
Chapter 1: System Information and Control Page 1 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Chapter 1: System Information and Control

The system services described in this chapter operate on the system as a whole rather than on
individual objects within the system. They mostly gather information about the performance and
operation of the system and set system parameters.

ZwQuerySystemInformation

ZwQuerySystemInformation queries information about the system.

NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySystemInformation(
 IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
 IN OUT PVOID SystemInformation,
 IN ULONG SystemInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters

SystemInformationClass

The type of system information to be queried. The permitted values are a subset of the
enumeration SYSTEM_INFORMATION_CLASS, described in the following section.

SystemInformation

Points to a caller-allocated buffer or variable that receives the requested system
information.

SystemInformationLength

The size in bytes of SystemInformation, which the caller should set according to the
given SystemInformationClass.

ReturnLength

Optionally points to a variable that receives the number of bytes actually returned to
SystemInformation; if SystemInformationLength is too small to contain the
available information, the variable is normally set to zero except for two information
classes (6 and 11) when it is set to the number of bytes required for the available
information. If this information is not needed, ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_INFO_CLASS,
STATUS_NOT_IMPLEMENTED, or STATUS_INFO_LENGTH_MISMATCH.

Chapter 1: System Information and Control Page 2 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Related Win32 Functions

GetSystemInfo, GetTimeZoneInformation, GetSystemTimeAdjustment, PSAPI functions, and
performance counters.

Remarks

ZwQuerySystemInformation is the source of much of the information displayed by "Performance
Monitor" for the classes Cache, Memory, Objects, Paging File, Process, Processor, System, and
Thread. It is also frequently used by resource kit utilities that display information about the system.

The ReturnLength information is not always valid (depending on the information class), even when
the routine returns STATUS_SUCCESS. When the return value indicates
STATUS_INFO_LENGTH_MISMATCH, only some of the information classes return an estimate of the
required length.

Some information classes are implemented only in the "checked" version of the kernel. Some, such as
SystemCallCounts, return useful information only in "checked" versions of the kernel.

Some information classes require certain flags to have been set in NtGlobalFlags at boot time. For
example, SystemObjectInformation requires that FLG_MAINTAIN_OBJECT_TYPELIST be set at boot
time.

Information class SystemNotImplemented1 (4) would return STATUS_NOT_IMPLEMENTED if it were
not for the fact that it uses DbgPrint to print the text "EX: SystemPathInformation now
available via SharedUserData." and then calls DbgBreakPoint. The breakpoint exception is
caught by a frame based exception handler (in the absence of intervention by a debugger) and causes
ZwQuerySystemInformation to return with STATUS_BREAKPOINT.

ZwSetSystemInformation

ZwSetSystemInformation sets information that affects the operation of the system.

NTSYSAPI
NTSTATUS
NTAPI
ZwSetSystemInformation(
 IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
 IN OUT PVOID SystemInformation,
 IN ULONG SystemInformationLength
);

Parameters

SystemInformationClass

The type of system information to be set. The permitted values are a subset of the
enumeration SYSTEM_INFORMATION_CLASS, described in the following section.

Chapter 1: System Information and Control Page 3 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

SystemInformation

Points to a caller-allocated buffer or variable that contains the system information to be
set.

SystemInformationLength

The size in bytes of SystemInformation, which the caller should set according to the
given SystemInformationClass.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_INFO_CLASS,
STATUS_NOT_IMPLEMENTED or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions

SetSystemTimeAdjustment.

Remarks

At least one of the information classes uses the SystemInformation parameter for both input and
output.

SYSTEM_INFORMATION_CLASS

The system information classes available in the "free" (retail) build of the system are listed below
along with a remark as to whether the information class can be queried, set, or both. Some of the
information classes labeled "SystemNotImplementedXxx" are implemented in the "checked" build,
and a few of these classes are briefly described later.

 Query Set
typedef enum _SYSTEM_INFORMATION_CLASS {
 SystemBasicInformation, // 0 Y N
 SystemProcessorInformation, // 1 Y N
 SystemPerformanceInformation, // 2 Y N
 SystemTimeOfDayInformation, // 3 Y N
 SystemNotImplemented1, // 4 Y N
 SystemProcessesAndThreadsInformation, // 5 Y N
 SystemCallCounts, // 6 Y N
 SystemConfigurationInformation, // 7 Y N
 SystemProcessorTimes, // 8 Y N
 SystemGlobalFlag, // 9 Y Y
 SystemNotImplemented2, // 10 Y N
 SystemModuleInformation, // 11 Y N
 SystemLockInformation, // 12 Y N
 SystemNotImplemented3, // 13 Y N
 SystemNotImplemented4, // 14 Y N
 SystemNotImplemented5, // 15 Y N
 SystemHandleInformation, // 16 Y N
 SystemObjectInformation, // 17 Y N
 SystemPagefileInformation, // 18 Y N

Chapter 1: System Information and Control Page 4 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 SystemInstructionEmulationCounts, // 19 Y N
 SystemInvalidInfoClass1, // 20
 SystemCacheInformation, // 21 Y Y
 SystemPoolTagInformation, // 22 Y N
 SystemProcessorStatistics, // 23 Y N
 SystemDpcInformation, // 24 Y Y
 SystemNotImplemented6, // 25 Y N
 SystemLoadImage, // 26 N Y
 SystemUnloadImage, // 27 N Y
 SystemTimeAdjustment, // 28 Y Y
 SystemNotImplemented7, // 29 Y N
 SystemNotImplemented8, // 30 Y N
 SystemNotImplemented9, // 31 Y N
 SystemCrashDumpInformation, // 32 Y N
 SystemExceptionInformation, // 33 Y N
 SystemCrashDumpStateInformation, // 34 Y Y/N
 SystemKernelDebuggerInformation, // 35 Y N
 SystemContextSwitchInformation, // 36 Y N
 SystemRegistryQuotaInformation, // 37 Y Y
 SystemLoadAndCallImage, // 38 N Y
 SystemPrioritySeparation, // 39 N Y
 SystemNotImplemented10, // 40 Y N
 SystemNotImplemented11, // 41 Y N
 SystemInvalidInfoClass2, // 42
 SystemInvalidInfoClass3, // 43
 SystemTimeZoneInformation, // 44 Y N
 SystemLookasideInformation, // 45 Y N
 SystemSetTimeSlipEvent, // 46 N Y
 SystemCreateSession, // 47 N Y
 SystemDeleteSession, // 48 N Y
 SystemInvalidInfoClass4, // 49
 SystemRangeStartInformation, // 50 Y N
 SystemVerifierInformation, // 51 Y Y
 SystemAddVerifier, // 52 N Y
 SystemSessionProcessesInformation // 53 Y N
} SYSTEM_INFORMATION_CLASS;

SystemBasicInformation

typedef struct _SYSTEM_BASIC_INFORMATION { // Information Class 0
 ULONG Unknown;
 ULONG MaximumIncrement;
 ULONG PhysicalPageSize;
 ULONG NumberOfPhysicalPages;
 ULONG LowestPhysicalPage;
 ULONG HighestPhysicalPage;
 ULONG AllocationGranularity;
 ULONG LowestUserAddress;
 ULONG HighestUserAddress;
 ULONG ActiveProcessors;
 UCHAR NumberProcessors;
} SYSTEM_BASIC_INFORMATION, *PSYSTEM_BASIC_INFORMATION;

Members

Unknown

Always contains zero; interpretation unknown.

MaximumIncrement

Chapter 1: System Information and Control Page 5 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The maximum number of 100-nanosecond units between clock ticks. Also the number of
100-nanosecond units per clock tick for kernel intervals measured in clock ticks.

PhysicalPageSize

The size in bytes of a physical page.

NumberOfPhysicalPages

The number of physical pages managed by the operating system.

LowestPhysicalPage

The number of the lowest physical page managed by the operating system (numbered
from zero).

HighestPhysicalPage

The number of the highest physical page managed by the operating system (numbered
from zero).

AllocationGranularity

The granularity to which the base address of virtual memory reservations is rounded.

LowestUserAddress

The lowest virtual address potentially available to user mode applications.

HighestUserAddress

The highest virtual address potentially available to user mode applications.

ActiveProcessors

A bit mask representing the set of active processors in the system. Bit 0 is processor 0;
bit 31 is processor 31.

NumberProcessors

The number of processors in the system.

Remarks

Much of the data in this information class can be obtained by calling the Win32 function
GetSystemInfo.

Chapter 1: System Information and Control Page 6 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

SystemProcessorInformation

typedef struct _SYSTEM_PROCESSOR_INFORMATION { // Information Class 1
 USHORT ProcessorArchitecture;
 USHORT ProcessorLevel;
 USHORT ProcessorRevision;
 USHORT Unknown;
 ULONG FeatureBits;
} SYSTEM_PROCESSOR_INFORMATION, *PSYSTEM_PROCESSOR_INFORMATION;

Members

ProcessorArchitecture

The system’s processor architecture. Some of the possible values are defined in winnt.h
with identifiers of the form PROCESSOR_ARCHITECTURE_* (where ’*’ is a wildcard).

ProcessorLevel

The system’s architecture-dependent processor level. Some of the possible values are
defined in the Win32 documentation for the SYSTEM_INFO structure.

ProcessorRevision

The system’s architecture-dependent processor revision. Some of the possible values are
defined in the Win32 documentation for the SYSTEM_INFO structure.

Unknown

Always contains zero; interpretation unknown.

FeatureBits

A bit mask representing any special features of the system’s processor (for example,
whether the Intel MMX instruction set is available). The flags for the Intel platform
include:

 Intel Mnemonic Value Description

 VME 0x0001 Virtual-8086 Mode Enhancements
 TCS 0x0002 Time Stamp Counter
 0x0004 CR4 Register
 CMOV 0x0008 Conditional Mov/Cmp Instruction
 PGE 0x0010 PTE Global Bit
 PSE 0x0020 Page Size Extensions
 MTRR 0x0040 Memory Type Range Registers
 CXS 0x0080 CMPXCHGB8 Instruction
 MMX 0x0100 MMX Technology
 PAT 0x0400 Page Attribute Table
 FXSR 0x0800 Fast Floating Point Save and Restore
 SIMD 0x2000 Streaming SIMD Extension

Chapter 1: System Information and Control Page 7 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Remarks

Much of the data in this information class can be obtained by calling the Win32 function
GetSystemInfo.

SystemPerformanceInformation

typedef struct _SYSTEM_PERFORMANCE_INFORMATION { // Information Class 2
 LARGE_INTEGER IdleTime;
 LARGE_INTEGER ReadTransferCount;
 LARGE_INTEGER WriteTransferCount;
 LARGE_INTEGER OtherTransferCount;
 ULONG ReadOperationCount;
 ULONG WriteOperationCount;
 ULONG OtherOperationCount;
 ULONG AvailablePages;
 ULONG TotalCommittedPages;
 ULONG TotalCommitLimit;
 ULONG PeakCommitment;
 ULONG PageFaults;
 ULONG WriteCopyFaults;
 ULONG TransitionFaults;
 ULONG Reserved1;
 ULONG DemandZeroFaults;
 ULONG PagesRead;
 ULONG PageReadIos;
 ULONG Reserved2[2];
 ULONG PagefilePagesWritten;
 ULONG PagefilePageWriteIos;
 ULONG MappedFilePagesWritten;
 ULONG MappedFilePageWriteIos;
 ULONG PagedPoolUsage;
 ULONG NonPagedPoolUsage;
 ULONG PagedPoolAllocs;
 ULONG PagedPoolFrees;
 ULONG NonPagedPoolAllocs;
 ULONG NonPagedPoolFrees;
 ULONG TotalFreeSystemPtes;
 ULONG SystemCodePage;
 ULONG TotalSystemDriverPages;
 ULONG TotalSystemCodePages;
 ULONG SmallNonPagedLookasideListAllocateHits;
 ULONG SmallPagedLookasideListAllocateHits;
 ULONG Reserved3;
 ULONG MmSystemCachePage;
 ULONG PagedPoolPage;
 ULONG SystemDriverPage;
 ULONG FastReadNoWait;
 ULONG FastReadWait;
 ULONG FastReadResourceMiss;
 ULONG FastReadNotPossible;
 ULONG FastMdlReadNoWait;
 ULONG FastMdlReadWait;
 ULONG FastMdlReadResourceMiss;
 ULONG FastMdlReadNotPossible;
 ULONG MapDataNoWait;
 ULONG MapDataWait;
 ULONG MapDataNoWaitMiss;
 ULONG MapDataWaitMiss;
 ULONG PinMappedDataCount;

Chapter 1: System Information and Control Page 8 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 ULONG PinReadNoWait;
 ULONG PinReadWait;
 ULONG PinReadNoWaitMiss;
 ULONG PinReadWaitMiss;
 ULONG CopyReadNoWait;
 ULONG CopyReadWait;
 ULONG CopyReadNoWaitMiss;
 ULONG CopyReadWaitMiss;
 ULONG MdlReadNoWait;
 ULONG MdlReadWait;
 ULONG MdlReadNoWaitMiss;
 ULONG MdlReadWaitMiss;
 ULONG ReadAheadIos;
 ULONG LazyWriteIos;
 ULONG LazyWritePages;
 ULONG DataFlushes;
 ULONG DataPages;
 ULONG ContextSwitches;
 ULONG FirstLevelTbFills;
 ULONG SecondLevelTbFills;
 ULONG SystemCalls;
} SYSTEM_PERFORMANCE_INFORMATION, *PSYSTEM_PERFORMANCE_INFORMATION;

Members

IdleTime

The total idle time, measured in units of 100-nanoseconds, of all the processors in the
system.

ReadTransferCount

The number of bytes read by all calls to ZwReadFile.

WriteTransferCount

The number of bytes written by all calls to ZwWriteFile.

OtherTransferCount

The number of bytes transferred to satisfy all other I/O operations, such as
ZwDeviceIoControlFile.

ReadOperationCount

The number of calls to ZwReadFile.

WriteOperationCount

The number of calls to ZwWriteFile.

OtherOperationCount

The number of calls to all other I/O system services, such as ZwDeviceIoControlFile.

Chapter 1: System Information and Control Page 9 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

AvailablePages

The number of pages of physical memory available to processes running on the system.

TotalCommittedPages

The number of pages of committed virtual memory.

TotalCommitLimit

The number of pages of virtual memory that could be committed without extending the
system’s pagefiles.

PeakCommitment

The peak number of pages of committed virtual memory.

PageFaults

The number of page faults (both soft and hard).

WriteCopyFaults

The number of page faults arising from attempts to write to copy-on-write pages.

TransitionFaults

The number of soft page faults (excluding demand zero faults).

DemandZeroFaults

The number of demand zero faults.

PagesRead

The number of pages read from disk to resolve page faults.

PageReadIos

The number of read operations initiated to resolve page faults.

PagefilePagesWritten

The number of pages written to the system’s pagefiles.

PagefilePageWriteIos

Chapter 1: System Information and Control Page 10 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The number of write operations performed on the system’s pagefiles.

MappedFilePagesWritten

The number of pages written to mapped files.

MappedFilePageWriteIos

The number of write operations performed on mapped files.

PagedPoolUsage

The number of pages of virtual memory used by the paged pool.

NonPagedPoolUsage

The number of pages of virtual memory used by the nonpaged pool.

PagedPoolAllocs

The number of allocations made from the paged pool.

PagedPoolFrees

The number of allocations returned to the paged pool.

NonPagedPoolAllocs

The number of allocations made from the nonpaged pool.

NonPagedPoolFrees

The number of allocations returned to the nonpaged pool.

TotalFreeSystemPtes

The number of available System Page Table Entries.

SystemCodePage

The number of pages of pageable operating system code and static data in physical
memory. The meaning of "operating system code and static data" is defined by address
range (lowest system address to start of system cache) and includes a contribution from
win32k.sys.

TotalSystemDriverPages

Chapter 1: System Information and Control Page 11 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The number of pages of pageable device driver code and static data.

TotalSystemCodePages

The number of pages of pageable operating system code and static data. The meaning of
"operating system code and static data" is defined by load time (SERVICE_BOOT_START
driver or earlier) and does not include a contribution from win32k.sys.

SmallNonPagedLookasideListAllocateHits

The number of times an allocation could be satisfied by one of the small nonpaged
lookaside lists.

SmallPagedLookasideListAllocateHits

The number of times an allocation could be satisfied by one of the small-paged lookaside
lists.

MmSystemCachePage

The number of pages of the system cache in physical memory.

PagedPoolPage

The number of pages of paged pool in physical memory.

SystemDriverPage

The number of pages of pageable device driver code and static data in physical memory.

FastReadNoWait

The number of asynchronous fast read operations.

FastReadWait

The number of synchronous fast read operations.

FastReadResourceMiss

The number of fast read operations not possible because of resource conflicts.

FastReadNotPossible

The number of fast read operations not possible because file system intervention
required.

FastMdlReadNoWait

Chapter 1: System Information and Control Page 12 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The number of asynchronous fast read operations requesting a Memory Descriptor List
(MDL) for the data.

FastMdlReadWait

The number of synchronous fast read operations requesting an MDL for the data.

FastMdlReadResourceMiss

The number of synchronous fast read operations requesting an MDL for the data not
possible because of resource conflicts.

FastMdlReadNotPossible

The number of synchronous fast read operations requesting an MDL for the data not
possible because file system intervention required.

MapDataNoWait

The number of asynchronous data map operations.

MapDataWait

The number of synchronous data map operations.

MapDataNoWaitMiss

The number of asynchronous data map operations that incurred page faults.

MapDataWaitMiss

The number of synchronous data map operations that incurred page faults.

PinMappedDataCount

The number of requests to pin mapped data.

PinReadNoWait

The number of asynchronous requests to pin mapped data.

PinReadWait

The number of synchronous requests to pin mapped data.

PinReadNoWaitMiss

Chapter 1: System Information and Control Page 13 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The number of asynchronous requests to pin mapped data that incurred page faults when
pinning the data.

PinReadWaitMiss

The number of synchronous requests to pin mapped data that incurred page faults when
pinning the data.

CopyReadNoWait

The number of asynchronous copy read operations.

CopyReadWait

The number of synchronous copy read operations.

CopyReadNoWaitMiss

The number of asynchronous copy read operations that incurred page faults when reading
from the cache.

CopyReadWaitMiss

The number of synchronous copy read operations that incurred page faults when reading
from the cache.

MdlReadNoWait

The number of synchronous read operations requesting an MDL for the cached data.

MdlReadWait

The number of synchronous read operations requesting an MDL for the cached data.

MdlReadNoWaitMiss

The number of synchronous read operations requesting an MDL for the cached data that
incurred page faults.

MdlReadWaitMiss

The number of synchronous read operations requesting an MDL for the cached data that
incurred page faults.

ReadAheadIos

The number of read ahead operations performed in anticipation of sequential access.

Chapter 1: System Information and Control Page 14 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

LazyWriteIos

The number of write operations initiated by the Lazy Writer.

LazyWritePages

The number of pages written by the Lazy Writer.

DataFlushes

The number of cache flushes in response to flush requests.

DataPages

The number of cache pages flushed in response to flush requests.

ContextSwitches

The number of context switches.

FirstLevelTbFills

The number of first level translation buffer fills.

SecondLevelTbFills

The number of second level translation buffer fills.

SystemCalls

The number of system calls executed.

Remarks

Slightly longer descriptions of many of the members of this structure can be found in the Win32
documentation for the NT Performance Counters.

SystemTimeOfDayInformation

typedef struct _SYSTEM_TIME_OF_DAY_INFORMATION { // Information Class 3
 LARGE_INTEGER BootTime;
 LARGE_INTEGER CurrentTime;
 LARGE_INTEGER TimeZoneBias;
 ULONG CurrentTimeZoneId;
} SYSTEM_TIME_OF_DAY_INFORMATION, *PSYSTEM_TIME_OF_DAY_INFORMATION;

Members

Chapter 1: System Information and Control Page 15 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

BootTime

The time when the system was booted in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

CurrentTime

The current time of day in the standard time format.

TimeZoneBias

The difference, in 100-nanosecond units, between Coordinated Universal Time (UTC)
and local time.

CurrentTimeZoneId

A numeric identifier for the current time zone.

Remarks

None.

SystemProcessesAndThreadsInformation

typedef struct _SYSTEM_PROCESSES { // Information Class 5
 ULONG NextEntryDelta;
 ULONG ThreadCount;
 ULONG Reserved1[6];
 LARGE_INTEGER CreateTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER KernelTime;
 UNICODE_STRING ProcessName;
 KPRIORITY BasePriority;
 ULONG ProcessId;
 ULONG InheritedFromProcessId;
 ULONG HandleCount;
 ULONG Reserved2[2];
 LLLONG PrivatePageCount;
 VM_COUNTERS VmCounters;
 IO_COUNTERS IoCounters; // Windows 2000 only
 SYSTEM_THREADS Threads[1];
} SYSTEM_PROCESSES, *PSYSTEM_PROCESSES;

typedef struct _SYSTEM_THREADS {
 LARGE_INTEGER KernelTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER CreateTime;
 ULONG WaitTime;
 PVOID StartAddress;
 CLIENT_ID ClientId;
 KPRIORITY Priority;
 KPRIORITY BasePriority;
 ULONG ContextSwitchCount;
 THREAD_STATE State;

Chapter 1: System Information and Control Page 16 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 KWAIT_REASON WaitReason;
} SYSTEM_THREADS, *PSYSTEM_THREADS;

Members

NextEntryDelta

The offset, from the start of this structure, to the next entry. A NextEntryDelta of zero
indicates that this is the last structure in the returned data.

ThreadCount

The number of threads in the process.

CreateTime

The creation time of the process in the standard time format (that is, the number of 100-
nanosecond intervals since January 1, 1601).

UserTime

The sum of the time spent executing in user mode by the threads of the process,
measured in units of 100-nanoseconds.

KernelTime

The sum of the time spent executing in kernel mode by the threads of the process,
measured in units of 100-nanoseconds.

ProcessName

The name of the process, normally derived from the name of the executable file used to
create the process.

BasePriority

The default base priority for the threads of the process.

ProcessId

The process identifier of the process.

InheritedFromProcessId

The process identifier of the process from which handles and/or address space was
inherited.

HandleCount

Chapter 1: System Information and Control Page 17 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The number of handles opened by the process.

VmCounters

Statistics on the virtual memory usage of the process. VM_COUNTERS is defined thus in
ntddk.h:

 typedef struct _VM_COUNTERS {
 ULONG PeakVirtualSize;
 ULONG VirtualSize;
 ULONG PageFaultCount;
 ULONG PeakWorkingSetSize;
 ULONG WorkingSetSize;
 ULONG QuotaPeakPagedPoolUsage;
 ULONG QuotaPagedPoolUsage;
 ULONG QuotaPeakNonPagedPoolUsage;
 ULONG QuotaNonPagedPoolUsage;
 ULONG PagefileUsage;
 ULONG PeakPagefileUsage;
 } VM_COUNTERS, *PVM_COUNTERS;

IoCounters

Statistics on the I/O operations of the process. This information is only present in
Windows 2000. IO_COUNTERS is defined thus:

 typedef struct _IO_COUNTERS {
 LARGE_INTEGER ReadOperationCount;
 LARGE_INTEGER WriteOperationCount;
 LARGE_INTEGER OtherOperationCount;
 LARGE_INTEGER ReadTransferCount;
 LARGE_INTEGER WriteTransferCount;
 LARGE_INTEGER OtherTransferCount;
 } IO_COUNTERS, *PIO_COUNTERS;

PrivatePageCount

The current size, in bytes, of the private (non-shared) pages of the process. Normally has
the same value as the VMCounters member PagefileUsage.

Threads

An array of SYSTEM_THREADS structures describing the threads of the process. The
number of elements in the array is available in the ThreadCount member.

The members of SYSTEM_THREADS follow.

KernelTime

The time spent executing in kernel mode, measured in units of 100-nanoseconds.

UserTime

Chapter 1: System Information and Control Page 18 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The time spent executing in user mode, measured in units of 100-nanoseconds.

CreateTime

The creation time of the thread in the standard time format (that is, the number of 100-
nanosecond intervals since January 1, 1601).

WaitTime

The time at which the thread last entered a wait state, measured in clock ticks since
system boot.

StartAddress

The start address of the thread.

ClientId

The client identifier of the thread, comprising a process identifier and a thread identifier.

Priority

The priority of the thread.

BasePriority

The base priority of the thread.

ContextSwitchCount

The number of context switches incurred by the thread.

State

The execution state of the thread. Permitted values are drawn from the enumeration
THREAD_STATE.

 typedef enum {
 StateInitialized,
 StateReady,
 StateRunning,
 StateStandby,
 StateTerminated,
 StateWait,
 StateTransition,
 StateUnknown
 } THREAD_STATE;

WaitReason

Chapter 1: System Information and Control Page 19 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

An indication of the reason for a wait. Some possible values are defined in the
enumeration KWAIT_REASON, but other values may also be used.

 typedef enum _KWAIT_REASON {
 Executive,
 FreePage,
 PageIn,
 PoolAllocation,
 DelayExecution,
 Suspended,
 UserRequest,
 WrExecutive,
 WrFreePage,
 WrPageIn,
 WrPoolAllocation,
 WrDelayExecution,
 WrSuspended,
 WrUserRequest,
 WrEventPair,
 WrQueue,
 WrLpcReceive,
 WrLpcReply,
 WrVirtualMemory,
 WrPageOut,
 WrRendezvous,
 Spare2,
 Spare3,
 Spare4,
 Spare5,
 Spare6,
 WrKernel
 } KWAIT_REASON;

Remarks

The format of the data returned to the SystemInformation buffer is a sequence of SYSTEM_PROCESSES
structures, chained together via the NextEntryDelta member. The Threads member of each
SYSTEM_PROCESSES structure is an array of ThreadCount SYSTEM_THREADS structures. The end of the
process chain is marked by a NextEntryDelta value of zero.

The Process Status API (PSAPI) function EnumProcesses uses this information class to obtain a list
of the process identifier in the system.

A demonstration of the use of this information class to implement a subset of the Tool Help Library
appears in Example 1.1.

The addition of the IoCounters member to SYSTEM_PROCESSES structure in Windows 2000 has the
consequence that Windows NT 4.0 applications that access the Threads member fail when run under
Windows 2000; for example, the pstat.exe resource kit utility suffers from this problem.

SystemCallCounts

typedef struct _SYSTEM_CALLS_INFORMATION { // Information Class 6
 ULONG Size;
 ULONG NumberOfDescriptorTables;

Chapter 1: System Information and Control Page 20 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 ULONG NumberOfRoutinesInTable[1];
 // ULONG CallCounts[];
} SYSTEM_CALLS_INFORMATION, *PSYSTEM_CALLS_INFORMATION;

Members

Size

The size in bytes of the returned information.

NumberOfDescriptorTables

The number of system service dispatch descriptor tables for which information is
available.

NumberOfRoutinesInTable

An array of the count of routines in each table.

Remarks

Information on the number of calls to each system service is only gathered if the "checked" version of
the kernel is used and memory is allocated by the creator of the table to hold the counts.

The counts of calls to each system service follow the array NumberOfRoutinesInTable.

SystemConfigurationInformation

typedef struct _SYSTEM_CONFIGURATION_INFORMATION { // Information Class 7
 ULONG DiskCount;
 ULONG FloppyCount;
 ULONG CdRomCount;
 ULONG TapeCount;
 ULONG SerialCount;
 ULONG ParallelCount;
} SYSTEM_CONFIGURATION_INFORMATION, *PSYSTEM_CONFIGURATION_INFORMATION;

Members

DiskCount

The number of hard disk drives in the system.

FloppyCount

The number of floppy disk drives in the system.

CdRomCount

The number of CD-ROM drives in the system.

Chapter 1: System Information and Control Page 21 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

TapeCount

The number of tape drives in the system.

SerialCount

The number of serial ports in the system.

ParallelCount

The number of parallel ports in the system.

Remarks

This information is a subset of the information available to device drivers by calling
IoGetConfigurationInformation.

SystemProcessorTimes

typedef struct _SYSTEM_PROCESSOR_TIMES { // Information Class 8
 LARGE_INTEGER IdleTime;
 LARGE_INTEGER KernelTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER DpcTime;
 LARGE_INTEGER InterruptTime;
 ULONG InterruptCount;
} SYSTEM_PROCESSOR_TIMES, *PSYSTEM_PROCESSOR_TIMES;

Members

IdleTime

The idle time, measured in units of 100-nanoseconds, of the processor.

KernelTime

The time the processor spent executing in kernel mode, measured in units of 100-
nanoseconds.

UserTime

The time the processor spent executing in user mode, measured in units of 100-
nanoseconds.

DpcTime

The time the processor spent executing deferred procedure calls, measured in units of
100-nanoseconds.

Chapter 1: System Information and Control Page 22 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

InterruptTime

The time the processor spent executing interrupt routines, measured in units of 100-
nanoseconds.

InterruptCount

The number of interrupts serviced by the processor.

Remarks

An array of structures is returned, one per processor.

SystemGlobalFlag

typedef struct _SYSTEM_GLOBAL_FLAG { // Information Class 9
 ULONG GlobalFlag;
} SYSTEM_GLOBAL_FLAG, *PSYSTEM_GLOBAL_FLAG;

Members

GlobalFlag

A bit array of flags that control various aspects of the behavior of the kernel.

Remarks

This information class can be both queried and set. SeDebugPrivilege is required to set the flags.
Some flags are used only at boot time and subsequent changes have no effect. Some flags have an
effect only when using a "checked" kernel.

The flags recognized by the "gflags" resource kit utility are:

 FLG_STOP_ON_EXCEPTION 0x00000001
 FLG_SHOW_LDR_SNAPS 0x00000002
 FLG_DEBUG_INITIAL_COMMAND 0x00000004
 FLG_STOP_ON_HUNG_GUI 0x00000008
 FLG_HEAP_ENABLE_TAIL_CHECK 0x00000010
 FLG_HEAP_ENABLE_FREE_CHECK 0x00000020
 FLG_HEAP_VALIDATE_PARAMETERS 0x00000040
 FLG_HEAP_VALIDATE_ALL 0x00000080
 FLG_POOL_ENABLE_TAIL_CHECK 0x00000100
 FLG_POOL_ENABLE_FREE_CHECK 0x00000200
 FLG_POOL_ENABLE_TAGGING 0x00000400
 FLG_HEAP_ENABLE_TAGGING 0x00000800
 FLG_USER_STACK_TRACE_DB 0x00001000
 FLG_KERNEL_STACK_TRACE_DB 0x00002000
 FLG_MAINTAIN_OBJECT_TYPELIST 0x00004000
 FLG_HEAP_ENABLE_TAG_BY_DLL 0x00008000
 FLG_IGNORE_DEBUG_PRIV 0x00010000
 FLG_ENABLE_CSRDEBUG 0x00020000
 FLG_ENABLE_KDEBUG_SYMBOL_LOAD 0x00040000

Chapter 1: System Information and Control Page 23 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 FLG_DISABLE_PAGE_KERNEL_STACKS 0x00080000
 FLG_HEAP_ENABLE_CALL_TRACING 0x00100000
 FLG_HEAP_DISABLE_COALESCING 0x00200000
 FLG_ENABLE_CLOSE_EXCEPTIONS 0x00400000
 FLG_ENABLE_EXCEPTION_LOGGING 0x00800000
 FLG_ENABLE_DBGPRINT_BUFFERING 0x08000000

SystemModuleInformation

typedef struct _SYSTEM_MODULE_INFORMATION { // Information Class 11
 ULONG Reserved[2];
 PVOID Base;
 ULONG Size;
 ULONG Flags;
 USHORT Index;
 USHORT Unknown;
 USHORT LoadCount;
 USHORT ModuleNameOffset;
 CHAR ImageName[256];
} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;

Members

Base

The base address of the module.

Size

The size of the module.

Flags

A bit array of flags describing the state of the module.

Index

The index of the module in the array of modules.

Unknown

Normally contains zero; interpretation unknown.

LoadCount

The number of references to the module.

ModuleNameOffset

The offset to the final filename component of the image name.

ImageName

Chapter 1: System Information and Control Page 24 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The filepath of the module.

Remarks

The data returned to the SystemInformation buffer is a ULONG count of the number of modules
followed immediately by an array of SYSTEM_MODULE_INFORMATION.

The system modules are the Portable Executable (PE) format files loaded into the kernel address
space (ntoskrnl.exe, hal.dll, device drivers, and so on) and ntdll.dll.

The PSAPI function EnumDeviceDrivers uses this information class to obtain a list of the device
drivers in the system. It is also used by the PSAPI functions GetDeviceDriverFileName and
GetDeviceDriverBaseName.

The code in Example 1.3 uses this information class.

SystemLockInformation

typedef struct _SYSTEM_LOCK_INFORMATION { // Information Class 12
 PVOID Address;
 USHORT Type;
 USHORT Reserved1;
 ULONG ExclusiveOwnerThreadId;
 ULONG ActiveCount;
 ULONG ContentionCount;
 ULONG Reserved2[2];
 ULONG NumberOfSharedWaiters;
 ULONG NumberOfExclusiveWaiters;
} SYSTEM_LOCK_INFORMATION, *PSYSTEM_LOCK_INFORMATION;

Members

Address

The address of the ERESOURCE structure.

Type

The type of the lock. This is always RTL_RESOURCE_TYPE (1).

ExclusiveOwnerThreadId

The thread identifier of the owner of the resource if the resource is owned exclusively,
otherwise zero.

ActiveCount

The number of threads granted access to the resource.

ContentionCount

Chapter 1: System Information and Control Page 25 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The number of times a thread had to wait for the resource.

NumberOfSharedWaiters

The number of threads waiting for shared access to the resource.

NumberOfExclusiveWaiters

The number of threads waiting for exclusive access to the resource.

Remarks

The data returned to the SystemInformation buffer is a ULONG count of the number of locks
followed immediately by an array of SYSTEM_LOCK_INFORMATION.

The locks reported on by this information class are only available to kernel mode code. The locks
support multiple reader single writer functionality and are known as "resources." They are initialized
by the routine ExInitializeResourceLite and are documented in the DDK.

SystemHandleInformation

typedef struct _SYSTEM_HANDLE_INFORMATION { // Information Class 16
 ULONG ProcessId;
 UCHAR ObjectTypeNumber;
 UCHAR Flags; // 0x01 = PROTECT_FROM_CLOSE, 0x02 = INHERIT
 USHORT Handle;
 PVOID Object;
 ACCESS_MASK GrantedAccess;
} SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION;

Members

ProcessId

The process identifier of the owner of the handle.

ObjectTypeNumber

A number which identifies the type of object to which the handle refers. The number can
be translated to a name by using the information returned by ZwQueryObject.

Flags

A bit array of flags that specify properties of the handle.

Handle

The numeric value of the handle.

Chapter 1: System Information and Control Page 26 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Object

The address of the kernel object to which the handle refers.

GrantedAccess

The access to the object granted when the handle was created.

Remarks

The data returned to the SystemInformation buffer is a ULONG count of the number of handles
followed immediately by an array of SYSTEM_HANDLE_INFORMATION.

Examples of the use of this information class to implement utilities that list the open handles of
processes appear in Example 1.2 and Example 2.1 in Chapter 2, "Objects, Object Directories, and
Symbolic Links."

SystemObjectInformation

typedef struct _SYSTEM_OBJECT_TYPE_INFORMATION { // Information Class 17
 ULONG NextEntryOffset;
 ULONG ObjectCount;
 ULONG HandleCount;
 ULONG TypeNumber;
 ULONG InvalidAttributes;
 GENERIC_MAPPING GenericMapping;
 ACCESS_MASK ValidAccessMask;
 POOL_TYPE PoolType;
 UCHAR Unknown;
 UNICODE_STRING Name;
} SYSTEM_OBJECT_TYPE_INFORMATION, *PSYSTEM_OBJECT_TYPE_INFORMATION;

typedef struct _SYSTEM_OBJECT_INFORMATION {
 ULONG NextEntryOffset;
 PVOID Object;
 ULONG CreatorProcessId;
 USHORT Unknown;
 USHORT Flags;
 ULONG PointerCount;
 ULONG HandleCount;
 ULONG PagedPoolUsage;
 ULONG NonPagedPoolUsage;
 ULONG ExclusiveProcessId;
 PSECURITY_DESCRIPTOR SecurityDescriptor;
 UNICODE_STRING Name;
} SYSTEM_OBJECT_INFORMATION, *PSYSTEM_OBJECT_INFORMATION;

Members

NextEntryOffset

The offset from the start of the SystemInformation buffer to the next entry.

Chapter 1: System Information and Control Page 27 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

ObjectCount

The number of objects of this type in the system.

HandleCount

The number of handles to objects of this type in the system.

TypeNumber

A number that identifies this object type.

InvalidAttributes

A bit mask of the OBJ_Xxx attributes that are not valid for objects of this type. The
defined attributes are

 OBJ_INHERIT
 OBJ_PERMANENT
 OBJ_EXCLUSIVE
 OBJ_CASE_INSENSITIVE
 OBJ_OPENIF
 OBJ_OPENLINK
 OBJ_KERNEL_HANDLE // Windows 2000 only

GenericMapping

The mapping of generic access rights to specific access rights for this object type.

ValidAccessMask

The valid specific access rights for this object type.

PoolType

The type of pool from which this object type is allocated (paged or nonpaged).

Unknown

Interpretation unknown.

Name

A name that identifies this object type.

The members of SYSTEM_OBJECT_INFORMATION follow.

NextEntryOffset

Chapter 1: System Information and Control Page 28 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The offset from the start of the SystemInformation buffer to the next entry.

Object

The address of the object.

CreatorProcessId

The process identifier of the creator of the object.

Unknown

Normally contains zero; interpretation unknown.

Flags

A bit array of flags that specify properties of the object. Observed values include:

 SINGLE_HANDLE_ENTRY 0x40
 DEFAULT_SECURITY_QUOTA 0x20
 PERMANENT 0x10
 EXCLUSIVE 0x08
 CREATOR_INFO 0x04
 KERNEL_MODE 0x02

PointerCount

The number of pointer references to the object.

HandleCount

The number of handle references to the object.

PagedPoolUsage

The amount of paged pool used by the object.

NonPagedPoolUsage

The amount of nonpaged pool used by the object.

ExclusiveProcessId

The process identifier of the owner of the object if it was created for exclusive use (by
specifying OBJ_EXCLUSIVE).

SecurityDescriptor

The security descriptor for the object.

Chapter 1: System Information and Control Page 29 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Name

The name of the object.

Remarks

This information class is only available if FLG_MAINTAIN_OBJECT_TYPELIST was set in
NtGlobalFlags at boot time.

The format of the data returned to the SystemInformation buffer is a sequence of
SYSTEM_OBJECT_TYPE_INFORMATION structures, chained together via the NextEntryOffset member.
Immediately following the name of the object type is a sequence of SYSTEM_OBJECT_INFORMATION
structures, which are chained together via the NextEntryOffset member. The ends of both the
object type chain and the object chain are marked by a NextEntryOffset value of zero.

The use of this information class to implement a utility that lists the open handles of processes
appears in Example 1.2.

SystemPagefileInformation

typedef struct _SYSTEM_PAGEFILE_INFORMATION { // Information Class 18
 ULONG NextEntryOffset;
 ULONG CurrentSize;
 ULONG TotalUsed;
 ULONG PeakUsed;
 UNICODE_STRING FileName;
} SYSTEM_PAGEFILE_INFORMATION, *PSYSTEM_PAGEFILE_INFORMATION;

Members

NextEntryOffset

The offset from the start of the SystemInformation buffer to the next entry.

CurrentSize

The current size in pages of the page file.

TotalUsed

The number of pages in the page file that are in use.

PeakUsed

The peak number of pages in the page file that have been in use.

FileName

The filepath of the page file.

Chapter 1: System Information and Control Page 30 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Remarks

None.

SystemInstructionEmulationCounts

typedef struct _SYSTEM_INSTRUCTION_EMULATION_INFORMATION { // Info Class 19
 ULONG SegmentNotPresent;
 ULONG TwoByteOpcode;
 ULONG ESprefix;
 ULONG CSprefix;
 ULONG SSprefix;
 ULONG DSprefix;
 ULONG FSPrefix;
 ULONG GSprefix;
 ULONG OPER32prefix;
 ULONG ADDR32prefix;
 ULONG INSB;
 ULONG INSW;
 ULONG OUTSB;
 ULONG OUTSW;
 ULONG PUSHFD;
 ULONG POPFD;
 ULONG INTnn;
 ULONG INTO;
 ULONG IRETD;
 ULONG INBimm;
 ULONG INWimm;
 ULONG OUTBimm;
 ULONG OUTWimm;
 ULONG INB;
 ULONG INW;
 ULONG OUTB;
 ULONG OUTW;
 ULONG LOCKprefix;
 ULONG REPNEprefix;
 ULONG REPprefix;
 ULONG HLT;
 ULONG CLI;
 ULONG STI;
 ULONG GenericInvalidOpcode;
} SYSTEM_INSTRUCTION_EMULATION_INFORMATION, *PSYSTEM_INSTRUCTION_EMULATION_INFORMAT

Remarks

The members of this structure are the number of times that particular instructions had to be emulated
for virtual DOS machines. The prefix opcodes do not themselves require emulation, but they may
prefix an opcode that does require emulation.

SystemCacheInformation

typedef struct _SYSTEM_CACHE_INFORMATION { // Information Class 21
 ULONG SystemCacheWsSize;
 ULONG SystemCacheWsPeakSize;
 ULONG SystemCacheWsFaults;
 ULONG SystemCacheWsMinimum;
 ULONG SystemCacheWsMaximum;

Chapter 1: System Information and Control Page 31 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 ULONG TransitionSharedPages;
 ULONG TransitionSharedPagesPeak;
 ULONG Reserved[2];
} SYSTEM_CACHE_INFORMATION, *PSYSTEM_CACHE_INFORMATION;

Members

SystemCacheWsSize

The size in bytes of the system working set.

SystemCacheWsPeakSize

The peak size in bytes of the system working set.

SystemCacheWsFaults

The number of page faults incurred by the system working set.

SystemCacheWsMinimum

The minimum desirable size in pages of the system working set.

SystemCacheWsMaximum

The maximum desirable size in pages of the system working set.

TransitionSharedPages

The sum of the number of pages in the system working set and the number of shared
pages on the Standby list. This value is only valid in Windows 2000.

TransitionSharedPagesPeak

The peak of the sum of the number of pages in the system working set and the number of
shared pages on the Standby list. This value is only valid in Windows 2000.

Remarks

This information class can be both queried and set. When setting, only the SystemCacheWsMinimum
and SystemCacheWsMaximum values are used.

SystemPoolTagInformation

typedef struct _SYSTEM_POOL_TAG_INFORMATION { // Information Class 22
 CHAR Tag[4];
 ULONG PagedPoolAllocs;
 ULONG PagedPoolFrees;
 ULONG PagedPoolUsage;
 ULONG NonPagedPoolAllocs;

Chapter 1: System Information and Control Page 32 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 ULONG NonPagedPoolFrees;
 ULONG NonPagedPoolUsage;
} SYSTEM_POOL_TAG_INFORMATION, *PSYSTEM_POOL_TAG_INFORMATION;

Members

Tag

The four character tag string identifying the contents of the pool allocation.

PagedPoolAllocs

The number of times a block was allocated from paged pool with this tag.

PagedPoolFrees

The number of times a block was deallocated to paged pool with this tag.

PagedPoolUsage

The number of bytes of paged pool used by blocks with this tag.

NonPagedPoolAllocs

The number of times a block was allocated from nonpaged pool with this tag.

NonPagedPoolFrees

The number of times a block was deallocated to nonpaged pool with this tag.

NonPagedPoolUsage

The number of bytes of nonpaged pool used by blocks with this tag.

Remarks

This information class is only available if FLG_POOL_ENABLE_TAGGING was set in NtGlobalFlags at
boot time.

The data returned to the SystemInformation buffer is a ULONG count of the number of tags followed
immediately by an array of SYSTEM_POOL_TAG_INFORMATION.

The data returned by this information class is displayed by the "poolmon" utility.

SystemProcessorStatistics

typedef struct _SYSTEM_PROCESSOR_STATISTICS { // Information Class 23
 ULONG ContextSwitches;
 ULONG DpcCount;

Chapter 1: System Information and Control Page 33 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 ULONG DpcRequestRate;
 ULONG TimeIncrement;
 ULONG DpcBypassCount;
 ULONG ApcBypassCount;
} SYSTEM_PROCESSOR_STATISTICS, *PSYSTEM_PROCESSOR_STATISTICS;

Members

ContextSwitches

The number of context switches performed by the processor.

DpcCount

The number of deferred procedure calls (DPC) that have been added to the processor’s
DPC queue.

DpcRequestRate

The number of DPCs that have been added to the processor’s DPC queue since the last
clock tick.

TimeIncrement

The number of 100-nanosecond units between ticks of the system clock.

DpcBypassCount

The number of DPC interrupts that have been avoided.

ApcBypassCount

The number of kernel APC interrupts that have been avoided.

Remarks

An array of structures is returned, one per processor.

The ReturnLength information is not set correctly (always contains zero).

SystemDpcInformation

typedef struct _SYSTEM_DPC_INFORMATION { // Information Class 24
 ULONG Reserved;
 ULONG MaximumDpcQueueDepth;
 ULONG MinimumDpcRate;
 ULONG AdjustDpcThreshold;
 ULONG IdealDpcRate;
} SYSTEM_DPC_INFORMATION, *PSYSTEM_DPC_INFORMATION;

Members

Chapter 1: System Information and Control Page 34 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

MaximumDpcQueueDepth

The maximum depth that the DPC queue should attain. If this depth is exceeded and no
DPCs are active, a DPC interrupt is requested.

MinimumDpcRate

The minimum rate at which DPCs should be requested. If the current request rate is
lower and no DPCs are active, a DPC interrupt is requested.

AdjustDpcThreshold

A parameter that affects the interval between retuning of the DPC parameters.

IdealDpcRate

The ideal rate at which DPCs should be requested. If the current rate is higher, measures
are taken to tune the DPC parameters (for example, by adjusting the maximum DPC
queue depth).

Remarks

This information class can be both queried and set. SeLoadDriverPrivilege is required to set the
values.

These parameters only affect MediumInportance and HighImportance DPCs.

The ReturnLength information is not set correctly (always contains zero).

SystemLoadImage

typedef struct _SYSTEM_LOAD_IMAGE { // Information Class 26
 UNICODE_STRING ModuleName;
 PVOID ModuleBase;
 PVOID Unknown;
 PVOID EntryPoint;
 PVOID ExportDirectory;
} SYSTEM_LOAD_IMAGE, *PSYSTEM_LOAD_IMAGE;

Members

ModuleName

The full path in the native NT format of the module to load. Required on input.

ModuleBase

The base address of the module. Valid on output.

Chapter 1: System Information and Control Page 35 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

ModuleSection

Pointer to a data structure describing the loaded module. Valid on output.

EntryPoint

The address of the entry point of the module. Valid on output.

ExportDirectory

The address of the export directory of the module. Valid on output.

Remarks

This information class can only be set. Rather than setting any information (in a narrow sense of
"setting"), it performs the operation of loading a module into the kernel address space and returns
information on the loaded module.

After loading the module, MmPageEntireDriver (documented in the DDK) is called to make the
entire module pageable. The module entry point is not called.

This information class is valid only when ZwSetSystemInformation is invoked from kernel mode.

SystemUnloadImage

typedef struct _SYSTEM_UNLOAD_IMAGE { // Information Class 27
 PVOID ModuleBase;
} SYSTEM_UNLOAD_IMAGE, *PSYSTEM_UNLOAD_IMAGE;

Members

ModuleSection

Pointer to the data structure describing the loaded module.

Remarks

This information class can only be set. Rather than setting any information (in a narrow sense of
"setting"), it performs the operation of unloading a module from the kernel address space.

Even if the module is a device driver, the DriverUnload routine is not called.

This information class is only valid when ZwSetSystemInformation is invoked from kernel mode.

SystemTimeAdjustment

typedef struct _SYSTEM_QUERY_TIME_ADJUSTMENT { // Information Class 28

Chapter 1: System Information and Control Page 36 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 ULONG TimeAdjustment;
 ULONG MaximumIncrement;
 BOOLEAN TimeSynchronization;
} SYSTEM_QUERY_TIME_ADJUSTMENT, *PSYSTEM_QUERY_TIME_ADJUSTMENT;

typedef struct _SYSTEM_SET_TIME_ADJUSTMENT { // Information Class 28
 ULONG TimeAdjustment;
 BOOLEAN TimeSynchronization;
} SYSTEM_SET_TIME_ADJUSTMENT, *PSYSTEM_SET_TIME_ADJUSTMENT;

Members

TimeAdjustment

The number of 100-nanosecond units added to the time-of-day clock at each clock tick if
time adjustment is enabled.

MaximumIncrement

The maximum number of 100-nanosecond units between clock ticks. Also the number of
100-nanosecond units per clock tick for kernel intervals measured in clock ticks.

TimeSynchronization

A boolean specifying that time adjustment is enabled when true.

Remarks

This information class can be both queried and set. SeSystemtimePrivilege is required to set the
values. The structures for querying and setting values are different.

The ReturnLength information is not set correctly (always contains zero).

SystemCrashDumpInformation

typedef struct _SYSTEM_CRASH_DUMP_INFORMATION { // Information Class 32
 HANDLE CrashDumpSectionHandle;
 HANDLE Unknown; // Windows 2000 only
} SYSTEM_CRASH_DUMP_INFORMATION, *PSYSTEM_CRASH_DUMP_INFORMATION;

Members

CrashDumpSectionHandle

A handle to the crash dump section.

ModuleSection

A handle to an unknown object. This information is only present in Windows 2000.

Remarks

Chapter 1: System Information and Control Page 37 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

If a crash dump section exists, a new handle to the section is created for the current process and
returned in CrashDumpSectionHandle; otherwise, CrashDumpSectionHandle contains zero.

In Windows 2000, SeCreatePagefilePrivilege is required to query the values.

SystemExceptionInformation

typedef struct _SYSTEM_EXCEPTION_INFORMATION { // Information Class 33
 ULONG AlignmentFixupCount;
 ULONG ExceptionDispatchCount;
 ULONG FloatingEmulationCount;
 ULONG Reserved;
} SYSTEM_EXCEPTION_INFORMATION, *PSYSTEM_EXCEPTION_INFORMATION;

Members

AlignmentFixupCount

The numbers of times data alignment had to be fixed up since the system booted.

ExceptionDispatchCount

The number of exceptions dispatched since the system booted.

FloatingEmulationCount

The number of times floating point instructions had to be emulated since the system
booted.

Remarks

None.

SystemCrashDumpStateInformation

typedef struct _SYSTEM_CRASH_DUMP_STATE_INFORMATION { // Information Class 34
 ULONG CrashDumpSectionExists;
 ULONG Unknown; // Windows 2000 only
} SYSTEM_CRASH_DUMP_STATE_INFORMATION, *PSYSTEM_CRASH_DUMP_STATE_INFORMATION;

Members

CrashDumpSectionExists

A boolean indicating whether a crash dump section exists.

ModuleSection

Interpretation unknown. This information is only present in Windows 2000.

Chapter 1: System Information and Control Page 38 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Remarks

In Windows 2000, this information class can also be set if SeCreatePagefilePrivilege is enabled.

SystemKernelDebuggerInformation

typedef struct _SYSTEM_KERNEL_DEBUGGER_INFORMATION { // Information Class 35
 BOOLEAN DebuggerEnabled;
 BOOLEAN DebuggerNotPresent;
} SYSTEM_KERNEL_DEBUGGER_INFORMATION, *PSYSTEM_KERNEL_DEBUGGER_INFORMATION;

Members

DebuggerEnabled

A boolean indicating whether kernel debugging has been enabled or not.

DebuggerNotPresent

A boolean indicating whether contact with a remote debugger has been established or
not.

Remarks

None.

SystemContextSwitchInformation

typedef struct _SYSTEM_CONTEXT_SWITCH_INFORMATION { // Information Class 36
 ULONG ContextSwitches;
 ULONG ContextSwitchCounters[11];
} SYSTEM_CONTEXT_SWITCH_INFORMATION, *PSYSTEM_CONTEXT_SWITCH_INFORMATION;

Members

ContextSwitches

The number of context switches.

ContextSwitchCounters

Normally contains zeroes; interpretation unknown.

Remarks

The resource kit utility "kernprof" claims to display the context switch counters (if the "-x" option is
specified), but it only expects nine ContextSwitchCounters rather than eleven. It displays the
information thus:

Chapter 1: System Information and Control Page 39 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 Context Switch Information
 Find any processor 0
 Find last processor 0
 Idle any processor 0
 Idle current processor 0
 Idle last processor 0
 Preempt any processor 0
 Preempt current processor 0
 Preempt last processor 0
 Switch to idle 0

SystemRegistryQuotaInformation

typedef struct _SYSTEM_REGISTRY_QUOTA_INFORMATION { // Information Class 37
 ULONG RegistryQuota;
 ULONG RegistryQuotaInUse;
 ULONG PagedPoolSize;
} SYSTEM_REGISTRY_QUOTA_INFORMATION, *PSYSTEM_REGISTRY_QUOTA_INFORMATION;

Members

RegistryQuota

The number of bytes of paged pool that the registry may use.

RegistryQuotaInUse

The number of bytes of paged pool that the registry is using.

PagedPoolSize

The size in bytes of the paged pool.

Remarks

This information class can be both queried and set. SeIncreaseQuotaPrivilege is required to set
the values. When setting, only the RegistryQuota value is used.

SystemLoadAndCallImage

typedef struct _SYSTEM_LOAD_AND_CALL_IMAGE { // Information Class 38
 UNICODE_STRING ModuleName;
} SYSTEM_LOAD_AND_CALL_IMAGE, *PSYSTEM_LOAD_AND_CALL_IMAGE;

Members

ModuleName

The full path in the native NT format of the module to load.

Chapter 1: System Information and Control Page 40 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Remarks

This information class can only be set. Rather than setting any information (in a narrow sense of
"setting"), it performs the operation of loading a module into the kernel address space and calling its
entry point.

The entry point routine is expected to be a __stdcall routine taking two parameters (consistent with
the DriverEntry routine of device drivers); the call arguments are two zeroes.

If the entry point routine returns a failure code, the module is unloaded.

Unlike ZwLoadDriver, which loads the module in the context of the system process,
ZwSetSystemInformation loads the module and invokes the entry point in the context of the current
process.

SystemPrioritySeparation

typedef struct _SYSTEM_PRIORITY_SEPARATION { // Information Class 39
 ULONG PrioritySeparation;
} SYSTEM_PRIORITY_SEPARATION, *PSYSTEM_PRIORITY_SEPARATION;

Members

PrioritySeparation

A value that affects the scheduling quantum period of the foreground application. In
Windows NT 4.0, PrioritySeparation takes a value between zero and two (the higher
the value, the longer the quantum period). In Windows 2000, the low order six bits of
PrioritySeparation are used to configure the scheduling quantum.

Remarks

None.

SystemTimeZoneInformation

typedef struct _SYSTEM_TIME_ZONE_INFORMATION { // Information Class 44
 LONG Bias;
 WCHAR StandardName[32];
 SYSTEMTIME StandardDate;
 LONG StandardBias;
 WCHAR DaylightName[32];
 SYSTEMTIME DaylightDate;
 LONG DaylightBias;
} SYSTEM_TIME_ZONE_INFORMATION, *PSYSTEM_TIME_ZONE_INFORMATION;

Members

Bias

Chapter 1: System Information and Control Page 41 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The difference, in minutes, between Coordinated Universal Time (UTC) and local time.

StandardName

The name of the timezone when daylight saving time is not in effect.

StandardDate

A SYSTEMTIME structure specifying when daylight saving time ends.

StandardBias

The difference, in minutes, between UTC and local time when daylight saving time is not
in effect.

DaylightName

The name of the timezone when daylight saving time is in effect.

DaylightDate

A SYSTEMTIME structure specifying when daylight saving time starts.

DaylightBias

The difference, in minutes, between UTC and local time when daylight saving time is in
effect.

Remarks

This structure is identical to the TIME_ZONE_INFORMATION structure returned by the Win32 function
GetTimeZoneInformation.

SystemLookasideInformation

typedef struct _SYSTEM_LOOKASIDE_INFORMATION { // Information Class 45
 USHORT Depth;
 USHORT MaximumDepth;
 ULONG TotalAllocates;
 ULONG AllocateMisses;
 ULONG TotalFrees;
 ULONG FreeMisses;
 POOL_TYPE Type;
 ULONG Tag;
 ULONG Size;
} SYSTEM_LOOKASIDE_INFORMATION, *PSYSTEM_LOOKASIDE_INFORMATION;

Members

Chapter 1: System Information and Control Page 42 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Depth

The current depth of the lookaside list.

MaximumDepth

The maximum depth of the lookaside list.

TotalAllocates

The total number of allocations made from the list.

AllocateMisses

The number of times the lookaside list was empty and a normal allocation was needed.

TotalFrees

The total number of allocations made from the list.

FreeMisses

The number of times the lookaside list was full and a normal deallocation was needed.

Type

The type of pool from which the memory for the lookaside list is allocated. Possible
values are drawn from the enumeration POOL_TYPE:

 typedef enum _POOL_TYPE {
 NonPagedPool,
 PagedPool,
 NonPagedPoolMustSucceed,
 DontUseThisType,
 NonPagedPoolCacheAligned,
 PagedPoolCacheAligned,
 NonPagedPoolCacheAlignedMustS,
 MaxPoolType
 NonPagedPoolSession = 32,
 PagedPoolSession,
 NonPagedPoolMustSucceedSession,
 DontUseThisTypeSession,
 NonPagedPoolCacheAlignedSession,
 PagedPoolCacheAlignedSession,
 NonPagedPoolCacheAlignedMustSSession
 } POOL_TYPE;

Tag

The tag identifying allocations from the lookaside list

Size

Chapter 1: System Information and Control Page 43 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The size of the blocks on the lookaside list.

Remarks

An array of structures are returned, one per lookaside list. The number of structures can be obtained
by dividing the ReturnLength by the size of the structure.

The lookaside lists reported on by this information class are only available to kernel mode code. Their
purpose is to speed the allocation and deallocation of blocks of memory from paged and nonpaged
pool. A nonpaged lookaside list is initialized by the routine ExInitializeNPagedLookasideList.

Lookaside lists are documented in the DDK.

SystemSetTimeSlipEvent

typedef struct _SYSTEM_SET_TIME_SLIP_EVENT { // Information Class 46
 HANDLE TimeSlipEvent;
} SYSTEM_SET_TIME_SLIP_EVENT, *PSYSTEM_SET_TIME_SLIP_EVENT;

Members

TimeSlipEvent

A handle to an event object. The handle must grant EVENT_MODIFY_STATE access.

Remarks

This information class can only be set. SeSystemtimePrivilege is required to set the value. The
TimeSlipEvent will be signaled when the kernel debugger has caused time to slip by blocking the
system clock interrupt.

SystemCreateSession

typedef struct _SYSTEM_CREATE_SESSION { // Information Class 47
 ULONG SessionId;
} SYSTEM_CREATE_SESSION, *PSYSTEM_CREATE_SESSION;

Members

SessionId

An identifier for the session. Valid on output.

Remarks

This information class can only be set. It creates a Windows Terminal Server session and assigns the
session an identifier. This information class is valid only when Windows Terminal Server is running.

Chapter 1: System Information and Control Page 44 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

In all other cases, the return status is STATUS_INVALID_SYSTEM_SERVICE.

SystemDeleteSession

typedef struct _SYSTEM_DELETE_SESSION { // Information Class 48
 ULONG SessionId;
} SYSTEM_DELETE_SESSION, *PSYSTEM_DELETE_SESSION;

< h3>Members

SessionId

An identifier for the session

Remarks

This information class can only be set. This information class is valid only when Windows Terminal
Server is running. In all other cases the return status is STATUS_INVALID_SYSTEM_SERVICE.

SystemRangeStartInformation

typedef struct _SYSTEM_RANGE_START_INFORMATION { // Information Class 50
 PVOID SystemRangeStart;
} SYSTEM_RANGE_START_INFORMATION, *PSYSTEM_RANGE_START_INFORMATION;

Members

SystemRangeStart

The base address of the system (kernel) portion of the virtual address space.

Remarks

None.

SystemVerifierInformation

Format unknown.

Remarks

This information class can be both queried and set. SeDebugPrivilege is required to set the values.

This information class queries and sets information maintained by the device driver verifier. The
"Driver Verifier" is described in the DDK documentation.

SystemAddVerifier

Chapter 1: System Information and Control Page 45 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Format unknown.

Remarks

This information class is only valid when ZwSetSystemInformation is invoked from kernel mode.

This information class configures the device driver verifier. The "Driver Verifier" is described in the
DDK documentation.

SystemSessionProcessesInformation

typedef struct _SYSTEM_SESSION_PROCESSES_INFORMATION { // Information Class 53
 ULONG SessionId;
 ULONG BufferSize;
 PVOID Buffer;
} SYSTEM_SESSION_PROCESSES_INFORMATION, *PSYSTEM_SESSION_PROCESSES_INFORMATION;

Members

SessionId

The SessionId for which to retrieve a list of processes and threads.

BufferSize

The size in bytes of the buffer in which to return the list of processes and threads.

Buffer

Points to a caller-allocated buffer or variable that receives the list of processes and
threads.

Remarks

Unlike other information classes, this information class uses the SystemInformation argument of
ZwQuerySystemInformation as an input buffer.

The information returned is in the same format as that returned by
SystemProcessesAndThreadsInformation, but contains information only on the processes in the
specified session.

The following information classes are only available in "checked" versions of the kernel.

SystemPoolBlocksInformation

typedef struct _SYSTEM_POOL_BLOCKS_INFORMATION { // Info Classes 14 and 15
 ULONG PoolSize;
 PVOID PoolBase;

Chapter 1: System Information and Control Page 46 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 USHORT Unknown;
 ULONG NumberOfBlocks;
 SYSTEM_POOL_BLOCK PoolBlocks[1];
} SYSTEM_POOL_BLOCKS_INFORMATION, *PSYSTEM_POOL_BLOCKS_INFORMATION;

typedef struct _SYSTEM_POOL_BLOCK {
 BOOLEAN Allocated;
 USHORT Unknown;
 ULONG Size;
 CHAR Tag[4];
} SYSTEM_POOL_BLOCK, *PSYSTEM_POOL_BLOCK;

Members

PoolSize

The size in bytes of the pool.

PoolBase

The base address of the pool.

ModuleSection

The alignment of the pool; interpretation uncertain.

NumberOfBlocks

The number of blocks in the pool.

PoolBlocks

An array of SYSTEM_POOL_BLOCK structures describing the blocks in the pool. The
number of elements in the array is available in the NumberOfBlocks member.

The members of SYSTEM_POOL_BLOCK follow.

Allocated

A boolean indicating whether this is an allocated or free block.

ModuleSection

Interpretation unknown.

Size

The size in bytes of the block.

Tag

Chapter 1: System Information and Control Page 47 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The four character tag string identifying the contents of the pool allocation.

Remarks

Information class 14 returns data on the paged pool and information class 15 returns data on the
nonpaged pool.

The paged and nonpaged pools reported on by these information classes are only available to kernel
mode code. Blocks are allocated from paged and nonpaged pool by the routines ExAllocatePoolXxx.
The use of pool memory is documented in the DDK.

SystemMemoryUsageInformation

typedef struct _SYSTEM_MEMORY_USAGE_INFORMATION { // Info Classes 25 and 29
 ULONG Reserved;
 PVOID EndOfData;
 SYSTEM_MEMORY_USAGE MemoryUsage[1];
} SYSTEM_MEMORY_USAGE_INFORMATION, *PSYSTEM_MEMORY_USAGE_INFORMATION;

typedef struct _SYSTEM_MEMORY_USAGE {
 PVOID Name;
 USHORT Valid;
 USHORT Standby;
 USHORT Modified;
 USHORT PageTables;
} SYSTEM_MEMORY_USAGE, *PSYSTEM_MEMORY_USAGE;

Members

EndOfData

A pointer to the end of the valid data in the SystemInformation buffer.

MemoryUsage

An array of SYSTEM_MEMORY_USAGE structures describing the usage of physical memory.
The number of elements in the array is deducible from the EndOfData member.

The members of SYSTEM_MEMORY_USAGE follow.

Name

The name of the object using the memory. This can be either a Unicode or ANSI string.

Valid

The number of valid pages used by the object. If the object is a process, this is the
number of valid private pages.

Standby

Chapter 1: System Information and Control Page 48 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

The number of pages recently used by the object that are now on the Standby list.

Modified

The number of pages recently used by the object, which are now on the Modified list.

PageTables

The number of pagetable pages used by the object. The only objects that use pagetables
are processes. On an Intel platform using large (4-MByte) pages, the pagetables are
charged against nonpaged pool rather than processes.

Remarks

Information class 29 does not provide the information on the pages in the Standby and Modified lists.

There is no indication of whether the name is a Unicode or ANSI string other than the string data
itself (for example, if every second byte is zero, the string must be Unicode).

Information class 25 is able to account for the use of almost all the physical memory in the system.
The difference between sum of the Valid, Standby and Modified pages and the
NumberOfPhysicalPages (returned by the SystemBasicInformation class) is normally close to the
number of pages on the Free and Zeroed memory lists.

Example 1.1: A Partial ToolHelp Library Implementation

#include "ntdll.h"
#include <tlhelp32.h>
#include <stdio.h>

struct ENTRIES {
 ULONG Offset;
 ULONG Count;
 ULONG Index;
 ENTRIES() : Offset(0), Count(0), Index(0) {}
 ENTRIES(ULONG m, ULONG n) : Offset(m), Count(n), Index(0) {}
};

enum EntryType {
 ProcessType,
 ThreadType,
 MaxType
};

NT::PSYSTEM_PROCESSES GetProcessesAndThreads()
{
 ULONG n = 0x100;
 NT::PSYSTEM_PROCESSES sp = new NT::SYSTEM_PROCESSES[n];

 while (NT::ZwQuerySystemInformation(
 NT::SystemProcessesAndThreadsInformation,
 sp, n * sizeof *sp, 0)
 == STATUS_INFO_LENGTH_MISMATCH)

Chapter 1: System Information and Control Page 49 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 delete [] sp, sp = new NT::SYSTEM_PROCESSES[n = n * 2];

 return sp;
}

ULONG ProcessCount(NT::PSYSTEM_PROCESSES sp)
{
 ULONG n = 0;

 bool done = false;

 for (NT::PSYSTEM_PROCESSES p = sp; !done;
 p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta))
 n++, done = p->NextEntryDelta == 0;

 return n;
}

ULONG ThreadCount(NT::PSYSTEM_PROCESSES sp)
{
 ULONG n = 0;

 bool done = false;

 for (NT::PSYSTEM_PROCESSES p = sp; !done;
 p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta))
 n += p->ThreadCount, done = p->NextEntryDelta == 0;

 return n;
}

VOID AddProcesses(PPROCESSENTRY32 pe, NT::PSYSTEM_PROCESSES sp)
{
 bool done = false;

 for (NT::PSYSTEM_PROCESSES p = sp; !done;
 p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta)) {

 pe->dwSize = sizeof *pe;
 pe->cntUsage = 0;
 pe->th32ProcessID = p->ProcessId;
 pe->th32DefaultHeapID = 0;
 pe->th32ModuleID = 0;
 pe->cntThreads = p->ThreadCount;
 pe->th32ParentProcessID = p->InheritedFromProcessId;
 pe->pcPriClassBase = p->BasePriority;
 pe->dwFlags = 0;
 sprintf(pe->szExeFile, "%.*ls",
 p->ProcessName.Length / 2, p->ProcessName.Buffer);

 pe++;

 done = p->NextEntryDelta == 0;
 }
}

VOID AddThreads(PTHREADENTRY32 te, NT::PSYSTEM_PROCESSES sp)
{
 bool done = false;

 for (NT::PSYSTEM_PROCESSES p = sp; !done;
 p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta)) {

 for (ULONG i = 0; i < p->ThreadCount; i++) {

Chapter 1: System Information and Control Page 50 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 te->dwSize = sizeof *te;
 te->cntUsage = 0;
 te->th32ThreadID = DWORD(p->Threads[i].ClientId.UniqueThread);
 te->th32OwnerProcessID = p->ProcessId;
 te->tpBasePri = p->Threads[i].BasePriority;
 te->tpDeltaPri = p->Threads[i].Priority
 - p->Threads[i].BasePriority;
 te->dwFlags = 0;

 te++;
 }

 done = p->NextEntryDelta == 0;
 }
}

template<class T>
BOOL GetEntry(HANDLE hSnapshot, T entry, bool first, EntryType type)
{
 ENTRIES *entries = (ENTRIES*)MapViewOfFile(hSnapshot, FILE_MAP_WRITE,
 0, 0, 0);
 if (entries == 0) return FALSE;

 BOOL rv = TRUE;

 entries[type].Index = first ? 0 : entries[type].Index + 1;

 if (entries[type].Index >= entries[type].Count)
 SetLastError(ERROR_NO_MORE_FILES), rv = FALSE;

 if (entry->dwSize < sizeof *entry)
 SetLastError(ERROR_INSUFFICIENT_BUFFER), rv = FALSE;

 if (rv)
 *entry = T(PCHAR(entries)+entries[type].Offset)[entries[type].Index];

 UnmapViewOfFile(entries);

 return rv;
}

HANDLE
WINAPI
CreateToolhelp32Snapshot(DWORD flags, DWORD)
{
 NT::PSYSTEM_PROCESSES sp =
 (flags & (TH32CS_SNAPPROCESS | TH32CS_SNAPTHREAD))
 ? GetProcessesAndThreads() : 0;

 ENTRIES entries[MaxType];
 ULONG n = sizeof entries;

 if (flags & TH32CS_SNAPPROCESS) {
 entries[ProcessType] = ENTRIES(n, ProcessCount(sp));
 n += entries[ProcessType].Count * sizeof (PROCESSENTRY32);
 }
 if (flags & TH32CS_SNAPTHREAD) {
 entries[ThreadType] = ENTRIES(n, ThreadCount(sp));
 n += entries[ThreadType].Count * sizeof (THREADENTRY32);
 }

 SECURITY_ATTRIBUTES sa = {sizeof sa, 0, (flags & TH32CS_INHERIT) != 0};

Chapter 1: System Information and Control Page 51 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 HANDLE hMap = CreateFileMapping(HANDLE(0xFFFFFFFF), &sa,
 PAGE_READWRITE | SEC_COMMIT, 0, n, 0);

 ENTRIES *p = (ENTRIES*)MapViewOfFile(hMap, FILE_MAP_WRITE, 0, 0, 0);

 for (int i = 0; i < MaxType; i++) p[i] = entries[i];

 if (flags & TH32CS_SNAPPROCESS)
 AddProcesses(PPROCESSENTRY32(PCHAR(p) + entries[ProcessType].Offset),
 sp);
 if (flags & TH32CS_SNAPTHREAD)
 AddThreads(PTHREADENTRY32(PCHAR(p) + entries[ThreadType].Offset),
 sp);

 UnmapViewOfFile(p);

 if (sp) delete [] sp;

 return hMap;
}

BOOL
WINAPI
Thread32First(HANDLE hSnapshot, PTHREADENTRY32 te)
{
 return GetEntry(hSnapshot, te, true, ThreadType);
}

BOOL
WINAPI
Thread32Next(HANDLE hSnapshot, PTHREADENTRY32 te)
{
 return GetEntry(hSnapshot, te, false, ThreadType);
}

BOOL
WINAPI
Process32First(HANDLE hSnapshot, PPROCESSENTRY32 pe)
{
 return GetEntry(hSnapshot, pe, true, ProcessType);
}

BOOL
WINAPI
Process32Next(HANDLE hSnapshot, PPROCESSENTRY32 pe)
{
 return GetEntry(hSnapshot, pe, false, ProcessType);
}

ZwQuerySystemInformation with an information class of
SystemProcessesAndThreadsInformation returns a superset of the information concerning
processes and threads that is available via the ToolHelp library (if it were implemented in Windows
NT 4.0). Example 1.1 uses this information class to implement a subset of the ToolHelp library; the
remaining functions of the ToolHelp library are addressed in later chapters.

The Win32 function CreateToolhelp32Snapshot returns a handle to a snapshot of the processes
and threads (and modules and heaps) in the system. The Win32 documentation states that this handle
(and the snapshot itself) is freed by calling CloseHandle. ZwQuerySystemInformation also returns
a "snapshot," but this snapshot is just data in a caller-supplied buffer. To implement the documented
behavior of CreateToolhelp32Snapshot, it is necessary to encapsulate the information returned by

Chapter 1: System Information and Control Page 52 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

ZwQuerySystemInformation in a kernel object so that CloseHandle can free it.

The only suitable kernel object is a section object (known as a file mapping object by Win32). The
idea is to create a paging-file backed section object and then map a view of this section into the
address space so that the information returned from ZwQuerySystemInformation can be copied to
it. The view is then unmapped so that closing the section handle will free the snapshot (mapped views
prevent the section object from being deleted).

The routines that return information from the snapshot must then just map the section, copy the
relevant data to the caller-supplied buffer, and unmap the section.

Example 1.2: Listing Open Handles of a Process

#include "ntdll.h"
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#include <map>

#pragma warning(disable:4786) // identifier was truncated in the debug info

struct OBJECTS_AND_TYPES {
 std::map<ULONG, NT::PSYSTEM_OBJECT_TYPE_INFORMATION, std::less<ULONG> >
 types;
 std::map<PVOID, NT::PSYSTEM_OBJECT_INFORMATION, std::less<PVOID> >
 objects;
};

std::vector<NT::SYSTEM_HANDLE_INFORMATION> GetHandles()
{
 ULONG n;
 PULONG p = new ULONG[n = 0x100];

 while (NT::ZwQuerySystemInformation(NT::SystemHandleInformation,
 p, n * sizeof *p, 0)
 == STATUS_INFO_LENGTH_MISMATCH)

 delete [] p, p = new ULONG[n *= 2];

 NT::PSYSTEM_HANDLE_INFORMATION h = NT::PSYSTEM_HANDLE_INFORMATION(p + 1);

 return std::vector<NT::SYSTEM_HANDLE_INFORMATION>(h, h + *p);
}

OBJECTS_AND_TYPES GetObjectsAndTypes()
{
 ULONG n;
 PCHAR p = new CHAR[n = 0x1000];

 while (NT::ZwQuerySystemInformation(NT::SystemObjectInformation,
 p, n * sizeof *p, 0)
 == STATUS_INFO_LENGTH_MISMATCH)

 delete [] p, p = new CHAR[n *= 2];

 OBJECTS_AND_TYPES oats;

 for (NT::PSYSTEM_OBJECT_TYPE_INFORMATION
 t = NT::PSYSTEM_OBJECT_TYPE_INFORMATION(p); ;
 t = NT::PSYSTEM_OBJECT_TYPE_INFORMATION(p + t->NextEntryOffset)) {

Chapter 1: System Information and Control Page 53 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 oats.types[t->TypeNumber] = t;

 for (NT::PSYSTEM_OBJECT_INFORMATION
 o = NT::PSYSTEM_OBJECT_INFORMATION(PCHAR(t->Name.Buffer)
 + t->Name.MaximumLength); ;
 o = NT::PSYSTEM_OBJECT_INFORMATION(p + o->NextEntryOffset)) {

 oats.objects[o->Object] = o;

 if (o->NextEntryOffset == 0) break;
 }
 if (t->NextEntryOffset == 0) break;
 }

 return oats;
}

int main(int argc, char *argv[])
{
 if (argc == 1) return 0;

 ULONG pid = strtoul(argv[1], 0, 0);

 OBJECTS_AND_TYPES oats = GetObjectsAndTypes();

 std::vector<NT::SYSTEM_HANDLE_INFORMATION> handles = GetHandles();

 NT::SYSTEM_OBJECT_INFORMATION defobj = {0};

 printf("Object Hnd Access Fl Atr #H #P Type Name\n");

 for (std::vector<NT::SYSTEM_HANDLE_INFORMATION>::iterator
 h = handles.begin(); h != handles.end(); h++) {

 if (h->ProcessId == pid) {

 NT::PSYSTEM_OBJECT_TYPE_INFORMATION
 t = oats.types[h->ObjectTypeNumber];
 NT::PSYSTEM_OBJECT_INFORMATION
 o = oats.objects[h->Object];

 if (o == 0) o = &defobj;

 printf("%p %04hx %6lx %2x %3hx %3ld %4ld %-14.*S %.*S\n",
 h->Object, h->Handle, h->GrantedAccess, int(h->Flags),
 o->Flags, o->HandleCount, o->PointerCount,
 t->Name.Length, t->Name.Buffer,
 o->Name.Length, o->Name.Buffer);
 }
 }
 return 0;
}

Example 1.2 assumes that the NtGlobalFlag FLG_MAINTAIN_OBJECT_TYPELIST was set at boot
time. An alternative method of obtaining a list of open handles using a combination of
ZwQuerySystemInformation and ZwQueryObject appears in Chapter 2, "Objects, Object
Directories, and Symbolic Links," in Example 2.1.

The program uses the address of the kernel object to which a handle refers to correlate the
information returned by the information classes SystemHandleInformation and

Chapter 1: System Information and Control Page 54 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

SystemObjectInformation; a Standard Template Library (STL) map is used for this purpose.

The list of handles in the system is scanned for handles owned by a particular process identifier, and
then information about the handle and the object to which it refers is displayed.

ZwQuerySystemEnvironmentValue

ZwQuerySystemEnvironmentValue queries the value of a system environment variable stored in
the non-volatile (CMOS) memory of the system.

NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySystemEnvironmentValue(
 IN PUNICODE_STRING Name,
 OUT PVOID Value,
 IN ULONG ValueLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters

Name

The name of system environment value to be queried.

Value

Points to a caller-allocated buffer or variable that receives the requested system
environment value.

ValueLength

The size in bytes of Value.

ReturnLength

Optionally points to a variable that receives the number of bytes actually returned to
Value. If ValueLength is too small to contain the available data, the variable is set to the
number of bytes required for the available data. If this information is not needed by the
caller, ReturnLength may be specified as a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_BUFFER_OVERFLOW, or STATUS_UNSUCCESSFUL.

Related Win32 Functions

None.

Chapter 1: System Information and Control Page 55 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Remarks

SeSystemEnvironmentPrivilege is required to query system environment values.

The information returned in Buffer is an array of WCHAR. The ReturnLength value contains the
length of the string in bytes.

ZwQuerySystemEnvironmentValue queries environment values stored in CMOS. The standard
Hardware Abstraction Layer (HAL) for the Intel platform only supports one environment value,
"LastKnownGood," which takes the values "TRUE" and "FALSE." It is queried by writing 0xb to port
0x70 and reading from port 0x71. A value of zero is interpreted as "FALSE," other values as "TRUE."

ZwSetSystemEnvironmentValue

ZwSetSystemEnvironmentValue sets the value of a system environment variable stored in the non-
volatile (CMOS) memory of the system.

NTSYSAPI
NTSTATUS
NTAPI
ZwSetSystemEnvironmentValue(
 IN PUNICODE_STRING Name,
 IN PUNICODE_STRING Value
);

Parameters

Name

The name of system environment value to be set.

Value

The value to be set.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD or
STATUS_UNSUCCESSFUL.

Related Win32 Functions

None.

Remarks

SeSystemEnvironmentPrivilege is required to set system environment values.

Chapter 1: System Information and Control Page 56 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

ZwSetSystemEnvironmentValue sets environment values stored in CMOS. The standard HAL for
the Intel platform only supports one environment value, "LastKnownGood," which takes the values
"TRUE" and "FALSE." It is set by writing 0xb to port 0x70 and writing 0 (for "FALSE") or 1 (for
"TRUE") to port 0x71.

ZwShutdownSystem

ZwShutdownSystem shuts down the system.

NTSYSAPI
NTSTATUS
NTAPI
ZwShutdownSystem(
 IN SHUTDOWN_ACTION Action
);

Parameters

Action

The action to be performed after shutdown. Permitted values are drawn from the
enumeration SHUTDOWN_ACTION.

typedef enum _SHUTDOWN_ACTION {
 ShutdownNoReboot,
 ShutdownReboot,
 ShutdownPowerOff
} SHUTDOWN_ACTION;

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions

ExitWindows(Ex), InitiateSystemShutdown.

Remarks

SeShutdownPrivilege is required to shut down the system.

User-mode applications and services are not informed of the shutdown (drivers of devices that have
registered for shutdown notification by calling IoRegisterShutdownNotification are informed).

The system must have hardware support for power-off if the power-off action is to be used
successfully.

ZwSystemDebugControl

Chapter 1: System Information and Control Page 57 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

ZwSystemDebugControl performs a subset of the operations available to a kernel mode debugger.

NTSYSAPI
NTSTATUS
NTAPI
ZwSystemDebugControl(
 IN DEBUG_CONTROL_CODE ControlCode,
 IN PVOID InputBuffer OPTIONAL,
 IN ULONG InputBufferLength,
 OUT PVOID OutputBuffer OPTIONAL,
 IN ULONG OutputBufferLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters

ControlCode

The control code for operation to be performed. Permitted values are drawn from the
enumeration DEBUG_CONTROL_CODE.

typedef enum _DEBUG_CONTROL_CODE {
 DebugGetTraceInformation = 1,
 DebugSetInternalBreakpoint,
 DebugSetSpecialCall,
 DebugClearSpecialCalls,
 DebugQuerySpecialCalls,
 DebugDbgBreakPoint
} DEBUG_CONTROL_CODE;

InputBuffer

Points to a caller-allocated buffer or variable that contains the data required to perform
the operation. This parameter can be null if the ControlCode parameter specifies an
operation that does not require input data.

InputBufferLength

The size in bytes of InputBuffer.

OutputBuffer

Points to a caller-allocated buffer or variable that receives the operation’s output data.
This parameter can be null if the ControlCode parameter specifies an operation that does
not produce output data.

OutputBufferLength

The size in bytes of OutputBuffer.

ReturnLength

Chapter 1: System Information and Control Page 58 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

Optionally points to a variable that receives the number of bytes actually returned to
OutputBuffer. If this information is not needed, ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_INVALID_INFO_CLASS or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions

None.

Remarks

SeDebugPrivilege is required to use ZwSystemDebugControl in Windows 2000.

ZwSystemDebugControl allows a process to perform a subset of the functions available to a kernel
mode debugger.

The system should be booted from a configuration that has the boot.ini "/DEBUG" (or equivalent)
option enabled; otherwise a kernel debugger variable needed for the correct operation of internal
breakpoints is not initialized.

The data structures used by ZwSystemDebugControl are defined in windbgkd.h (included with the
Platform SDK). An up-to-date copy of this file is needed to compile the code in Examples 1.3 and
1.4. One of the structures used by ZwSystemDebugControl includes a union that has grown over
time, and ZwSystemDebugControl checks that the input/output buffers are large enough to hold the
largest member of the union.

DebugGetTraceInformation

typedef struct _DBGKD_GET_INTERNAL_BREAKPOINT { // DebugGetTraceInformation
 DWORD_PTR BreakpointAddress;
 DWORD Flags;
 DWORD Calls;
 DWORD MaxCallsPerPeriod;
 DWORD MinInstructions;
 DWORD MaxInstructions;
 DWORD TotalInstructions;
} DBGKD_GET_INTERNAL_BREAKPOINT, *PDBGKD_GET_INTERNAL_BREAKPOINT;

#define DBGKD_INTERNAL_BP_FLAG_COUNTONLY 0x01 // don’t count instructions
#define DBGKD_INTERNAL_BP_FLAG_INVALID 0x02 // disabled BP
#define DBGKD_INTERNAL_BP_FLAG_SUSPENDED 0x04 // temporarily suspended
#define DBGKD_INTERNAL_BP_FLAG_DYING 0x08 // kill on exit

DebugGetTraceInformation does not require an InputBuffer and returns an array of
DBGKD_GET_INTERNAL_BREAKPOINT structures in the output buffer, one for each of the internal
breakpoints set.

Instruction counting counts the instructions from the breakpoint until the return from the routine

Chapter 1: System Information and Control Page 59 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

containing the breakpoint. Ideally, the breakpoint should be placed at the beginning of a routine. The
user mode debugger (windbg, cdb, ntsd) command "wt" performs user mode instruction counting.

If instruction counting is enabled, MinInstructions contains the minimum number of instructions
encountered when executing the routine, MaxInstructions contains the maximum, and
TotalInstructions contains the total number of instructions executed by all invocations of the
routine (since the breakpoint was inserted).

Calls is the number of times the breakpoint has been encountered.

Flags indicates whether instruction counting is enabled and whether the breakpoint has been
suspended.

DebugSetInternalBreakpoint

typedef struct _DBGKD_MANIPULATE_STATE {
 DWORD ApiNumber;
 WORD ProcessorLevel;
 WORD Processor;
 DWORD ReturnStatus;
 union {
 DBGKD_READ_MEMORY ReadMemory;
 DBGKD_WRITE_MEMORY WriteMemory;
 DBGKD_READ_MEMORY64 ReadMemory64;
 DBGKD_WRITE_MEMORY64 WriteMemory64;
 DBGKD_GET_CONTEXT GetContext;
 DBGKD_SET_CONTEXT SetContext;
 DBGKD_WRITE_BREAKPOINT WriteBreakPoint;
 DBGKD_RESTORE_BREAKPOINT RestoreBreakPoint;
 DBGKD_CONTINUE Continue;
 DBGKD_CONTINUE2 Continue2;
 DBGKD_READ_WRITE_IO ReadWriteIo;
 DBGKD_READ_WRITE_IO_EXTENDED ReadWriteIoExtended;
 DBGKD_QUERY_SPECIAL_CALLS QuerySpecialCalls;
 DBGKD_SET_SPECIAL_CALL SetSpecialCall;
 DBGKD_SET_INTERNAL_BREAKPOINT SetInternalBreakpoint;
 DBGKD_GET_INTERNAL_BREAKPOINT GetInternalBreakpoint;
 DBGKD_GET_VERSION GetVersion;
 DBGKD_BREAKPOINTEX BreakPointEx;
 DBGKD_PAGEIN PageIn;
 DBGKD_READ_WRITE_MSR ReadWriteMsr;
 } u;
} DBGKD_MANIPULATE_STATE, *PDBGKD_MANIPULATE_STATE;

typedef struct _DBGKD_SET_INTERNAL_BREAKPOINT { // DebugSetInternalBreakpoint
 DWORD_PTR BreakpointAddress;
 DWORD Flags;
} DBGKD_SET_INTERNAL_BREAKPOINT, *PDBGKD_SET_INTERNAL_BREAKPOINT;

DebugSetInternalBreakpoint does not require an OutputBuffer and expects the InputBuffer to
point to a DBGKD_MANIPULATE_STATE structure. The only values in this structure that are required are
the two values in the DBGKD_SET_INTERNAL_BREAKPOINT structure. InputBufferLength is the size
of the DBGKD_MANIPULATE_STATE structure.

BreakpointAddress is the address of the breakpoint. If a breakpoint already exists at this address,
the Flags are used to manipulate the breakpoint, otherwise a new breakpoint is established.
Breakpoints are deleted by setting the DBGKD_INTERNAL_BP_FLAG_INVALID flag and are temporarily

Chapter 1: System Information and Control Page 60 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

suspended by setting the DBGKD_INTERNAL_BP_FLAG_SUSPENDED flag. The counting or non-counting
nature of the breakpoint can be controlled by setting or clearing the
DBGKD_INTERNAL_BP_FLAG_COUNTONLY flag.

Breakpoints can be set at any address, but if the address is not at the start of an instruction then an
STATUS_ILLEGAL_INSTRUCTION exception may be raised resulting in a system crash. The intention is
that breakpoints should be set at the start of routines but, particularly if instruction counting is
disabled, this is not essential.

DebugSetSpecialCall

typedef struct _DBGKD_SET_SPECIAL_CALL { // DebugSetSpecialCall
 DWORD SpecialCall;
} DBGKD_SET_SPECIAL_CALL, *PDBGKD_SET_SPECIAL_CALL;

DebugSetSpecialCall does not require an OutputBuffer and expects the InputBuffer to point to a
DBGKD_MANIPULATE_STATE structure. The only value in this structure that is required is the value in
the DBGKD_SET_SPECIAL_CALL structure. InputBufferLength must be four rather than the size of
the DBGKD_MANIPULATE_STATE structure—this is a bug.

"Special Calls" are routines that should be treated specially when counting the instructions executed
by some routine. The special calls set by the kernel debugger are:

HAL!@KfLowerIrql@4
HAL!@KfReleaseSpinLock@8
HAL!@HalRequestSoftwareInterrupt@4
NTOSKRNL!SwapContext
NTOSKRNL!@KiUnlockDispatcherDatabase@4

Whether the members of this list are necessary or sufficient to ensure correct operation of the
instruction counting feature is difficult to say.

DebugClearSpecialCalls

DebugClearSpecialCalls requires neither an InputBuffer nor an OutputBuffer. It clears the list
of special calls.

DebugQuerySpecialCalls

typedef struct _DBGKD_QUERY_SPECIAL_CALLS { // DebugQuerySpecialCalls
 DWORD NumberOfSpecialCalls;
 // DWORD SpecialCalls[];
} DBGKD_QUERY_SPECIAL_CALLS, *PDBGKD_QUERY_SPECIAL_CALLS;

DebugQuerySpecialCalls does not require an InputBuffer and expects the OutputBuffer to point
to a buffer large enough to hold a DBGKD_MANIPULATE_STATE structure and an array of DWORDs, one
per special call. It returns a list of the special calls.

DebugDbgBreakPoint

DebugDbgBreakPoint requires neither an InputBuffer nor an OutputBuffer. If the kernel debugger

Chapter 1: System Information and Control Page 61 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

is enabled it causes a kernel mode debug break point to be executed. This debug control code is only
valid in Windows 2000.

The code in Examples 1.3 and 1.4 demonstrates how to set internal breakpoints and get trace
information.

Example 1.3: Setting an Internal Breakpoint

#include "ntdll.h"
#include "windbgkd.h"
#include <imagehlp.h>
#include <stdlib.h>

void LoadModules()
{
 ULONG n;
 NT::ZwQuerySystemInformation(NT::SystemModuleInformation,
 &n, 0, &n);
 PULONG p = new ULONG[n];
 NT::ZwQuerySystemInformation(NT::SystemModuleInformation,
 p, n * sizeof *p, 0);

 NT::PSYSTEM_MODULE_INFORMATION module
 = NT::PSYSTEM_MODULE_INFORMATION(p + 1);

 for (ULONG i = 0; i < *p; i++)
 SymLoadModule(0, 0, module[i].ImageName,
 module[i].ImageName + module[i].ModuleNameOffset,
 ULONG(module[i].Base), module[i].Size);

 delete [] p;
}

DWORD GetAddress(PSTR expr)
{
 PCHAR s;
 ULONG n = strtoul(expr, &s, 16);

 if (*s == 0) return n;

 IMAGEHLP_SYMBOL symbol;

 symbol.SizeOfStruct = sizeof symbol;
 symbol.MaxNameLength = sizeof symbol.Name;

 return SymGetSymFromName(0, expr, &symbol) == TRUE ? symbol.Address : 0;
}

void SetSpecialCall(DWORD addr)
{
 DBGKD_MANIPULATE_STATE op = {0};
 op.u.SetSpecialCall.SpecialCall = addr;

 NT::ZwSystemDebugControl(NT::DebugSetSpecialCall, &op, 4, 0, 0, 0);
}

void SetSpecialCalls()
{
 DBGKD_MANIPULATE_STATE op[4];

 NT::ZwSystemDebugControl(NT::DebugQuerySpecialCalls,

Chapter 1: System Information and Control Page 62 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

 0, 0, op, sizeof op, 0);

 if (op[0].u.QuerySpecialCalls.NumberOfSpecialCalls == 0) {
 SetSpecialCall(GetAddress("HAL!KfLowerIrql"));
 SetSpecialCall(GetAddress("HAL!KfReleaseSpinLock"));
 SetSpecialCall(GetAddress("HAL!HalRequestSoftwareInterrupt"));
 SetSpecialCall(GetAddress("NTOSKRNL!SwapContext"));
 SetSpecialCall(GetAddress("NTOSKRNL!KiUnlockDispatcherDatabase"));
 }
}

int main(int argc, char *argv[])
{
 if (argc < 2) return 0;

 NT:: SYSTEM_KERNEL_DEBUGGER_INFORMATION kd;

 NT::ZwQuerySystemInformation(NT::SystemKernelDebuggerInformation,
 &kd, sizeof kd, 0);
 if (kd.DebuggerEnabled == FALSE) return 0;

 EnablePrivilege(SE_DEBUG_NAME);

 SymInitialize(0, 0, FALSE);
 SymSetOptions(SymGetOptions() | SYMOPT_DEFERRED_LOADS);

 LoadModules();

 SetSpecialCalls();

 DBGKD_MANIPULATE_STATE op = {0};
 op.u.SetInternalBreakpoint.BreakpointAddress = GetAddress(argv[1]);
 op.u.SetInternalBreakpoint.Flags = argc < 3 ? 0 : strtoul(argv[2], 0, 16);

 NT::ZwSystemDebugControl(NT::DebugSetInternalBreakpoint,
 &op, sizeof op, 0, 0, 0);

 return 0;
}

If the kernel debugger is not enabled, an important debugger variable is not initialized. Therefore,
Example 1.3 first uses ZwQuerySystemInformation to check the debugger status and if it is
enabled, the program then sets the special calls and creates or updates a breakpoint.

The program also demonstrates how to obtain a list of the kernel modules and their base addresses.
This information is needed by the Imagehlp API routines, which are used to translate symbolic names
into addresses.

The program assumes that SymLoadModule will find the correct symbol files; if this routine finds the
wrong symbol files (for example, symbols for a checked rather than free build), a system crash is
almost guaranteed.

Example 1.4: Getting Trace Information

#include "ntdll.h"
#include "windbgkd.h"
#include <stdio.h>

int main()

Chapter 1: System Information and Control Page 63 of 63

file://J:\NewRiders\chapters\zd877.html 7/12/01

{
 DBGKD_GET_INTERNAL_BREAKPOINT bp[20];
 ULONG n;

 EnablePrivilege(SE_DEBUG_NAME);

 NT::ZwSystemDebugControl(NT::DebugGetTraceInformation,
 0, 0, bp, sizeof bp, &n);

 for (int i = 0; i * sizeof (DBGKD_GET_INTERNAL_BREAKPOINT) < n; i++)

 printf("%lx %lx %ld %ld %ld %ld %ld\n",
 bp[i].BreakpointAddress, bp[i].Flags,
 bp[i].Calls, bp[i].MaxCallsPerPeriod,
 bp[i].MinInstructions, bp[i].MaxInstructions,
 bp[i].TotalInstructions);

 return 0;
}

The output produced by Example 1.4 after an internal breakpoint had been set at
NTOSKRNL!NtCreateProcess was:

80193206 0 6 0 19700 21010 121149

Therefore, the minimum number of instructions executed by NtCreateProcess was 19,700, the
maximum number was 21,010, and the average number was about 20,191.

© Copyright Pearson Education. All rights reserved.

