AN75779 (Infineon

How to implement an image sensor interface
using EZ-USB™ FX3 in a USB Video Class (UVC)
framework

About this document

Scope and purpose

The high bandwidth provided by USB 3.0 puts high demands on ICs that connect peripherals to USB. This
application note focuses on a popular USB 3.0 application: a camera (image sensor interfaced with EZ-USB™
FX3) streaming uncompressed data into a PC. The application note highlights the EZ-USB™ FX3 features
specifically designed to maximize data throughput without sacrificing interface flexibility. This application note
also gives implementation details about the USB Video Class (UVC). Conforming to this class allows the camera
device to operate using built-in PC drivers and host applications, such as AMCap, Webcamoid, MPC-HC, and VLC
media player. Finally, the application note shows you how to use the flexible image sensor interface in EZ-USB™
FX3 to connect two image sensors to implement 3D imaging and motion-tracking applications.

Intended audience

This document is primarily intended for anyone need to implement an image sensor interface using EZ-USB™
FX3in a USB Video Class (UVC) framework.

Associated part family

CYUSB301x, CYUSB201x

More code examples? We heard you.

To access an ever-growing list of USB SuperSpeed, please visit our code examples web page.

Table of contents

About this dOCUMENT......ciuiiiiiiniiiiiiiiiiiiiraiitiiitiiiiaiiisitteisraistsestssissssssesssssssssssssssssssssssssssssssssssssses 1
Table Of CONtENES..c.ciiiiiiiriiiriiiiiiittiireiitiitteiiraiinseitseisrssnsestsssrsssrsssns 1
1 INErOUCEION .euuiriniiiniiriiirniiiniiiniiriiinieiiteicrasnsestseisrscsnsessssssssssrsssssssssssssssssssssssssssssssssssssssnsssans 4
1.1 MOTE INFOIMIATION...ctitiiiieieteeeeet ettt ettt sttt ettt et e e b s b e st e st et et e e e sesaesbessesenbenseneeneenesaens 5
2 USB Vide0 ClAass (UVC) . cucuuierrereecencenronsocsocesosssssscsscassssssssscasssssssssssssassssssssscssssssssssssssassssssssssasses 7
2.1 o [U] o [T = T L] g 1 - = YRR 7
2.2 (0] 01=T¢- 14 [0 gF-] N ele e [OOSR O PRPRRRRRON 7
2.3 USB VidEO Class rEQUIFEMENTSccuieerrieriirieriereetestesteste st stesseetestessessessesssessessesssessesssensesseessessesssenns 8
2.3.1 USB deSCHIPLOrS fOr UVC....couiiiiiiiieienieetesieseetestestesee et etesaestesse st essessesssessessesssessesnsessesssensessesnsenns 8
2.3.1.1 VidEO CONLIOLINTEITACE ..ottt sttt aees 9
2.3.1.2 Video Streaming iNterfaCe.....ccueiiiiieirieeeeet ettt sttt 9
2.3.2 UVC-SPECITIC FEQUESTS .ueeutieeieiecieeiecieeeetese et e e et e e s e et e te s e e sesse s st e sessaessessaessesessnessesseensessenssenses 10
2.3.2.1 Control requests - Brightness, PTZ control and extension unit control..........cccceeeeveevencnncen. 14
2.3.2.2 Streaming requests — Probe and commit CONtrolc.coeecveririinieniiinienesereneeeeee e 15
2.3.3 Video data fOrmMat: YUY2 ..ottt ettt sttt et ettt ettt s sb st ae st et e e saeas 16
2.3.4 UAV ORI Te [=ToNo F= ¢- J 41T T [T U 16
Application Note Please read the Important Notice and Warnings at the end of this document 001-75779 Rev. *L

www.infineon.com page 1 of 86 2021-10-27

http://www.infineon.com/
http://www.cypress.com/documentation/datasheets/cyusb301x-cyusb201x-ez-usb-fx3-superspeed-usb-controller
http://www.cypress.com/101781

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |nf| neon
USB Video Class (UVC) framework

Table of contents

2.35 STILLIMAEE CAPTUIE .ottt ettt sttt sb e st s et e s e et e sat et e sbe st esbesaeenaenee 18
2.35.1 Method 2 Still iMage CAPLUIEeieeeeeeeeeee ettt sae e eas 18
3 GPIF 11image SeNSor iNterface....cccccireiiniienreniaeiresiacsestesisesrestascsesrascsessssssssssssascasssssssssssssassassss 20
3.1 IMAEE SENSON INTEITACEcuiriirieiiteieectreee ettt sttt ettt s b e st e st e tenaenaesaeseenasaeas 20
3.1.1 GPIF 11 iNterface reqUIrEMENTS.......ccicieiieeeeeesteceeste st tes e e b e ste s e e ae e e et e be e e estesse e s e sessaensensaessenes 20
3.2 Pin mapping of image SENSOr INTEITACE.....ccvi i 21
3.3 PING-PONE DMA DUFFEIS «.cuviiiieiiieieteeeeeer ettt sttt ettt st st s bt e st s e e e e enasbeas 22
34 DESIGN STIATEEY c.eveieeiiirierieeieere st ste s e st et e st e st e s sbe s be e saesseesatesabe s bessbaessesssesnsesssesssaensaessaesssessenns 23
35 GPIF 1 STate MACKING....c ittt ettt ettt sb e bbb e s et e e eneenesaeses 24
3.6 Implementing image sensor interface using GPIF Il deSINErcoevveviivieiririnenerienerieseeeeee e 27
3.6.1 Create the PrOJECT ..uiiieieeeeec ettt e et e st s a e s e s e s e e e et e sne e s essesseansesseessanes 27
3.6.2 DEfiNe the INTEITACEiiieeeeeee ettt sttt as 29
3.6.3 Draw the State MACKhING c..c.ci ettt sttt ettt enes 33
3.6.4 Draw the GPIF 11 State MaChin@....c.coeeirieiriieicietetee ettt ettt 33
3.6.5 Editing GPIF [1iNterface detailscccuvvererireniinieieieeeeeesesestesie ettt st sa e enes 41
4 Setting UP the DMA SYSteM c..ciuiiuiiiciiiiiciiiiniieciniisecsesisicsestsstsccssstsscsesssssssssssssssssssssssssssssasssssss 43
4.1 ADOUL DMA DUFFEIS ...ttt ettt ettt b st ettt et e s b s b e b et et e e eneeneesenee 47
5 EZ-USB™ FX3 firMWare....cceuciruiirasiacirnieraisraessssssrsssrsess 49
5.1 FiY o] o] [Tof=Y o] a4 14 Y- [S TSRS 51
5.2 INTEIAlIZATION ettt ettt ettt s et s et e et s bt et e b e saeebesbe et e s st eaaenbs 52
5.3 ENUMIEIATION .ttt ettt ettt e b st e s b et e b e s bt et et e sae e e e sbeemee st eneenees 52
5.4 Configuring the image sensor through the IPCiNterfaceooceueeeueeeveireerereeeeee e 52
5.5 Starting the VideO SErEAMINGcooviriiiieriieieiee ettt sttt et s e sb st s st st e sbe st e s e sbeeseenee 52
5.6 SEtEING UP DMA DUFFEIS.....eeeiiteteteeteete ettt ettt sttt n et e sneenes 53
5.7 Handling the DMA buffers during video Streaming.........ccceceverererenienienieieeneeesesesessesse s eeessens 53
5.8 Terminating the VIdeO STrEaMING c..c.ci ittt ettt et s et s st sse s e e besanensens 53
5.9 Adding @ “debUE” INTEITACE....cc.iiirteieeetee ettt ettt st be st 54
5.9.1 DebUE INtErface dELAIlS....ccivuerieieieieieieeresesee ettt et sa et a e e asaeenas 54
5.9.2 USiNg the debUg iNterface.....couiiiiiirieeeecee ettt ettt 58
59.2.1 SINGLE TEAG. ...ttt ettt st b st sttt et et e b s b s b e sbe b et et e st eneenesaens 58
5.9.2.2 SEQUENTIAL FEAU ...cuveetieceeceeeee ettt re e e s te e beesbe e s st e esteeste e beessaesreesneesnsesasaans 61
5.9.2.3 SINELE W ettt ettt ettt et et st b sttt e et e st e b sbesbesbebenbententeneenesaens 62
5.9.2.4 SEQUENTIAL WIITE .ecuviectieciece ettt e e e e s be e beesbe e s st e esteente e beessaesseesnsesnsessnans 63
6 HardWare SETUP ..cccceiiieieiicetentcetenrecatessecesessecssassscssassscsssssssssassssssssssssssssssssasssssssssssssassssssassns 64
6.1 Hardware rEQUITEMENTccuiiiieciecie et et ettt et eete e rte e rteesbeeste e steste s beesbeesssesssesnsesssaansaesseesseesnsensanns 64
6.2 SuperSpeed explorer Kit DOard SELUPcocveerereririeiieeeee ettt ettt 64
7 UVC-based host apPliCAtioNscccciuiiuiiececeiianiniecencesioneeceecassasssssscescasssssscsscassssssssscsssassssssssscanse 67
7.1 RUNNING thE MO ..ttt ettt st st e st st e et e sae st e besanessansesnsensesssensas 67
8 TroubleSROOtING ...cviiiuiiiiiiiiiiiiiiieiiiineiniieiiaetieiiaecsesisicsesssstscaessssssesssssassasssssssessssssssasssnsssesans 70
8.1 Black screen or incorrect color visible in the host application..........cecceveeveveninnenincerecceeeeen 70
8.2 Reduced frames per second observed in the host applicationccevevieenenenineneneneeeeeens 70
9 Connecting tWo iMAZE SENSOIS ..uccuciiuiirieeireiirecreiracsestsscsesssssacasssssssessssssssssssssssessssssssssssassansss 72
9.1 Transferring the interleaved image OVEr UVCccucveiririninenienienienieteteeee sttt st sae e ne 73
9.1.1 Example 1: Two 640 X 480 MONOCNIOME SENSOIScevuerreriereeieneereneeseesteseesessessessessesssessesssenses 73
9.1.2 Example 2: TWO 640 X 480 COLOI SENSOIS .uvviruvirviriierirerrierseesresssessessseessesseeseesssesssesssasssassaesssesses 74
9.2 Firmware modification checklist to add new video format to the current projectccccceevevenennene 74
9.3 Firmware modification checklist to add new video resolution to the current project....................... 75
9.4 Checklist for firmware modification to SUPPOrt @ NEW SENSONcc.ccveieererciereeeere e 75
1O SUMMAKY tietetentecescrtecscasecessssescssessscssesessssesessssesessssssessesesssssssssssessssssessssssssssssssssnsessssssesessnsese 76
Application Note 2 of 86 001-75779 Rev. *L

2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |nf| neon
USB Video Class (UVC) framework

Table of contents
11 Appendix A: Hardware setup details for EZ-USB™ FX3 DVK (CYUSB3KIT-001)...c.cccceceeceecencecsecsocances 77
11.1 EZ-USB™ FX3 DVK DOAId SETUP .evviiieeeeierieeteeseetesteeteste st e teseessteste s e essesseesessesssessasseessassesssensesssenses T7
12 Appendix B: Hardware setup details for EZ-USB™ FX3 explorer kit and Aptina image sensor
interconnect board (CYUSB3ACC-004)ccccereerreceececenrecsocsocasssssscsscsssessscsscsssasssssssasssssssssssssasces 80
12.1 HArAWare SELUD c.vviciieieiiecteere ettt s te et s e e st e s rte s sbe e beesbeesaaesrte s tasbaensaesssessseessesnsaessaessessssensenns 80
3 L =] =T 4 =P 82
REVISION NISTOrY..cuiiiiiiiiniiiiiniineiiiiniiieiiiineiesiniieecseiiaecaesisstsccssstsscsessesanss 83
Application Note 30f86 001-75779 Rev. *L

2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

Introduction

1 Introduction

The high bandwidth provided by USB 3.0 puts high demands on ICs that connect peripherals to USB. A popular
example is a camera streaming uncompressed data into a PC. In this application note, a converter that
connects to the image sensor on one side and to a USB 3.0 host PC on the other side is implemented using the
Infineon EZ-USB™ FX3 chip. EZ-USB™ FX3 uses its General Programmable Interface, Gen 2 (GPIF II), to provide
the image sensor interface, and its SuperSpeed USB unit to connect to the PC. The EZ-USB™ FX3 firmware
converts the data coming from the image sensor into a format compatible with the UVC. Conforming to this
class allows the camera to operate using built-in OS drivers, making the camera compatible with host
applications, such as AMCap, MPC-HC, Webcamoid, and VLC media player.

The steps specified in this application note are applicable to EZ-USB™ FX2G2, the USB 2.0 part from the
EZ-USB™ FX3 family, as well.

Image Sensor
USS_S'O/) ¢ Clock
Converter — sync
EZ-USB™F)X3
Host PC (Poe) / €] -0,
<« ; Control (12C)
Figure 1 Camera application
Note: For information on interfacing MIPI CSI-2 image sensor with EZ-USB™ CX3, refer to AN90369.

Figure 1 illustrates the camera application. On the left side is a PC equipped with a SuperSpeed USB 3.0 port.
On the right side is an image sensor with the following features:

e 8-bit synchronous parallel data interface
e 16 bits per pixel

e YUY2 color space

e 1280 x 720-pixel resolution (720p)

e 30 frames per second

o Active high frame/line valid signals

e Positive clock edge polarity

Although this application note discusses a specific image sensor interface, these features are common to many
image sensor interfaces with slight variations, such as data bus width and signal polarities. As a result of the
programmable nature of the GPIF Il block, these variations can easily be accommodated. In addition,

EZ-USB™ FX3 uses its I°C interface to implement a control bus for image sensor configuration.

Figure 2 is a more detailed system block diagram. The main sub-blocks of the block diagram are numbered,
and the tasks that are executed by each sub-block are described below:

Application Note 4 of 86 001-75779 Rev. *L
2021-10-27

http://www.cypress.com/?rID=94116

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

Introduction

USB Host FX3 PCLK Image Sensor
i Frame Valid
EZE Video | A | Data| GPIF [¢
Video Ny Line Valid
< INEP || Data % ¢ Hneval
Data @4 Data bus
Host uve USB
Application Driver l«<» Host USB3
(AMCap) Controller | \/igeo @ - Resert
Control | USB _ | Firmware > 4@
EPO > .
UVC Class | 12C |, 12Ccontrol
@peseteer | M

Figure 2 System block diagram

1. Provide the proper USB descriptors so that the host recognizes the peripheral as a device conforming to the
UVC. For details, refer to Section 2.

2. Implement a parallel-bus interface to the image sensor. This is done using the EZ-USB™ FX3 GPIF Il
interface. A Infineon tool called GPIF Il designer allows custom waveforms to be designed in a graphical
state machine editor. Because the interface is programmable, minor edits can customize it for a different
image sensor, for example one with a 16-bit data bus. For details, refer to Section 3.

3. Construct a DMA channel that moves the image sensor data from the GPIF Il block to the USB Interface
Block (UIB). In this application, header data must be added to the image sensor’s video data to conform to
the UVC specification. As such, the DMA is configured to enable the CPU to add the required header to the
DMA buffers. This channel must be designed so that maximum bandwidth can be used to stream video from
the image sensor to the PC. For details, refer to Section 4.

4, Usethe EZ-USB™ FX3 I’C master to implement a control bus to the image sensor. The I°C and GPIO units are
programmed using standard Infineon library calls, and they are mentioned in Section 5.4.

5. The EZ-USB™ FX3 firmware initializes the hardware blocks of EZ-USB™ FX3 (Section 5.2), enumerates as a
UVC camera (Section 2.3.1), handles UVC-specific requests (Section 2.3.2), translates video control settings
(such as brightness) to the image sensor over the I°C interface (Section 5.4), adds a UVC header to the video
data stream (Section 2.3.4), commits the video data with headers to USB (Section 5.7), and maintains the
GPIF Il state machine (Section 5.8).

6. Ahost application, such as the AMCap, MPC-HC, Webcamoid or VLC media player, accesses the UVC driver to
configure the image sensor over the UVC control interface and to receive video data over the UVC streaming
interface. For details on UVC-based host applications, refer to Section 7.

If the camera is plugged into a USB 2.0 port, the EZ-USB™ FX3 firmware uses the 12C control bus to reduce the
frame rate from 30 FPS to 15 FPS and the frame size from 1280 x 720 pixels to 640 x 480 pixels to accommodate
the lower USB bandwidth. The maximum UVC throughput in bytes (frame height x frame width x pixel size x
frames per second) should be less than 40-MBps. Note that the observed frames per second will be dependent
on the frame blanking and the line blanking times of the image sensor.

The PC host optionally can use the control interface to send brightness, pan, tilt, and zoom adjustments to the

camera. Pan, tilt, and zoom are usually implemented together and are referred to as PTZ.

1.1 More information

Infineon provides a wealth of data at www.cypress.com to help you to select the right device for your design,
and to help you to integrate the device into your design quickly and effectively.

e Overview: USB portfolio, USB roadmap

001-75779 Rev. *L
2021-10-27

Application Note 5of 86

http://www.cypress.com/?rID=59628
http://www.cypress.com/?source=PSoC5LP_Datasheet
http://www.cypress.com/?id=167
http://www.cypress.com/?rID=94780

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

Introduction

e USB 3.0 product selectors: EZ-USB™ FX3, EZ-USB™ FX3S, EZ-USB™ CX3, EZ-USB™ HX3, EZ-USB™ SX3

e Application notes: Infineon offers a large number of USB application notes covering a broad range of topics,
from basic to advanced level. Recommended application notes for getting started with EZ-USB™ FX3 are:

- AN75705 - Getting started with EZ-USB™ FX3

- AN231295 - Getting started with EZ-USB™ SX3

- AN70707 - EZ-USB™ FX3/FX3S hardware design guidelines and schematic checklist
- AN65974 - Designing with the EZ-USB™ FX3 slave FIFO interface

- AN75779 - How to implement an image sensor interface with EZ-USB™ FX3 in a USB Video Class (UVC)
framework

- ANB86947 - Optimizing USB 3.0 throughput with EZ-USB™ FX3
- AN84868 - Configuring an FPGA over USB using EZ-USB™ FX3
- ANG68829 - Slave FIFO interface for EZ-USB™ FX3: 5-bit address mode
- AN76348 - Differences in implementation of EZ-USB™ FX2LP and EZ-USB™ FX3 applications
- AN89661 - USB RAID 1 disk design using EZ-USB™ FX3S
e Code examples:
- USB Hi-Speed
- USB Full-Speed
- USB SuperSpeed
e Knowledge base articles (KBA)
- UVC troubleshooting guide - KBA226722
- Change bulk endpoint to isochronous in FX3 firmware - KBA231897
- Invalid sequence error in multi-channel commit buffer - KBA218830
- Handling commit buffer failures occurred during video transfers using EZ-USB™ FX3 - KBA231382
- Modified AN75779 firmware for streaming video using cyusb3.sys driver - KBA233542
- FX3/CX3: UVC extension unit application - KBA230466
- Implementing extension unit controlin AN75779 example project - KBA219280
e Technical reference manual (TRM):
- EZ-USB™ FX3 technical reference manual
e Development kits:
- CYUSB3KIT-003, EZ-USB™ FX3 SuperSpeed explorer kit
e Models: IBIS

Application Note 6 of 86 001-75779 Rev. *L
2021-10-27

http://www.cypress.com/?id=3526
http://www.cypress.com/?id=4833
http://www.cypress.com/cx3/
http://www.cypress.com/hx3
http://www.cypress.com/sx3
http://www.cypress.com/?rid=59979
https://www.cypress.com/file/520716/download
http://www.cypress.com/?rid=53203
http://www.cypress.com/?rid=51581
http://www.cypress.com/?rid=62824
http://www.cypress.com/?rID=84341
http://www.cypress.com/?rid=75048
http://www.cypress.com/?rid=59936
http://www.cypress.com/?rid=61948
http://www.cypress.com/?rID=88018
http://www.cypress.com/?rID=61168
http://www.cypress.com/?rID=101782
http://www.cypress.com/?rid=101780
http://www.cypress.com/?rid=101781
https://community.cypress.com/t5/Knowledge-Base-Articles/UVC-Troubleshooting-Guide-KBA226722/ta-p/250311
https://community.cypress.com/t5/Knowledge-Base-Articles/Change-Bulk-endpoint-to-Isochronous-in-FX3-firmware-KBA231897/ta-p/251816
https://community.cypress.com/t5/Knowledge-Base-Articles/Invalid-Sequence-Error-in-Multi-Channel-Commit-Buffer-KBA218830/ta-p/248411
https://community.cypress.com/t5/Knowledge-Base-Articles/Handling-Commit-Buffer-Failures-Occurred-during-Video-Transfers/ta-p/250880
https://community.cypress.com/t5/Knowledge-Base-Articles/Modified-AN75779-firmware-for-streaming-video-using-cyusb3-sys/ta-p/282897
https://community.cypress.com/t5/Knowledge-Base-Articles/FX3-CX3-UVC-Extension-Unit-Application-KBA230466/ta-p/253397
https://community.cypress.com/t5/Knowledge-Base-Articles/Implementing-Extension-Unit-Control-in-AN75779-Example-Project/ta-p/253000
http://www.cypress.com/?rID=80775
http://www.cypress.com/documentation/development-kitsboards/cyusb3kit-003-ez-usb-fx3-superspeed-explorer-kit
http://www.cypress.com/?rID=68389

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework
USB Video Class (UVC)

2 USB Video Class (UVC)

Conforming to the UVC requires two EZ-USB™ FX3 code modules:

e Enumeration data
e Operational code

2.1 Enumeration data

The code attached to this application note includes a file, named cyfxuvcdscr.c (explained in section 2.3.1),
that contains the UVC enumeration data. The USB specification, which defines the format for UVC descriptors,
is available in the video class section at usb.org. This section gives a high-level view of the descriptors. A UVC
device has four logical elements:

Input camera terminal (IT)
Output terminal (OT)
Processing unit (PU)
Extension unit (EU)

Hw e

The elements connect in the descriptors, as shown in Figure 3. Connections are made between elements by
associating terminal numbers in the descriptors. For example, the Input (camera) terminal descriptor declares
its ID to be 1, and the processing unit descriptor specifies its input connection to have the ID of 1, logically
connecting it to the input terminal. The output terminal descriptor specifies which USB endpoint to use, in this
case BULK-IN endpoint 3.

Custom Requirements

Dol
-

EP3-IN

W heae

PU
2

Figure 3 UVC diagram of the camera architecture

The descriptors also include video properties, such as width, height, frame rate, frame size, and bit depth, and
control properties, such as brightness, exposure, gain, contrast, and PTZ. Apart from the standard video
controls, extension unit provides additional controls based on user requirements.

Note: The maximum bandwidth achievable using the ISOC-IN endpoint under UVC for USB 3.0 in
Windows 7/8 machine is 24 Mbps because the UVC driver limits the BURST to 1 for the ISOC
endpoint. But with the Windows 10 machine, BURST can be set to 15 to achieve maximum ISOC
bandwidth. There is no such limitation for BULK endpoint. Therefore, the ISOC-IN endpoint is not
used in this project. Refer to this forum post for more information.

2.2 Operational code

After the host enumerates the camera, the UVC driver sends a series of requests to the camera to determine
operational characteristics. This is called the capability request phase. It precedes the streaming phase, in
which the host application starts streaming video. The EZ-USB™ FX3 firmware responds to the requests that
arrive over the USB control endpoint (EPO).

Application Note 7 of 86 001-75779 Rev. *L
2021-10-27

http://www.usb.org/developers/docs/devclass_docs/
http://www.cypress.com/forum/usb-known-problems-and-solutions/uvc-example-isoc-endpoint-over-usb30#comment-327546

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

USB Video Class (UVC)

For example, suppose a UVC device indicates that it supports a brightness control in one of its USB descriptors.
During the capability request phase, the UVC driver queries the device to discover the relevant brightness
parameters.

When a host application makes a request to change the brightness value, the UVC driver issues a SET control
request to change the brightness value (SET_CUR).

Similarly, when the host application chooses to stream a supported video format/frame rate/frame size, it
issues streaming requests. There are two types: PROBE and COMMIT. PROBE requests are used to determine if
the UVC device is ready to accept changes to the streaming mode. A streaming mode is a combination of image
format, frame size, and frame rate.

2.3 USB video class requirements

The firmware project for this application note is in the folder named cyfxuvc_an75779. This section explains
how the UVC requirements are satisfied by the example project. The UVC requires a device to:

e Enumerate with the UVC-specific USB descriptors

e Handle SET/GET UVC-specific requests for the UVC control and stream capabilities reported in the USB
descriptors

e Stream video data in a UVC-conformant color format
e Add a UVC conformant header for every image payload

Details of these requirements are found in the UVC specification.

2.3.1 USB descriptors for UVC

The cyfxuvcdscr.c file contains the USB descriptor tables. The byte arrays “CyFxUSBHSConfigDscr” (Hi-Speed)
and “CyFxUSBSSConfigDscr” (SuperSpeed) contain the UVC-specific descriptors. These descriptors implement
the following tree of sub-descriptors:

Configuration descriptor
o Interface association descriptor
e Video control (VC) interface descriptor
- VCinterface header descriptor
o Input (camera) terminal descriptor
o Processing unit descriptor
o Extension unit descriptor
o Output terminal descriptor
- VC status interrupt endpoint descriptor
e Video streaming (VS) interface descriptor
- VSinterface input header descriptor
o VS format descriptor
o VSframe descriptor
e BULK-IN video endpoint descriptor
The configuration descriptor is a standard USB descriptor that defines the functionality of the USB device in its

sub-descriptors. The interface association descriptor is used to indicate to the host that the device conforms to
a standard USB class. Here, this descriptor reports a UVC-conformant device with two interfaces: video control

Application Note 8 of 86 001-75779 Rev. *L
2021-10-27

http://www.usb.org/developers/devclass_docs

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

USB Video Class (UVC)

(VC) interface and video streaming (VS) Interface. Having two separate interfaces makes the UVC device a USB
composite device.

2.3.1.1 Video control interface

The VC Interface descriptor and its sub-descriptors report all of the control interface-related capabilities.
Examples include brightness, contrast, hue, exposure, and PTZ controls.

The VC interface header descriptor is a UVC-specific interface descriptor that points to the VS interfaces to
which this VC Interface belongs.

The input (camera) terminal descriptor, the processing unit descriptor, the extension unit descriptor, and the
output terminal descriptor contain bit fields that describe features supported by the respective terminal or
unit.

The camera terminal controls mechanical (or equivalent digital) features, such as exposure and the PTZ of the
device that transmits the video stream.

The processing unit controls image attributes, such as brightness, contrast, and hue of the video being
streamed through it.

The extension unit allows vendor-specific features to be added, much like standard USB vendor requests. In
this design, the extension unit is empty but a sample design is implemented and it can be enabled to get or set
the device firmware version. If the extension unit is utilized, the standard host application will not see its
features unless the host application is designed to recognize them. A sample host application is provided to get
or set the device firmware version. You can design your own extension controls and host application to query
these controls. Some features that can be supported include getting the device firmware version and hardware
IDs, writing to sensor/image signal processor (ISP) registers, and so on. The device can support more than one
extension unit. For more details on UVC extension unit with the associated firmware project, see Section 2.3.2.

The output terminal is used to describe an interface between these units (IT, PU, EU) and the host. The VC
status interrupt endpoint descriptor is a standard USB descriptor for an Interrupt endpoint. This endpoint can
be used to communicate UVC-specific status information. The functionality of this endpoint is outside the
scope of this application note.

The UVC specification divides these functionalities so that you can easily structure the implementation of the
class-specific control requests. However, the implementation of these functionalities is application-specific.
The supported control capabilities are reported in the bit field “bmControls” (cyfxuvcdscr.c) of the respective
terminal/unit descriptor by setting corresponding capability bits to ‘1. The UVC device driver polls for details
about the control on enumeration. The polling for details is carried out over EPO requests. All such requests,
including the video streaming requests, are handled by the UVCAppEPOThread_Entry function in the uvc.cfile.

2.3.1.2 Video streaming interface

The video streaming interface descriptor and its sub-descriptors report the various frame formats (e.g.,
uncompressed, MPEG, H.264), frame resolutions (width, height, and bit depth), and frame rates. Based on the
values reported, the host application can choose to switch streaming modes by selecting supported
combinations of frame formats, frame resolutions, and frame rates.

The VS interface input header descriptor specifies the number of VS format descriptors that follow.

The VS format descriptor contains the images’ aspect ratio and the color format, such as uncompressed or
compressed.

Application Note 9 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework
USB Video Class (UVC)

The VS frame descriptor contains image resolution and all supported frame rates for that resolution. If the
camera supports different resolutions, multiple VS frame descriptors follow the VS format descriptor.

The BULK-IN video endpoint descriptor is a standard USB endpoint descriptor that contains information about
the bulk endpoint used for streaming video.

This example uses a single resolution and frame rate. Its image characteristics are contained in three
descriptors, as shown in the following three tables (only relevant byte offsets are shown).

Table1 VS format descriptor values
VS format Characteristic SuperSpeed value Hi-Speed value
DescriptorByte offset
23-24 Width to height ratio 16:9 4:3
Table 2 VS frame descriptor values
VS frame Characteristic SuperSpeed value Hi-Speed value
DescriptorByte offset
5-8 Resolution (W, H) 1280x720 640x480
17-20 Maximum image size in 1280x720x2 640x480x2 (2 bytes/pixel)
bytes (2 bytes/pixel)
21-24, also 26-29 Frame Interval in 100 ns 0x51615(30 FPS) 0xA2C2A(15 FPS)
units

Note that multiple-byte values are listed LSB first (little-endian), so, for example, the frame rate is 0x00051615,
which is 33.33 milliseconds, or 30 FPS.

Table 3 Probe/commit structure values

Probe/ commit Characteristic SuperSpeed value Hi-Speed value

Structure Byte offset

2 Formatindex 1 1

3 Frame index 1 1

4-7 Frameintervalin 100 ns | 0x51615 (30 FPS) 0xA2C2A (15 FPS)
units

18-21 Maximum image size in 1280x720x2 (2 640x480x2 (2 bytes/pixel)
bytes bytes/pixel)

This design can be adapted to support different image resolutions, such as 1080p, by modifying the entries in
these three tables.

2.3.2 UVC-specific requests

The UVC specification uses USB control endpoint EPO to communicate control and streaming requests to the
UVC device. These requests are used to discover and change the attributes of the video-related controls. The
UVC specification defines these video-related controls as capabilities. These capabilities allow you to change
image properties or to stream video. A capability (first item) can be a video control property, such as
brightness, contrast, and hue, or video stream mode properties, such as the color format, frame size, and frame
rate. Capabilities are reported via the UVC-specific section of the USB Configuration descriptor. Each of the
capabilities has attributes. The attributes of a capability are as follows:

e The minimum value

Application Note 10 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

USB Video Class (UVC)

e The maximum value

e The number of values between the minimum and the maximum
e The default value

e Thecurrentvalue

SET and GET are the two types of UVC-specific requests. SET is used to change the current value of an attribute,
while GET is used to read an attribute.

Here is a list of UVC-specific requests:

e SET_CURis the only type of SET request

e GET_CURreads the current value

e GET_MIN reads the minimum supported value

e GET_MAX reads the maximum supported value

e GET_RES reads the resolution (step value to indicate the supported values between min and max)

e GET_DEF reads the default value (return the appropriate value to set defaults for any parameter, e.g.,
default frame resolution, etc.)

e GET_LEN reads the size of the attribute in bytes
e GET_INFO queries the status/support for specific capability.

The UVC specification defines these requests as either mandatory or optional for a given capability. For
example, if the SET_CUR request is optional for a particular capability, its presence is determined through the
GET_INFO request. If the camera does not support a certain request for a capability, it must indicate this by
stalling the control endpoint when the request is issued from the host to the camera.

There are byte fields in these requests that qualify their target capability. These byte fields have a hierarchy,
which follows the same structure as the UVC-specific descriptors described in Section 2.3.1. The first level
identifies the interface (video control or video streaming).

If the first level identifies the interface as video control, the second level identifies the terminal or unit, and the
third level identifies the capability of that terminal or unit. For example, if the target capability is the brightness
control, then:

e First level = video control
e Second level = processing unit
e Third level = brightness control

If the first level identifies the interface as video streaming, the second level would be PROBE or COMMIT. There
is no third level. When the host wants the UVC device to start streaming or to change the streaming mode, the
host first determines if the device supports the new streaming mode. To determine this, the host sends a series
of SET and GET requests with the second level set to PROBE. The device either accepts or rejects the change to
the streaming mode. If the device accepts the change request, the host confirms it by sending the SET_CUR
request with the second level set to COMMIT. This interaction between the host and the device is illustrated in
Figure 6. The following three flowcharts show how the host interacts with a UVC device.

Application Note 11 0f 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
USB Video Class (UVC)

HOST Enumerates UVC
Device, reads camera
properties from CONFIG
descriptor.

|

HOST prepares a list of N
supported Video Control
properties.

HOST retrieves details for all
N properties:
GET_MIN, GET_MAX,
GET_RES, GET_DEF,
GET_CUR, GET_INFO,
GET_LEN

End of Discovery

Figure 4 The UVC enumeration and discovery flow

When the UVC device is plugged into USB, the host enumerates it and discovers details about the properties
supported by the camera (Figure 4).

During a video operation, a camera operator may change a camera property, such as brightness, in a display
dialog presented by the host application. Figure 5 shows this interaction.

This kind of implementation is a synchronous control transfer. As per the UVC specification, a device can
support two kinds of control requests: synchronous control transfer and asynchronous control transfer.

Standard UVC requests like brightness, pan, tilt, and zoom requests take lesser time to complete (less than

10 ms). In this case, UVC device writes to a sensor/ISP register and doesn’t wait for any acknowledgment from
the sensor/ISP . When host drivers send a SET_CUR request, the device responds within 10 ms with a success
(acknowledge the request) or failure (stall the request). As per UVC specs, this request is synchronous in nature.
All standard UVC video control requests can be supported through the synchronous control transfers.

Now assume that a host driver sets an exposure value. As per design implementation, the sensor/ISP responds
with an acknowledgement in about 100 ms. The device always responds to the SET_CUR request with a success
for the SET_CUR request and after receiving the acknowledgement from the sensor/ISP, the device loads the
control status Interrupt endpoint with a success or failure. This kind of request is an asynchronous control
request. The control status interrupt and associated DMA channel is already configured in this project (Refer
CY_FX_EP_CONTROL_STATUS in uvc.c file). It is not used for asynchronous control transfers in this project as
all the requests are synchronous in nature.

Note: For more details on how to use the control status interrupt of the video control interface refer to
section “Status Interrupt Endpoint” in the UVC specification.

Note: Refer to CyFxSendStatusToHost function in uvc.c file for an example of how to use the control
status interrupt endpoint for hardware-triggered still capture. For asynchronous video controls,
the status interrupt endpoint response can be populated based on Table 2-2: Status Packet
Format (VideoControl Interface as the Originator) of the UVC Specification, with appropriate
Control selector value (bSelector) based on the queried video control.

Application Note 12 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
USB Video Class (UVC)

App changes a Video Control
property from Xto Y

)

HOST sends GET_CUR request
forthe property

\}

Device sends value X

HOST sends SET_CUR request
for the property with value Y

)

Device updates property to Y

HOST sends GET_CUR
request for the property

Device sendsvalue Y

HOST verifies change was
successful

Figure 5 A host application changes a camera setting

Before starting to stream, the host application issues a set of probe requests to discover the possible streaming
modes. After the default streaming mode is decided, the UVC driver issues a COMMIT request. This process is
shown in Figure 6. At this point, the UVC driver is ready to stream video from the UVC device.

Application Note 13 0f 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
USB Video Class (UVC)

HOST starts Discovery of
supported modes (PROBE:
GET_MIN, GET_MAX,
GET_DEF, GET_CUR)

HOST sends PROBE: SET_CUR
requestin a probe/commit
structure containing desired
values forVS Format index,
VS Frame index, and Frame
Interval.

L

UVC device checks the VS
Format index, VS Frame
index, and Frame interval
properties to verifyif
possible, updatesthe probe/
commit structure if feasible

HOST sends the
PROBE:GET_CUR request to
read the updated values from
UVC device

L

Device sends back the
updated probe/commit
structure

HOST compares values
received for GET_CUR with
thevalues it tried tochange | FAIL
in SET_CUR

|
PASS
N2

HOST changes the operation
mode by sending COMMIT:
SET_CUR with the updated

probe/commit structure

Figure 6 Host-camera pre-streaming dialog

2.3.2.1 Control requests - Brightness, PTZ control and extension unit control

Brightness and PTZ controls are implemented in the associated project. PTZ can be turned on by defining
“UVC_PTZ_SUPPORT” in the uvc.h file. These capabilities may or may not be supported by the image sensor. If
they are not supported, specific hardware has to be designed to implement them. In any case, the firmware
implementation on the USB side of the controls for these capabilities remains the same. However, the image
sensor implementation would differ. Therefore, only placeholder functions are provided that implement the
USB side of these controls. You have to write the code for the image sensor-specific PTZ implementation.

Application Note 14 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

USB Video Class (UVC)

Note: All functions described hereafter in the application note are implemented in the uve.c file unless
specified otherwise. This file is a part of the project stored under the cyfxuvc_an75779 folder in
the zip of the source code attached to this application note.

The host application sends video control requests (over EP0) that are targeted to the processing unit for
brightness control. All setup requests are handled via the CyFxUVCAppInUSBSetupCB function. This function
detects whether the host has sent a UVC-specific request (control or stream) and then sets an event flag:

“CY_FX_UVC_VIDEO_CONTROL_REQUEST_EVENT” or “CY_FX_UVC_VIDEO_STREAM_REQUEST_EVENT”,
respectively. Then, the flag is processed by function UVCAppEPOThread_Entry (EPO application thread).

Brightness control requests will trigger the video control request event flag. The EPO application thread, which
is waiting for any of these flags to trigger, decodes the video control request and calls the appropriate function.
The EPO application thread calls the UVCHandleProcessingUnitRqts function to handle brightness control
requests.

Modify the UVCHandleProcessingUnitRqts function to implement processing unit-related controls
(brightness, contrast, hue, and so on). Modify the UVCHandleCameraTerminalRqts function to implement
camera terminal controls. Modify the UVCHandleExtensionUnitRqts function to implement any vendor-
specific requests. To enable support for any of these controls, you must set corresponding bits in the USB
descriptors. The UVC specification includes details on camera terminal, processing unit, and extension unit USB
descriptors.

A sample extension unit control - Get or set device firmware version is implemented in the associated project.
The control can be turned ON by defining “UVC_EXTENSION_UNIT” in the uvc.h file. See KBA219280 for more
details on how to design a UVC extension unit in the firmware. The get or set firmware version control allows
you to get and set the app note firmware version. This can be done by using the uvc_extension_app_x86.exe (for
32-bit Windows) or uvc_extension_app_x64 (for 64-bit Windows). Guidelines to run the host application is
provided in the readme.txtfile in the attached project. The host application is based on Microsoft’s Media
foundation class and DirectShow APIs. For more information on the host application, see the forum
discussion.

2.3.2.2 Streaming requests - Probe and commit control

UVCHandleVideoStreamingRqts handles streaming-related requests. When the UVC driver needs to stream
video from a UVC device, the first step is negotiation. In that phase, the driver sends PROBE requests, such as
GET_MIN, GET_MAX, GET_RES, and GET_DEF. In response, the EZ-USB™ FX3 firmware returns a PROBE
structure. The structure contains the USB descriptor indices of video format and video frame, frame rate,
maximum frame size, and payload size (the number of bytes that the UVC driver can fetch in one transfer).

The switch case for “CY_FX_UVC_PROBE_CTRL” handles the negotiation phase of the streaming for either a
USB 2.0 or USB 3.0 connection (the properties of the supported video in these modes differ). Note that the
reported values for GET_MIN, GET_MAX, GET_DEF, and GET_CUR are the same because the same streaming
mode is supported in either USB 2.0 or USB 3.0. These values would differ if multiple streaming modes need to
be supported.

The switch case for “CY_FX_UVC_COMMIT_CTRL” handles the start of the streaming phase. The SET_CUR
request for COMMIT control indicates that the host will start streaming video next. Therefore, SET_CUR for
COMMIT control sets the “CY_FX_UVC_STREAM_EVENT” event, which indicates the main application thread
UVCAppThread_Entry to start the GPIF Il state machine for video streaming.

Application Note 15 0f 86 001-75779 Rev. *L
2021-10-27

https://community.cypress.com/docs/DOC-9261
https://community.cypress.com/message/142801#142801
https://community.cypress.com/message/142801#142801

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

USB Video Class (UVC)

2.3.3 Video data format: YUY2

The UVC specification supports only a subset of color formats for video data. Therefore, you should choose an
image sensor that streams images in a color format that conforms to the UVC specification. This application
note covers an uncompressed color format called YUY2, which is supported by most, but not all, image sensors.
The YUY2 color format is a 4:2:2 down-sampled version of the YUV color format. Luminance values Y are
sampled for every pixel, but chrominance values U and V are sampled only for even pixels. This creates “macro
pixels”, each of which describes two image pixels using a total of four bytes. Notice that every other byteisaY
value, and the U and V values represent only even pixels:

Y0, U0, Y1,V0 (first 2 pixels)

Y2,U2,Y3,V2 (next2 pixels)

Y4,U4,Y5,V4 (next 2 pixels)

Refer to Wikipedia for additional information on color formats.

Note: The RGB format is not supported in the project attached with application note. For RGB format

support, refer to the example projects “cycx3_rgbl16_as0260” and “cycx3_rgb24_as0260” in FX3
SDK (Path: <FX3 SDK installation path\EZ-USB™ FX3 SDK\1.3\firmware\cx3_examples).

Although a monochrome image is not supported as a part of the UVC specification, an 8-bit monochrome image
can be represented in the YUY2 format by sending the monochrome image data as Y values and setting all the U
and V values to 0x80.

2.3.4 UVC video data header

The UVC class requires a 12-byte header for uncompressed video payloads. The header describes the properties
of the image data being transferred. For example, it contains a “new frame” bit that the image sensor controller
(EZ-USB™ FX3) toggles for every frame. The EZ-USB™ FX3 code also can set an error bit in the header to indicate
a problem in streaming the current frame. This UVC data header is required for every USB transfer. Refer to the
UVC specification for additional details. Table 4 shows the format of the UVC video data header.

Table 4 UVC video data header format
Byte Field Description
offset name
0 HLF bHeaderLength - Header length field specifies the length of the header in bytes
1 BFH bmHeaderInfo - Bit field header indicates type of the image data, status of the

video stream and presence or absence of other fields

2-5 PTS dwPresentationTime - Presentation time stamp indicates the source clock time in
native device clock units

6-11 SCR scrSourceClock - Source clock reference indicates system time clock and USB start-
of-frame (SOF) token counter

The value for the HLF is always 12. The PTS and the SCR fields are optional. The firmware example populates
zeros in these fields.

The bit field header (BFH) keeps changing value at the end of a frame. Table 5 shows the format of the BFH that
is a part of the UVC video data header.

Application Note 16 of 86 001-75779 Rev. *L
2021-10-27

http://en.wikipedia.org/wiki/YUV
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990

How to implement an image sensor interface using EZ-USB™ FX3 in a
USB Video Class (UVC) framework

(infineon

USB Video Class (UVC)
Table5 Bit field header (BFH) format
Bit offset | Field name | Description
0 FID Frame identifier bit toggles at each image frame start boundary and stays
constant for the rest of the image frame
1 EOF End of frame bit indicates the end of a video and is set only in the last USB
transfer belonging to an image frame
2 PTS Presentation time stamp bit indicates the presence of a PTS field in the UVC
video data header (1=present)
3 SCR Source clock reference bit indicates the presence of an SCR field in the UVC video
data header (1=present)
4 RES Reserved, setto 0
5 STI Still image bit indicates if the video sample belongs to a still image
6 ERR Error bit indicates an error in the device streaming
7 EOH End of header bit, when set, indicates the end of the BFH fields

Figure 7 shows how these headers are added to the video data in this application. The 12-byte header is added
for every USB bulk transfer. Here, each USB transfer has a total of 16 bulk packets. The USB 3.0 bulk packet size

is 1024 bytes.

12-byte Header

<«
12-byte Header
with EOF set

< »
1USB 3.0 Bulk transfer of the image with burst of 16
1024-byte packet
«—> > B S —
Packet 1/16 Packet 2/16 Packet 16/16
<>

1stUSB transfer Video Data
2nd USB transfer Video Data

Nth USB transfer Video Data

Video Data

Video Data
Video Data

Video Data

1Video Frame

Video Data
R
Last Partial Packet

Figure 7

Application Note

UVC video data transfers

001-75779 Rev. *L
2021-10-27

17 of 86

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

USB Video Class (UVC)

2.3.5 Still image capture

Video cameras can also support still image capture from a video stream. This can be initiated either by
programmatic software triggers or hardware triggers.

There are three supported methods of capturing a still image; the device will have to specify the method it
supports in the class-specific descriptors within the relevant video streaming interface descriptor.

In this application note, Method-2 still capture is implemented. See the UVC specification for details on other
modes of still capture.

2.3.5.1 Method 2 still image capture

Method 2 still capture adds support for the device to capture still images of a different resolution than the
streaming resolution. In this case, the host software will do the following:

1. Temporarily suspends video streaming
2. Selects the optimal bandwidth alternate setting based on the still probe/commit negotiation

3. SendsaVS_STILL_IMAGE_TRIGGER_CONTROL Set request with the "transmit still image" option (see
Section 4.3.1.4, "Still Image Trigger Control" of UVC specification)

4. Prepares to receive the still image data.

The device transmits the still image data marked as such in the payload header. Once the complete still image
is received, the host software will then revert back to the original alternate setting, and resume video
streaming. For this method, the still image frame need not be the same size as the video frames being
streamed.

In the case of software-triggered still capture, the host software initiates the stillimage capture from the
device. It does so by issuing a VS_STILL_IMAGE_TRIGGER_CONTROL SET request with the "Transmit still image
via dedicated bulk pipe" option ("Still Image Trigger Control" of the UVC specification). In this case, after
issuing the request, the host will start receiving the still image from the bulk still image endpoint of the relevant
video streaming interface. The device captures the still image and transmits the data to the bulk stillimage
endpoint.

In the case of hardware-triggered still capture, the device initiates the stillimage transmission after detecting a
hardware trigger. When the device detects a button press, the status interrupt endpoint will issue an interrupt
originating from the relevant video streaming interface. If the bTriggerUsage field of the selected Class-
specific VS interface input header descriptor is set as “initiating still image capture”, the device will set the
bTrigger field of the VS_STILL_IMAGE_TRIGGER_CONTROL control to “Transmit still image via dedicated bulk
pipe”. The host software should then begin receiving the still image data that was captured by the device after
it received the interrupt.

Stillimage probe and commit control requests are handled in CY_FX_UVC_STILL_PROBE_CONTROL and
CY_FX_UVC_STILL_COMMIT_CONTROL case statements in the UVCHandleVideoStreamingRqts function. Still
image capture is implemented in CY_FX_UVC_STILL_TRIGGER_CONTROL case statement in the same function.

Application Note 18 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework
USB Video Class (UVC)

Hardware Trigger received
(eg: button press)

Device Issues Interrupt transfer
from UVC Status Interrupt Endpoint
(EP2)

Software trigger from UVC host application
(eg: e-camView, AmCAP viewer etc)

!

Host issues VS_STILL_IMAGE_TRIGGER_CONTROL SET Request with
bTrigger set to "Transmit Still Image"

Is Current Video resolution Yes
same as Still Capture resolution?

No

Stop Video Streaming

A 4

Configure Image sensor to stream new resolution

v Y

Stream One Video Frame with UVC header modified to signal Still Image type (bmHeaderinfo)

A 4

Stop Video Streaming

(%)
=3
3
o
[o]
]
=
@
()
@,
<
@
Q
oY)
9
x
o
1%
a

Configure Image sensor to stream video resolution

l

Resume Video Streaming

Figure 8 Still capture firmware flow

Application Note 19 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

GPIF Il image sensor interface

3 GPIF Il image sensor interface

The GPIF Il block of EZ-USB™ FX3 is a flexible state machine that can be customized to drive the EZ-USB™ FX3
pins to interface with external hardware, such as an image sensor. To design a state machine, you need to
understand the interface requirements and EZ-USB™ FX3’s DMA capabilities.

3.1 Image sensor interface

A typical image sensor interface is shown in Figure 2. Usually the image sensor requires a reset signal from the
EZ-USB™ FX3 controller. This can be handled by using an EZ-USB™ FX3 general-purpose input/output (GPIO).

Image sensors typically use an I°C connection to allow a controller to read and write the image sensor
parameters. Image sensors may also use the serial peripheral interface (SPI) or the universal asynchronous
receiver/transmitter (UART) connection for the same purpose. The I°C, SPI, and UART blocks of EZ-USB™ FX3
can provide this function. This application uses I°C to configure the image sensor.

To transfer images, the image sensor supplies the following signals:

FV: Frame valid (indicates start and stop of a frame)
LV: Line valid (indicates start and stop of a line)
PCLK: Pixel clock (clock for the synchronous interface)

Sl R

Data: Eight data lines for image data

Figure 9 shows the timing diagrams for the FV, LV, PCLK, and data signals. The image sensor asserts the FV
signal to indicate the start of a frame. Then, the image data is transferred line by line. The LV signal is asserted
during each line transfer as the image sensor drives 8-bit pixel data in the YUY2 format, which comprises four
bytes for every two pixels. Byte data is clocked into the GPIF Il unit on each rising edge of PCLK.

The EZ-USB™ FX3 GPIF Il bus can be configured for 8-, 16-, or 32-bit data buses. This application uses the image
sensor’s 8-bit bus. If an image sensor supplies a non-byte-aligned bus, for example a 12-bit bus, use the next
size up and either pad or discard the unused bits.

3.1.1 GPIF Il interface requirements
Based on the timing diagram (Figure 9), the GPIF Il state machine has the following requirements:

e The GPIF Il block must transfer data from the data pins only when LV and FV signals are asserted.

e Theimage sensor does not provide flow control. Therefore, the interface must transfer a full line of video
without interruption. In this design, there are 1280 pixels per line, and each pixel requires 2 bytes, so 2560
bytes transfer per line.

e The CPU must be notified at the end of every frame so it can update the header bits accordingly.

Application Note 20 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

GPIF Il image sensor interface

Active Frame

< »
< »

v 9 Vertical Blanking
Linel Line2 LineR-1 LineR

)
W#M I |

Active Line

< »
<« »

v/ | 99
SinnEnnnnnninnnnnnipnnnn
owra oo NG g O

Figure 9 Image sensor interface timing diagram

Horizontal Blanking

il

3.2 Pin mapping of image sensor interface

The GPIF Il to image sensor pin mapping is shown in Table 6.

Table 6 Pin mapping for parallel image sensor interface
EZ-USB™ FX3 pin Synchronous parallel image sensor interface with 8-bit data bus
GPIO[28] LV
GPIO[29] Fv
GPIO[0:7] DQ[0:7]
GPIO[16] PCLK
I’C_GPIO[58] I’C SCL
I’C_GPIO[59] I°C SDA

Use the pin mapping shown in Table 7 for image sensors that use UART or SPI as an interface and if they use a
16-bit data bus.

Table7 Additional pin mapping for image sensors
EZ-USB™ FX3 pin Image sensor interface (additional pins)
GPIO[8:15] DQ[8:15]
GPI10[46] GPIO/UART_RTS
GPIO[47] GPIO/UART_CTS
GPIO[48] GPIO/UART_TX
GPIO[49] GPIO/UART_RX
GPIO[53] GPIO/SPI_SCK /UART_RTS
GPI0O[54] GPIO/SPI_SSN/UART_CTS
Application Note 21 0f 86 001-75779 Rev. *L

2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

GPIF Il image sensor interface

EZ-USB™ FX3 pin Image sensor interface (additional pins)
GPIO[55] GPIO/SPI_MISO/UART_TX
GPIO[56] GPIO/SPI_MOSI/UART_RX
Note: For the complete pin mapping of EZ-USB™ FX3, see the datasheet EZ-USB™ FX3 SuperSpeed USB
controller.
3.3 Ping-pong DMA buffers

To understand the data transfer in and out of EZ-USB™ FX3, it is important to know the following terminology:

e Socket

e DMA descriptor
o DMA buffer

e GPIF thread

A socket is a point of connection between a peripheral hardware block and the EZ-USB™ FX3 RAM. Each
peripheral hardware block on EZ-USB™ FX3, such as USB, GPIF, UART, and SPI, has a fixed number of sockets
associated with it. The number of independent data flows through a peripheralis equal to the number of its
sockets. The socket implementation includes a set of registers that point to the active DMA descriptor and
enable or flag interrupts associated with the socket.

A DMA descriptor is a set of registers allocated in the EZ-USB™ FX3 RAM. It holds information about the address
and size of a DMA buffer as well as pointers to the next DMA descriptor. These pointers create DMA descriptor
chains.

A DMA buffer is a section of RAM used for intermediate storage of data transferred through the EZ-USB™ FX3
device. DMA buffers are allocated from the RAM by the EZ-USB™ FX3 firmware, and their addresses are stored as
part of DMA descriptors.

A GPIF thread is a dedicated data path in the GPIF Il block that connects the external data pins to a socket.

Sockets can directly signal each other through events or they can signal the EZ-USB™ FX3 CPU via interrupts.
This signaling is configured by firmware. Take, for example, a data stream from the GPIF Il block to the USB
block. The GPIF socket can tell the USB socket that it has filled data in a DMA buffer, and the USB socket can tell
the GPIF socket that a DMA buffer has been emptied. This implementation is called an automatic DMA channel.
The automatic DMA channel implementation is typically used when the EZ-USB™ FX3 CPU does not have to
modify any data in a data stream.

Alternatively, the GPIF socket can send an interrupt to the EZ-USB™ FX3 CPU to notify it that the GPIF socket
filled a DMA buffer. The EZ-USB™ FX3 CPU can relay this information to the USB socket. The USB socket can
send an interrupt to the EZ-USB™ FX3 CPU to notify it that the USB socket emptied a DMA buffer. Then the EZ-
USB™ FX3 CPU can relay this information back to the GPIF socket. This implementation is called a manual DMA
channel. The manual DMA channel implementation is typically used when the EZ-USB™ FX3 CPU has to add,
remove, or modify data in a data stream. The firmware example of this application note uses the manual DMA
channel implementation because the firmware needs to add UVC video data header.

A socket that writes data to a DMA buffer is called a producer socket. A socket that reads data from a DMA buffer
is called a consumer socket. A socket uses the values of the DMA buffer address, DMA buffer size and DMA
descriptor chain stored in a DMA descriptor for data management (Section 4). A socket takes a finite amount of
time (up to a few microseconds) to switch from one DMA descriptor to another after it fills or empties a DMA
buffer. The socket will not be able to transfer any data while this switch is in progress. This latency can be a
problem for interfaces that have no flow control. One such example is an image sensor interface.

Application Note 22 of 86 001-75779 Rev. *L
2021-10-27

http://www.cypress.com/?rID=50120
http://www.cypress.com/?rID=50120

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

This issue is addressed in the GPIF Il block through the use of multiple GPIF threads. The GPIF Il block
implements four GPIF threads. Only one GPIF thread can transfer data at a time. The GPIF Il state machine must
select an active GPIF thread to transfer data.

The GPIF thread selection mechanism is like a MUX. The GPIF Il state machine uses internal control signals or
external inputs to select the active GPIF thread. In this example, this switching between GPIF threads is
controlled by the internal control signals. Switching the active GPIF thread will switch the active socket for the
data transfer, thereby changing the DMA buffer used for data transfers. The GPIF thread switch has no latency.
The GPIF Il state machine can implement this switch at the DMA buffer boundary, masking the latency of the
GPIF socket switching to a new DMA descriptor. This allows the GPIF Il block to take in data from the sensor,
without any loss, when the DMA buffer is filled up.

Figure 10 shows the sockets, the DMA descriptors, and the DMA buffer connections used in this application
along with the data flow. Two GPIF threads are used to fill in alternate DMA buffers. These GPIF threads use
separate GPIF sockets (acting as producer sockets) and DMA descriptor chains (descriptor chain 1 and
descriptor chain 2). The USB socket (acting as a consumer socket) uses a different DMA descriptor chain
(descriptor chain 3) to read the data out in the correct order.

GPIF Il Block DMA usB
L Descriptor Chain 1 Descriptor Chain 3 Inéelg‘:kce
S Descriptor 0 ¥» Buffer0 3/ Descriptor0 (UIB)
2| =
x| g A R N
GPIF Thread 0 § -§ —p Descriptor 2 » Buffer2 \ Descriptor 1
s> Z .
% a Descriptor 4 ¥» Buffer4 Descriptor 2 " 3
“ o
— Descriptor 6 » Buffer6 R g|® £z
Image) GPIF Il state machine ' Descriptor 3) E 3 > 3z
Sensor controlled switchin; i i : 2lo 3=
g Descriptor Chain 2 Descriptor 4 Sla 212
1 oln w
- Descriptor 1 »| Bufferl . =] @
B E >§ Descriptor 5 2
; >
GPIF Thread 1 53)’ _§ Y Descriptor 3 »| Buffer3 / Descriptor 6
W . I —
= Descriptor 5 »| Buffers .
5 o p » /,y Descriptor 7
— Descriptor 7 »| Buffer7
Figure 10 FX3 data transfer architecture
.
3.4 Design strategy

Before building the detailed GPIF Il state machine, it is useful to consider the basic transfer strategy.

\ Stillin Line,

GPIF Thread 0 Active DMA Buffer 0 full. GPIF Thread 1 Active
Increment CTO Increment CT1
Load CT1 L Load CTO
Stillin Line,

DMABufferLful. _

Figure 11 Data transfer within a video line

Figure 11 shows the basic DMA buffer ping-pong action when a DMA buffer fills during an active horizontal line.
The GPIF Il state machine has three independent counters. In this example, the GPIF Il unit maintains two
counters, CT0 and CT1, to count the number of bytes written to a DMA buffer. When the count reaches the DMA
buffer limit, the “DMA buffer full” branch is taken and the GPIF Il switches GPIF threads. As bytes are transferred
in one GPIF thread, the counter for the other GPIF thread is initialized to prepare the counter to count bytes
after the next GPIF thread switch occurs.

Application Note 23 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

When the image sensor de-asserts LV, it has reached the end of a video line. At this moment, the state machine
has several options, as shown in Figure 12, where LV is the Line Valid signal and FV is the frame valid signal. The
choices depend on whether a DMA buffer has just filled and if the frame has just completed.

1 4
Stillin Line,
GPIF Thread 0 Active DMA Buffer 0 full. GPIF Thread 1 Active
Increment CTO Increment CT1
Load CT1 I Load CTO
Stillin Line,
DMA Buffer1full. _
A |
Endof aLine
Wait for LV or IFV
NO
¢ IFV
Partial last DMA
Buffer 0 Fulllast DMA Buffer 0
Figure 12 Data transfer decisions at the end of a video line
Note: A mirrorimage decision tree starting with “End of a Line” also emanates from state 4; this was

omitted from the diagram for the sake of clarity.

At the end of a line (LV=0), the state machine transitions from state 1 to state 2 where it checks the DMA buffer
byte counter to determine if the DMA buffer is full. If it is, the state machine proceeds to state 3. In state 3, if FV
is low, a full frame has transferred and state 7 is entered. In state 7, the CPU is alerted via an interrupt request

that signifies a full last DMA buffer. Using this information, the CPU can set up the GPIF Il for the next frame.

If FV=1 in state 3, the image sensor is still transferring a frame, and it will soon reassert LV=1 to indicate the next
video line. When LV=1, the state machine transitions from state 3 to state 4, performing the same GPIF thread
switch as it does in the state 1 to state 4 transition. Thus, the paths 1-4 and 1-2-3-4 both result in a GPIF thread
switch. The difference between these paths is that the second path takes an extra cycle because it has an
intervening end-of-line pause.

If the DMA buffer is not full, the state machine moves from state 2 to state 5. In state 5, as in state 3, it waits
either for the end of the frame or for reassertion of LV (onset of the next video line). If LV=1, it continues to fill
DMA buffer 0 in state 1. If FV=0, the image sensor has finished sending a video frame and the DMA buffer 0 is
only partially filled. In state 6, the state machine raises a different interrupt to the CPU to allow it to account for
sending a short DMA buffer over USB.

3.5 GPIF Il state machine

The EZ-USB™ FX3 GPIF Il is a programmable state machine that can have up to 256 states. Each state can
perform actions, including the following:

o Drive multiple control lines
e Send or receive data and/or address

Application Note 24 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

e Send interrupts to the internal CPU

State transitions can depend on internal or external signals, such as DMA ready, and the image sensor’s
frame/line Valid.

To begin the GPIF Il state machine design, choose a point in the image sensor waveform for the state machine
to start. The start of a frame, indicated by a positive FV transition, is a logical starting point. GPIF Il detects this
edge by first waiting for FV=0 (first state) and then waiting for FV=1 (second state). The second state also
initializes a transfer counter to correspond to one DMA buffer full of video data. The state machine tests the
counter value and switches GPIF threads (DMA buffers) when the counter limit is reached. The counter limit is
reached when a DMA buffer fills.

The state machine uses two GPIF Il internal counters to count DMA buffer bytes: the GPIF Il address counter
ADDR and the data counter DATA. Whenever the GPIF Il state machine switches GPIF threads, it initializes the
appropriate counter for the other GPIF thread. Because loading a counter limit takes one clock cycle, the
loaded value is one less than the terminal count.

The transfer counters increment by one every clock cycle. Therefore, depending on the data bus width of the
interface, the value of the counter limit would change. For this example, the data bus width is 8 bits and the
DMA buffer size is 16,368 bytes, as explained in Section 5.6, so the programmed limit should be 16,367. In
general, the DMA buffer count limit is:

count = (producer _ buffer _ SIZE(L)J_l

data_bus _ width

Therefore, for a 16-bit interface, the DMA buffer size is 8184 16-bit words, so the programmed limit would be
8183. For a 32-bit interface, the DMA buffer size is 4092 32-bit words, so the programmed limit would be 4091.

The detailed GPIF Il state machine is shown in Figure 13. The two DMA buffer byte counters are the GPIF || DATA
and ADDR counters. These counters correspond to CTO and CT1, which are shown in Figure 12.

Application Note 25 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

State0 Statel State 2 State 15 State 14 State 13

ait for Frame
valid,
Load DATA

ait for Frame)
valid,
Load DATA

Wait for Frame
Done

Wait for Frame
Done

FV&LV
State5 State 3

LV & !DATA Limit
Wait for LV

with thread 0
active

State 4 State 6

ILV& !ADDR Limit
>/ Wait for LV

with thread 1

active

Transfer LV & DATA Limit

thread 0 data
DATA++
ADDR=0

Transfer
thread 1data,
ADDR++
DATA=0

LV & ADDR Limit <

LV

ILV & DATA Limit ILV &ADDR Limit

Wait for LV
with thread 0
full

Wait for LV
with thread 1
full

State7 State 8

State 9 State 11 State 12 State 10

Frame end
full bufferin
thread 0
Intr CPU

Frame end
partial buffer
in thread 0
Intr CPU

Frame end
full bufferin
thread 1
Intr CPU

Frame end
partial buffer
inthread 1
Intr CPU

Frame end
Wait for
Firmware
Trigger

Frame end

Wait for
Firmware
Trigger

FW_TRIG

FW_TRIG

Figure 13 GPIF Il state machine diagram

At the end of every frame, the CPU receives one of four possible interrupt requests, indicating the DMA buffer
number and fullness (states 9-12). These requests can be used to implement callback functions, which enable
the CPU to handle several tasks, including the following:

1. Commit the last DMA buffer for USB transfer if there is a partial DMA buffer at the end of a frame (states 9
and 10). If the DMA buffer was full at the end of the frame, the GPIF Il automatically committed it for USB
transfer (states 11 and 12).

2. Wait for the consumer socket (USB) to transmit the last of the DMA buffer data; then reset the channel and
the GPIF Il state machine to state 0 to prepare it for the start of the next frame.

3. Handle any special application-specific tasks to indicate the frame advance. The UVC requires indicating the
change-of-frame event by toggling a bit in the 12-byte header.

Figure 14 connects image sensor waveforms to GPIF Il states for a small portion of a horizontal line. The “Step”
line deals with the DMA system, which is described in Section 4 with Figure 46.

Application Note 26 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

GPIF Il image sensor interface

Active Frame - Vertical Blanking

< <
< »<

v | |
s B O N S O

Step 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 1

Stateo‘l‘z‘ 3 ‘5‘3‘4‘6‘ 4 ‘8‘ 3‘5‘3‘4‘6‘ 4‘8‘ 12 0‘1‘2
CPU
l«— Intervention

Reset FIFO
Reset GPIF |1

Figure 14 Image sensor interface, data path execution, and state machine correlation

3.6 Implementing image sensor interface using GPIF Il designer

This section describes the design of the image sensor interface using the GPIF Il designer. For reference, the
completed project is available in the “fx3_uvc.cydsn” directory path inside the zip file of the attached source.

The design process involves three steps:

1. Create a project using the GPIF Il designer
2. Choose the interface definition
3. Draw the state machine on the canvas

3.6.1 Create the project

Start GPIF Il designer. The GUI appears as Figure 15. Follow the step-by-step instructions as indicated in the
following figures. Each figure includes sub-steps. For advance information on any of the steps, see the GPIF Il
designer user guide.

Application Note 27 of 86 001-75779 Rev. *L
2021-10-27

http://www.cypress.com/?rID=59628
http://www.cypress.com/?rID=59628

infineon

How to implement an image sensor interface using EZ-USB™ FX3 in a
USB Video Class (UVC) framework

GPIF Il image sensor interface

GPIF™I Designer

File Edit View Build Tools
& j = Ll (R =
Start Page

GPIF™II Designer

Cypress Supplied Interfaces
_Q]] async_admux
_Lil sync_admux
@ async_slave_fifo_2bit
] sync_slave_fifo_zbit
_L',m &s5yNc_sram

Recent Projects

Create New Project..
Open Existing Project...

Start Page Topics
GPIF™II Designer Introduction
GPIF™II Introduction
FX3 Introduction

Output

| =] Outhtl i !
Ready

Help

-

;i?:YPHEss

F‘EQ‘FURM

»

GPIF™Il Designer Introduction

GPIF™Il Designer provides a graphical user interface to configure the processor port of FX3™ to connect to an external device. The
interface between FX3™ and the external device can be specified as a state machine based design using the graphical interfaces of this
application. The application generates the necessary configuration in the form of a "C” header file that can be readily integrated with the
Cypress provided firmware framework.

GPIF™II Designer Usage Flow FX3 Firmware Application Code

Runbme coda - Flow
barirol, errar bandiig &)
oAEr usar applicaton

Create a GPIF Il Project Devics and Firmmaare

Indtalizanion code

z i
sanImu
Inerface

m

C Header file with GPIF Il

nfiguration
Co ﬁg | code toload and| | AP code far GRIF 11
saart GRIF |1 Event ! Interrupe
with State Configuration Handling AP

L

GPIF I Configuration Dala l

Include header fie
in fimmware

Simulate state maching ta view
tirming

The tool provides user interface to create projects using pre-defined interfaces (Eg: SRAM, ADMux etc..). The tool lets user to customize
wvarious settings of the interface. Alzo user can view the GPIF™I|l state machine diagram used for implementing the interface.

FX3 Firmware Framewark AP|

GPIF Il Designer also provides a set of readily usable designs of standard and popular interfaces. A detailed documentation of such
intefaces describing the the protocol definition aleng with timing diagrams are available on opening Cypress supplied Interface project using
GPIF | Designer. User can can modify few parameters of such designs to customize the design to suit to users’ target environment.

Action List - X

Dynamic Help ¥ X

Figure 15

Start GPIF Il designer

Tools

¥ GPIF™I Designer

Build

File | Edit View

Help

51

Mew Project...

Ctrl+MN

Cpen Project...

Ctrl+O

&
=

Save Project Cirl + 5

(%51

(<]

ve Project

LA

[=1]

ve Project As Editable..

(]
[&]
m

Recent Projects

Ewit

Figure 16

Application Note

Open File menu and select New Project

28 0f 86

001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

— .]
¥ New Project ﬁ
Designs | Interfaces

2| GPIF I Design

Creates a project for GPIF II Design project
|| Mame: ImageSensarinterfacd
Location: ChCypress\GFIF I Designer C| I
[Ok] [Cance |
[——— e e — — e, e e e |
Figure 17 Enter project name and location

The project creation is now complete, and the GPIF Il designer opens up access to the Interface definition and
State Machine tabs. In the Interface Definition tab, the EZ-USB™ FX3 is on the left and the image sensor
(labeled “Application Processor”) is on the right. The next step is to set the interface between the two.

3.6.2 Define the interface

In this project, the image sensor connected to the EZ-USB™ FX3 device has an 8-bit data bus. It uses GPIO 28 for
the LV signal, GPI1O 29 for the FV signal, and GPIO 22 for sensor reset as an active low input (Table 6). This image
sensor also uses an I°C connection to EZ-USB™ FX3 to access image sensor registers, for example, to configure
the sensor for 720p mode. The “Interface Settings” column provides the necessary choices.

In addition, the indicated input signals become available in the next phase to create transition equations.
Figure 18 shows the interface settings to choose.

In Signals, choose two inputs for LV and FV.
In Signals, choose one output for nSensor_Reset.
In FX3 peripherals used, select I°C. This activates the EZ-USB™ FX3 I°C master.

In Interface type, select Slave. Because the image sensor supplies the clock and drives the data bus, the
GPIF Il acts as a slave device.

5. In Communication type, select Synchronous. This reflects the presence of a synchronizing clock from the
image sensor.

6. In Clock settings, select External. The image sensor supplies its PCLK signal to the GPIF I1.
7. InActive clock edge, select Positive. The image sensor references data transitions to its positive edge.

8. In Endianness, select Little endian. Endianness refers to the byte ordering in data buses wider than one
byte. For an 8-bit interface, this setting doesn’t matter.

9. InAddress/data bus usage, select 8 bit. The image sensor supplies an 8-bit data bus.

W

Application Note 29 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

Start Page Interface Definition Statb

Interface Settings:

F¥3 peripherals used

IZC [125 [C]] usRT [C] SFI

Interface fype
) Master

5|-3".'E'

Communication type
Synn:h ronous

I Asynchronous

Clock settings

ﬂ External
Active clock edge
Pas't".-e
| Negative
Endianness
Lit't e endian
Big endian

Address/data bus usage
Data bus width:

@E Bit () 16 Bit () 32 Bit

|:| Address/data bus multiplexad

Mumber of address pins used: O

Special functions
Cwe [Coe DLE
alE |[O]pack [C] ORQ

Signals

Inputs: § 2
Outputsy 1 DMA flags: 0

)

Figure 18 Interface setting selections

The “I/O Matrix configuration” should now look like Figure 19. The next step is to modify the properties of the
input and the output signals. The properties include the name of the signals, the pin mapping (i.e., which GPIO
acts as the input or the output), the polarity of the signal, and the initial value of the output signal.

Application Note 30 of 86 001-75779 Rev. *L

2021-10-27

USB Video Class (UVC) framework

o .
How to implement an image sensor interface using EZ-USB™ FX3 in a (|n f| neon

GPIF Il image sensor interface

-

1/0 Matrix Configuration

EZ-USB® FX3™

Application Processor

Figure 19 The block diagram so far

Double-click the INPUTO label in the Application Processor area to open the properties for that input signal, as

Figure 20 shows.

MName:

GPIO to use:

Polarity
) Active Low

@ Active High

INPUTD

|Gr10_17

[ok][cancel |

Figure 20 INPUTO default properties

Change the name of the signal to LV, and change GPIO to use: to GP10_28 (Table 6). Keep the polarity as
Active High. The properties now appear as shown in Figure 21. Click OK.

Application Note

310f86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

Input Signal Settings

Mame: LW

GPID to use: GPIO_28 b

Ffu:ularit:,r
1) Active Low
@ Active High

Figure 21 Edited INPUTO properties

Next, double-click the INPUTL1 label, change the name to FV and the GPIO assignment to GP1O_29, and keep
the polarity as Active High (Figure 22).

Input Signal Settings

Mame: Fv

GPIO to use: GPIO 29 hd

Enla rity
) Active Low
@ Active High

Figure 22 Edited INPUT1 properties

Double-click the OUTPUTO label and change the settings according to Figure 23.

- B
Output Signal Settings [

I MName: rSersor_ir:se‘I

GPIO to use: GPIO_22 hd

C_)utp ut type
@ Early

) Delayed
F’_olarit_',r

@ Active Low
) Active High

S_ig nal mode
) Toggle
@ Assert

Figure 23 Edited OUTPUTO properties

Application Note 32 0of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

This completes the interface settings. As you set properties, such as signal names, all other parts of the GPIF II
designer will update to reflect the changes. For example, the block diagram now has signal names instead of
generic input and output names. Also, as you use the state machine designer, the available signal options, for
example the LV and FV signals, automatically appear as choices in drop-down lists.

3.6.3 Draw the state machine

Click the State Machine tab to open the state machine canvas. State machine design involves three basic
operations:

1. Create states
2. Add actions within the states
3. Create transitions between states using conditions required to make the transitions

3.6.4 Draw the GPIF Il state machine

Click the State Machine tab to open the canvas. An unedited canvas has two states: START and STATEO. An
unconditional transition (LOGIC_ONE) connects the states (Figure 24).

i GPIF™I Designer [C:\Cypress\GPIF II Designer\lmageSen
File Edit WView 5State Machine Build Tools Help
HEd it ff = | = | 2] | 100% ~ &
Start Page Interface Definition State Machine
START
L8 _
STATED
Figure 24 Initial state machine canvas

1. Edit the name of START state to START_SCKO by double-clicking inside the START box and editing the name
text box. Similarly edit the name of STATEOQ state to IDLE_SCKO. The “Repeat actions until next transition”
determines if an action occurs once when the state is entered or if it occurs on every clock while inside the
state. For states with no actions, such as this one, the checkbox state is irrelevant.

2. Add a new state by right-clicking an empty spot in the canvas and selecting “Add State”. Double-click inside
this new state and change its name to WAIT_FOR_FRAME_START_0.

3. Create a transition from the IDLE state to the WAIT_FOR_FRAME_START_0 state. Position the cursor in the
center of the IDLE state box. The cursor changes to a + sign to indicate transition entry. Drag the mouse to
the center of the WAIT_FOR_FRAME_START_O0 state. A small selection square appears inside the state box to
help locate its center. If the mouse is released anywhere but in the center of the state box, the transition is
not created. Try again. Notice that the state transition does not yet have any conditions.

Application Note 33 0f 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

START_SCKD

™.

.
w,

DSGIC_ONE

IDLE_SCKD

e
T THWAIT_FOR_FRAN

Figure 25 Results of steps 1-3

4. Edit the equation for the transition from IDLE_SCKO to WAIT_FOR_FRAME_START_0 by double-clicking on
the transition line (Figure 26). Notice that LV and FV appear as equation terms to correspond to the
renamed block diagram signals. To select FV low, build the equation using buttons and signal selections.
Click the Not button, and the “!” symbol appears in the Equation Entry window. Then select the FV signal
and click the “Add” button (or double-click the FV entry) to create the final “!FV” equation. You could also
directly enter the equation by typing “!FV” in the Equation Entry window. The transition now appears as
shown in Figure 27.

i N
Transition Equation Entry @Elﬂ

Triggers:
LY

+

Add
LOGIC_ONE =l And
FW TR o
DMA_RDY_CT
DMA_WH_CT Mot
P
3

DMA_RDY_THD
DMA_WH_THD

DMA_RDY_TH1

DMA_WM_TH1 -

Equation Entry:
PV

| Inicates if data in t

Figure 26 Double-Clicking a transition line brings up this window
Application Note 34 of 86 001-75779 Rev. *L

2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

START_SCKD

O
IDLE_SCKO

[|]]

1
] \%‘\ WAIT_FOR_FRAN

Figure 27 The edited transition

5. Inthe WAIT_FOR_FRAME_START_O state, we want to initialize our two byte counters because counters must
be initialized in a state that precedes the state that increments them. Recall that this design uses the DATA
counter for the Socket 0 buffer and the ADDR counter for the Socket 1 buffer. The “Action List” window in
GPIF Il designer’s top-right window displays the action choices. To add an action to a state, drag its name in
the Action List into the state box. Drag the LD_DATA_COUNT and LD_ADDR_COUNT actions into the
WAIT_FOR_FRAME_START_0 state box.

6. To edit action properties, double-click the action name inside the state box. Edit the properties of both
actions as shown in Figure 28. The “Counter mask event” checkbox disables an interrupt request when the
counter reaches its limit value.

[¥ Action Settings [ﬂz_,r
Counter type
9 Up counter
Down counter
Counter load value: o
Counter limit value: 16367
Counter step value: 1
Reload counter on reaching limit
| Counter mask event
. Cance |

Figure 28 LD_DATA/ADDR_COUNT action settings

7. Similar to the previous step, create states START_SCK1, IDLE_SCK1 and WAIT_FOR_FRAME_START_1.

8. Add a new state with the name PUSH_DATA_SCKO (Push image sensor data into Socket 0). This state
transfers one image sensor byte per clock into the GPIF Il interface, which routes it to Socket 0.

9. Create a transition from the WAIT_FOR_FRAME_START_0 state to the PUSH_DATA_SCKO state.

10. Edit this transition equation entry to occur when FV and LV are both asserted by creating the equation
FV&LV. The resulting state transition is shown in Figure 29.

Application Note 350f 86 001-75779 Rev. *L
2021-10-27

USB Video Class (UVC) framework

GPIF Il image sensor interface

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

WAIT_FOR_FRAN
———] L0 _DATA_COUNT

FV&LY

PUSH_DATA_SCH

Figure 29 PUSH_DATA_SCKO and its transition condition FV&LV

11.Add the COUNT_DATA action to the PUSH_DATA_SCKO state. This increments the DATA (Socket 0) counter
value on every PCLK rising edge.

12. Add the IN_DATA action to the PUSH_DATA_SCKO state. This action reads data from the data bus into the
DMA buffers.

13.Add the LD_ADDR_COUNT action to the PUSH_DATA_SCKO state to reload the ADDR counter. As before, the
counter load is done in the state that actually increments the counter. The ADDR counter counts the bytes
transferred into SCK1.

14. Edit the properties of the action IN_DATA in the PUSH_DATA_SCKO state, as Figure 30 shows.

ur# Action Settings ﬁ

Data Sink: Socket - |
Thread Number: Threadd - |

Sample data from data bus

Write data into Data Sink

Cance |

L

Figure 30 PUSH_DATA_SCKO action settings

15. Add a new state with the name PUSH_DATA_SCK1. Create a transition from the WAIT_FOR_FRAME_START_1
state to the PUSH_DATA_SCK1 state and edit this transition equation entry to occur when FV and LV are
both asserted. Add the COUNT_ADDR, IN_DATA and LD_DATA_COUNT actions to PUSH_DATA_SCK1state.

16. Edit the properties of the IN_DATA action in the PUSH_DATA_SCK1 state to use Threadl, as shown in Figure
31.

Application Note 36 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

i N
| Action Settings Iﬁ
Data Sink: Socket * |

Thread Mumber:

Sample gats from damncea0

Write data into Data| Thread2

=3

L

Figure 31 PUSH_DATA_SCK1 IN_DATA action

17. Create a transition from the PUSH_DATA_SCKO state to the PUSH_DATA_SCK1 state. Edit this transition’s
equation entry using the equation “LV and DATA_CNT_HIT”.

18. Create a transition from the PUSH_DATA_SCK1 state to the PUSH_DATA_SCKO state. Reverse direction. Edit
this transition’s equation entry with the equation “LV and ADDR_CNT_HIT”.

These transitions define state transitions that switch between GPIF threads during an active line at the DMA
buffer boundaries. Figure 32 shows this portion of the state machine.

-
y H'"H.,_ .J::
WAIT_FOR_FRAM WAIT_FOR_FRAMN P 3
LD DATA_COLUNT LD DATA COUMT =
LDy ADDR_COLMT LD ADDR_COUMT
|
! Y

|
PUSH_DATA_SCh PUSH_D&ATA_SCH

IN_DATA — e o TN DATA
COUMT_DATA EVELARA COUNT_ADDR
Y LD ADDRCOUNT [~ — — — LD _DATA_COUMT

Figure 32 The ping-pong action from Figure 11

19. Add a new state “LINE_END_SCKO” to the left of the PUSH_DATA_SCKO state.
20.Add a new state “LINE_END_SCK1” to the right of the PUSH_DATA_SCK1 state.

These two states are entered when the LV signal is deasserted while the image sensor switches to the next
video line. Because the same operation is alternately executed using different GPIF threads, the states are
required on both socket0 and socket1 sides.

21. The PUSH_DATA state requires three possible exit transitions, but the GPIF Il hardware implements a
maximum of two per state. The three-transition requirement is handled by creating a dummy state that

370f 86 001-75779 Rev. *L

Application Note
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

does nothing but distribute three exit conditions between two states. To demonstrate this, Figure 33 shows
a state A transitioning to states B, C, or D based on conditions 1,2, or 3.

Figure 33 State A requires exit conditions 1, 2, and 3

22.To make this GPIF Il compatible, add the dummy state A2, as shown in Figure 34.
@—!1

Figure 34 Add a dummy state A2 for GPIF Il compatibility

23. Create the LINE_END state to serve as this dummy state.

24. Create a transition from the PUSH_DATA_SCKO state to the LINE_END_SCKO state with the transition
equation “(not LV)”.

25. Create a transition from the PUSH_DATA_SCK1 state to the LINE_END_SCK1 state with the transition
equation “(not LV)”.

26.Add a new state “WAIT_TO_FILL_SCKO” below the LINE_END_SCKO state.

27.Add a new state “WAIT_TO_FILL_SCK1” below the LINE_END_SCK1 state.

These two states are entered when the DMA buffers are not full but the line valid is deasserted.

28. Create a transition from the LINE_END_SCKO state to the WAIT_TO_FILL_SCKO state with the transition
equation “(not DATA_CNT_HIT)”, as Figure 35 shows.

I
r B
ur| Transition Equation Entry o (S e S
LIME_EMD_SCKD Triggers:
LV < aaa ||
— ||V
LV ADDR_CNT_HIT = || and |
DATA_CNT_HIT = |
l LOGIC_ONE
FW_TRG Not |
| CiA_RDY_CT
. DA Wi _CT i
WAIT_TO_FILL_S DMA_RDY_THO |
ChAA_Wi_THO -
Equation Entryz
IDATA_CNT_HIT -
Ok | Cancel |
\

Figure 35 DATA_CNT_HIT indicates the counter has reached Its programmed limit

Application Note 38 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

29. Create a transition back from the “WAIT_TO_FILL_SCKO0” state to the “PUSH_DATA_SCKO0” state with the
equation “LV”. The data transfer resumes in the same socket as soon as the line is active.

30. Create a transition from the “LINE_END_SCK1” state to the “WAIT_TO_FILL_SCK1” state with the transition
equation “(not ADDR_CNT_HIT)".

31. Create a transition back from the “WAIT_TO_FILL_SCK1” state to the “PUSH_DATA_SCK1” state with the
equation “LV”.

32.Add a new state “WAIT_FULL_SCKO_NEXT_SCK1” below the “PUSH_DATA_SCKO” state.

33.Add a new state “WAIT_FULL_SCK1_NEXT_SCK0” below the “PUSH_DATA_SCK1” state.

34.During these two states (WAIT_FULL_), the image sensor is switching lines at the DMA buffer boundaries.
Therefore, the next byte transfer must use the currently inactive GPIF thread.

35. Create a transition from the “LINE_END_SCKO0” state to the “WAIT_FULL_SCKO_NEXT_SCK1” state with the
equation “DATA_CNT_HIT”. This portion of the state machine appears as shown in Figure 36.

LINE_EMD_SCKD PUSH_DATA_SCH PUSH_DATA_SCH
COUNT_DATA — P T | COUNTADDR -
S SVEDATA LT mpaTa
——————— LD ADDR COUNT [————————g—————| LD DATA COUNT
¢
* LA o
aTa char . CRLA L
| -
1 & t
WAIT_TO_FILL_S! WAIT_FULL_SCKI WAIT_FULL_SCK

Figure 36 WAIT_FULL states added

36. Create a transition from the “LINE_END_SCK1” state to the “WAIT_FULL_SCK1_NEXT_SCKO0” state with the
equation “ADDR_CNT_HIT”.

37.Create a transition from the “WAIT_FULL_SCKO_NEXT_SCK1” state to the “PUSH_DATA_SCK1” state with
the equation “LV”. Notice that doing so creates a crossed link in the diagram.

38. Create a transition from the “WAIT_FULL_SCK1_NEXT_SCKO0” state to the “PUSH_DATA_SCKO0” state with
the equation “LV”. The resultant state machine portion appears as in Figure 37.

LINE_END_SCKD PUSH_DATA_SCH PUSH_DATA_SCH LINE_END_SCKL

COUNT_DATA — —*— antn —n COUNT_ADDR — —- —
IN_DATA ERERIR ST IN DATA
— — LD ADDR_ COUNT = ——i— ——2 LD _DATA_COUNT
ADDRTC
- ’ ry
4 ~ |
J_ A . s
ara cnr) DX St _ | i
| # “ / b N A |
WAIT_TO_FILL S WAIT_FULL_SCKI o [WATFULLSCE) . (e

Figure 37 Wait when DMA buffers are full

39. Add a new state “PARTIAL_BUF_IN_SCKO0” below the “WAIT_TO_FILL_SCKO0” state.
40.Add a new state “PARTIAL_BUF_IN_SCK1” below the “WAIT_TO_FILL_SCK1” state.

Application Note 39 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

The PARTIAL_BUF_ states are an indication of the end of the frame, where the last DMA buffer has not
completely filled. The CPU must commit this partial DMA buffer manually when it responds to a GPIF II-
generated interrupt request.

41.Add a new state “FULL_BUF_IN_SCKO0” below the “WAIT_FULL_SCKO_NEXT_SCK1” state.
42.Add a new state “FULL_BUF_IN_SCK1” below the “WAIT_FULL_SCK1_NEXT_SCKO0” state.

The FULL_BUF_ states are an indication that the end of the frame data is the last byte in the DMA buffer
associated with the corresponding GPIF thread. The GPIF Il hardware has taken care of committing this full
DMA buffer, so any further action here would be application-specific.

43. Create a transition from the “WAIT_TO_FILL_SCKO0” state to the “PARTIAL_BUF_IN_SCKO0” state with the
equation “not FV”.

44, Create a transition from the “WAIT_TO_FILL_SCK1” state to the “PARTIAL_BUF_IN_SCK1” state with the
equation “not FV”,

45, Create a transition from the “WAIT_FULL_SCKO_NEXT_SCK1” state to the “FULL_BUF_IN_SCKO0” state with
the equation “not FV”.

46. Create a transition from the “WAIT_FULL_SCK1_NEXT_SCKO0” state to the “FULL_BUF_IN_SCK1” state with
the equation “not FV”.

47.Add action “Intr_CPU” in each of the states “PARTIAL_BUF_IN_SCK0”, “PARTIAL_BUF_IN_SCK1”,
“FULL_BUF_IN_SCKO0”, and “FULL_BUF_IN_SCK1”.

48.Add a new state “FRAME_END_SCK_0” and add transitions from states “PARTIAL_BUF_IN_SCKO0” and
“FULL_BUF_IN_SCKO0” with the transition condition as “firmware trigger asserted (FW_TRIG)”, and then add
a transition from “FRAME_END_SCK_0” to the state “IDLE_1” with the transition condition as “firmware
trigger de-asserted (IFW_TRIG)”.

49, Similar to the previous step, create the state “FRAME_END_SCK_1” and add transitions from states
“PARTIAL_BUF_IN_SCK1” and “FULL_BUF_IN_SCK1” with the transition condition as “firmware trigger
asserted (FW_TRIG)” and then add a transition from “FRAME_END_SCK_1” to the state “IDLE_0" with the
transition condition as “firmware trigger de-asserted (IFW_TRIG)”.

The final state machine appears as Figure 39. This can be compared with Figure 13, with the only
difference being the addition of the PUSH_DATA states to accommodate the two-transition maximum for
any state.

50. Save the project by selecting “File-Save Project As”.

51. Build the project using the Build icon highlighted in Figure 38. The project output window indicates the
build status.

= pr—r—— T =]
w1 GPIF™I Designer [C:\Cypress\GPIF II Designer\imageSens
File Edit Wiew 5tate Machine Build Tools Help

Al Lt Jfitl = | (8 | | 100% ~ &

StartPage [* 1 Build project (Ctrl+Shift+B) fachine

START

Figure 38 The BUILD button

Application Note 40 of 86 001-75779 Rev. *L
2021-10-27

How to implement an image sensor interface using EZ-USB™ FX3 in a
USB Video Class (UVC) framework

(infineon

GPIF Il image sensor interface

52. Check the output of the project. This appears as a header file called cyfxgpif2config.h in the project

directory. If you examine this header file, you’ll see that GPIF designer Il has created arrays of GPIF Il internal
settings that will be used by the EZ-USB™ FX3 firmware to configure the GPIF Il and to define its state
machine. Never directly edit this file; let GPIF Il designer do the work for you.

START_SCKO START_SCKL
[
! 1
| ~
IDLE_SCKOD o . R WAIT_FOR_FRAN]3_E_SCK:_
- F o LD_DATA_COUNT
LO_ADDR_COUNT
— . [
T Fy
) ‘_ - r. -
| |FV&LY FVa
| LINE_EMD_SCKO PUSH_DATA_SCH PUSH_DATA_SCY UME_END_SCK1 |
| : ———F——————| DaATA S
| COLNT_ADDR |

'.'.'A]'I'_TQI_F,L_S':" \“'-'-'A]T,FJ_¥SC Kl) . WAIT_FULL_SCIC |
3 | | o
| [I g I |
| PARTIALBURIN, FULLBUFINSC FULL BUFINSC PARTIAL_BUFIN |
| CIRE-d INTR.CPU — INTRCPU INTR_CPU |
! PR _T.‘-—:L'_;__‘h
FRAME_END_SC - - \
e 7_______._--—-"""__ {FRAME_END_SCI
Figure 39 Final state machine diagram
3.6.5 Editing GPIF Il interface details

This section describes how to change the interface settings, if required. As an example, if the image sensor/ASIC
has a 16-bit-wide data bus, you would need to change the GPIF Il interface to accommodate the data bus. To
accomplish this, take the following steps:

1.

O Nk wN

9.

Open the ImageSensorinterface.cyfx project in the GPIF Il designer. (This project may not be directly
compiled.)

Go to File->Save Project As.

Save the project in a convenient location with a convenient name in the dialog box that will appear.
Close the currently open project (File->Close Project).

Open the project that was saved in Step 3.

Go to the Interface Definition tab and choose the 16 Bit option for Address/Data Bus Usage setting.
Go to the State Machine tab.

In the state machine canvas, double-click the LD_DATA_COUNT action inside the WAIT_FOR_FRAME_START
state. Change the counter limit value to 8183.

Do the same for LD_ADDR_COUNT action.

10. Save the Project.
11. Build the Project.

Application Note 41 of 86 001-75779 Rev. *L

2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

GPIF Il image sensor interface

12. Copy the newly generated cyfxgpif2config.h header file from the location selected in Step 3 to the firmware
project directory. You will overwrite the existing cyfxgpif2config.h file if there is one. Find the firmware
project directory, cyfxuvc_an75779, inside the zip file of the attached source.

Note: If you are changing the GPIF Il bus width to 32 bits, make sure the iomatrix configuration in the
firmware has the isDQ32Bit parameter set to CyTrue.

The next sections explain the details of the DMA channel to stream data and the firmware that supports UVC.

001-75779 Rev. *L

Application Note 42 of 86
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
Setting up the DMA system

4

The GPIF Il block, a part of the processor interface block (PIB), can run up to 100 MHz with 32 bits of data
(400-MBps). To transfer the data into internal DMA buffers, GPIF Il uses multiple GPIF threads connected to DMA
producer sockets (explained in Section 3.3). Two of the four GPIF threads are used in this application. Default
mapping (Figure 40) of the sockets and GPIF threads is used for this application—Socket 0 is connected to GPIF
thread 0, and Socket 1 is connected to GPIF thread 1. The GPIF thread switching is accomplished in the GPIF II
state machine designed in the previous section.

Setting up the DMA system

Processor Interface Block (PIB)

GPIF I

Socket 0 Thread 0

/

Socket 1 Thread 1

External

—P
Data Bus

\
Ty
\\ Iy
v

Socket 2 Thread 2

\

\

I

Socket 3 Thread 3

S48

Figure 40 Default GPIF Il socket/thread mapping

To understand DMA transfers, the concept of a socket is further explored in the following four figures. Figure 41
shows the two main socket attributes, a linked list, and a data router.

Socket Linked List

—

FX3 RAM

Socket

DMA Descriptor 1
Address Al, Length L,
Next Descriptor 2

DMA Buffer 1

DMA Buffer 2

DMA Buffer 3

v

DMA Descriptor 2
Address A2 Length L,
Next Descriptor 3

v

T DMA Descriptor 1
Address A3, Length L,
Next Descriptor 1

L

A Socket routes data according to a list of DMA descriptors

Data

Figure 41

The socket linked list is a set of data structures in main memory called DMA descriptors. Each descriptor
specifies a DMA buffer address and length as well as a pointer to the next DMA descriptor. As the socket
operates, it retrieves the DMA descriptors one at a time, routing the data to the DMA buffer specified by the
descriptor address and length. When L bytes have transferred, the socket retrieves the next descriptor and
continues transferring bytes to a different DMA buffer.

001-75779 Rev. *L
2021-10-27

Application Note 43 of 86

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
Setting up the DMA system

This structure makes a socket extremely versatile because any number of DMA buffers can be created anywhere
in memory and be automatically chained together. For example, the socket in Figure 41 retrieves DMA
descriptors in a repeating loop.

Socket Linked List

—

DMA Descriptor 1
AddressAl, Length L,
Socket K Next Descriptor 2

Li DMA Buffer 1 | ¢ ¢

’ DMA Descriptor 2
DMA Buffer 2 Address A2 Length L,
Next Descriptor 3

DMA Buffer 3 ¢

FX3RAM

T DMA Descriptor 3
Address A3, Length L,
Data Next Descriptor 1

Figure 42 A socket operating with DMA descriptor 1

In Figure 42, the socket has loaded DMA descriptor 1, which tells it to transfer bytes starting at A1 until it has
transferred L bytes, at which time it retrieves DMA descriptor 2 and continues with its address and length

settings A2 and L (Figure 43).

Socket Linked List

—

FX3 RAM DMA Descriptor 1
AddressAl, Length L,
SOCket Next Descriptor 2

DMA Buffer 1 ¢

A2 DMA Descriptor 2
Li DMA Buffer2 | «=a AddressA2 LengthlL,
Next Descriptor 3

DMA Buffer 3 ¢

T DMA Descriptor 3
Address A3, Length L,
Data Next Descriptor 1

L

Figure 43 A socket operating with DMA descriptor 2

In Figure 44 the socket retrieves the third DMA descriptor and transfers data starting at A3. When it has
transferred L bytes, the sequence repeats with DMA descriptor 1.

Socket Linked List

——

DMA Descriptor 1
Address A1, Length L,
SOCket Next Descriptor 2

DMA Buffer 1 ¢

DMA Descriptor 2
DMA Buffer 2 Address A2 Length L,
. Next Descriptor 3

DMA Buffer3 | % ¢

FX3 RAM

A3 "
T . DMA Descriptor 3
Address A3, Length L,
Data Next Descriptor 1

L

Figure 44 A socket operating with DMA descriptor 3

001-75779 Rev. *L

Application Note 44 of 86
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
Setting up the DMA system

Figure 45 shows a DMA data transfer in more detail. This example uses three DMA buffers of length L chained in
acircular loop. EZ-USB™ FX3 memory addresses are on the left. The blue arrows show the socket loading the
socket linked list descriptors from memory. The red arrows show the resulting data paths. The following steps
show the socket sequence as data is moved to the internal DMA buffers.

Step 1: Load DMA descriptor 1 from the memory into the socket. Get the DMA buffer location (A1), DMA buffer
size (L), and next descriptor (DMA descriptor 2) information. Go to Step 2.

Step 2: Transfer data to the DMA buffer location starting at Al. After transferring DMA buffer size L amount of
data, go to Step 3.

DMA Descriptor 1
Buffer Address: Al - Size L
Next DMA Descriptor: 2

DMA Descriptor 2
Buffer Address: A2 - Size L
Next DMA Descriptor: 3

DMA Descriptor 3
Buffer Address: A3 - Size L
Next DMA Descriptor: 1

‘ll%iHHiI:

Al
DMA Buffer 1
Al+L
A2
DMA Buffer 2
A2+L
A3
DMA Buffer 3
A3+L

Figure 45 DMA transfer example

Step 3: Load DMA descriptor 2 as pointed to by the current DMA descriptor 1. Get the DMA buffer location (A2),
DMA buffer size (L), and next descriptor (DMA descriptor 3) information. Go to Step 4.

Step 4: Transfer data to the DMA buffer location starting at A2. After transferring DMA buffer size L amount of
data, go to Step 5.

Step 5: Load DMA descriptor 3 as pointed to by the current DMA descriptor 2. Get the DMA buffer location (A3),
DMA buffer size (L), and next descriptor (DMA descriptor 1) information. Go to Step 6.

Step 6: Transfer data to the DMA buffer location starting at A3. After transferring DMA buffer size L amount of
data, go to Step 1.

Application Note 45 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
Setting up the DMA system

This simple scheme has an issue in the camera application. A socket takes time to retrieve the next DMA
descriptor from memory, typically 1 microsecond. If this transfer pause occurs in the middle of a video line, the
video data is lost. To prevent this loss, the DMA buffer size can be set as a multiple of the video line length. This
would make the DMA buffer switching pause coincide with the time that the video line is inactive (LV=0).
However, this approach lacks flexibility if, for example, the video resolution is changed.

Setting DMA buffer size exactly equal to line size is also not a good solution because it does not take advantage
of the USB 3.0 maximum burst rate for BULK transfers. USB 3.0 allows a maximum of 16 bursts of 1024 bytes
over BULK endpoints. This is why the DMA buffer size is set to 16 KB.

A better solution is to take advantage of the fact that sockets can be switched without latency—in one clock
cycle. Therefore, it makes sense to use two sockets to store data into four interleaved DMA buffers. Data
transfer using dual sockets is described in Figure 46, again with numbered execution steps. Socket0 and
socketl access to DMA buffers is differentiated by red and green arrows (data paths for individual sockets),
respectively. The ‘@’ and ‘b’ parts of each step occur simultaneously. This parallel operation of the hardware
eliminates DMA descriptor retrieval dead time and allows the GPIF Il to stream data continuously into internal
memory. These steps correspond to the “Step” line in Figure 14.

DMA Descriptor 1
Buffer Address: Al - Size L
Next DMA Descriptor: 3

DMA Descriptor 2
Buffer Address: A2 - Size L
Next DMA Descriptor: 4

DMA Descriptor 3
Buffer Address: A3 - Size L
Next DMA Descriptor: 1

DMA Descriptor 4
Buffer Address: A4 - Size L
Next DMA Descriptor: 2

Al

DMA Buffer 1

Al+L
A2
DMA Buffer 2
A2+L oY
R Y
A3 d}"b &
&
DMA Buffer 3
A3+L
A4
DMA Buffer 4
A4+L
Figure 46 Dual sockets yield seamless transfers

Step 1: At initialization of the sockets, socket 0 and socket 1 load the DMA descriptor 1 and DMA descriptor 2,
respectively.

Application Note 46 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

Setting up the DMA system

Step 2: As soon as the data is available, socket 0 transfers the data to DMA buffer 1. The transfer length is L. At
the end of this transfer, go to step 3.

Step 3: GPIF Il switches the GPIF thread and, therefore, the socket for data transfer. Socket 1 starts to transfer
data to DMA buffer 2, and, at the same time, socket 0 loads the DMA descriptor 3. By the time socket 1 finishes
transferring L amount of data, socket 0 is ready to transfer data into DMA buffer 3.

Step 4: GPIF Il now switches back to the original GPIF thread. Socket 0 now transfers the data of length L into
DMA buffer 3. At the same time, socket 1 loads the DMA descriptor 4, making it ready to transfer data to DMA
buffer 4. After Socket 0 finishes transferring the data of length L, go to Step 5.

Step 5: GPIF Il routes socket 1 data into DMA buffer 4. At the same time, socket 0 loads DMA descriptor 1 to
prepare to transfer data into DMA buffer 1. Notice that Step 5a is the same as Step 1a except that socket 1 is not
initializing but, rather, transferring data simultaneously.

Step 6: GPIF Il switches sockets again, and Socket 0 starts to transfer data of length L into DMA buffer 1. Itis
assumed that by now, the DMA buffer is empty, having been depleted by the UIB consumer socket. At the same
time, Socket 1 loads the DMA descriptor 2 and is ready to transfer data into DMA buffer 2. The cycle now goes to
Step 3 in the execution path.

GPIF Il sockets can transfer video data only if the consuming side (USB) empties and releases the DMA buffers in
time to receive the next chunk of video data from GPIF Il. If the consumer is not fast enough, the sockets drop
data because their DMA buffer writes are ignored. As a result, the byte counters lose sync with the actual
transfers, which can propagate to the next frame. Therefore, a cleanup mechanism is required at the end of
every frame. This mechanism is described in the Clean Up section.

According to the flowchart in Figure 13, a frame transfer ends with four possible states:

e Socket 0 has transferred a full DMA buffer
e Socket 1 has transferred a full DMA buffer
e Socket 0 has transferred a partial DMA buffer
e Socket 1 has transferred a partial DMA buffer

In the partial DMA buffer cases, the CPU needs to commit the partial DMA buffer to the USB consumer.

The DMA channeliis initialized using a function in the uvc.c file called CyFxXUVCApplninit. The DMA channel
configuration details are customized in the “dmaMultiConfig” structure in the CyFxUVCApplnlinit function. The
DMA channel type is set to MANUAL_MANY_TO_ONE.

In addition, the USB endpoint that streams data to the USB 3.0 host is configured to enable a burst of 16 over
the 1024-byte BULK endpoint. This is set using the “endPointConfig” structure passed in the
“CyU3PSetEpConfig” function, with the endpoint constant set to “CY_FX_EP_BULK_VIDEO”.

4.1 About DMA buffers
This section summarizes how EZ-USB™ FX3 DMA buffers are created and used in this application.

o Theintegral parts of a DMA channel are described in Section 3.3.
e Inthisapplication, the GPIF Il unit is the producer, and the EZ-USB™ FX3 USB unit is the consumer.
e This application uses the GPIF thread switching feature in the GPIF Il block to avoid data drops.

e When a producer socket loads a DMA descriptor, it checks the associated DMA buffer to see if it is ready for a
write operation. The producer socket changes its state to “active” for writing data into EZ-USB™ FX3 RAM if it
finds that the DMA buffer is empty. The producer socket locks the DMA buffer for write operations.

Application Note 47 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework
Setting up the DMA system

e When a producer socket is finished writing to a DMA buffer, it releases the lock so that the consumer socket
can access the DMA buffer. The action is called “buffer wrap-up“ or simply “wrap-up”. The DMA unit is then
said to commit the DMA buffer to the EZ-USB™ FX3 RAM. The producer socket is said to have produced a
DMA buffer. ADMA buffer should be wrapped up only while the producer is not actively filling it. This is the
reason for the FV=0 test in the state diagrams.

o If a DMA buffer fills completely, as it does repeatedly during a frame, the wrap-up operation is automatic.
The producer socket releases the lock on the DMA buffer, commits it to the EZ-USB™ FX3 RAM, switches to an
empty DMA buffer, and continues to write the video data stream.

e When a consumer socket loads a DMA descriptor, it checks the associated DMA buffer to see if itis ready for a
read operation. The consumer socket changes its state to “active” for reading data from EZ-USB™ FX3 RAM if
it finds that the DMA buffer is committed. The consumer socket locks the DMA buffer for read operations.

o After the consumer socket has read all the data from the DMA buffer, it releases the lock so that the producer
socket can access the DMA buffer. The consumer socket is said to have consumed the DMA buffer.

e If the same DMA descriptors are used by the producer and consumer sockets, the DMA buffer full/empty
status is communicated automatically between the producer and consumer sockets via the DMA descriptors
and inter-socket events.

e Inthis application, because the CPU needs to add a 12-byte UVC header, the producer socket and the
consumer socket need to load different sets of DMA descriptors. The DMA descriptors loaded by the
producer socket will point to DMA buffers that are at a 12-byte offset from the corresponding DMA buffers
that the DMA descriptors loaded by the consumer socket point to.

e Due to different DMA descriptors for producer and consumer sockets, the CPU must manage the
communication of the DMA buffer status between the producer and the consumer sockets. This is why the
DMA channel implementation is called a “Manual DMA” channel.

o After a DMA buffer is produced by the GPIF Il block, the CPU is notified via an interrupt. The CPU then adds
the header information and commits the DMA buffer to the consumer (USB Interface Block).

e Onthe GPIF Il side, the video data in DMA buffers are automatically wrapped up and committed to the EZ-
USB™ FX3 RAM for all but the last DMA buffer in the frame. No CPU intervention is required.

e Atthe end of a frame, the final DMA buffer is likely not filled completely. In this case, the CPU intervenes and
manually wraps up the DMA buffer and commits it to the EZ-USB™ FX3 RAM. This is called a “forced wrap-

”»

up”.

Application Note 48 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

EZ-USB™ FX3 firmware

5 EZ-USB™ FX3 firmware

The example firmware supplied with this application note is located under the cyfxuvc_an75779 folder of the zip
file of the source. See AN75705 - Getting started with EZ-USB™ FX3, to import the firmware project in the
Eclipse workspace. This example firmware will compile and enumerate, but the user must tailor it to a
particular image sensor using the sensor.c and sensor.h files to be able to stream video from the image sensor.

If the ON Semiconductor (Aptina) sensor board is used as described in Section 6 of this application note,
Infineon provided sensor.c and sensor.h files correspond with this particular sensor. A pre-compiled load image
is provided in the project to try out the EZ-USB™ FX3 - ON Semiconductor sensor configuration (Section 7).
Table 8 summarizes the code modules and the functions implemented in each module.

Table 8 Example project files
File Description
sensor.c Defines SensorWrite2B, SensorWrite, SensorRead2B, and SensorRead functions to

write and read the image sensor configuration over I°C. These functions assume that
the register addresses on the I°C bus of the image sensor are 16-bit wide.

Defines SensorReset function to control the reset line of the image sensor, and
Sensorlnit function to test the I°C connection and configure the image sensor in
default streaming mode (using SensorScaling_HD720p_30fps function)

Defines SensorScaling_VGA and SensorScaling_HD720p_30fps functions to configure
the image sensor in desired streaming modes.

Defines SensorGetBrightness and SensorSetBrightness functions to read and to write
the brightness value in the image sensor brightness control register.

sensor.h Contains the constants used for the image sensor (its 12C slave address and reset
GPIO number). You have to define the 12C slave address of the image sensor here.

Contains the declarations of all the functions defined in sensor.c

camera_ptzcontrol.c | Defines the functions to read and to write the PTZ values of the camera. These are
placeholder functions. They need to be populated with image sensor-specific
configuration commands.

Uncomment the line “#define UVC_PTZ_SUPPORT” in uvc.h to enable PTZ control
code placeholders.

camera_ptzcontrol.h | Contains the constants used for the PTZ control implementation
Contains the declarations of the functions defined in camera_ptzcontrol.c file

cyfxtx.c No changes needed. Use this file as provided with the project associated with this
application note.

It contains the variables that RTOS and the EZ-USB™ FX3 API library use for memory
mapping, and functions that the FX3 API library uses for memory management.

cyfxgpif2config.h Header file generated by the GPIF Il designer tool. No changes are required. If the
interface needs to be changed, a new header file should be generated from the GPIF II
designer tool. The new file should replace this one.

Contains the structure and constants that are passed to API calls in the uvc.cfile to
start and to run the GPIF Il state machine.

uvc.c Main source file for UVC application. Changes are needed when modifying the code to
support controls other than brightness and PTZ, and when modifying to add support
for different video streaming modes.

Contains the following functions:

Application Note 49 of 86 001-75779 Rev. *L
2021-10-27

http://www.cypress.com/?rID=59979

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

EZ-USB™ FX3 firmware

File Description

Main: Initializes the EZ-USB™ FX3 device, sets up caches, configures the EZ-USB™ FX3
I/Os, and starts RTOS kernel

CyFxApplicationDefine: Defines the two application threads that are executed by the
RTOS

UVCAppThread_Entry: First application thread function, calls initialization functions
for internal blocks of EZ-USB™ FX3, enumerates the device, and then handles video
data transfers and USB suspend event.

UVCAppEPOThread_Entry: Second application thread function, waits for events that
indicate UVC-specific requests are received and calls corresponding functions to
handle these requests

UVCHandleProcessingUnitRqts: Handles VC requests targeted to processing unit
capabilities

UVCHandleCameraTerminalRqts: Handles VC requests targeted to input terminal
capabilities

UVCHandleExtensionUnitRqts: Handles VC requests targeted to extension unit
capabilities

UVCHandlelnterfaceCtrlRgts: Handles generic VC requests not targeted to any
terminal or unit

UVCHandleVideoStreamingRqts: Handles VS requests to change streaming mode
CyFxUVCApplnDebuglnit: Initializes FX3’s UART block for printing debug messages
CyFxUVCApplnI2ClInit: Initializes EZ-USB™ FX3’s 12C block for image sensor
configuration

CyFxUVCApplninit: Initializes FX3’s GPIO block, processor block (GPIF Il is a part of the
processor block), sensor (sets configuration to 720p 30fps), USB block for
enumeration, endpoint configuration memory for USB transfers and DMA channel
configuration for data transfers from GPIF Il to USB

CyFxUvcAppGpiflnit: initializes the GPIF Il state machine and starts it

CyFxGpifCB: Handles CPU interrupts generated from the GPIF Il state machine
CyFxUvcAppCommitEOF: Commits the partial DMA buffers produced by the GPIF Il
state machine to EZ-USB™ FX3 RAM

CyFxUvcApplnDmacCallback: Keeps track of outgoing video data from EZ-USB™ FX3 to
host

CyFxUVCApplnUSBSetupCB: Handles all control requests sent by host, sets events
indicating UVC-specific requests have been received from host, detects when
streaming is stopped

CyFxUVCApplnUSBEventCB: Handles USB events such as suspend, cable disconnect,
reset, and resume

CyFxUVCApplnAbortHandler: Aborts streaming video data when any error or
streaming stop request is detected

CyFxAppErrorHandler: Error handler function. This is a placeholder function for you to
implement error handling if necessary

CyFxUVCAddHeader: Adds UVC header to the video data during active streaming
CyFxUvcApplnStop: Stops the GPIF Il state machine and resets DMA and endpoint
buffers.

CyFxUvcApplnStart: Starts the DMA channel transfer and GPIF state machine.

Application Note 50 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

EZ-USB™ FX3 firmware

File Description

CyFxUvcAppProgressTimer: When the sensor/ISP (Image signal processor) fails to
send video data in the predefined frame interval time period, resets DMA and
endpoints and restarts streaming.

cyfxuvcdscr.c Contains the USB enumeration descriptors for the UVC application. This file needs to
be changed if the frame rate, image resolution, bit depth, or supported video controls
need to be changed. The UVC specification has all the required details.

uvc.h Contains switches to modify the application behavior to turn ON/OFF the PTZ
support, debug interface, debug prints for frame counts, and frame timer.
Contains constants that are used in common by the uvc.c, cyfxuvcdscr.c,
camera_ptzcontrol.c, and sensor.c files.

cyfx_gcc_startup.s This assembly source file contains the EZ-USB™ FX3 CPU startup code. It has functions
that set up the stacks and interrupt vectors.

No changes needed.

The firmware first initializes the EZ-USB™ FX3 CPU and configures its I/0. Then, it makes a function call
(CyU3PKernelEntry) to start the ThreadX Real Time Operating System (RTOS). It creates two application
threads: uvcAppThread and uvcAppEPOThread. The RTOS will allocate resources to run these application
threads and schedule the execution of the application thread functions: UVCAppThread_Entry and
UVCAppEPOThread_Entry respectively.

Figure 47 shows the basic program structure.

USB Request arrives over EPO

In a SETUP packet
USBSetupCB() callback
(in FX3 library)
Raises Controland Stream
Events
uvc.c
USBSetupCB()

UVCAppEPOThread_Entry()
Handles Control & Stream events
UVCAppThread_Entry()
Handles DMA transfers and GPIFII
state machine.

Figure 47 Camera project structure

5.1 Application thread

The two application threads enable concurrent functionality. The UVCAppThread (application) thread
manages video data streaming. It waits for stream events before streaming starts and cleans up FIFOs in case of
errors.

The firmware handles UVC-specific control requests (SET_CUR, GET_CUR, GET_MIN, and GET_MAX) over EPO,
such as brightness, PTZ, and PROBE/COMMIT control. Class-specific control requests are handled by the
CyFxUVCApplnUSBSetupCB (CB=Callback) function. Whenever one of these control requests is received by
FX3, this function raises corresponding events. EPOThread then triggers on these events to serve the class-
specific requests.

Application Note 51 0f 86 001-75779 Rev. *L
2021-10-27

http://www.usb.org/developers/devclass_docs

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

EZ-USB™ FX3 firmware

5.2 Initialization

UVCAppThread_Entry calls CyFXUVCApplnDebuglnit to initialize the UART debugging capability,
CyFxUVCApplnI2ClInit to initialize the I°C block of EZ-USB™ FX3, and CyFXUVCApplnlnit to initialize the rest of
the required blocks, DMA channels, and USB endpoints.

5.3 Enumeration

In the CyFxUVCApplninit function, CyU3PUsbSetDesc function calls to ensure that EZ-USB™ FX3 enumerates
as a UVC device. The UVC descriptors are defined in cyfxuvcdscr.c file. These descriptors are defined for an
image sensor sending 16 bits per pixel using the uncompressed YUY2 format, with a resolution of 1280 x 720
pixels at 30 FPS. Refer to Section 2.3.1 if you need to change these settings.

5.4 Configuring the image sensor through the I°C interface

The image sensor is configured using the I°C master block of EZ-USB™ FX3. SensorWrite2B, SensorWrite,
SensorRead2B, and SensorRead functions (defined in sensor.c) are used to write and read image sensor
configuration over I°C. The functions SensorWrite2B and SensorWrite call the standard API
CyU3PIl2cTransmitBytes to write data to the image sensor. The functions SensorRead2B and SensorRead call
the standard API CyU3PI2cReceiveBytes to read data from the image sensor. For more details on these APIs,
refer to the EZ-USB™ FX3 SDK API guide.

5.5 Starting the video streaming

The USB host application, such as the VLC player or AMCap, or Webcamoid or VirtualDub uses the UVC driver to
display the video, to set the USB interface and the USB alternate setting combination to one that streams video
(usually Interface 0 Alternate setting 1), and to send a PROBE/COMMIT control. This is an indication by the host
that it will shortly begin to stream video data. On a stream event, the USB host application starts requesting
image data from EZ-USB™ FX3; EZ-USB™ FX3 is supposed to start sending the image data from the image
sensor to the USB host. In the firmware, the UVCAppThread_Entry function is an infinite loop. While there is no
streaming, the main application thread waits in this loop until there is a stream event.

Note: If there is no stream event, EZ-USB™ FX3 does not need to transfer any data. Therefore, the GPIF Il
state machine is disabled. Otherwise, all the DMA buffers will be full before the host application
starts to pull data out of the DMA buffers, and EZ-USB™ FX3 would transmit a bad frame. Hence,
the GPIF Il state machine should be started only if there is a stream event.

When EZ-USB™ FX3 receives a stream event, the main application thread calls CyU3PGpifSMSwitch function to
start the GPIF Il state machine. Inside this function, the firmware switches from any state to the start state
(START_SCKO) and restarts the GPIF state machine. Pass the start state name and start condition as arguments
to the CyU3PGpifSMSwitch function. The “from” state and “end” state can be any invalid state (257 in the
attached project) as this will ensure that GPIF Il state machine switches from any state to the start state. The
start state (START_SCKO) and the start condition (ALPHA_START_SCKO) are defined in cyfxgpif2config.h file.
The cyfxgpif2config.h file was generated from the GPIF Il Designer tool as described in Section 3.6.

Note: The EZ-USB™ FX3 SDK API guide contains detailed information about GPIF ll-related functions,
such as CyU3PGpifLoad and CyU3PGpifSMSwitch.

Application Note 52 of 86 001-75779 Rev. *L
2021-10-27

http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

EZ-USB™ FX3 firmware

5.6 Setting up DMA buffers

The UVC spec requires adding a 12-byte header to each USB transfer (meaning each 16-KB DMA buffer in this
application). However, the EZ-USB™ FX3 architecture requires that any DMA buffer associated with a DMA
descriptor must have a size that is a multiple of 16 bytes.

Reserving 12 bytes in a DMA buffer for the EZ-USB™ FX3 CPU to fill in would place the DMA buffer boundary at a
non-multiple of 16 bytes. Therefore, the DMA buffer size should be 16,384 minus 16, not 12. This makes the DMA
buffer size, not including the 12-byte header that the EZ-USB™ FX3 firmware adds, 16,384-16=16,368 bytes. The
DMA buffer is ordered as the 12-byte header, the 16,368 video bytes, and finally 4 unused bytes at the end of the
DMA buffer. This creates a DMA buffer that can utilize the maximum USB BULK burst size of 16 x 1024 byte
packets, or 16,384 bytes.

5.7 Handling the DMA buffers during video streaming

The CyFxUVCApplninit function creates a manual DMA channel with callback notification for producer and
consumer events. This notification is used to track the amount of data sent by the sensor and the amount of
data read by the host. ADMA buffer becomes available to the EZ-USB™ FX3 CPU when the GPIF Il produces a
DMA buffer and FX3 gets a pointer to this buffer via CyU3PDmaMultiChannelGetBuffer. This buffer is
committed to the USB via CyU3PDmaMultiChannelCommitBuffer. Whenever the USB throughput is slower
than the speed at which the buffers are filled up (by GPIF Il state machine), number of buffers with actual video
data increases. At some point, all the buffers will be full; committing one more buffer will result in an error. This
is called as commit buffer failure. In such cases, the DMA reset event is called, and EZ-USB™ FX3 will stop and
restart streaming.

At the end of a frame, usually the last DMA buffer is partially filled. In this case, the firmware must forcefully
wrap up the DMA buffer on the producer side to trigger a produce event and then commit the DMA buffer to the
USB with the appropriate byte count. The forceful wrap-up of the DMA buffer (produced by GPIF Il) is executed
in the GPIF Il callback function CyU3PDmaMultiChannelSetWrapUp. The CyFxGpifCB callback function is
triggered when GPIF Il sets a CPU interrupt. As shown in the GPIF Il state diagram, this interrupt is raised when
the frame valid signal is deasserted.

The UVC header carries information about the frame identifier and an end-of-frame marker. At the end of a
frame, the EZ-USB™ FX3 firmware sets bit 1 and toggles bit 0 of the second UVC header byte (see
“CyFxUVCAddHeader”). Toggle the UVC header FID bit only after the frame ends.

A slower USB host will result in commit buffer failures and resetting of DMA to restart video stream. If the
Sensor/ISP fails to send video on time, the video will eventually freeze or show some jitters. Frame timer is an
essential entity to avoid this. The frame timer starts when the video streaming starts. It is reset when EZ-USB™
FX3 receives first buffer from the Sensor and restarts to ensure that each producer buffers arrive on time.

5.8 Terminating the video streaming

There are three ways image streaming can be terminated: The camera may be disconnected from the host, the
USB host program may close, or the USB host may issue a reset or suspend request to EZ-USB™ FX3. These
actions trigger the CY_FX_UVC_STREAM_ABORT_EVENT event (refer to the CyFxUVCApplnAbortHdlr function).
This action does not always happen when there is no data in the EZ-USB™ FX3 FIFO. This means that proper
cleanup is required. The firmware resets streaming-related variables, and resets the DMA channel in the
UVCAppThread_Entry loop. It does not call the CyU3PGpifSMSwitch function because no streaming is
required. The firmware then waits for the next streaming event to occur.

When the application closes, itissues a clear feature request on a Windows platform or a set interface with
alternate setting = 0 request on a Mac platform. Streaming stops when this request is received. This request is

Application Note 53 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework
EZ-USB™ FX3 firmware

handled in the CyFXUVCApplnUSBSetupCB function under switch case CY_U3P_USB_TARGET_ENDPT and
request CY_U3P_USB_SC_CLEAR_FEATURE.

5.9 Adding a “debug” interface

This section shows how to add a third USB interface to the camera application to use for debug or other custom
purposes.

The #define USB_DEBUG_INTERFACE switch in the uvc.h file enables code in cyfxuvedscr.c, uvc.h and uvc.c
files. The example provided reads and writes image sensor registers over I°C.

5.9.1 Debug interface details

Two bulk endpoints are defined for this interface. EP 4 OUT is configured as the debug command BULK
endpoint, and EP 4 IN is configured as the debug response BULK endpoint. When the firmware with the enabled
debug interface runs, EZ-USB™ FX3 reports three interfaces during enumeration. The first two are the UVC
control and streaming interfaces, and the third is the debug interface. The third interface needs to be bound to
the CyUSB3.sys driver, which is provided as a part of the EZ-USB™ FX3 SDK. You can install the driver according
to the following instructions. (A 64-bit Windows 7 system is used as an example. XP users will have to modify
the .inf file to include the VID/PID and then use the modified .inf file to bind the cyusb3.sys driver to this
interface.)

1. Open Device Manager, right-click on EZ-USB™ FX3 (or equivalent) under Other devices, and choose Update
Driver Software....

— e

i Device Manager --::’;,J Human Interface Devices
5 Storage b g IDE ATASATAPI controllers
= Disk Management =5 Imaging devices
¢ Services and Applications .2 Keyboards
b -l Mice and other pointing devices
- B Monitors

l;_} Metwork adapters
4 -|[f5) Other devices

A=Y

I3 Por Update Driver Software...
D Pro Disable

i Sec Uninstall

-8 5M

'...4‘ Sou Scan for hardware changes
----_'l." Sysl .

.'"i Uni Properties

2. Choose Browse my computer for driver software on the next screen.

Application Note 54 of 86 001-75779 Rev. *L
2021-10-27

o .
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
EZ-USB™ FX3 firmware

How do you want to search for driver software?

<» Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device installation
settings.

Browse MYy COmputer Tor ariver sottware
Locate and install driver software manually.

3. Choose Let me pick from a list of device drivers on my computer on the following screen.

Browse for driver software on your computer

Search for driver software in this location:

C:\Cypress\EZ-USB FX3 SDIO 2\ driverbin‘win7'xb4

[¥]Include subfolders

Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

4. Click Next on the following screen.

Application Note 55 of 86 001-75779 Rev. *L
2021-10-27

o .
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
EZ-USB™ FX3 firmware

Software - FX3

Select your device's type from the list below.

Common hardware types:

Show All Devices
§ 61883 Device Class
@ AVC Devices
3 Batteries
@ Biometric Devices
e Bluetooth Radios
Bluetooth Virtual Devices
— CATC Analyzers
18 Computer
—a Disk drives
& Display adapters
4 DVD/CD-ROM drives

[T

5. Click Have Disk... to choose the driver.

Select the device driver you want to install for this hardware.

Select the manufacturer and model of your hardware device and then click Mext. If you have a
disk that contains the driver you want to install, click Have Disk.

(Retrieving a list of all devices)

(e

6. Browse for the cyusb3.inf file in the <SDK installation>\<version>\driver\bin\<0S>\x86 or \x64 folder, and click
OK.

Application Note 56 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
EZ-USB™ FX3 firmware

Insert the manufacturer’s installation disk, and then

= make sure that the comect drive is selected below.

Copy manufacturer’s files from:

ypress\EZ-USE FX3 SDK\1 2\drivErbin‘winTwhd - Browse... I

7. Choose an OS version and click Next to install.

- = =)

: T e —
@ | Update Driver Software - FX3

Select the device driver you want to install for this hardware.

® } Select the manufacturer and model of your hardware device and then click Nesxt. If you have a
‘;7;. disk that contains the driver you want to install, click Have Disk.

Model

[Cypress USB BootLoader

[Cypress USB BootProgrammer
(S Cypress USE BulkloopExample

= Cypress USE StreamerExample
| This driver has an Authenticode(tm) signature,

Tell me why driver signing is important

==

8. Click Yes on the warning dialog box if it appears.

gl Y
Update Driver Warning I l-"—‘—J

Installing this device driver is not recommended because Windows

! . cannot verify that it is compatible with your hardware. If the driver is
not compatible, your hardware will not work correctly and your
computer might become unstable or stop working completely, Do you
want to continue installing this driver?

== T é_}

After the driver is bound to the third interface, the device will show up in the Infineon USB Control Center
application. You can access the FX3 firmware from here as a vendor-specific device. The current
implementation of the debug interface allows reading and writing of the image sensor registers by using the
EP4-OUT command and the EP4-IN response endpoints. These endpoints are accessed in the USB Control
Center under <FX3 device name> > Configuration 1 = Interface 2 = Alternate Setting 0, as shown in the
following figure. Use the Data Transfers tab to send a command or to retrieve a response after sending a
command.

Application Note 57 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
EZ-USB™ FX3 firmware

r
T R T

File Program Help
& = [“ &8 [URBStat Abort Pipe ResetPipe X & @ #

B--C)rpress |USE StreamerExample Descriptor Info
[BOS

=N Configuration 1 Tead to send Data to send (Hex)
&~ Control endpoirt (Bx00)
B- Interface 2) Bytes to Transfer
= Atemate Setting 0] PkiMod
™ Bulk out endpairt (3x04) 1024 ode

Bulcin endpoint (B89 Transfer Data-OUT Transfer Fie-OUT

5.9.2 Using the debug interface

Four commands are implemented in the debug interface: single read, sequential read, single write, and
sequential write. There is no error checking, so enter commands carefully. You can implement error checks to
ensure proper functionality. The I°C registers are 16 bits wide and are addressed using 16 bits.

5.9.2.1 Single read

1. Choose the command endpoint and type the command in hex under the Data Transfers. The format of a
single read is 0x00 <register address high byte> <register address low byte>. The figure shows the read
command for register address 0x3002. Do not use a space while typing in the hex data box. For example,
click the hex data field and type “003002”.

File Program Help

& = @ S = [URB Stat AbortPipe ResetPipe X & @ #
(- Cypress USB StreamerExample Descriptor Info | Data Transfers | Device Class Selection
- BOS
(- Corfiguration 1 Text to send Data to send (Hex)
- Control endpoirt (00) 003002
& Inteace 2 i Bytes to Transfer
3 [PktMode

Transfer Data-0OUT Transfer File-0UT

Application Note 58 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
EZ-USB™ FX3 firmware

2. Click Transfer Data-OUT to send the command.

EETETE . S R

File Program Help I
NEL e wocE [URB Stat AbortPipe ResetPipe X & @ #
= Cypress USE StreamerExample Descriptor Info | Data Transfers | Device Class Selection
&-BOS
(=) Corfiguration 1 Text to send Data to send (Hex)

Control endpoint ((x00) 0030 02
=~ Interface 2
: to Transfi
=- Altemate Setting 0 Bytes to Transfer T
- Bulk out endpaint (3<04) 3 ode

- Bulkin encpoint (2:84 {ronser Dtz OUT Transfer e OUT

BULE OUT transfer -
0000 00 30 02
BULE OUT transfer completed

3. Choose the response endpoint and set the Bytes to Transfer field to “3” to read out the response of the
single read command.

Toete T TN e

File Program Help I
& = odd URB Stat Abort Pipe ResetPipe X & & #

= Cypress USE StreamerExample Data Transfers | Device Class Selection
H-BOS
- Corfiguration 1 Tesd to send Data to send (Hex)
- Control endpaint ((3<00)
B Interface 2
£ Altemate Setting 0

[PktMode

[oucn endort 0z Transfer Data-IN [Transfer Fie N | [Clear Box

BULE OUT transfer
0000 00 30 0Z
BULE COUT transfer completed

Application Note 59 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
EZ-USB™ FX3 firmware

4. Click “Transfer Data-IN" to receive the response.

File Program Help
o [@ o dE D URB Stat AbertPipe ResetPipe X & @ #
= Cf,fpress USB StreamerExampls Descriptor Info | Data Transfers | Device Class Selection
- BOS
[=- Configuration 1 Text to send Data to send {Hex)
; Control endpoirit ((D0)
B Interface 2) Bytes to Transfer
=8 .Pn.!temate Setting 0] PktMod
- Bulk out endpoirt ((04) 3 ode
+ Bulk in endpoint (Gx34) [Transfer FiedN | [Clear Box
BULE OUT transfer -

0000 00 30 02
BULE OUT transfer completed

BULE IN tranafer

Q00000 00 04

BULE LN transfer completed

5. The first byte of response is the status. Status=0 means the command passed; any other value means that
the command failed. The following bytes indicate that the value of the register read back is 0x0004. This
example shows a failed transfer in which the status is non-zero and the rest of the bytes are stale values
from a previous transfer.

R T

File Program Help
& =B o @D URB Stet AbortPipe ResctPipe X @ @& #
- Cypress USB StreamerExample Descriptor Info | Data Transfers | Device Class Seleaionl
[-BOS
=1 Configuration 1 Text to send Data to send {Hex)
i Control endpoint ((x00)
- Interface 2
: to Transfe
[=- Atemate Setting 0 Brtesiojliists 7] PdMod |
" Bulk out endpoirt (Bx04) 3 e
~ Bl (k] Trenster Datadl | [Trensfer FisiN_ | [OswrBoc |
BULK OUT transfer -

0000 00 00 00
BULK OUT transfer completed

BULK IN transfer
0000 42 00 04
BULE IN transfer completed

Application Note 60 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework

EZ-USB™ FX3 firmware

5.9.2.2 Sequential read

1. Choose the command endpoint and type the command in hex under Data Transfers. The format of a
sequential read is 0x00 <register address high byte> <register address low byte> <N>. The figure shows a
read command for four (N=4) registers starting at register address 0x3002.

E}-Configuration 1
‘-~ Conttrol endpoint ((x00)
- Interface 2
I - Atemate Setting 0
i Bulk out endpoirtt (2x04)
.. Bulk in endpoint (B4}

r — ™
5 o o S
r USE Control Center ' - P 3

File Program Help
(=] [T | URB Stat Abort Pipe ResetPipe ¥ & 8 #
- Cypress USB StreamerExample Descriptor Info | Data Transfers | Device Class Selection |
(- BOS

Text to send Data to send (Hex)
00 30 02 04
Bytes to Transfer
4 [”] PrtMode
{ Transfer Data OUT | [Transfer FieOUT | [ClearBax |

BULK OUT transfer
0000 00 30 02 04

BULE OUT transfer completed

-

2. The Bytes to Transfer for the response is (N*2+1) = 9 for this case. The figure shows the values read by

EZ-USB™ FX3.

.
r USE Control Center '

File Program Help

o EE o SdE

URB Stat Abort Pipe ResetPipe X & @ £

[=-Cypress USB StreamerExample

[-BOS

=) Configuration 1
i+ Control endpoint ((be00)
El-Interface 2
I - Atemate Setting D
i Bulk out endpaint {(bc04)
‘... Bulk in endpoint {(84)

Descriptor Info | Data Transfers | Device Class Selection |

o= S |

Text to send Data to send (Hex)
Bytes to Transfer
9 [T PiMode
| Trensfer Data | [TransferFieIN_| [ClarBox |

BULK OUT transfer
0000 00 230 02 04

BULK OUT transfer completed

BULKE IN transfer

0000 00 00 04 00 04 03 CE 05 OB
BULK IN transfer completed

-

Application Note

61 of 86

001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework

EZ-USB™ FX3 firmware

5.9.2.3 Single write

1. Choose the command endpoint and type the command in hex under Data Transfers. The format of a single
write is 0x01 <register address high byte> <register address low byte> <register value high byte> <register
value low byte>. The figure shows the write command to write a value of 0x0006 at register address 0x3002.

=) Configuration 1
i Conttral endpaint ((x00)
E- Interface 2
[[Atemiate Setting 0
i~ Bulk out endpoint ((:c04)
‘. Bulk in endpoint (x84)

7 USE Control Cent . an . [E=EE)
. ontrol Center ' -
File Program Help
e E [e D URB Stat Abort Pipe ResetPipe % & & £
(=) Cypress USB StreamerExample Descriptor Info | Data Transfers DeviceClassSelecticnl
BOS

Text to send Data to send (Hex)
] 013002 00 06
Bytes to Transfer
5 [7] PtMode
F Transfer Data-OUT 4 | Transfer FieOUT | [Clear Box

BULE OUT transfer
0000 01 30 02 00 06

BULK OUT transfer completed

2. Theresponse for a single write contains three bytes: <Status> <register value high byte> <register value low
byte>. These register values are read back after writing, which means you will see the same values sentin

the command.

“r USB Control Center ‘

File Program Help

®EE rAR

=) Cypress USE StreamerExample
B0
E}-Configuration 1
i... Contral endpaint (0x00)
B Interface 2
I - Atemate Setting D
i Bulk out endpoirt (B<04)
‘... Bulk in endpoint {(84)

URB Stat Abort Pipe ResetPipe X & @ #

Descriptor Info | Data Transfers | Device Class Selection

oo B [|

Text to send Data to send (Hex)}
Bytes to Transfer
3 [T PkiMode
| Trensfer Data N [TrnsferFieIN | [clearBox

BULK OUT transfer
0000 01 30 02 00 06

BULE OUT transfer completed

BULE IN transfer
0000 00 00 08

BULE IN transfer completed

Application Note

62 of 86

001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework

EZ-USB™ FX3 firmware

5.9.2.4 Sequential write

1. Choose the command endpoint and type the command in hex under Data Transfers. The format of a
sequential write is 0x01 <register address high byte> <register address low byte> ((<register value high byte>
<register value low byte>) * N times) to write N number of registers. The figure shows writing values 0x0006,
0x0008, and 0x03CO0 to registers 0x3002, 0x3004, and 0x3006 sequentially (N=3).

“=r USB Control Center

L& ___= | [

File Program Help

& @@ W a8 [

=) Cypress USE StreamerExample
&-B0S
E}-Configuration 1
I i Control endpoint (T:00)
El-Interface 2
(] Atemate Setting 0
ulk out endpoint (04)
ulk in endpoint ((cB4)

URB Stat Abort Pipe ResetPipe X & @ £
Descriptor Info | Data Transfers | Device Class Selection

Text to send Data to send (Hex)}
H 013002 0006 D008 03 CO
Bytes to Transfer
9 [T PkiMode
anster Deta OUT | [Transfer FieOUT | [ceargac | |

BULE OUT transfer -
0000 01 20 0Z 00 06 00 08 03 CO
BULE OUT transfer completed

2. Theresponse is <Status> (<register value high byte> <register value low byte>) * N values. For this example,

the total bytes to transferis (2*N+1) =7.

“=r USB Control Center

File Program Help

®EE rAR

=) Cypress USE StreamerExample
[-BOS
E}-Configuration 1
i... Contral endpaint (0x00)
B Interface 2
- Atemate Setting D

URB Stat Abort Pipe ResetPipe X & @ #
Descriptor Info | Data Transfers | Device Class Selection

Text to send Data to send (Hex)}
Bytes to Transfer
7 [T PkiMode
| Trensfer Data N [TrnsferFieIN | [clearBox
BULK OUT transfer -

0000 01 20 0Z 00 06 00 08 03 CO
BULE OUT transfer completed

BULK IN transfer
0000 00 00 06 00 08 03 CO
BULK IN transfer completed

Programming Succeeded

Application Note

63 0of 86

001-75779 Rev. *L
2021-10-27

How to implement an image sensor interface using EZ-USB™ FX3 in a
USB Video Class (UVC) framework

Hardware setup

(infineon

The current project has been tested on a setup that includes the SuperSpeed explorer kit (CYUSB3KIT-003), ON
Semiconductor image sensor interconnect board (CYUSB3ACC-004A) and an ON Semiconductor image sensor
board (MTOM114EBLSTCH3-GEVB / MT9M114_55CSP_HB_DEMO3_REV0). Details on how to obtain these
components are summarized below:

6 Hardware setup

6.1 Hardware requirement

1. ON Semiconductor MT9M114 image sensor board (MTOM114EBLSTCH3-
GEVB/MT9M114_55CSP_HB_DEMO3_REV0) (Buy from ON Semiconductor distributors)

2. SuperSpeed explorer kit (CYUSB3KIT-003)".

3. CYUSB3ACC-004A’ (interconnect board for ON Semiconductor image sensor) for SuperSpeed explorer kit.
4. Use a USB 3.0 host-enabled computer to evaluate SuperSpeed performance.

6.2 SuperSpeed explorer kit board setup

Prepare the board for testing the video application using these steps:

1. Setthe jumper settings on the SuperSpeed explorer kit (CYUSB3KIT-003) and the ON Semiconductor image

sensor board (MT9M114_55CSP_HB_DEMO3_REV0) as shown in Table 9 and Table 10.

Table 9

(MT9M114_55CSP_HB_DEMO3_REV0)

Jumper settings - ON Semiconductor image sensor board

Jumper/header No. | Jumper/header name | Pin setting Description
P1 OE_L 1-2 Enable parallel interface
P2 CONFIG 2-3 Set to normal mode
P4 FLASH Open Connection to external flash
P5 TRST 1-2 Set to normal mode
P6 SADDR 1-2 Slave address: 0x90
P7 +VDDIO 2-3 2.8 V operation of sensor
P8 UART Open UART shutdown (Tristate)
P11 EEPROM Closed (A1 Active low(Al)
column)
P15 I2C CONNECTOR 1-2 and 3-4 Master and sensor 12C connected
P32 CLOCK SELECTION 3-5and 1-2 Multi-camera, Master mode; Onboard
oscillator
Table 10 SuperSpeed explorer kit (CYUSB3KIT-003)
Jumper/header No. | Jumper/header name | Pin setting Description
J2 VIO1_3 Closed VDDIO voltage selection (2.8V)
J3 VBUS_JUMPER Closed Bus powered
Ja PMODE Closed USB boot

1 See 11 for details on using FX3 DVK (CYUSB3KIT-001).
2 See 12 for details on using Aptina™ image sensor interconnect board (CYUSB3ACC-004) with Aptina image sensor.

Application Note

64 of 86

001-75779 Rev. *L
2021-10-27

http://www.aptina.com/how_to_buy/distributors.jsp
http://www.cypress.com/?rID=99916
http://www.cypress.com/?rID=99918

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

Hardware setup
Jumper/header No. | Jumper/header name | Pin setting Description
J5 SRAM_ENABLE Open Disable the onboard SRAM

2. Assemble the SuperSpeed explorer kit, Interconnect board, and the ON Semiconductor image sensor board
as shown in Figure 48.

Figure 48 SuperSpeed explorer kit, ON Semiconductor image sensor interconnect and sensor board

assembly

3. Plugthe SuperSpeed explorer kit board into the USB port of the computer using the USB 3.0 cable provided
with the kit.

4. Load the firmware into the board using the Control Center application provided as part of the EZ-USB™ FX3
SDK. The firmware source and pre-built image are provided in AN75779.zip. For detailed instructions, see
AN75705 - Getting started with EZ-USB™ FX3. Here are brief instructions:

a) Startthe Control Center application. When you plug in the EZ-USB™ FX3 explorer board, it will be

recognized as an Infineon EZ-USB™ FX3 USB bootloader device (Figure 49).

E'] LSE Control Center

File Program Help

& = [@] URE Stat Abor
X3S evice Descriptor Info Data Transfers Device Class

Figure 49 EZ-USB™ FX3 enumerates as a bootloader

b) Select Program > FX3 > RAM and navigate to the cyfx_uvc_an75779.img file provided with the attachment
to this application note (Figure 50). Note that the device will lose the loaded firmware and re-enumerate

as Infineon FX3 USB bootloader device if it is power-cycled after programming.

65 of 86 001-75779 Rev. *L

Application Note
2021-10-27

https://www.cypress.com/documentation/application-notes/an75779-how-implement-image-sensor-interface-using-ez-usb-fx3-usb
http://www.cypress.com/?rID=59979

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

Hardware setup

EJ LSE Control Center

File | Program | Help
(=5 FX2 D] URE Stat Abort
- | A3 » || RAM fiptor Ifo Data Transfers Device Class
|2 EEPROM VICE=
5Pl FLASH FriendlyMame="Cypress FX3 USE Boc

Manufacturer="Cypress”

[l D s "B mk DA nm

Figure 50 Loading code into EZ-USB™ FX3 RAM

The Control Center application will show the status of programming on the status bar. On successful
programming, the device will also disappear on the Control Center device list as the device will now enumerate
as a UVC Class device. The device can be seen in Windows Device Manager under Cameras or Imaging Devices
type (Figure 51).

[&) UsB Control Center - O X

File Program Help

& = [d [l URB Stat Abort Pipe ResetPipe X & @ #
Descriptor Info Data Transfers Device Class Selection

Programming Succeeded

Figure 51 Programming succeeded message displayed on the status bar

Application Note 66 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
UVC-based host applications

7 UVC-based host applications

Various host applications allow you to display and capture video from a UVC device. The VLC media playeris a
popular choice. Another widely used Windows application is VirtualDub (an open-source application). Other

additional Windows apps are MPC-HC player (an open-source application), AMCap (Version 8.0), Webcamoid
and Debut Video Capture software.

Linux systems can use the V4L2 driver and VLC media player to stream video. The VLC media player is available
on the web. Webcamoid is also available Linux platform.

Mac platforms can use Webcamoid, FaceTime, iChat, Photo Booth, and Debut Video Capture software to create

an interface with the UVC device to stream video.

Note: Use open source application like VirtualDub and MPC-HC to design your own host application.
AmCap sample is also available on the Windows SDK.

7.1 Running the demo
A precompiled code image file for the demo on EZ-USB™ FX3 explorer kit is available in AN75779.zip.
Run this code using the following steps:

1. Load the precompiled firmware image into the EZ-USB™ FX3 UVC setup as described in Section 6.2.

2. Atthis point, the setup will re-enumerate as a UVC device. The operating system installs UVC drivers; no
additional drivers are required.

3. Open the host application (for example, VirtualDub).
4. Choose File > Capture AVI.

@ VirtualDub 1.9.11 (build 32842/release) by Avery Lee
Edit View Go Video Audioc Options Tools Help

Open video file... Ctrl+ 0
Reopen video file F2
Append AVI segment...

Preview input... Space
Preview filtered... Enter
Preview output from start... F5
Run video analysis pass

Save as AVL.. F7
Save old format AVL... Shift+F7
Save segmented AVL..

Close video file Ctrl+W
Export 3
Queue batch operation 2

File Information...
Set text information...

Save WAV...

Load processing settings... Ctrl+L
Save processing settings... Ctrl+5
Start frame server...
Run script...
Job control... F4
Application Note 67 of 86 001-75779 Rev. *L

2021-10-27

http://www.virtualdub.org/
https://mpc-hc.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd373424(v=vs.85).aspx
https://webcamoid.github.io/
http://www.nchsoftware.com/capture/index.html
https://webcamoid.github.io/
https://webcamoid.github.io/
http://www.virtualdub.org/
https://mpc-hc.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd373424(v=vs.85).aspx
https://www.cypress.com/documentation/application-notes/an75779-how-implement-image-sensor-interface-using-ez-usb-fx3-usb

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
UVC-based host applications

5. Choose Device > FX3 (Direct Show), and this will start streaming images.

= ——
{84 VirtualDub 1.9.11 - capture _

File | Device | Video Audio Capture Help

Device settings...
H Tuner channel »

Il Tuner input mode »

Disconnect
0 Microsoft WDM Image Capture (Win32) (VFW)
1 ThinkVantage Virtual Camera (DirectShow)

2 FX3 (DirectShow) -]

3 Integrated Camera (DirectShow)

a

4 Screen capture

5 Video file (Emulation)

6. The bottom right shows the actual frame rate.

|| File Device Video Audio Capture Help

Frames captured

Total time

Time left

Total file size

Disk space free

CPU usage

-Video
Size
Average rate
Data rate
Compression ratio
Avg frame size
Frames dropped
Frames inserted
Resample

96K/16/s |30.00 fps (B fps) [5776K8/s |

Application Note 68 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
UVC-based host applications

7. You can also use Video > Capture Pin to select among different supported resolutions and to see which
resolution is currently active.

Stream Format |

—Wideo Format ——————— - Compression

Video Standard: I None
Frame Rate: I 30.000 jl 1 Frame Interval: I ﬂ
Flip Horizontal: [~ Snapshot | || @ Frame Interval: | =1

Color Space [Compression;

[rurz]
Output Size: Quality: I

[1280 x 720 (defaulfRe
ok | Cancel | Aoy |

8. You can also use Video > Levels to change the brightness (change slider position to change value) or other
supported control commands. Find additional control commands under Video > Capture Filter.

(= 1 T
@Y VirtualDub 1.9.11 - capture mode [] — TP N X T

File Device Video Audio Capture Help |

96K/16/s | 30.00 fps |28 fps 5776K8B/s """J

Note: Enabling video controls like exposure, sharpness, and so on, requires a Non-Disclosure Agreement
(NDA) with ON Semiconductor. Contact Local FAE/Sales representative with the executed NDA for
assistance to enable these additional controls from the EZ-USB™ FX3 firmware.

Application Note 69 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

Troubleshooting

8 Troubleshooting

8.1 Black screen or incorrect color visible in the host application

1. Ensure to use release build of the firmware since it is optimized for performance.

2. Enable “DEBUG_PRINT_FRAME_COUNT” switch in the uvc.h file to find out whether EZ-USB™ FX3 is
streaming images. This switch will enable UART prints for frame counts. On SuperSpeed explorer kit, UART
is always available through the on-board integrated debugger. Open HyperTerminal, Tera Term, or another
utility that gives access to the COM port on PC.

Set the UART configuration as follows before starting transfers: 115200 baud, no parity, 1 stop bit, no flow
control, and 8-bit data. This should be sufficient to capture debug prints. If you do not see the incremental
frame counter in the PC terminal program, there is probably a problem with the interface between EZ-USB™
FX3 and the image sensor (GPIF or sensor control/initialization).

3. Ifyou see the prints of the incremental frame counter in the PC terminal program, the image data that is
being sent out needs to be verified. A USB trace can show the amount of data being transferred per frame.

4. To check the total amount of data being sent out per frame, find the data packets that have the end-of-
frame bit set in the header. (The second byte of the header is either Ox8E or 0x8F for the end-of-frame
transfer). The total image data transferred in a frame (not including the UVC header) should be: width *
height * pixel size in bytes. If this is not the amount from the USB trace, there is an issue with the image
sensor setting or with the GPIF interface.

Note: You may use hardware-based USB protocol analyzer tools like LeCroy, Ellisys or Beagle or software-based
tools like Wireshark, USBlyzer for capturing and analyzing USB traces.

5. Check if DMA reset events are being observed in the debug prints. If yes, check if the data is sent correctly
from the image sensor.

6. Verify if the frame valid (FV) and line valid (LV) signals from the image sensor are behaving correctly per the
chosen resolution and frame rate. Refer to GPIF Il image sensor interface section to read about Image
sensor interface requirements.

7. Check if the frame size received by EZ-USB™ FX3 is the same as the frame size reported in the USB descriptor
for the particular resolution.

8. Check if the video probe and commit control parameters dwMaxPayloadTransferSize and
dwMaxVideoFrameSize are set correctly for the selected resolution.

9. Check if partial DMA buffer size observed is a multiple of 4, because CyU3PDmaSocketSetWrapUp can
commit data only in multiples of 4.

10. Check if the counters used in the GPIF state machine are configured correctly.

11. Verify if the video format GUID (guidFormat) is correctly set in the format descriptor and is supported by the
host OS’s UVC driver.

12. If the total amount of image data is correct and a host application still does not show any images, try on a
different host computer.

13. See Debug UVC application firmware in EZ-USB™ FX3 - KBA226722.

8.2 Reduced frames per second observed in the host application

1. Verify if the frame valid (FV) and line valid (LV) signals from the image sensor are behaving correctly per the
chosen resolution and frame rate.

Application Note 70 of 86 001-75779 Rev. *L
2021-10-27

https://community.cypress.com/t5/Knowledge-Base-Articles/Debug-UVC-application-firmware-in-FX3-KBA226722/ta-p/250311

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

Troubleshooting

2. Check if commit buffer failures are observed in UART debug prints. See Handling commit buffer failures
occurred during video transfers using EZ-USB™ FX3 - KBA231382 for details on how to handle these

failures.
3. Check if the vertical blanking time is greater than 200 ps.

If the problems persist, see similar cases in Cypress Developer Community.

001-75779 Rev. *L

Application Note 710f 86
2021-10-27

https://community.cypress.com/t5/Knowledge-Base-Articles/Handling-Commit-Buffer-Failures-Occurred-during-Video-Transfers/ta-p/250880
https://community.cypress.com/t5/Knowledge-Base-Articles/Handling-Commit-Buffer-Failures-Occurred-during-Video-Transfers/ta-p/250880
https://community.cypress.com/community/usb/usb-superspeed-peripherals

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework

Connecting two image sensors

9 Connecting two image sensors

Host applications, such as 3D imaging or motion tracking, require EZ-USB™ FX3 to stream simultaneous video

data from two image sensors. If the sensors are different, an FPGA must be inserted between the image sensor
modules and EZ-USB™ FX3 to reconcile formats and synthesize a single video data channel. Such a setup with

two different image sensors is beyond the scope of this application note.

A more practical approach uses identical image sensors. This approach is detailed in this section.

Figure 52 shows the connection details. The green blocks are inside the GPIF Il and the red block is a part of an
EZ-USB™ FX3 low-bandwidth peripheral (I°C/GPI0). The idea is to synchronize the two sensors to achieve
identical frame timing and have the GPIF Il simultaneously input each of their 8-bit video streams on a 16-bit
data bus.

CTL12 e Fréme Ve'l|ld 1
CcTL11 Line Valid 1
 Data bus
DO-D7 |« ——— Image Sensor 1
GPIO 16
A 4
12C 12C control
FX3 GPIO Reset/Standby ! Clock
GPIO I12C Address selector
\A A
CTL10 |l Fr;-ame Va_dld 2
CTL9 Line Valid 2 Image Sensor 2
D8- D15 ¢ Data bus
CTL8 PCLK 2
Figure 52 Two identical image sensors connected to EZ-USB™ FX3

Figure 52 makes assumptions about the two image sensors:

e The bus width of each image sensor is 8 bits, making the GPIF Il bus width 16 bits.

e The two image sensors are synchronized. This means that both image sensors use the same clock, LV and FV
transitions, and pixel timing. In other words, frames from both image sensors could be exactly overlaid.
Some image sensors have an external trigger input that can be used to synchronize two video streams.
Other image sensors may use a different synchronization method. The applicable sensor datasheet gives
details.

» Bothimage sensors use I°C for configuration. The image sensor used in this application note requires I°C
control registers to be written at exactly the same time to achieve synchronization between the image
sensor modules. This is accomplished by controlling the I°C address of one of the sensors using EZ-USB™ FX3
GPIO pins. EZ-USB™ FX3 configures both image sensors simultaneously using I°C writes. EZ-USB™ FX3 reads
from individual sensors by switching to a different I’C address on the image sensor with the configurable
address pins.

o Each sensor’s Reset signals should be driven by the same EZ-USB™ FX3 GPIO output pin. Similarly, each
sensor’s standby pin, if present, should share another EZ-USB™ FX3 GPIO output pin.

Application Note 72 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

Connecting two image sensors

e Automatic configurations are disabled on the image sensors. For example, features such as auto exposure,
auto gain, and auto white balance are turned OFF on both sensors. Turning them OFF ensures that the
integration plus any image processing on the image sensors will take the same time. The result is that
frames from both sensors are output from the image sensor simultaneously.

As shown in the connection diagram, frame valid 2, line valid 2, and PCLK 2 signals are connected to EZ-USB™
FX3, but they are not utilized by the GPIF Il block because the image sensors are assumed to be synchronized.
These signals are connected to EZ-USB™ FX3 so it can monitor the signals to check the accuracy of the
synchronization between the image sensors during debug and development.

9.1 Transferring the interleaved image over UVC

The UVC specification cannot discern how many image sensors are used in a transmitted image. It deals only
with one set of image parameters: frame width and height and total number of bytes per frame. To
accommodate multiple image sensors, the UVC driver must read descriptors that have been modified so that
the driver can perform and pass internal consistency checks. If these consistency checks fail, the UVC driver
cannot pass image data to the host application and the application fails. The descriptors need to be modified
so that the extra frame is accounted for in a manner that looks like a single image sensor to the UVC driver.

Two examples illustrate how this is done.

9.1.1 Example 1: Two 640 x 480 monochrome sensors

Two image sensors provide 640 x 480 monochrome (1 byte per pixel) data. EZ-USB™ FX3 simultaneously
receives two complete images per frame, as shown in Figure 53.

«——640——>

!
|

Figure 53 What EZ-USB™ FX3 receives from two image sensors

The descriptors still report a 640 x 480 image size. The doubled data size is accommodated by placing the A
image into the Y data and the B image into the U and V data.

The bytes per frame can be calculated as:
Bytes per frame = Bytes per pixel x Number of image sensors x Resolution
Where:

Resolution = Width in pixels x Height in pixels

For this example:

Bytes per frame =1 x 2 x 640 x 480 = 614,400 bytes

Application Note 73 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

Connecting two image sensors

9.1.2 Example 2: Two 640 x 480 color sensors

Consider two color sensors that send YUY2 data with 640 x 480 resolution. EZ-USB™ FX3 receives two complete
color images per frame (Figure 54).

«———640——>

B

Figure 54 EZ-USB™ FX3 receives two color images

<«—08VY—>

The only difference from example 1 is that each pixelin the YUY2 format now uses two bytes instead of one. To
accommodate the pixel doubling, the reported image size is doubled (Figure 55).

1280

A
\4

—

<«—08Y—>»

Figure 55 Reported image size

Because each pixel now occupies two bytes, the data per frame is:
Bytes per frame =2 x 2 x 640 x 480 = 1,228,800 bytes

Note that any arbitrary frame width and height could be reported as long as they reflect the pixel doubling.
Doubling only one dimension simplifies the downstream math. Doubling the width, as opposed to the height,
has the advantage of overlaying the vertical lines, which simplifies application image processing.

These descriptor modifications allow double images to be transported from the image sensors to the host
application in an interleaved fashion: Any two consecutive bytes are from different image sensors.

The above modifications pass the UVC driver consistency checks, allowing the driver to pass the video data to
host applications. The video streamed in this manner is not meant to be comprehended when viewed directly.
You can use a standard UVC host application to perform a sanity check of the implementation. However, the
images are streamed in a non-standard manner, so the applications will not display them correctly. A custom
application needs to be built to separate these images and to view and calculate useful information from the
interleaved video.

9.2 Firmware modification checklist to add new video format to the
current project

As a summary, when modifying the given example firmware to add a new video format, use the following steps
to ensure that all of the required changes have been made:

1. Update the Hi-Speed and SuperSpeed USB configuration descriptors by adding the new format descriptor.
See USB video payload specification documents for details on the format descriptor parameters.

2. Update the bNumFormats and wTotallength fields in the class-specific interface input header descriptor

Application Note 74 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

Connecting two image sensors

3. Fordetails on adding a new resolution, see Section 9.3.

9.3 Firmware modification checklist to add new video resolution to the
current project

As a summary, when modifying the given example firmware to add a new resolution, use the following steps to
ensure that all of the required changes have been made:

1. Update the High-speed and SuperSpeed USB configuration descriptors by adding the new frame descriptor
to the available format descriptor. The new frame descriptor should reflect the following details of the new
Video resolution: frame index, resolution width, resolution height, frame rate, maximum bit rate, minimum
bit rate and width-to-height ratio. Update the Hi-Speed and SuperSpeed USB configuration descriptor
lengths and Video Streaming Input Header descriptor length to include all Video frame descriptors
supported.

2. Add PROBE/COMMIT control structure for the video frame resolution added. Handle the SET_CUR and
GET_CUR requests for the newly added video frame resolution.

3. Add sensor control commands to set the newly added video frame resolution.

9.4 Checklist for firmware modification to support a new sensor

As a summary, when modifying the given example firmware to support a new sensor, use the following steps to
ensure that all of the required changes have been made:

1. Image sensor control: The example has reference 12C code as the control interface to send commands to
image sensor. This may need modifications or may require a different kind of interface which is supported
by the new image sensor.

2. Additional code to control the GPIO that acts as an image sensor selector for the control interface. When
EZ-USB™ FX3 writes to the sensors (refer Figure 52) used in this application note, it is a multicast message
to both image sensors, but FX3 requires exclusive access when it reads the 12C registers from the image
sensors.

3. Additional code to control the GPIO that controls the standby or low-power mode of the image sensors.

4. Changes to the UVC-specific High-speed and SuperSpeed USB configuration descriptors for frame and
format. This is to report the format of the video supported and frame index, resolution width, resolution
height, frame rate, maximum bit rate, minimum bit rate and width-to-height ratio of all the video frame
resolutions supported.

5. Update the Hi-Speed and SuperSpeed USB configuration descriptor lengths and Video Streaming Input
Header descriptor length to include all video frame descriptors added.

6. Add PROBE/COMMIT control structure for each video resolution supported. Handle the SET_CUR and
GET_CUR requests for all the video frame resolutions.

7. Changes to the GPIF Il descriptor to increase the bus width and to update the counter limits according to the
bus width. These changes are made in the GPIF Il designer to generate the header file. Remember to copy
this newly generated file in your project to ensure that the changes take effect.

Application Note 75 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

Summary

10 Summary

This application note describes how an image sensor conforming to the USB Video Class can be implemented
using Infineon EZ-USB™ FX3. Specifically, it shows:

e How the host application and driver interact with a UVC device

e How the UVC device manages UVC-specific requests

e How to program an EZ-USB™ FX3 interface using GPIF |l designer to receive data from typical image sensors

e How to display video streams and change camera properties in a host application

e How to add a USB interface to the UVC device for debugging purposes

e How to find host applications available on different platforms, including an open-source host application
project

e How to connect multiple image sensors, synchronize them externally, and stream from them
simultaneously over the UVC

e How to troubleshoot and debug the EZ-USB™ FX3 firmware, if required.

Application Note 76 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon
USB Video Class (UVC) framework
Appendix A: Hardware setup details for EZ-USB™ FX3 DVK (CYUSB3KIT-001)

11 Appendix A: Hardware setup details for EZ-USB™ FX3 DVK
(CYUSB3KIT-001)

11.1 EZ-USB™ FX3 DVK board setup

Follow these steps to prepare the board for testing the video application:

1. Configure the jumpers on the EZ-USB™ FX3 DVK board as shown in Figure 56. Do not load the jumpers that
are not highlighted in the figure.

A

=

J72 - Enable
reset switch

2333

J156 - Provide
power to GPIF Il

okl
<z ooonnudddddddd

=3 Somas

SN
e

o
Q.
|
>

SCL
=
&9

12C

J45, J42 -
Connect 12C line
to GPIF Il

Figure 56 EZ-USB™ FX3 DVK jumpers

2. Plugthe Aptinaimage sensor interconnect board (CYUSB3ACC-004) onto EZ-USB™ FX3 DVK J77. The
connector types on the interconnect board are unique, and the sockets are keyed to fit only in the correct
orientation.

3. Connect the Aptina image sensor module to the interconnect board. Figure 57 shows the three-board
assembly.

Application Note 77 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
Appendix A: Hardware setup details for EZ-USB™ FX3 DVK (CYUSB3KIT-001)

Image Sensor
Headboard

\
: 8

“.

Interconnect
Board

Figure 57 The 3-board 720p camera assembly

4. Plugthe EZ-USB™ FX3 DVK board into the USB port of the computer using the USB 3.0 cable provided with
the DVK.

5. Load the firmware into the board using the Control Center application provided as part of the EZ-USB™ FX3
SDK. The firmware source and pre-built image is provided in AN75779.zip. For detailed instructions, see
AN75705 - Getting Started with EZ-USB™ FX3. Here are brief instructions:

E'] LSE Control Center

File Help
= =] [[
- Cypress FX3 USB BootLoader Device

FX3 enumerates as a bootloader

Program
URE 5tat Abor

Descriptor Inffo Data Transfers Device Class

Figure 58

Start the Control Center application. When you plug in the EZ-USB™ FX3 DVK, it will be recognized as
Infineon EZ-USB™ FX3 USB Bootloader Device (Figure 58).

b) Select Program > FX3 > RAM and navigate to the cyfx_uvc_an75779.img file provided with the attachment
to this application note (Figure 59). Note that the device will lose the loaded firmware and re-enumerate
as Infineon EZ-USB™ FX3 USB Bootloader Device if it is power-cycled after programming.

a)

E'] LSE Control Center

File | Program | Help
==a Fx2] URE Stat Abort
E- | FX3 » || RAM riptor Info Data Transfers Device Class
[2C EEPROM VICE>
FriendlyMame="Cypress FX3 USE Boc
UL Manufacturer="Cypress”

[N Dercds s "B S mk DA nm

Figure 59

Loading code into FX3 RAM

Application Note

78 0f 86

001-75779 Rev. *L
2021-10-27

https://www.cypress.com/documentation/application-notes/an75779-how-implement-image-sensor-interface-using-ez-usb-fx3-usb
http://www.cypress.com/?rID=59979

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon
USB Video Class (UVC) framework

Appendix A: Hardware setup details for EZ-USB™ FX3 DVK (CYUSB3KIT-001)

c) Control Center application will show the status of programming on the status bar. On successful
programming, the device will also disappear from the Control Center device list as the device will now
enumerate as a UVC Class device. The device can be seen in Windows Device Manager under Cameras or

Imaging Devices type (Figure 60).

[&) USB Contral Center - O *

File Program Help
Aol 7 cE [URB Stat Abort Pipe ResetPipe X & @ 57

Descriptor Info Data Transfers Device Class Selection

Programming Succeeded

Figure 60 Programming succeeded message displayed on status bar

Application Note 79 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |n f| neon

USB Video Class (UVC) framework

Appendix B: Hardware setup details for EZ-USB™ FX3 explorer kit and Aptina image
sensor interconnect board (CYUSB3ACC-004)

12 Appendix B: Hardware setup details for EZ-USB™ FX3 explorer
kit and Aptina image sensor interconnect board (CYUSB3ACC-
004)

12.1 Hardware setup

1. Close jumpers J2,J3, and J4 and open jumper J5 on EZ-USB™ FX3 explorer kit.

2. Assemble the SuperSpeed explorer kit, Interconnect board, and the Aptina image sensor board as
instructed in the Aptina interconnect board quick start guide. Figure 61 shows the assembly.

-
g
=

" e
3

le
=

-

T

‘e

Figure 61 SuperSpeed explorer kit, Aptina interconnect, and Aptina sensor board assembly

3. Plugthe EZ-USB™ FX3 explorer kit board into the USB port of the computer using the USB 3.0 cable
provided with the kit.

4. Load the firmware onto the board using the Control Center application provided as part of the EZ-USB™ FX3
SDK. The firmware source and pre-built image is provided in AN75779.zip. For detailed instructions, see
AN75705 - Getting Started with EZ-USB™ FX3. Here are brief instructions:

Start the Control Center application. When you plug in the EZ-USB™ FX3 explorer board, it will be recognized as
Infineon EZ-USB™ FX3 USB Bootloader Device (Figure 62).

E’] LSE Control Center

File Program Help
o = [7 = [URB Stat Abor
K evice Descriptor Info Data Transfers Device Class

Figure 62 EZ-USB™ FX3 enumerates as a bootloader

Application Note 80 of 86 001-75779 Rev. *L
2021-10-27

https://www.cypress.com/documentation/application-notes/an75779-how-implement-image-sensor-interface-using-ez-usb-fx3-usb
http://www.cypress.com/?rID=59979

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a |n f| neon

USB Video Class (UVC) framework
Appendix B: Hardware setup details for EZ-USB™ FX3 explorer kit and Aptina image

sensor interconnect board (CYUSB3ACC-004)
Select Program > FX3 > RAM and navigate to the cyfx_uvc_an75779.img file provided with the attachment to

this application note (Figure 63). Note that the device will lose the loaded firmware and re-enumerate as
Infineon EZ-USB™ FX3 USB Bootloader Device if it is power-cycled after programming.

E'J LSE Control Center

File | Program | Help
== Fx2 [#] URB Stat Abort
W| FX3 » || RAM riptor Info | Data Transfers Device Class
[2C EEPROM VICE>
5P| FLASH FriendlyMame="Cypress FX3 USB Boc

Manufacturer="Cypress"

[l D s "B S mk DA nm

Figure 63 Loading code into EZ-USB™ FX3 RAM

Control Center application will show the status of programming on the status bar. On successful programming,
the device will also disappear from the Control Center device list as the device will now enumerate as a UVC
Class device. The device can be seen in Windows Device Manager under Cameras or Imaging Devices type
(Figure 64).

[&) USB Contral Center - O *

File Program Help

Aol 7 cE [URB Stat Abort Pipe ResetPipe X & @ 57
Descriptor Info Data Transfers Device Class Selection

Programming Succeeded

Figure 64 Programming succeeded message displayed on status bar

Application Note 81 of 86 001-75779 Rev. *L
2021-10-27

o~ _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |nf| neon
USB Video Class (UVC) framework

References

References
[1] AN75705
[2] AN90369

Application Note 82 of 86 001-75779 Rev. *L
2021-10-27

http://www.cypress.com/?rID=59979
http://www.cypress.com/?rID=94116

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |nf| neon

USB Video Class (UVC) framework

Revision history

Revision history

Document Date of release Description of changes

version

o 2012-04-19 New Application Note

*A 2012-06-14 Changed application note title to match the scope of the new version of

application note

Added firmware project

Added explanation of the firmware project
Added the UVC application related details,
Revised the functional block diagram

Moved the steps to generate the GPIF Il descriptor using the GPIF Il
Designer tool to Appendix A

Added section in Appendix to show users how to modify a the given
GPIF Il -Designer project

Clarified certain topics with explicit information

Updated the all the links in the document to point to the correct
locations within and outside the document

Removed references to AN75310
Removed references to the Slave FIFO application note

*B 2013-03-20 Updated application note title

Updated the Software Version required

Updated the Abstract with information on newly added features
Updated TOC

Added more description on how UVC application works

Added general block diagram of UVC class requests

Modified the description of the file structure based on the new
structure in the associated project for ease of use

Added a section on USB descriptors for UVC application
Added details section on UVC class requests

Added description of sample control requests (brightness and PTZ)
included as new features in the updated associated project

Added a section on the UVC streaming requests
Added a section on the UVC video format and UVC header insertion

Updated the firmware application description section with appropriate
content to reflect the changes in the associated firmware project

Added a section describing an optional debug interface implemented
as a new feature and documentation on how to use this new interface

Added a section on the hardware setup instructions

Added a section on host applications available in market for viewing
video over UVC

Added a section on basic troubleshooting

Updated the GPIF Il state machine design steps in the Appendix A to
accommodate the updated state machine used in the associated
project

Application Note 83 0f 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |nf| neon

USB Video Class (UVC) framework

Revision history

Document Date of release Description of changes

version

*C 2013-06-27 Updated the abstract to include reference to two image sensor
interface

Added section to explain how to connect two image sensors

Added section on how to transfer data with two image sensors
connected

Added section called Firmware Modification Checklist
To improve quality of graphics, replaced Hardware Setup screen shot

on page 20.

*D 2013-09-27 Rewrite and overhaul of application note.

*E 2015-03-31 Updated the Software Version “FX3 SDK1.2.3” to “FX3 SDK1.3.3”, in
page 1.

Updated Related Application Notes in page 1.

Added reference to the consolidated list of USB SuperSpeed Code
Examples in Abstract, in page 1.

Added a Note in Introduction.

Updated the Note in Video data format: YUY2.
Updated Step 4 in Draw the GPIF Il state machine.
Updated Hardware setup.

Updated Hardware .

Updated SuperSpeed explorer kit board setup: Removed “Figure 47.
EZ-USB™ FX3 DVK Jumpers” and “Figure 48. The Three Board 720P
Camera Assembly”.

Updated the precompiled code image file hyperlink in Running the
demo.

Added Step 1 and updated Step 2 in Troubleshooting.

Added subsection Firmware modification checklist to add new video
format to the current project.

Updated Checklist for firmware modification to support a new
sensor.

Added Appendix A: Hardware setup details for EZ-USB™ FX3 DVK
(CYUSB3KIT-001)

Added Figure 56 through Figure 59.

Updated to new template.

*F 2015-10-08 Updated attached Associated Project.

*G 2016-03-16 Removed the NDA requirement for sharing sensor configuration file.
MT9M114 sensor is now open source.

Added a note on UVC Isoc bandwidth limitation in USB 3.0 SuperSpeed
mode.

Updated the steps to create GPIF State Machine.

Added a reference to FX2G2, USB 2.0 part from FX3 family.
Updated template

*H 2017-04-11 Updated logo and copyright

Application Note 84 of 86 001-75779 Rev. *L
2021-10-27

o _.
How to implement an image sensor interface using EZ-USB™ FX3 in a ‘ |nf| neon

USB Video Class (UVC) framework

Revision history

Document Date of release Description of changes

version

*| 2017-07-12 Updated attached associated project and Firmware design section in
the App note.
Updated note on UVC Isoc bandwidth limitation in USB 3.0 SuperSpeed
mode.
Added a note on Synchronous and Asynchronous video control
transfers.
Added a note on source code of few Windows host applications.

*J 2017-10-06 Added UVC extension unit in the attached Associated project

*K 2019-07-22 Added details on Semiconductor Image Sensor Interconnect Board

Added Appendix B: Hardware setup details for EZ-USB™ FX3
explorer kit and Aptina image sensor interconnect board
(CYUSB3ACC-004)

*L 2021-10-27 Added links to relevant KBAs

Added details on Still Image capture

Added more details in Troubleshooting section

Updated to Infineon template

Application Note 85 of 86 001-75779 Rev. *L
2021-10-27

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-10-27
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Go to www.cypress.com/support

Document reference
001-75779 Rev. *L

IMPORTANT NOTICE

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.cypress.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 More information

	2 USB Video Class (UVC)
	2.1 Enumeration data
	2.2 Operational code
	2.3 USB video class requirements
	2.3.1 USB descriptors for UVC
	2.3.1.1 Video control interface
	2.3.1.2 Video streaming interface

	2.3.2 UVC-specific requests
	2.3.2.1 Control requests – Brightness, PTZ control and extension unit control
	2.3.2.2 Streaming requests – Probe and commit control

	2.3.3 Video data format: YUY2
	2.3.4 UVC video data header
	2.3.5 Still image capture
	2.3.5.1 Method 2 still image capture

	3 GPIF II image sensor interface
	3.1 Image sensor interface
	3.1.1 GPIF II interface requirements

	3.2 Pin mapping of image sensor interface
	3.3 Ping-pong DMA buffers
	3.4 Design strategy
	3.5 GPIF II state machine
	3.6 Implementing image sensor interface using GPIF II designer
	3.6.1 Create the project
	3.6.2 Define the interface
	3.6.3 Draw the state machine
	3.6.4 Draw the GPIF II state machine
	3.6.5 Editing GPIF II interface details

	4 Setting up the DMA system
	4.1 About DMA buffers

	5 EZ-USB™ FX3 firmware
	5.1 Application thread
	5.2 Initialization
	5.3 Enumeration
	5.4 Configuring the image sensor through the I2C interface
	5.5 Starting the video streaming
	5.6 Setting up DMA buffers
	5.7 Handling the DMA buffers during video streaming
	5.8 Terminating the video streaming
	5.9 Adding a “debug” interface
	5.9.1 Debug interface details
	5.9.2 Using the debug interface
	5.9.2.1 Single read
	5.9.2.2 Sequential read
	5.9.2.3 Single write
	5.9.2.4 Sequential write

	6 Hardware setup
	6.1 Hardware requirement
	6.2 SuperSpeed explorer kit board setup

	7 UVC-based host applications
	7.1 Running the demo

	8 Troubleshooting
	8.1 Black screen or incorrect color visible in the host application
	8.2 Reduced frames per second observed in the host application

	9 Connecting two image sensors
	9.1 Transferring the interleaved image over UVC
	9.1.1 Example 1: Two 640 x 480 monochrome sensors
	9.1.2 Example 2: Two 640 x 480 color sensors

	9.2 Firmware modification checklist to add new video format to the current project
	9.3 Firmware modification checklist to add new video resolution to the current project
	9.4 Checklist for firmware modification to support a new sensor

	10 Summary
	11 Appendix A: Hardware setup details for EZ-USB™ FX3 DVK (CYUSB3KIT-001)
	11.1 EZ-USB™ FX3 DVK board setup

	12 Appendix B: Hardware setup details for EZ-USB™ FX3 explorer kit and Aptina image sensor interconnect board (CYUSB3ACC-004)
	12.1 Hardware setup

	References
	Revision history

