision systems used in industry use two dimensional
patterns to carry information in a manner similar to the ubiquitious bar code seen
on consumer products. The purpose is to carry information, not to localize as is



needed for augmented reality. The US Postal Service uses the Mazicode marker to
convey shipping information (Fig.1). Data matriz and QR (Quick Response) are two
other examples designed to contain information are used in industrial settings for
part labelling (also shown in Fig.1). The above three all use or have provision for
error correction methods to recover the data when some of the bits are incorrectly
read. ECC200 [4] is a standard for Data matriz 2D patterns and uses Reed Solomon
error correction, which can recover from situations where part of the information read
from the pattern is corrupted. Data Matrix and QR are used for Direct Part Marking
(DPM) to identify and convey information along an assembly line (see [1] for the
automotive industry).

Datamatrix, Maxicode and QR all have a common thread of encoding data using
binary values for reflectance, the pattern is typically bitonal reducing the decision
made per pixel to a threshold decision. This reduces the lighting and camera sensi-
tivity requirement and removes need for linearization of the signal (i.e. no attempts
are made to identify shades of grey). Another component is that of redundant in-
formation allowing for error detection and correction to increase the overall success
rate.

The steps in the three commercial systems shown at the top of Fig. 1 are; 1)
Identification of the marker, 2) Alignment of sampling axis with the marker pattern,
3) Digitization of the image intensity to a binary logic '0’ or '1°, 4) Error Detection
and Correction, and finally 5) Decoding of the corrected bit pattern into usable infor-
mation. The first step, identification, uses some unique identifier to find the marker
in the image, for example the bull’s eye concentric rings in the Maxicode system.
The second stage, alignment, attempts to line up the pattern for digitization. This
second stage is analogous to a linear bar code scanner that uses calibration stripes
at the beginning, end and sometimes middle to use to linearly interpolate positions
within to make binary sampling decisions. Finding the peaks in spatial frequency
plots (usually FFT’s) is used in both linear and two dimensional patterns to identify
the spatial frequency and phase of the dominant repetitive intervals. The third stage
of digitization is a threshold procedure, either absolute or local, to abstract to a field
of 0’s and 1’s. Error detection and correction is something not seen as much in com-
puter vision as in other fields such as telecommunications, and is a well understood
class of methods to statistically improve the data integrity rate to a very reliable level.

Locating and identifying simple planar patterns is also used by several photogram-
metry, position tracking, and augmented reality systems where less information is
carried in the marker, typically only enough to identify it from others. In applica-
tions such as photogrammetry, the size of the marker is an issue. In general, the less
dense the information is in the marker, the less the minimum pixel requirement is
and as a result, the greater the range of distance that the marker can be from the
camera.
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Figure 1: Several planar pattern marker systems. Data Matriz, Maxicode and QR are
industrial systems used for carrying data. The circular Intersense markers are used
in position tracking. ARStudio and ARToolkit are patterns designed specifically for

augmented reality applications. ARTag is the new marker system introduced in this
paper.



Small markers can be made by encoding a ring of segments around a circular dot.
Several commercially available circular fiducial marker systems exist using a single
broken annular ring around a circular dot such as Photomodeler’s ”Coded Marker
Module” [7], or positioning products from Aicon[2], Capture3D [3], and others. These
systems are used for photogrammetry applications such as measuring the ”as built”
measurements of industrial plants or the deformation of automobile parts after crash
tests. Several use special photoreflective material in the markers which reflect light
from a light source mounted on the camera [5]. The number of possible markers is
limited, the camera resolution will limit the number of segments that the annular
ring can be broken into. Typically there is no more than 8 segments that are present
and absent, limiting to a handful the size of the marker library. Any error checking
redundancy will reduce this set further. Knyaz and Sibiryakov [17] divide the space
between a central circle and a ring into 10 sites for solid dot to sit, since each dot
requires an empty space beside this is equivalent to dividing an annular ring into 20
segments. However, after addressing rotation and reflection, only 76 ID’s are possible.
The Intersense markers [19, 6] in Fig.1 extend this concept to several radii. However,
all these circular fiducial markers must be seen in sets (more than one at a time) to
allow pose calculation and hence the total pixel size required starts to grow.

The distinguising feature of systems designed for augmented reality such as AR-
Toolkit and ARSTudio [18] is that only one marker is usually visible so the fiducial
marker must have some distinct points, at least four, so as to extract orientation
with perspective distortion. ARToolkit, for example, uses the quadrilateral outline to
accurately locate the four corner points to a sub-pixel accuracy. These four points are
on the furthest extent of the pattern to get as much orientation accuracy as possible.

The popular ARToolkit, and the new ARTag system introduced in this paper, were
designed for augmented reality applications [9], but are can also be used for landmarks
in robot control [12] and mobile robot navigation [11]. The issues of reliability and a
minimal false positive and inter-marker confusion rate addressed in this paper apply
equally to these domains also.

3 ARToolkit

ARToolkit [13] is very popular by designers and users of augmented reality and Human
Computer Interaction (HCI) systems due to it’s available source code and ubiquity
of use.

ARToolkit is a marker system devised by Dr. Hirokazu Kato of Osaka University,
Japan, and supported by the University of Washington !. The markers are planar
and can easily be printed out and mounted to a flat card or wall, several are shown in

"http:/ /www.hitl.washington.edu/artoolkit /



Fig. 2. ARToolkit markers consist of a square black border with a variety of different
patterns in the interior. The quadrilateral black outline is analogous to the unique
feature for step 1: Identification in the above listed commercial systems. The corners
are used for Alignment, they then define a sampling grid inside the pattern which is
sampled to provide a 256 element feature vector which is compared (in four possible
orientations) to a library of known markers.

hiro kan ji samplel alpha—a alpha_c
alpha_g robot_pat3 robot_patd patternd_4 patternd_1

Figure 2: ARToolkit markers. Top row and G’ marker on second row are part of
the set of original markers used. 2nd and 3rd from the left on the second row are
markers made in our lab to reduce inter-marker confusion. Rightmost two markers
on the second row are the DCT based markers from Owen et al.[10] also designed to
address the misidentification problem with ARToolkit.

ARToolkit’s robust operation is due in part to its utilization of the large con-
trast between white paper and black ink, the difference can allow the use of a single
greyscale threshold to distinguish between them. This threshold is the sole parameter
given to ARToolkit’s arDetectMarker() function and is used for the first stage where
the image is binarized. ARToolkit first finds black quadrilateral borders by finding
connected groups of pixels below this level, the contours of these groups are found
and those contours with four straight sides are identified as potential markers. These
first few stages are shown in the middle three images in Fig. 3.

The corners of the quadrilateral contours are used to remove the perspective dis-
tortion and bring the internal pattern to a canonical front view. In practice the four
corners are used to define a homography which is used to sample a N x N grid of
greyscale values inside (typically 16 x 16 in the original version although some users
modify this to 32 x 32). This region is correlated with several reference grids loaded
in from pattern files associated with each marker id. ARToolkit outputs a so called



Figure 3: The first few stages of ARToolkit marker extraction. ARToolkit takes an
input image and a grey level threshold parameter and reports the location of markers
detected in the image. Left to right; 1) the original image, 2) connected components of
pizels with a grey level less than the threshold parameter, 3) external border contours
extracted from the connected regions, 4) quadrilateral contours identified and their
corners located, and 5) extracted markers labelled and overlaid over the input image.

confidence factor which is the result of a normalized vector dot product between the
sampled 16x16 (or 32x32) vector and the stored prototypes. Presence of a marker
is simply determined by a threshold value on this confidence value. Similar marker
patterns, especially the Kanji and letter A’ patterns in the original set provided with
the software, are frequently mistaken for one another.

To use a marker in ARToolkit, one needs both a printable image of the marker to
mount on a flat panel, and a corresponding pattern file. The pattern file contains 12
reference grids, which are three versions of each of four possible rotation positions.
The three versions are intended to be taken at different lighting and distance con-
ditions to span the range of possible appearances of the marker when seen by the
camera. Instead of rotating the sampled N x N grid, there is instead four pre-rotated
versions available in the pattern file. Fig. 4 below shows three markers and what the
data inside their corresponding pattern files look like.

5 [OEE [EE

= B e = =

Figure 4: ARToolkit markers and their corresponding pattern files. (Left to right);
1) the Hiro marker image, 2) the pattern file patt.hiro, 3) the Kangji marker image,
4) the pattern file patt.kanji, 5) the Samplel marker image, and 6) the pattern file
patt.samplel.

Some of the original ARToolkit markers are shown in Fig.1. Owen [10] demon-
strates that these original patterns inside the black border are not necessarily optimal,
and proposes others based on spatial frequency components.
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4 ARTag

ARTag is a planar pattern marker system developed at the National Research Coun-
cil of Canada that has 2046 markers, with improved performance to ARToolkit in
identification and verification, and no need of pattern files.

ARTag is a new system designed to address some of the shortcomings of ARToolkit.
The main problem with ARToolkit is that it falsely detects markers where there are
none, and frequently confuses them. The paradigm of using a square border with an
interior pattern is maintained, but the processing of the internal pattern is replaced
with a digital approach.

The feature of ARToolkit that, in the eyes of this author, contributes most to its
functionality is the use of only black and white for the border, using only two extremes
of reflectance in a marker allows many issues of image capture and greyscale non-
linearity to be avoided. This binary decision is extended in ARTag from just defining
the border to defining the inner pattern as well.

The ARToolkit square border is useful for AR since it has four prominent corner.
Four points allow the full extraction of the 6 degree of freedom (DOF) of the relative
marker to camera pose (assuming the camera focal length is known). ARTag extends
this concept by allowing both polarities of borders; a black border on a white back-
ground and an white border on a black background, whereas ARToolkit uses only the
former. This allows a doubling of the space of possible ID’s with no extra marker size
or complexity.

ARTag was designed to contain the successful elements of ARToolkit and Data-
matrix, and take the best of both and make a minimal but robust system for AR.
Datamatrix has a robust data communication capability but requires that the pattern
be mostly parallel to the image plane (viewed straight on) and can only adjust for
affine warping by using the 'L’ shaped locator, i.e. with 3 points instead of the 4
required to correct for perspective distortion. Datamatrix is not suitable to be viewed
with any non-negligible perspective distortion. Datamatrix is also designed to carry
more information than just an ID and so it is typically larger and requires more image
pixels, reducing the range of distances from the camera that it can be used at.

Several ARTag markers are shown in Fig. 7. The main characteristics are a square
border of either polarity (white on black or black on white) and a 6 x 6 square grid
dividing up the interior. The whole marker is 10 x 10 units, with a border of thickness
2 units leaving 36 cells in the interior to carry information.

Each cell is only black or white and carries one bit of digital data. Thus a 36-
bit word can be extracted from a camera image of the marker once the boundary is
determined. Detecting this boundary is performed in the same way as ARToolkit (at
least in the first version of ARTag complete at the time of this writing) by thresholding
a greyscale version of the image, performing connectivity of pixels above and below
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this threshold, and finding those connected objects with a quadrilateral boundary (as
shown in Fig. 3).

Once quadrilateral border contours have been located, the internal region is sam-
pled with a 6 x 6 grid and assigned digital symbols ’0’ or "1’ using the same threshold
used to find the border. All subsequent processing to verify and identify the marker
is performed digitally. Four 36-bit binary sequences are obtained from the 2D 6 x 6
digital symbol array, one for each of the four possible rotation positions. Only one of
the four sequences may end up being validated in the decoding process. The 36-bit
binary sequence encoded in the marker encapsulates a 10-bit ID using digital meth-
ods. The extra 26 bits provide redundancy to reduce the chances of false detection
and identification, and to provide uniqueness over the four possible rotations. The
Cyclical Redundancy Check (CRC) and forward error correction are digital methods
used to identify if the 36-bit code is part of the ARTag marker set, and to extract its
ID.

These methods use a digital algebra called GF-2 or Modulo-2 mathematics and
involves concepts of addition using logical XOR, convolution and deconvolution op-
erators, and generating polynomials which are prime numbers in this base 2 number
system. It is beyond the scope of this paper to explain other than to describe that
in practice one manipulates short binary symbol sequences with various operators,
the most important one to ARTag marker decoding is the deconvolution/division
operator. The reader is directed to [20], digital communications and storage texts,
and standards documents for more information. In two stages of decoding ARTag
markers, digital codes are divided by specially chosen binary polynomials where the
dividend and remainder are both used.

The system can be abstractly described as a communication system, where a 10-
bit ID is attempted to be sent through a medium of image capture to be received
by the ARTag vision software. The creation of a marker pattern from an ID is the
encoding phase, and the recognition of an ID from the extracted 36-bit code is the
decoding phase.

There are three main stages for encoding when creating the 2D pattern to mount
in the environment, with their operations performed in reverse when finding ARTag
markers. The digital encoding operations are shown in Fig. 5 below. An ARTag
marker image is created by filling the marker according to the 36-bit sequence created
by this encoding from an input ID number 0-2047 (excluding 682 and 1706). The ID
range 0-2047 is spanned by an 11-bit binary number, the MSB of which decides if the
border will be black on white or vice versa. The remaining lower 10 bits are called
the sub-ID herein.

The printing of the marker pattern, the reflectance of the marker, lighting, other
objects in the scene, light capture and digital image formation by the camera in-
cluding noise, and perspective pose of the marker all constitute the ”communications
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medium”. After a 6 x 6 grid of binary symbols is extracted from the image, the digital
decoding steps outlined in Fig. 6 are performed and the verdict of ARTag marker
presence or not is decided, and the ID reported if present.

The XOR, operation is used to scramble the codes a bit since it’s expected that
users would use the lower numbers 0,1,2,... etc and to make the ID of 0 usable.

The CRC-16 polynomial (also known as CRC-CCITT in the fields of data storage
and communication) is z'% + z'? 4+ 2% + 1 and is applied by convolving the XOR’d
ID with the binary string 10001000000100001. The deconvolution in the decoder is
similar to a division operation yielding a dividend and remainder. The remainder
must be 0 otherwise the code is considered to not be from an ARTag marker, only
2%6 of the possible binary sequences pass this test protecting against random codes
found from quadrilateral objects in the camera view that are not ARTag markers.

The forward error correction (FEC) decoding block is the most sophisticated dig-
ital processing component of the ARTag system and allows several erroneous bits in
the input 36-bit code to be detected and repaired. This increases the false positive
rate by a bit but improves the false negative rate by recognizing codes that are close
to a correct code, that are likely an ARTag code with a sampling error due to sources
such as an imperfect threshold, misalignment of the detected quadrilateral border,
specular reflections inside the pattern and general image noise.

ARTag
sub-ID =p
(0-1023)

XOR CRC-16
MASK Convolution

Figure 5: Digital encoding process : creating ARTag markers. A sub-ID number (the
lower 10 bits of the ARTag ID) is converted to a 10-bit binary sequence which goes
through several stages to produce a 36-bit binary sequence which is encoded in the
marker as white and black cells.

Two ARTag ID numbers, 682 and 1706, are absent from the ARTag marker library
reducing the library size to 2046. The reason for this is that the sub-ID 682 is a
degenerate case that leads to a 36-bit code containing all 0’s. This would translate
to a fully black interior which will be frequently falsely detected in the environment.

5 False Positive Marker Detection
One failure mode of a marker detection system is when a marker is erroneously

reported when it does not exist, i.e. the sytem reports that a marker is present
when it is not. With ARToolkit and ARTag this could happen when quadrilateral
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36-bit Try all 4\ =p FEC CRC XOR ARTag

-) d -) N Error Detection =) -»
coda Rotations / =\ _.; correotion Deconvolution MASK sub-ID
- (0-1023)

Figure 6: Digital decoding process : confirming and identifying ARTag ID’s in the
binary pattern from the interior of an ARTag marker. The binary pattern from the
marker as seen in the camera image is converted into four possible 36-bit codes for
each possible rotation. Fach code passes through the FEC stage which can detect and
correct some bit errors, the result is then analyzed by a CRC checksum-like procedure
to verify if it belongs in the ARTag marker set. If it is, a payload 10-bit binary number
(sub-ID) is extracted and combined with the border polarity and reported as a located
ARTag marker.

shapes are found in the environment, and the interior pattern passes the verifica-
tion/identification test as shown in Fig. 8. This is a problem with ARToolkit, re-
ducing false positives is the motivation for much of the effort spent on implementing
ARToolkit. Improving performance usually means creating the ARToolkit pattern
files for a specific application, using the same camera and lighting as used in the
application. Using the arSavePatt() function to save the interior pattern as seen by
that camera in the environment of the application is recommended, this will give the
highest confidence factor (c.f.) when the marker is seen. The main purpose of this is
to allow the threshold for c.f. to be set as high as possible for the purpose of reducing
false positives. However, this only alleviates the problem and reduces the flexibility,
the application can not be easily moved to another camera and environment without
reducing the c.f. and getting more false positives as a result.

ARTag processes the internal pattern differently, it is sampled and processed as
a digital code and has a much lower false positive rate which can be mathematically
described. 1023-4 = 4092 of those digital codes map to a correct ARTag marker
viewed from one of four orientations. There are 36 points sampled within the pattern,
giving 23¢ = 68.7 billion digital codes from an arbitrary randomly filled quadrilateral.
The forward error correction accepts %35.6 of them (24.5 billion) as ”correctible”. A
correctible code is one that either contains 0-N error bits from a correct ARTag code
(N=number of bits the FEC can correct, =2 in the first version of ARTag released),
or one that contains more error bits but fools the FEC into thinking it was corrected.
With N=2, each valid ARTag 36-bit code would be mapped from 1+ 36 + 36% = 1333
36-bit codes, yielding 4092-1333 = 5.45 million 36-bit pattern interiors which would
cause ARTag to report the presence of a marker. So the probability of a false positive
detection from a random 36-bit number is 22310 — 7.9.1075 = %0.0079, or about one

68.7-10
in 12,600. Therefore a non-marker quadrilateral has a %0.0079 chance of producing a
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Figure 7: ARTag markers. 36 out of the range of 2046 markers in the ARTag marker
library. A 10-bit code is contained in the interior pattern, protected by checksums
and forward error correction (FEC) to greatly reduce false positives and inter-marker
confusion. Unlike ARToolkit which only uses a black border on a white background,
ARTag uses both polarities of border andlgackground to extend the library size. The
inner codes are repeated for markers 1024-2047 where the border is white on black.



Figure 8: Eramples of ARToolkit false positives. Detected markers are overlaid over
the image. Black quadrilateral regions, such as between the keyboard keys, or the
computer monitor or doorway have interior pizels that correlate to one of the marker
definitions with a c.f. value above the threshold resulting in a false positive detection.

false positive marker event assuming equal likelihood of pattern interiors (which is not
usually the case giving an even more rare probability). Most natural (non-marker)
quadrilaterals in the environment are solid black, or contain much less entropy than
the ARTag pattern interiors.

A comparison experiment was performed with several image sequences which do
not contain any ARToolkit or ARTag markers to collect statistics on false positives.
Both the ARToolkit code and the ARTag library were compiled into one program so
that they both saw the exact same image frames. Table 1 shows the results for marker
detection with video from several cameras which were moved around our lab in which
no ARToolkit or ARTag markers were present, thus any marker detection is a false
positive. Three different USB webcams and a Sharp VL-AH150U NTSC camcorder
were used, and the camcorder was digitized with two different frame grabbers; an
ATI All-in-Wonder card and a USBLive USB peripheral. The movie ”Bladerunner”
(Ridley Scott 1982) was also used as an image sequence in order to get more random
and varied imagery than video footage from our lab. The c.f. value of the false
positive markers detected by ARToolkit were used to classify them.

Looking at the results in Table 1, one could suggest simply raising the threshold
c.f. factor to 0.90 and thus avoid all false positives for ARToolkit. However, then the
problem of false negatives, declaring there is no marker present when there really is,
starts to be a problem. The c.f. values depend on the pattern files and the camera
and environment used. So to put Table 1’s data in perspective, the confidence values
seen when the markers were present with the same conditions (except the movie of
course) were recorded. The c.f. values were recorded for four markers as a function of
the marker width in pixels. The markers were moved forward and backward from the
cameras and the confidence value plotted with respect to the pixel distance between
two corners of the marker. Four different markers were used and their curves overlaid
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Imagery ARToolkit ARTag
Camera/Sequence | Frames/ || c.f.= | cf=|cf=|cf=|cf=]|cf=|cf=
Dura- 0.50 | 0.60 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90
tion

NTSC, ATI 2723 604 | 175 | 34 15 9 3 0
2 mins

NTSC, ATI 3514 799 | 235 | 21 9 3 3 0
2 mins

NTSC, USBLive 3318 786 | 401 | 120 | 70 0 0 0
2 mins

Intel CS120 1450 261 | 135 | 94 88 70 27 27
2 mins

Intel PC Pro 1318 395 | 68 19 14 3 0 0
2 mins

Intel PC Pro 1318 395 68 19 14 3 0 0
2 mins

Telemax WC50 2893 727 | 410 | 10 3 0 0 0
2 mins

Movie 215625 || 7917 | 2418 | 408 | 180 | 112 0 0

(Bladerunner) 120 mins

Table 1: Comparison between false positive detection rates between ARToolkit and
ARTag in several image sequences. Different cameras were moved around a room
devoid of either markers so that all detections would be false positives. A single com-
mon set of ARToolkit pattern files were used. The detection rates for the ARToolkit
markers are given for several confidence factor (c.f.) threshold values; the lower the
c.f. threshold, the higher the number of false positives. Note that no false positive
ARTag markers are declared in any of the frames.

(Fig. 9. Looking at these graphs we see that the markers need to be at least 40 pixels
wide to have a chance of detecting them often if the confidence value threshold is set
as high as 0.75. Setting the threshold to 0.90 would yield only occasional detection
which would likely not be useful.

No ARTag false positives were seen in any of the experiments, or noticed when
using the system, however the probability is still non-zero, about ﬁ as mentioned
above. However, this is the probability after a quadrilateral has been found assuming
equal likelihoods of all 36-bit codes. Whereas most quadrilateral shapes in the envi-
ronment will likely not have a full frequency content as the ARTag patterns do (the
pseudorandom nature of the convolution codes used give a wide use of the spatial
frequency domain). In fact, most of the time a quadrilateral shape from the envi-
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ronment is mostly all dark or all white. Therefore the probability of false positive
detection is less than %0.0079 explaining why it is not unexpected to see zero false
positives even in an experiment as large as conducted in Table 1.

Sharp VLH150 NTSC cmaera and
framegrabber (640 x 480)

P

Intel PC Pro Wehcam (640 x 480)

Telemax WC50 Webcam (320 x 480)

0.88 | = ! g ——T J—
o ;‘ ‘rlb!l:}.#;l'lf ‘ x"’_llF'A

Figure 9: ARToolkit Confidence value (c.f.) plotted as a function of marker width in
pizels for four cameras used in Table 1. The ’Hiro’, 'Kanji’, Samplel’ and ’Robot4’
markers from Fig. 2 were used, and their results overlaid.

The conditions of these two experiments were a bit harsh, in that the pattern files
were not customized and the video is of random, unstructured scenes. The pattern
files were the ones provided (in the original ARToolkit release) and not customized
for that camera and lighting. Many ARToolkit applications have a constrained en-
vironment where the camera is fixed and mostly only markers move into the field
of view. The procedure of creating pattern files, not having any other black quadri-
laterals appear often, and adjusting the c.f. threshold to balance false positives and
negatives will likely work in constrained applications. However, it is inconvenient to
do this preparation and limits the general use such as augmented reality for the mass
consumer market. The low false positive rate, and removal of the need to capture pat-
tern files are advantages of ARTag over ARToolkit. Also, the improved false positive
performance allows ARTag to be used for other applications such as robot navigation
with ARTag markers as landmarks.

6 Uniqueness of Markers: Reducing Inter-Marker
Confusion

As well as a low false detection rate, a good marker system should have a low rate
of confusion between markers. For example, if an ARTag marker #208 is reported
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by ARTag as marker #146 due to some error, the usefulness and robustness of the
system would be called into question. The user should have a high confidence that
one marker won’t be mistaken for another. In the real world one cannot have 100%
but with proper marker system design the rate that this occurs can be minimized,
ideally to very low levels that don’t appear in practice.

In this failure mode, the marker has passed the unique feature test, which is
having a quadrilateral shape for ARToolkit and ARTag. The second stage of reading
the unique inner code can fail and the wrong id can be reported. Owens et al. [10]
explores the simularity between ARToolkit markers with the Mean Squared Error
(MSE) approach. An intrepretation of the MSE approach is that of considering the
image patches inside as 256 (for the original 16 x 16 ARtoolkit sampling) element
vectors and finding the euclidean distance between them. They report the MSE
between the ”"Kanji” and letter ”A” in the originally released ARToolkit marker set
as 0.498 and an MSE of 0.820 between the letters 'C’ and 'G’ (these markers are in
Fig. 2). These are in the same units as ARToolkit’s confidence value and mean that
even with the c.f. threshold set to 0.80, those markers can still be often confused.
They proposed a new set of markers which aim to reduce the MSE to nil by using
the orthogonality between different spatial frequencies. Users of ARToolkit inevitably
end up trying different marker patterns to reduce confusion, such as the robot3” and
”robot4” markers created in our lab to try achieve less confusion for an application
of ARToolkit for robot control [12]. However, the problem is only reduced, and the
set of possible markers must be kept small to allow uniqueness.

This new proposed ARTag system does not use image correlation, instead the
internal pattern is sampled into a digital code and processed from there as digi-
tal symbols. The inter-marker confusion rate can be analyzed by considering the
probability of mistaking one code of digital symbols for another. A measure of how
easily two binary codes can be confused with each other is to calculate the Hamming
distance[14], which is simply the sum of the differences between two digital sequences.
For example, if the sequences 01001 and 00011 are lined up, one can count two bits
which are different thus they are said to have a Hamming distance of 2 from one
another. The probability of an inter-marker confusion event can be calculated using
knowledge of the Hamming distances within a marker set.

Each ARTag marker pattern can be turned into another if the right '1’ and ’0’
symbols are changed. Ideally the Hamming distance should be as high as possible
between all possible markers, taking rotation and optionally mirroring into consider-
ation.

The probability that a digital code can be mistaken for another in a set of codes
is given by a summation of the probabilities that the given marker can be falsely
recognized as each of the other codes in the set. If there are 36 bits in a code set,
such as our system, and the Hamming distance between code A and code B is 10,
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then the probability of A been seen as B (or vice versa) is the probability of exactly
the correct 10 bits been flipped which is p'®(1 — p)* where p is the probability of a
bit been flipped. In our case, each marker contains a sub-ID code encoded in one of
four orientations, so we need to add together all four probabilities. If A can be turned
into B with a Hamming distance (H.D.) of H.D.=10 with no rotation, of H.D.=12 at
a rotation of 90°, H.D.=16 at 180°, and H.D.=24 at 270°, then the total probability
is: p%(1—p)® +p'2(1—p)2+p'%(1—p)2° +p?* (1 —p)'2. If we also consider mirroring,
the case that B is seen in a mirror, then we need to add four more terms.

If we want to find the probability that A can be mistaken for any other code
in the set, we add these four (for rotation only) or eight (rotation and mirroring)
probabilities for each marker. We can add the probabilities together by grouping
together all the cases of equal Hamming distance. Thus we can express the frequency
of each Hamming distance by making a function, or histogram, of Hamming distances
HD(n) where HD is the number of cases where a Hamming Distance of n occurs.
Thus we can use Eqn.2 where the bit error rate p is decoupled from the inter-marker
Hamming distances. Since p depends on many factors in the system, the Hamming
distance histogram can be calculated for the marker set itself, independent of the
system.

To calculate the final probability P(# A) that a marker A can be mistaken for
another (in the set used in a system), the bit error rate p in Eqn.1. p(n) and ¢(n)
are the probability of n bits being falsely and correctly detected, respectively. If the
bit errors are uncorrelated and independent events, then the probability of n bits
toggling falsely is p(n) = p" and not toggling is ¢(n) = (1 —p)" allowing us to rewrite
the probability as Eqn. 2.

The probability of inter-marker confusion is now divided into two parts; the system
dependent probabilities (noise, etc), and the component due to the distinctiveness of
the markers themselves represented by the Hamming distance histogram. In this way,
we can optimize, i.e. reduce, the probability of inter-marker confusion for any system
by optimizing this histogram H D(n). We seek to reduce the frequency of those of low
values of n. The more that the histogram can be pushed out to the right (if plotted
as in this paper), and the lower HD(n) is for the first few (low n value) non-zero
values of HD(), the more immune to inter-marker confusion a marker set will be.

P(#A4) = Z:l HD(n) - p(n)q(36 —n) (1)
P(# 4)= 3 HD()- (1~ ™" ®)

This Hamming distance histogram will be different for each candidate symbol A.
If the histograms are added together for all markers in the set, Eqns.1 or 2 can be
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used to find the probability that any marker in the set will be mistaken for any other
marker in the set, giving a single probability of inter-marker confusion.

6.1 Designing the ARTag Libary

When applying Eqn.1, the first few non-zero entries (for low n) will dominate the
calculated probability. This defines a measure of the total marker set to optimize:
measure the Hamming distance between every possible marker and all others in all
four possible rotation positions, aggregate this into a histogram of Hamming distances,
and attempt to reduce the minimum non-zero value and area under the first part of
the histogram.

This measure was taken into account when designing the system. Using the sys-
tem shown in Figs. 5,6 we see the parameters are the 10-bit XOR mask, the checksum
convolution code and the convolution codes used for the FEC. These could be vari-
ables in designing the marker system. The XOR mask does not affect the Hamming
distances due to the linearity of the GF-2 operators used (it’s effect can be moved to
the output as XOR’ing with a fixed 36-bit XOR mask), the CRC-16 convolution poly-
nomial was kept constant due to its successful use in communications and data storage
[20]. This leaves the choice of convolution polynomials chosen for use in the forward
error correction as variables to change to obtain an optimal histogram of Hamming
distances measured for the full marker set. All possible combination were tried and
the FEC polynomials that produced the best hamming histogram considering only ro-
tation were chosen. The negative phenomenon of mirroring was considered less likely
to occur and so not considered in the Hamming distance calculations at this stage to
relax the constraints. Mirroring was addressed (Section 6.2) when non-recommended
sub-ID’s were chosen (Section?7).

Since the same internal patterns are used for ARTag ID’s 0—1023 and 1024 —1047,
the following histograms in this paper are only calculated within the sub-ID set 0-
1023 since the markers border of white/black or black/white separates them into two
sets which are very unlikey to be confused with each other.

The best Hamming distance histogram was chosen both for the minimum Ham-
ming distance, and the area of the histogram in the first few entries at and after this
minimum distance. This histogram is shown graphically and as a table in Fig. 10.
The minimum Hamming distance is 4 symbols, there is six combinations that are that
close. The peak of the histogram is at a Hamming distance of 18, due to the total code
size being 36 bits and the use of convolution polynomials that have a pseudorandom
nature. The histograms produced by several other choices of convolution polynomials
are shown in Fig.11.

Looking at Hamming distance histograms of the chosen system in Fig. 10 and the
best four second place contender systems in Fig.11, we see they all start with values
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at n = 4, however the chosen system has six elements at this distance as opposed
to only one in the other four contenders. This would seem contrary to the stated
goal of decreasing the first few histogram bin entries, however, not only the first bin
entry was taken into consideration. These four other choices were not chosen due to
the higher value at n = 10, the first few combinations at n = 4 can be removed by
removing from a recommended marker list the markers that cause them. The five
choices all had about the same value at n = 6 and n = 8, but the chosen system had
the least number of marker pairs at a Hamming distance of n = 10. It was felt this
would have a greater effect on a probability calculation and overall system robustness
than the n = 4 markers. The markers who contributed to the n = 4 bins could be
simply removed from use, since taking a few out from the total library size of over
2000 markers would not affect system usefulness. These markers were not declared
illegal, as is sub-ID #682 (markers #682,1706), but rather were put on both the
not-recommended list (see Table 3) and moved down on the order of recommendation
list (Table 2).

6.2 Adressing Reflections

A marker system should not confuse markers if they are seen in reflections, one marker
sub-1D should not be mistaken for another if seen in a mirror. Therefore the Hamming
distance histogram should be calculated for the case of the 6x6 codes being mirrored.
It is assumed that in most cases a system would not want to detect markers unless
they are seen un-mirrored, and so the Hamming distance between a marker and its
reflection should be high also.

The Hamming distances of mirrored markers were not added to the histograms
in Section 6.1 since they are expected to occur less often, and bringing them into
the initial design analysis would add a constraint that would result in a system with
a reduced inter-marker confusion immunity for the most common event of markers
seen directly without a mirroring surface in the marker-camera optical path. How-
ever, their effect is analyzed and used in creating some recommendations in choosing
markers.

The Hamming distance histogram is shown in Fig.12. The entry at n = 2 is for
sub-ID #270 which is close to a mirrored image of itself by only two bits different.
It thus appears on the not-recommended list (Table 3), and appears last in the rec-
ommended order sequence in Table 2. Likewise, 9 other sub-ID’s were placed on the
not-recommended list and placed low in the recommended order sequence to allow
an ARTag user to avoid having these few bad combinations raise the inter-marker
confusion probability rate.
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Figure 10: Hamming distances between ARTag markers. Shown as a histogram with
the number of marker pair combinations displayed as a function of the Hamming

distance.

For example, siz combinations of two ARTag markers (out of the set of

1023) can be changed to be identical to the other (at a specific orientation) with 4 bit
changes. Likewnise there are 1387 pairs of patterns that differ by 10 bit changes.
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mials. The FEC polynomial set chosen in Fig. 10 was selected for ARTag due to the
minimum area below a Hamming distance of 11 bits, even though the selected set has
6 entries in the lowest Hamming distance=4 bin. There are siz possible polynomials
available, giving 15 possible sets for use when correcting up to two bit errors in a
marker. These four histograms plus Fig. 10 constitute 5 out of these possible 15 sets.
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6.3 Recommended Subset of the ARTag Libary

The range of ARTag ID’s is 0-2047 with 2 forbidden values; 682 and 1706, leaving
2046 values allowed for use. A further 44 ID’s are not recommended to decrease
the inter-marker confusion rate. 22 sub-ID numbers were identified from the above
Hamming distance experiments, which translates into 44 ID’s (due to the white/black
and black/white border polarity). 12 sub-ID’s are not recommended because they
map to another with only a Hamming distance of 4. Another 10 are chosen from the
mirror image Hamming distance histogram, these resemble too closely themselves or
another marker when seen in a mirror. A good marker system should only recognize
a marker when seen directly, not in a reflection. For example, sub-ID 270 has a
Hammming Distance of only two to a reflection of itself.

The most recommended markers follow in Table 2.

The least recommended codes, chosen for their Hamming distances to themselves
or other markers taking rotation and mirroring into account are listed below in Table
3 along with their reasons. If possible, it is advised to not use these.

In summary of the inter-marker confusion rate analysis; it was performed to make
design decisions within ARTag, and was used to provide a way to the users to choose
a marker set to minimize this condition.

The probability of this undesirable event occuring was shown to be divisible into
a system dependent, and code set dependent component. The latter is represented
with a distribution of Hamming distances H D(n) between marker sub-ID’s, which are
an aggregate sum of the number of bit changes n it takes to confuse one marker with
another. Formulae (Eqns.1,2) for calculating the inter-marker confusion rate using
this histogram were presented.

Different histograms were shown, depending on whether they considered the phe-
nomenon of markers been seen in a reflection or not, and were made for different
marker sets. All of the histograms contained the inter-marker Hamming distances
for all four possible relative rotations between each marker pair considered. The set
of all 1023 sub-ID’s were considered without mirroring to select which FEC convo-
lution polynomials would be used in ARTag. A histogram involving mirroring was
calculed for all 1023 sub-ID’s and the most problematic markers were put on a not-
recommended list (Table 3).

For most applications, all 2046 markers will not be necessary and hence a priority
order list was made (available in the downloadable ARTag library, the first 72 elements
of which are in Table 2). A user takes the top k& markers in order from the top of
this list to obtain a low inter-marker confusion rate. One way to do this is to call
the ARTag library function artag_get_id() function sequentially. This can be done
by replacing ARToolkit’s init_artoolkit() pattern loading function if one is modifying
an existing ARToolkit application. An example of the benefit of taking the sub-
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Figure 13: Minimum Hamming distances: A histogram of the minimum Hamming
distance between all markers in a set, considering rotation and mirroring. (Upper
Left) Histogram if all legal 1023 sub-ID’s are used. (Upper Right) Histogram if 1002
recommended sub-ID’s (all 0-1023 except 682 and the 22 sub-ID’s listed in Table
3 (Lower Left) Histogram using set of first sequential 50 sub-ID’s. (Lower Right)
Histogram using smaller set of first 50 most recommended sub-ID’s from Table 2,
the benefit of using the recommended list 1s demonstrated by the absence of histogram
entries before n = 12.
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ID’s from this list instead of chosing them arbitrarily was shown in Fig.13. Here
the Hamming distance histogram was calculated for a marker set containing the first
50 sequential sub-ID’s (#0-49) and compared to a marker set containing the first
50 sub-ID’s from Table 2. In this way an application can be made very immune to
inter-marker confusion.

7 ARTag and ARToolkit Minimum Pattern Size
and the False Negative Detection Rate

The size of the marker, as seen in the image, along with the image resolution and
camera focal length sets the range of minimum and maximum distances that the
marker can be seen. Ideally this range should be as large as possible, and thus the
marker system should function requiring as small as possible of a size requirement in
pixels.

Zhang [21] reports a minimum width of 14 pixels required for detection, however
only one marker was used, and his experiments with multiple markers were performed
with the ARToolkit markers being at least 60 pixels wide. This correlates with the
our experiment shown in Fig. 9 where three of the cameras used reached a plateau
in c.f. value around this width (somewhere 30-50 pixels).

With ARTag and the cameras used in this paper, one needed about 35-40 pixels
wide to get over %95 detection, lower than a %5 false negative detection rate. The
markers could occasionally be detected as small as 12 pixels wide. With the marker
pattern being 10 units wide, that would set the lower bound and twice that (a width of
20 pixels) should be attainable with good optics and a low noise imager. The cameras
used in these experiments were consumer USB cameras and an NTSC camera and so
were of fairly low quality and better results, such as the < %5 false negative detection
rate observed, is anticipated for high quality cameras. The full experimental results
for our experiments of detection rate (1.0 - false negative rate) is shown below in
Table 4.

In practice, when designing a system using ARTag or ARToolkit, the border needs
to contrast a background. The marker widths mentioned above are only of the border,
the white/black border is important for the unique identification and thus the marker
panel should have a minimum area of background black or white enlarging the total
size by at least a few pixels. For best operation, one should have as much as 50%
of the marker width extra of background around the marker when mounting them in
the environment.

The false negative rate is a function of the first half of the marker detection system,
that of finding the border, whereas the false positive and inter-marker confusion rates
are a function of the second half. This second half is addressed in creating this new
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system called ARTag, and more improvements improving the false negative rate are
a future work.

8 Processing Time

The processing time a fiducial marker system takes is important, ARToolkit’s real
time performance is one reason for its ubitquity in AR systems. Theoretically ARTag
should be faster since it only samples 6x6 points inside each quadrilateral instead of
16x16 or 32x32 as in ARToolkit. Also the first operation performed on the extracted
binary data is a deconvolution operation with a small number of memory lookups
for the FEC’s operation. This should be less computations than the 16x16 integer
multiplication with each of the 12 sub-patterns in each loaded pattern file. A 16x16
point (default) implementation of ARToolkit does 3072 multiplications for correlating
and another 256 multiplications for normalizing the sampled image patch. If 10
patterns were loaded, then ARToolkit must perform 33,280 integer multiplications
for every quadrilateral object found in the image. ARTag only has to perform a 36-
bit divide/ deconvolution operation and perform two searchs among lookup tables of
12 bytes long, all together this only has to be done once to evaluate the first step. If
this first step of FEC filtering is passed, three more deconvolution and an XOR stage
are performed. The processing time per quadrilateral in the image does not rise with
the number of markers in the library with ARTag as it does with ARToolkit. ARTag
can recognize from the library of 2046 markers as quickly as if only 10 markers are
used.

A large part of the processing time is identifying the quadrilaterals, this first
half of the marker system (as described in the last section) performed similarly for
both ARToolkit and ARTag and involves visiting each pixel in the image once for
thresholding and then performing connectivity. Therefore, we expect a constant time
if no markers are visible, and then an increased processing time for visible markers.

The time in milliseconds was measured before and after the marker detection
function was called, the times are given below in Table 5 for both ARToolkit and
ARTag, for two different cameras and several numbers of visible markers. These
measurements were taken on a PC running Windows 2000 with a Pentium 4 processor
running at 3.0 GHz. An Intel CS120 USB webcam running with DirectX’s DirectShow
library and a firewire (IEEE 1394) Dragonfly digital video camera with the provided
SDK from Point Grey Research were tested. ARToolkit was loaded with 10 pattern
files. The time measurement was not able to be measured with a good granularity
when using the IEEE 1394 Dragonfly camera (in increments of 15 ms only) and so
only ranges of times are reported.

ARTag is similar to ARToolkit in processing time for the case of there being no
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markers visible, but has an improved performance as the number of markers rise, for
example ARTag only takes 9ms as opposed to 22ms for ARToolkit when 48 markers
are visible in the field of view.

9 ARTag Usage

ARTag is available for download 2, 2, * for evaluation and usage in non-commercial
systems. A header file artag_revX.h and a library file for Windows and Linux programs
is provided, along with sample applications.

An existing ARToolkit application can be readily converted with a few simple
steps; including the header file, calling the initialization function init_artag(image_width,image_height),
and simply replacing calls to ARToolkit’s arDetectMarker() function call with the
function artagDetectMarker() which will return detected markers in the same data
structure as ARToolkit. New applications can more simply instead call the func-
tion artag_find_marker() or artag_find_marker_white_only(), the latter of which saves
processing time by only looking for ARTag markers in the range 0-1023.

The application will work well using sequential sub-ID’s of 0,1,2,...etc, but en-
hanced immunity to inter-marker confusion can be gained by pulling sub-ID’s from
the recommended list by calling artag_get_id() in place of ARToolkit’s init_artoolkit()
pattern loading function. In this way a set of ARToolkit markers with large inter-
marker Hamming distances will be chosen.

10 Conclusions

A new marker system, called ARTag was created to improve apon the successful
ARToolkit marker system based on passive vision of 2D planar markers. The quadri-
lateral border concept of ARToolkit was used along with a digitally encoded, error
corrected ID code to replace ARToolkit’s pattern recognition and identification step.
ARTag has a library of 2046 unique ID markers without the need to load any pattern
files. ARTag manages to achieve a low false negative rate comparable to ARToolkit,
but has a vastly lower false positive error rate (%0.0079) and very low inter-marker
confusion rate.

The ARTag system was designed to lower the probabilities of false positive de-
tection and inter-marker confusion and successfully reduced both by a large amount
relative to ARToolkit. The processing time performance is also superior when many
markers are visible simultaneously.

2 /http:/ /www.cv.iit.nre.ca/research/ar/downloads.html
3 /http:/ /www.cs.ualberta.ca/ fiala/artag (tilda before fiala)
4 /http:/ /www.millennium3engineering.com /artag/
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ARTag is available for download for evaluation and free usage in non-commercial
systems.
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# | ARTag | H.D. | # | ARTag | HD. | # | ARTag | H.D. | # | ARTag | H.D.
sub-ID sub-ID sub-1D sub-I1D
ol 4B - 18] 24HE] 12 |36 106 E| 12 |54 ] 740BE] 12
1| 57EI| 16 [[19] 25E| 12 [[37] 202H| 12 [55] 83sE| 12
2 | 260 16 |20 26 12 [ 38 2008 | 12 [ 56] 954 B | 12
3 sE| 14 (21 30BI] 12 [39] 227 EH| 12 [ 57 oBl| 10
4] 52Bd] 14 {22 3sHE| 12 40| 237 EH| 12 | 58 1 10
50 50BX] 14 23] eoBEX| 12 [[41] 245 ] 12 [ 50| 12E] 10
6| 65B| 14 [[24] 64BI| 12 [42] 252BE1| 12 [60] 13E] 10
71 244aBE| 14 [[25] 72 12 [43] 26s | 12 [61] 17 10
8| 307R| 14 [[26] 73 12 [[44 | 2718 EH| 12 [62] 20 10
9 540 EX| 14 [[27] 74BE| 12 45| 30sB®I| 12 [ 63| 23] 10
10 920B] 14 [[28] 76 EX| 12 [46| 311 BA] 12 [ 64| 27 10
11| 2B 12 [[20] o9oBE| 12 |47 320B8] 12 [[65] 28 10
2] 6 12 | 30] 102 12 [[48| 518 ] 12 [66] 20BE| 10
3] 7 12 [ 31] 1asBE| 12 (49| 534 B] 12 [67] 32 10
14 oEA[ 12 ||32] 158 E| 12 |50 604 | 12 [[68] 35K 10
5] 4B 12 [[33] 161E| 12 |51 6208 12 [69] 40 10
6] 15E] 12 [[34] 191 E| 12 ||52] 646 12 [70] 2B 10
17] 10HE] 12 [[35] 192H| 12 [[53| 673®| 12 |71 43BE| 10

Table 2: Recommended order of creating a set of ARTag markers for an application.
Select the marker sub-ID’s in ascending from Order=0, creating a marker set in this
way will maximize the Hamming distance between any of the markers which min-
imizes the chance of inter-marker confusion. The third column for each entry lists
the Hamming distance (H.D.) for the set of markers from Order = 1 up until that
entry. For example, using the first 50 markers in this table (Order = 0 - 49) will
result in a minimum Hamming distance between any two markers in the library of
12. Likewise, taking the first 68 markers (Order = 0 - 67) will result in a mimi-
mum H.D. of 10. This information is available in the artag_recommended|order] and
artag_recommended_hd|order] statically defined arrays in the ARTag library.
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ARTag Marker
Not Recommended

Reason

ARTag Marker
Not Recommended

Reason

ARTAG | sub-ID ARTAG | sub-ID
ID ID

75,1099 75 HD=4 to sub-ID 692 || 655,1679 655 HD=4 to sub-ID 898
at 90° ccw E El ot 180°

192,1216 192 HD=4 to sub-ID 686 || 686,1710 686 HD=4 to sub-ID 192
| Ed ot 90° cow ] Bl ot 90° cw

182,1206 182 HD=4 to itself 692,1716 692 HD=4 to sub-ID 75
% mirrored at 90° cw at 90° cw

270,1294 270 HD=2 to itself 736,1760 736 HD=4 to sub-1D 574
B mirrored at 90° cw E B a¢ 180°

377,1401 377 HD=4 to sub-ID 933 || 791,1815 791 HD=4 to itself
B H ot 90° cow | mirrored at 90° ccw

384,1408 384 HD=4 to itself 828,1852 828 HD=4 to sub-ID 609
mirrored at 90° ccw H B mirrored at 0°

507,1531 507 HD=4 to sub-ID 966 || 898,1922 898 HD=4 to sub-ID 655
H E3 nirrored at 0° E E ot 180°

574,1598 574 HD=4 to sub-ID 736 || 927,1951 927 HD=4 to sub-ID 938
E H at 180° B B ot 90° cew

609,1633 609 HD=4 to sub-ID 828 || 933,1957 933 HD=4 to sub-ID 377
& B mirrored at 0° [+ B ot 90° cw

643,1667 643 HD=4 to itself 938,1962 938 HD=4 to sub-ID 927
53] mirrored at 180° 1 B ot 00° cw

648,1672 648 HD=4 to itself 966,1990 966 HD=4 to sub-ID 507
B mirrored at 90° ccw 3 B mirrored at 0°

Table 3: ARTag markers not recommded for use due to small Hamming distances
(HD); either with the normal (non-mirrored) case, or in the special case of a marker
been seen in a mirror. Six of the markers (sub-ID’s 182, 270, 384, 643, 648, 791) are
close to their own reflections.
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Imagery ARTag Detection Rate
Camera Camera || Width | Width | Width | Width | Width | Width
Type Resolution || = 15 =20 | =25 | =30 | =35 | =40
NTSC, ATI 640 x 480 0.00 0.17 0.33 0.92 1.00 1.00
Intel PC Pro 640 x 480 0.04 0.49 0.70 0.73 0.85 1.00
Intel CS120 320 x 240 0.12 0.68 0.80 0.95 0.98 1.00
NTSC, USBLive | 320 x 240 0.11 0.60 0.99 1.00 1.00 1.00
Telemax WC50 | 320 x 240 0.11 0.37 0.87 0.87 0.99 1.00

Table 4: ARTag Detection rate for several cameras. Rate is given (0.00-1.00) of
when an ARTag marker is detected as a function of marker width in pixels. The
camera focus and ARTag binary threshold had to be adjusted for each test. The
tests consisted of presenting a grid of 9 markers and moving the camera (or zooming
the NTSC Camcorder) and recording the number detected over 100 frames. Note:
The Sharp NTSC camera was used with two frame-grabbers, it appears that the
USBLive frame-grabber has better results. However, it has half the image resolution
and so its results should be compared to a marker width twice as wide with the ATI
frame-grabber.

ARToolkit ‘ ARTag
Camera Number of Markers Visible | Number of Markers Visible
Type Resolution 0 24 32 48 0 24 32 48

Intel 320x240 || 3ms | 17ms | 22ms | 22ms || 2ms | 7Tms | 8 ms | 9 ms
CS120

IEEE 640 x 480 | 0-15 | 0-15 | 15-31 | 15-31 || 0-15 | 0-15 | 0-15 | O-15
1394 ms ms ms ms ms ms ms ms
Dragonfly

Table 5: ARToolkit and ARTag Processing Times as a function of camera and number
of markers present in the image. Tests were performed on a 3.0 GHz Pentium 4
processor PC. For both systems, the processing time per frame rises with the number
of markers to process.
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