
仕様書情報から設計検証データを自動生成!

SpecInsight-NEO(モジュール間結線生成ツール)

【機能】

- ・入出力端子表(図1)と接続情報からモジュール間接続RTL(図2)を 自動生成します
- •RTL記述言語は、Verilog または VHDL から選択可能です

【特徴】

- ・入出力端子表、接続情報はExcelファイルで作成可能です お客様のフォーマットをそのまま使用することもできます
- ビット幅の不一致や入出力定義の不整合をチェックできます。

【効果】

・面倒で単純ミスが発生しやすいモジュール間接続作成から解放されます

【ムービーで見る】https://www.youtube.com/watch?feature=player_embedded&v=XtLNzBQfKCA

AO_MSTRB 1'60 AO_MREADY AXI7570 AO BVALID AO_BREADY 0 AO_ARADDR AO_ARLEN

7.出力端子裏の例

		八山川畑丁衣の例
library IEEE use IEEE std use IEEE std use IEEE std entity al is port (olk rst_x Al_AWID Al_AWID Al_AWIST Al_AWIST Al_AWIST Al_AWIST Al_AWIST Al_AWIST	_logio_116 _logic_ari _logio_uns : in : in : in R : in E : in ST : in	th.all;

図2 RTL出力例

SpecInsight-REG(レジスタモジュール生成ツール)

【機能】

- ・レジスタ仕様(図3)からレジスタモジュールRTL(図4)を 自動生成します
- •RTL記述言語は、Verilog または VHDL から選択可能です
- ・バスインタフェースは標準バスをサポートします

【特徴】

レジスタ名の重複やアドレスマップのミスをチェックできます -AXI、AHB、APBバスに対応します

【効果】

- レジスタ数が多くても、レジスタ仕様を定義すれば 簡単にRTLを生成できます
- 仕様書やRTLの形式を統一することができます

ベースアド		グ <u>ループ名</u>	ビット	バス	Reset	接続	
グ <u>ループ</u>	サイズ	ブ <u>ロック名</u>	A.	アクセス	初期値	出力	
ブロック	(Byte)	フィールド名	7942	属性	非同期	内部F	
0×000	0400	UART					UARTコアのレジスタ・マップを示します。
	uxiuu	OART					を介してコアの制御と通信を行います。
0×00		Data					エンベデッボ・ソフトウェアは、Dataレジス
			[7:0]	EW	_	FWife	す。
			[7.0]	1007		TOTALIO	ライトすることで送信FIFOに書き込みが
							₫.
0x04		Status					エンベデッド・ソフトウェアは、Statusレジ
							送信FIFOがフルの場合TXFULL=1を返
		TXFULL	[0]	RO		1	込みは可能ですが、フル状態の間はDa
							L給けますので注意が必要です。
		RXVALIO	[1]	RO		l .	受信FIFOに有効なデータがあるかどうた
	1	1 1 2 2 2	111				受信FIFOIコラ以上の有効なデータがあ

図3 レジスタ仕様の例

レジスタモジュールTOP レジスタ バスIF レジスタ モジュール モジュール モジュール 構成概要

図4

SpecInsight-ACE(アサーション自動生成ツール)

【機能】

- ・専用エディタで仕様書(タイミングチャート)を作成できます(図5)
- ・タイミングチャート上にアサーション仕様を図で定義できます(図6)
- ・アサーション仕様からSystemVerilog Assertion コード(図7)を生成します

【特徴】

- ・タイミングチャートを簡単に作成することができます
- •アサーション言語を知らなくてもアサーションを定義できます
- ・図で定義したアサーションを日本語の説明文として出力します

【効果】

- ・アサーション・ベース検証を簡単に導入することができます ※アサーションに関する詳しい知識は必要ありません
- 検証内容を図で表示できるので、レビューがしやすくなります
- タイミングチャートもアサーションも簡単に再利用できます。

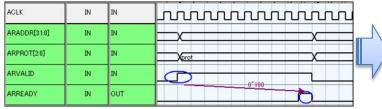


図6 アサーション定義例

IN IN mmmmmm RESETr リセット ARADDR[31:0 IN リードアドレス RPROT[2:0] IN プロテクション RVALID IN ARREADY OUT レディ RDATA[31:0] RRESP[1:0] OUT 応答 OUT READY IN レディ 補足説明 ①ARVALIDアサート後、ARREADYは一定期間内に応答しなければならない(100サイクル以内)②RVALDIアサート後、RREAYは一定期間内に応答しなければならない(100サイクル以内)

図5 タイミングチャート例(仕様書用)

アサーショングループ名
READ_ADR
アサーション表
AXIL_LiteS_ARREADY_MAX_WAIT
アサーション内容
ARVALIDがのから1(こ変化した時、のから100サイクル後、(ARREADY=1)とならなければならない
property p_axi4_lites_arready_max_wait,
@(posedge_ACLK)
((\$past(ARVALID)= 0)&&((\$stable(ARVALID)) && (ARVALID==1)) | >
##[0:100] (ARREADY == 1));
endproperty
AXI4_LiteS_ARREADY_MAX_WAIT: assert property(p_axi4_lites_arready_max_wait)
else begin ____display("##### [ERROR] AXI4_LiteS_ARREADY_MAX_WAIT");

図7 アサーション・コードの出力例

【ムーピーで見る】タイミングチャート作成 https://www.youtube.com/watch?feature=player_embedded&v=GnHS8gSLe6k アサーション作成 https://www.youtube.com/watch?feature=player_embedded&v=Coe5i=84u_s

SpecInsight-TEX(テストベンチ生成ツール)

【機能】

- 仕様書用に作成したタイミングチャートから、テストベンチの入力情報を生成します
- 複数のタイミングチャートを組み合わせて検証シナリオを作成でき、テストベンチと 一緒に出力できます(図8)
- ・テストベンチ記述言語は、Verilog または VHDL から選択可能です

【特徴】

- タイミングチャートがあれば、簡単な操作でテストベンチを作成できます
- •RTLとテストベンチは入出力端子表から自動で接続します
- ■SpecInsight-ACEで生成したアサーションも簡単に取り込めます

【効果】

- テストベンチに不慣れな人でも簡単にシミュレーションを実行できます。
- 設計の初期段階で簡単にシミュレーションによる動作確認ができます

【ムービーで見る】https://www.youtube.com/watch?v=5GlsIE56SF0&feature=player_embedded

機能	製品名	備考	
ᇚᇿᄽᆄ	SpecInsight-NEO		
RTL生成	SpecInsight-REG		
アサーション生成	SpecInsight-ACE	_(*)タイミングチャート エディタ単体もご購入	
テストベンチ生成	SpecInsight-TEX		
タイミングチャート作成	SpecInsight-タイミングチャート	いただけます	

TIBLOP is and entity:

architecture RIL of TB_TOP is a component apb a port (...)

PCLK in std_logic; *

PRESET in std_logic; *

PENABLE in std_logic; *

PENABLE in std_logic; *

PENABLE in std_logic; *

PODATA in std_logic; *

PENABLE in std_logic; *

PODATA in std_logic; *

PENABLE in std_logic; *

PODATA in std_logic; *

PENABLE in std_logic; *

PENABLE in std_logic; *

PODATA in std_logic; *

PENABLE in std_logic; *

PENABLE in std_logic; *

PENABLE in std_logic; *

PENABLE in std_logic; *

STM_ENABLE in std_

図8 タイミングチャートとテストベンチ出力例

製品紹介の 動画が見れます!

各製品は、予告なく変更する場合があります 2015年5月 Rev1.4

■新横浜本社

E-mail

住所 横浜市港北区新横浜2-3-12 TEL 045-477-2005

info_pal@paltek.co.jp