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HUMAN INTERFACE DEVICE TUTORIAL

Relevant Devices
This application note applies to all Silicon Labs USB MCUs.

1. Introduction

The Human Interface Device (HID) class specification allows designers to create USB-based devices and
applications without the need for custom driver development. Their high levels of on-chip integration and robust
USB interfaces make Silicon Laboratories microcontrollers ideal devices for HID designs.

1.1. About this Document

This application note assumes that the reader has a basic understanding of the USB specification including some
knowledge of endpoints, descriptors, and transfer protocols. This document concentrates on highlighting the
benefits of designing with HID and techniques for creating and optimizing HID-based systems that use Silicon
Laboratories microcontrollers.

This document includes the following:

Discussion of HID

Firmware template that can be used as a starting point for HID device firmware

Description of the HID DLL that can be used by host applications to communicate with HID devices
Explanation of three example HID firmware systems implemented by modifying the template firmware
Firmware source for each HID example discussed in the text

Example code for host-side application software

1.2. HID Examples

All three HID examples in this application note were created using the included firmware template as a starting
point. The sections titled "7. USB Mouse Example" on page 22, "8. HID Blinky Firmware and Software Example" on
page 31, and "9. HID to UART Firmware and Software Example" on page 43 describe how the firmware template
was modified to create each example. Sections 8 and 9 also provide examples of how SLABHIDDevice.dll can be
used to communicate with an HID device. See “AN532: HID Library Specification” for more information.
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2. Introduction to HID

USB devices communicate with PCs as shown in Figure 1. Creating a USB interface between an embedded
system and a PC requires the writing of code for the following software subsystems:

m Embedded device firmware
m Host-side operating system drivers
m Host-side PC application
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Figure 1. USB Interface between a PC and an Embedded System
2.1. USB System Development

The USB specification defines a number of USB classes, such as HID, mass storage devices, etc. Developers
creating a USB system that does not fit into one of the predefined USB classes must develop custom drivers along
with device firmware and PC applications. For these systems, developers can use a software package, such as
Silicon Laboratories’ USBXpress, which includes a set of custom drivers, firmware routines, and host routines that
enable USB communication. HID-class devices simplify USB communication one step further by using a
standardized, flexible driver that comes pre-installed with all commonly-used operating systems.

Benefits of developing with HID include:

m Compatibility with all commonly-used operating systems (Windows 7/Vista/XP, Mac OS X, Linux)
m No need for driver development or distribution
m Streamlined device/host interface due to standardized (but flexible) HID specifications

2.2. Getting Started with HID

Designers can create embedded HID firmware using the Silicon Laboratories IDE, an evaluation version of a
compiler, and the target board included in the Silicon Laboratories development kit. Designers developing host-
side PC applications must install the Windows Driver Development Kit (DDK), which can be downloaded from
http://www.microsoft.com/whdc/devtools/ddk/. Once the DDK is installed, the developer will be able to take
advantage of HID-specific API calls to send and receive data with HID-based devices.

Note: The HID DLL included with this application note's software package encapsulates all HID-related Windows DDK func-
tionality into a pre-compiled library. This DLL allows host application programmers to develop code without installing the
Windows DDK.

For designers creating an HID-based system using this application note's associated firmware template as a
starting point, the typical system design flow is shown in Figure 2.
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Install software development environments
(Silicon Laboratories IDE, Visual Studios, etc. )
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Figure 2. Project Work Flow Chart
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3. HID Specification Overview

The HID class of the universal serial bus (USB) protocol was created to define devices that interact to some degree
with humans and transfer data within a computer system.

3.1. Universal Serial Bus

The USB protocol presents significant advantages over other PC interfaces in versatility, speed, and reliability.
USB systems communicate under device/host relationships where a device is attached to a USB port of a host PC
or a hub that is then connected to a PC. Host-side application software interacts with device-side firmware through
the native operating system or customized drivers.

3.1.1. Device Endpoints

In USB-based systems, all data travels to or from device endpoints. The USB specification requires that all devices
have a control endpoint. The host uses this endpoint to retrieve information about the device through data packets
called descriptors. Many USB devices also support additional endpoints that transfer data to and from the host. IN
endpoints transfer data from the device to the host while OUT endpoints transfer data from the host to the device.

3.1.2. Silicon Laboratories Microcontroller Capabilities

Silicon Laboratories microcontroller families with USB functionality can support a control endpoint and at least one
additional endpoint. USB hardware controls low-level data transfer to and from the host. The hardware sends and
receives data through user-accessible buffers. The microcontroller signals firmware about USB events, including
data reception and transmission-related events, by setting flags. These flags trigger the servicing of an interrupt
service routine (ISR) if interrupts have been enabled.

3.1.3. USB Device Classes

The USB specification and supplemental documents define a number of device classes that categorize USB
devices according to capability and interface requirements. When a host retrieves device information, class
classification helps the host determine how to communicate with the USB device.

3.2. Human Interface Device Class

The HID class devices usually interface with humans in some capacity. HID-class devices include mice, keyboards,
printers, etc. However, the HID specification merely defines basic requirements for devices and the protocol for
data transfer, and devices do not necessarily depend on any direct human interaction.

3.2.1. Class Requirements

HID devices must meet a few general requirements that are imposed to keep the HID interface standardized and
efficient.

m All HID devices must have a control endpoint (Endpoint 0) and an interrupt IN endpoint. Many devices also use
an interrupt OUT endpoint. In most cases, HID devices are not allowed to have more than one OUT and one IN
endpoint.

m All data transferred must be formatted as reports whose structure is defined in the report descriptor. Reports are
discussed in detail later in this document.

m HID devices must respond to standard HID requests in addition to all standard USB requests.
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4. Enumeration and Device Detection

Before the HID device can enter its normal operating mode and transfer data with the host, the device must
properly enumerate. The enumeration process consists of a number of calls made by the host for descriptors
stored in the device that describe the device’s capabilities.

The device must respond with descriptors that follow a standard format. Descriptors contain all basic information
about a device. The USB specification defines some of the descriptors retrieved, and the HID specification defines
other required descriptors. The next section discusses the descriptor structure a host expects to receive. The two
sections after that describe the responsibilities of the device and the host during enumeration. These sections refer
to sections of the HID firmware template, which is discussed in detail later in this document.

4.1. Descriptor Structure

Descriptors begin with a byte describing the descriptor length in bytes. This length equals the total number of bytes
in the descriptor including the byte storing the length. The next byte indicates the descriptor type, which allows the
host to correctly interpret the rest of the bytes contained in the descriptor. The content and values of the rest of the
bytes are specific to the type of descriptor being transmitted. Descriptor structure must follow specifications
exactly; the host will ignore received descriptors containing errors in size or value, potentially causing enumeration
to fail and prohibiting further communication between the device and the host.

Descriptor contents are typically stored in the Flash/EPROM memory space. The file named USB_Descriptor.h in
the HID firmware template declares each value of every descriptor. The file, USB_Descriptor.c, defines the
contents for each descriptor.

4.1.1. Descriptor Declaration Example

A declaration might look like the following:

/)~
// Standard Device Descriptor Type Definition
/)~
typedef struct
{
BYTE bLength; // Size of this Descriptor in Bytes
BYTE bDescriptorType; // Descriptor Type (=1)
WORD bcdUSB; // USB Spec Release Number in BCD
BYTE bDeviceClass; // Device Class Code
BYTE bDeviceSubClass; // Device Subclass Code
BYTE bDeviceProtocol; // Device Protocol Code
BYTE bMaxPacketSizeO; // Maximum Packet Size for EPO
WORD i1dVendor; // Vendor ID
WORD i1dProduct; // Product 1D
WORD bcdDevice; // Device Release Number in BCD
BYTE iManufacturer; // Index of String Desc for Manufacturer
BYTE iProduct; // Index of String Desc for Product
BYTE iSerialNumber; // Index of String Desc for SerNo
BYTE bNumConfigurations; // Number of possible Configurations
} device_descriptor; // End of Device Descriptor Type

This declaration exactly conforms to the USB specification’s requirements for the size and content order of the
device descriptor. Some contents are stored in single bytes while others require two bytes.
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4.1.2. Descriptor Definition Example

The definition might look like the following:

const code device_descriptor DeviceDesc =

{
18, // blLength
0x01, // bDescriptorType
0x1001, // bcdUSB
0x00, // bDeviceClass
0x00, // bDeviceSubClass
0x00, // bDeviceProtocol
EPO_PACKET_SIZE, // bMaxPacketSizeO
0xC410, // idVendor
0x0001, // idProduct
0x0000, // bcdDevice
0x01, // iManufacturer
0x02, // iProduct
0x00, // iSerialNumber
0x01 // bNumConfigurations

}; //end of DeviceDesc

The definition exactly follows the declaration for the struct device_descriptor. All contents in this definition
must be valid at the firmware system’s compile time because all of these values will be stored in nonvolatile
memory. Descriptor values stored in multiple bytes must follow the “little endian” style of formatting, where the least
significant byte is stored first. For example, a value of 300 or 0x012C, would be stored as 0x2C01.

4.1.3. A Reminder about Descriptors

Many HID devices have very similar descriptor contents, and, in many cases, the descriptors defined in the
firmware template need to be changed in only a few places in order to create a customized HID-class device that
suits the needs of a given application. For detailed discussions on each descriptor’s contents, read the sections of
this document describing the firmware template and the two examples created by modifying the template.

4.2. Device Responsibilities during Enumeration

A device’s main responsibility during enumeration is to respond to requests for information made by the host
system in a timely and accurate manner. The device transfers all enumeration data across the control endpoint. In
the firmware template, this endpoint is handled during execution of the USB ISR.

6 Rev. 0.5

SILICON LABS



ANZ249

4.2.1. The Control Endpoint Handler

The USB ISR examines USB registers to determine the cause of the interrupt. If the ISR finds that an Endpoint O
transaction caused the interrupt, the ISR calls the control endpoint handler. The Endpoint O handler parses the
Setup Packet sent by the host and stored in the Endpoint 0 buffer to determine what standard USB request has
been made by the host system. The handler then calls the appropriate function. The firmware template file named
F3xx_USBO_Standard_Requests.c defines all standard requests.

Some of these standard requests require the device to transmit information back to the host. One such standard
request, Get_Descriptor, allows the host to gather all basic information about the newly-attached device. Other
standard requests require the device to receive additional packets of information before the transaction terminates.

4.3. Device Detection after Successful Enumeration

Standard requests sent during enumeration by the host system are not controlled by user-level code. When a
device connects with a host's USB port, the host system software will automatically retrieve descriptors and
determine whether to enable communication with the device. Host-side application software wishing to interface
with the device can then begin communicating with the device using standard API calls.

4.4. Application Communications

Once a device has successfully enumerated, the host can begin sending and receiving data in the form of reports.
All data passed between an HID device and a host must be structured according to specifications found in the
report descriptor. These reports can be transmitted across either the “Control” pipe (endpoint 0) or the “Interrupt”
pipe (endpoints configured to be IN or OUT).

The following sections discuss how to define the report structure inside the report descriptor and how to transfer
these reports across either the “Control” pipe or the “Interrupt” pipe.

Usage Page/Usage Tags
Application Collection

Usage Page/Usage Tags

Nested Collections (Application, Physical, Logical)

Usage Tags, Usage Tags,
Data Desc. Items Data Desc. Items

Report Report

Report Data Report Data

Figure 3. Report Descriptor Example Structure
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4.4.1. Report Descriptors

All data transferred to and from an HID device must be structured in the form of reports. The report descriptor
defines the report structure, which contains all the information a host needs to determine the data format and how
the data should be processed. See Figure 3 for a report descriptor example structure.

4.4.1.1. Report Structure Overview

Although the report structure must follow a few constraints and guidelines, the HID specification purposefully
allows for a high degree of customization. This potential for customization gives HID device designers freedom to
create a wide variety of HID-class devices.

4.4.1.2. Usage Page and Usage Iltems

A report descriptor begins with a usage page item that describes the general function of all of the reports that
follow. For instance, in a report descriptor describing reports for a USB keyboard or a USB mouse, such as the one
found in the USB mouse example in this document, designers would use the “Generic Desktop” usage page.

Reports contained in defined usage pages have defined usages, which provide more specific information about the
report contents. For example, a keyboard would use the “Keyboard” usage for its “Generic Desktop” usage page.

For a complete list of defined Usage Pages, check the “HID Usage Tables” document found at USB.org.
4.4.1.3. Collections

“Collections” group similar data. Every report descriptor must have at least one top-level collection in which the
data is contained, but the descriptor can define more than one top-level collection. A keyboard with an attached
mouse would have two top-level collections, one describing mouse reports and one describing keyboard reports.
Each collection must have a usage tag. For example, the “Keyboard” usage can tag a collection of USB keyboard-
related data. Also, collections can be nested.

The HID specification defines three types of collections:

m Application Collections group variables that carry out a common purpose. All report items must be contained
inside an application collection.

m Logical Collections group variables of different types that form a composite data structure. Think of logical
collections as a collection designator for “struct” data types, such as a struct that groups a buffer with index
variables for that buffer.

m Physical Collections group data describing a single data point. For instance, a physical collection of data could
contain readings from a temperature sensor.

4.4.1.4. Data Types

Report descriptors also contain extensive information describing the characteristics of each data item. Logical
Minimum and Logical Maximum items describe the boundary conditions the data contained in reports can reach.
The Report Size item describes how many bits each data item uses, and Report Count describes how many data
items are contained inside the report. A report of Size 8 and Count 2 would contain 16 bits, or 2 bytes of data.

Data values are further described by designating each data item as Input, Output, or Feature. Input items travel
from device to host; Output items travel from host to device, and Feature items can travel in either direction.

Data items can also be designated as Variable, meaning that the values can be read and written, or Constant,
meaning that the values are read-only. Another often-used designation indicates whether the value is Absolute,
meaning that the value contained in a report is measured from a fixed origin, or Relative, meaning that the value
has no fixed reference and instead describes the change of value since the last report.

Systems using more than one defined report structure also need to give each report a unique Report ID tag. This
Report ID precedes reports during transfer and signals to the receiver which report is being transmitted. For an
example of a USB system that uses more than one report structure, see the HID Blinky Firmware and Software
example. For a more detailed discussion about the items in a report descriptor, see the latest revision of the HID
specification.
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4.4.2. Two Transfer Types

Data traffic contained in HID reports can be transferred between device and host through one of two methods.
Reports travel across the “Control Pipe” when control endpoint transfers are initiated by host calls to the Windows
API functions, HidD_SetOutputReport(), HidD_GetlnputReport(), HidD_GetFeatureReport(), and
HidD_SetFeatureReport(). Reports travel across the “Interrupt Pipe” when data is made available for transfer
across endpoints configured as Interrupt IN or Interrupt OUT. The next subsections examine Control Pipe and
Interrupt Pipe data transfers.

4.4.2.1. Control Transfers from the Perspective of the Host

The HID specification defines six HID-specific requests. For a complete list of HID-specific requests, see the
relevant section in the HID specification.

HidD_SetOutputReport() and HidD_GetlInputReport() allow host applications to send and receive IN and
OUT reports. Parameters passed in with the call to HidD_SetOutputReport() include the handle to the HID
device, the buffer containing the report, and the number of bytes to transmit. Similarly, calls to
HidD_GetlInputReport() require parameters for the handle to the HID device, a buffer where the incoming
report will be stored, and the number of packets that the system expects to receive. HidD_GetFeatureReport()
and HidDSetFeatureReport() receive and send Feature reports, which are bidirectional.

The API calls first send a packet to the control endpoint of the device that contains reserved command byte
corresponding to HidD_SetOutputReport() or HidD _GetlnputReport(). In the case of the
HidD_SetOutputReport() command, the system then transmits a second packet containing the report. In the
case of the HidD_GetlInputReport() command, the API transmits a second packet containing the Report ID of
the report the application wishes to retrieve. The host then expects the device to ready that packet for transmission
to the host, and the host makes an attempt to retrieve that packet.

4.4.2.2. Control Transfers from the Perspective of the Device

After the host initiates a control endpoint transfer, the device’s control endpoint handler parses the bytes of this
setup packet to determine what request has been transmitted to the device.

If a HidD_SetOutputReport() request has been transmitted to the device, the Report ID of the report to be
retrieved will be included as part of the setup packet. The device then transmits that report back to the host.

If a HidD_GetlnputReport() request has been transmitted, the firmware switches the handler into
EP_GetReport mode. The host then transmits a report to the device. After the report has been transmitted, the
microcontroller signals firmware of the availability of the report, and the report can be retrieved from the buffer.

4.4.2.3. Interrupt Transfers from the Perspective of the Host

During enumeration, host system software learns about the interface of the attached USB device. After reception of
endpoint descriptors, the system polls any endpoint configured as interrupt IN or interrupt OUT at an interval
defined in the endpoint descriptor.

To retrieve IN Endpoint reports transmitted across the interrupt pipe by the device after a poll from the host, the
application calls a Windows API function called Readfile(). This function requires parameters for the handle of
the device, a buffer to store the information, the number of bytes requested, and a variable where the number of
bytes successfully retrieved will be stored.

To transmit an OUT Endpoint Report across the Interrupt Pipe, an application calls the Windows API routine named
Writefile(), and passes into this function parameters including the device handle, a buffer containing the report
to be transmitted, the number of bytes to be transmitted, and a variable where the number of bytes successfully
transmitted will be stored.

4.4.3. Interrupt Transfers from the Perspective of the Device

Until a device has data to send across the IN endpoint, it should simply NAK the host’s polled requests for data by
not signaling that data is ready to be received. Once data has been collected into a report structure and placed
onto the IN endpoint’s buffer, firmware signals that data is ready to transmit.

When the host sends a packet across the OUT endpoint, the microcontroller signals the firmware, and the OUT
Endpoint handler retrieves the bytes from the OUT endpoint buffer.
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5. HID Firmware Template

The remainder of this document describes the example code from the HID firmware template and the included
derivative example systems. This section gives a brief description of the firmware template and general usage
techniques.

5.1. Firmware Template Goals

The firmware template takes advantage of the fact that many HID systems differ only in the way they handle data
contained in incoming and outgoing reports. By separating standard USB operation, which remains constant
across almost all USB-based systems, from custom USB operation, which varies according to the needs of a
particular firmware system, the template localizes customized operation to as few points as possible. The user
needs to modify only a few sections of code to create a custom HID-class firmware system.

5.2. Template Files
The HID firmware template includes the following files.

m F3xx_USBO_Main.c—contains all global variable declarations, the main() function, and all routines for
peripherals other than USB.

m  F3xx_InterruptServiceRoutine.c—contains the USB Interrupt Service Routine and handler routines needed to
service data on all endpoints.

F3xx_USBO_InterruptServiceRoutine.h —includes prototypes for all USB routines.

F3xx_USBO0_Register.h—includes all USB core register addresses, register access macros, and register bit
masks.

m F3xx_USBO_Standard_Requests.c—contains all standard USB-related functions called by the USB_ ISR and
associated handler routines.

F3xx_USBO0_Descriptor.c—where all descriptors are declared.

F3xx_USBO0_ReportHandler.c—contains all code for handling input and output packets and the declaration of
the Input Vector table and Output Vector table.

m F3xx_USBO0_ReportHandler.h—includes definition of vector tables.
5.3. Using the Template

Below is a checklist of the locations in the firmware template that must be modified to create a customized HID
firmware solution. The modifications on this list are all discussed in detail later in this document.

In F3xx_USBO0_ReportHandler.c, modify descriptors as needed.

In F3xx_USBO_ReportHandler.c, add routines to handle all input and output data packets and populate the
report handler vector tables.

In F3xx_USBO0_Main.c, add any necessary foreground routines for processing USB traffic.
Add code to control any other peripherals needed to implement the system.

5.4. Default Descriptor Declaration Values

The file, F3xx_USBO0_Main.c, declares values for each descriptor. Some of these values will remain the same
across all HID-class devices, while others will need to be altered depending on the application. The following
subsections discuss the values of each descriptor. Iltems most commonly modified to implement custom devices
are highlighted in bold.
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5.4.1. Device Descriptor

The template defines the device descriptor as follows:

{
18, // blLength
0x01, // bDescriptorType
0x1001, // bcdUSB
0x00, // bDeviceClass
0x00, // bDeviceSubClass
0x00, // bDeviceProtocol
EPO_PACKET_SIZE, // bMaxPacketSizeO
0xC410, // idVendor
0x0000, // idProduct
0x0000, // bcdDevice
0x00, // iManufacturer
0x00, // iProduct
0x00, // iSerialNumber
0x01 // bNumConfigurations
}:
18, // blLength

The first item describes the descriptor length and should be common to all USB device descriptors.

0x01, // bDescriptorType

0x01 is the constant one-byte designator for device descriptors and should be common to all device descriptors.

0x1001, // bcdUSB

This BCD-encoded two-byte item tells the system which USB specification release guidelines the device follows.
This number might need to be altered in devices that take advantage of additions or changes included in future
revisions of the USB specification, as the host will use this item to help determine what driver to load for the device.

0x00, // bDeviceClass

If the USB device class is to be defined inside the device descriptor, this item would contain a constant defined in
the USB specification. However, this firmware template assumes that the device will be defined in other
descriptors. Device classes defined in other descriptors should set the device class item in the device descriptor to
0x00.
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0x00, // bDeviceSubClass

If the device class item discussed above is set to 0x00, then the device subclass item should also be set to 0x00.
This item can tell the host information about the device’s subclass setting.

0x00, // bDeviceProtocol

This item can tell the host whether the device supports high-speed transfers. If the above two items are set to 0x00,
this one should also be set to 0x00.

EPO_PACKET_SIZE, // bMaxPacketSizeO

This item tells the host the maximum number of bytes that can be contained inside a single control endpoint
transfer. For low-speed devices, this byte must be set to 8, while full-speed devices can have maximum endpoint O
packet sizes of 8, 16, 32, or 64. EPO_PACKET_SIZE is defined in the F3xx_USBO0_Descriptor.h header file.

Reports can be larger than the maximum packet size. In this case, the report will be transferred across multiple
packets.

0xC410, // i1dVendor

This two-byte item identifies the vendor ID for the device. Vendor IDs can be acquired through the USB.org
website. Devices using Silicon Laboratories USB microcontrollers are allowed to use Silicon Laboratories’ vendor
ID, which is 0xC410, after applying for a Silicon Labs-issued PID.

Host applications will search attached USB devices’ vendor IDs to find a particular device needed for an
application.

0x0000, // idProduct
Like the vendor ID, this two-byte item uniquely identifies the attached USB device. Product IDs can be acquired
through the USB.org web site. Alternatively, Silicon Laboratories has reserved a block of product IDs to be used by

customers designing products with Silicon Laboratories USB products. Contact Silicon Laboratories technical
support to allocate one of these reserved product IDs for your design. This service is free of charge.

0x0000, // bcdDevice

This item is used along with the vendor ID and the Product ID to uniquely identify each USB device.

0x00, // iManufacturer

The next three one-byte items tell the host which string array index to use when retrieving UNICODE strings
describing attached devices that are displayed by the system on-screen. This string describes the manufacturer of
the attached device. For example, the string could read “Silicon Laboratories.”

A string index value of 0x00 indicates to the host that the device does not have a value for this string stored in
memory.

0x00, // iProduct

This index will be used when the host wants to retrieve the string that describes the attached product. For example,
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the string could read “USB Keyboard”.

0x00, // i1SerialNumber

The string pointed to by this index can contain the UNICODE text for the product’s serial number.

0x01 // bNumConfigurations

This item tells the host how many configurations the device supports. A configuration is the definition of the
device's functional capabilities, including endpoint configuration. All devices must contain at least one
configuration, but more than one can be supported. For this example, only one configuration will be defined.

5.4.2. Configuration Descriptor

After the host retrieves the device descriptor, it can request other descriptors, including the configuration descriptor.
The following is the firmware template’s configuration descriptor:

{
0x09, // Length
0x02, // Type
0x2200, // Totallength
0x01, // Numlnterfaces
0x01, // bConfigurationValue
0x00, // iConfiguration
0x80, // bmAttributes
0x00 // MaxPower (in 2 mA units)
};
0x09, // Length

This defines the length of the configuration descriptor. This is a standard length and should be common to all HID
devices.

0x02, // Type

0x02 is the constant one-byte designator for configuration descriptors.

0x2200, // Totallength

This two-byte item defines the length of this descriptor and all of the other descriptors associated with this
configuration. The length of this example is calculated by adding the length of the configuration descriptor, the
interface descriptor, the HID descriptor, and one endpoint descriptor. This two-byte item follows a “little endian”
data format.

This two-byte item defines the length of this descriptor and all of the other descriptors associated with this
configuration. The length of this example is calculated by adding the lengths of the 9-byte configuration descriptor,
the 9-byte interface descriptor, the 9-byte HID descriptor, and one 7-byte endpoint descriptor. Note that this two-
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byte length value follows a “little endian” format, where the value is stored least-significant byte first.

0x01, // Numlnterfaces

This item defines the number of interface settings contained in this configuration.

0x01, // bConfigurationValue

This item gives this particular configuration a designation of 0x01, which can be used in the standard USB requests
Get_Configuration and Set_Configuration to identify this configuration. This number must be higher than
0.

0x00, // iConfiguration

This item defines the string index for a string that describes this configuration. This example defines no
configuration string and sets the index to 0x00 to indicate this condition to the host.

0x80, // bmAttributes

This item tells the host whether the device supports USB features such as remote wake-up. Item bits are set or
cleared to describe these conditions. Check the USB specification for a detailed discussion on this item.

0x00, // MaxPower (in 2 mA units)

This item tells the host how much current the device will require to function properly at this configuration.
5.4.3. Interface Descriptor

The firmware template defines the interface descriptor as follows:

{
0x09, // blLength
0x04, // bDescriptorType
0x00, // blnterfaceNumber
0x00, // bAlternateSetting
0x01, // bNumEndpoints
0x03, // blinterfaceClass (3 = HID)
0x00, // blnterfaceSubClass
0x00, // blnterfaceProcotol
0x00 // ilnterface
};
0x09, // blLength
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This item describes the size of the interface descriptor and is common to all devices’ interface descriptors.

0x04, // bDescriptorType

0x04 is the constant one byte designator for Interface descriptors.

0x00, // blnterfaceNumber
This item distinguishes between interfaces of a configuration. Composite devices, such as a keyboard with an
embedded mouse, have more than one active interface. Each interface must be distinguished using this

designation item. The firmware template only defines a single interface, so the Interface number can be set to
0x00.

0x00, // bAlternateSetting
This item is useful for devices that define multiple interfaces. This firmware template assumes that only one

primary interface will be defined for the device, and sets this item to 0x00, which tells the host that the device
defines no alternate setting.

0x01, // bNumEndpoints

This item tells the host how many endpoints, not counting the control endpoint, will be active in this configuration.
Remember that the HID specification requires at least one IN interrupt endpoint be defined in every device.

0x03, // binterfaceClass

This item is used to define the device’s subclass. A value of 0x03 designates this device’s class as HID.

0x00, // binterfaceSubClass

This item further describes the device by defining which subclass of the above-defined class the device falls under.
For many HID devices, this item will be set to set to 0x00. See the HID Specification for a list of defined HID
subclasses.

0x00, // binterfaceProcotol

This item can be used to define protocol settings for a USB device. For many HID devices, this item will be set to
set to 0x00. See the HID Specification for a list of defined HID protocols.

0x00, // ilnterface
This item tells the host the string index of the interface string that describes the specifics of the interface and can
be displayed on-screen. The firmware template defines no such string and so sets the index to 0x00.
5.4.4. IN Endpoint Descriptor

The firmware template defines the IN endpoint descriptor as follows:

Rev. 0.5 15

SILICON LABS



ANZ249

{
0x07, // blLength
0x05, // bDescriptorType
0x81, // bEndpointAddress
0x03, // bmAttributes
EP1_PACKET_SIZE_LE, // MaxPacketSize (LITTLE ENDIAN)
10 // blnterval
};
0x07, // blLength

This item defines the length of this endpoint descriptor.

0x05, // bDescriptorType

0x05 is the constant one-byte designator for Endpoint descriptors.

0x81, // bEndpointAddress

This item describes the address and data flow direction of the endpoint. Bits 0O through 3 define the endpoint’s
address, and bit 7 describes the data flow direction, with 1 meaning IN and 0 meaning OUT. The item in this
descriptor defines an “IN” endpoint with Endpoint Address 1.

0x03, // bmAttributes

This item describes the type of data transfer the device is configured to use. “0x03” designates this endpoint as
using the Interrupt data transfer method.

EP1_PACKET_SIZE_LE // MaxPacketSize (LITTLE ENDIAN)

This item tells the host the maximum packet size for the endpoint. The maximum packet size should be at least as
large as the largest Report. EP1_PACKET_SIZE_LE is defined in the F3xx_USBO_Descriptor.h header file.

10 // binterval

The value contained in this item determines how often the endpoint will be polled for data by the system software.
Units of the value vary depending on the speed of the device.
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5.4.5. OUT Endpoint Descriptor

HID-class devices are not required to use an OUT endpoint. The firmware template declares an OUT endpoint in
case custom systems require one. Most item values in this descriptor will be identical to the IN endpoint descriptor.
The descriptor is defined as follows:

{
0x07, // blLength
0x05, // bDescriptorType
0x02, // bEndpointAddress
0x03, // bmAttributes
EP2_PACKET_SIZE_LE, // MaxPacketSize (LITTLE ENDIAN)
10 // blnterval
};
0x07, // blLength

This item describes the size of the descriptor.

0x05, // bDescriptorType

0x05 is the constant one-byte designator for endpoint descriptors.

0x02, // bEndpointAddress

This item configures the endpoint to be OUT at address 02.

0x03, // bmAttributes

This item describes the type of data transfer the device is configured to use. “0x03” designates this endpoint as
using the Interrupt data transfer method.

EP2_PACKET_SIZE_LE, // MaxPacketSize (LITTLE ENDIAN)

This item tells the host the maximum packet size for the endpoint. The maximum packet size should be at least as
large as the largest Report. EP2_PACKET_SIZE_LE is defined in the F3xx_USBO0_Descriptor.h header file.

10 // binterval

The value contained in this item determines how often the endpoint will be polled for data by the system software.
Units of the value vary depending on the speed of the device. For the firmware template, which transfers data full
speed rates, the units for blnterval are 125 ms. This descriptor defines a polling speed of 125 ms x 10 or once
every 1.25 seconds.
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5.4.6. HID Descriptor
This class-specific descriptor gives the host information specific to the device at the above-defined configuration.
The descriptor looks like this:

{ 7/ class_descriptor hid_descriptor

0x09, // blLength

0x21, // bDescriptorType
0x0101, // bcdHID

0x00, // bCountryCode
0x01, // bNumDescriptors
0x22, // bDescriptorType

HID_REPORT_DESCRIPTOR_SIZE LE // wltemLength (total length of report descriptor)
}:
0x09, // blLength

This length describes the size of the HID descriptor. It can vary depending on the number of subordinate
descriptors, such as report descriptors, that are included in this HID configuration definition.

0x21, // bDescriptorType

0x21 is the constant one-byte designator for device descriptors and should be common to all HID descriptors.

0x0101, // bcdHID
This two-byte item tells the host which version of the HID class specification the device follows. USB specification
requires that this value be formatted as a binary coded decimal digit, meaning that the upper and lower nibbles of

each byte represent the number '0'...9'. In this case, 0x0101 represents the number 0101, which equals a revision
number of 1.01 with an implied decimal point.

0x00, // bCountryCode

If the device was designed to be localized to a specific country, this item tells the host which country. Setting the
item to 0x00 tells the host that the device was not designed to be localized to any country.

0x01, // bNumDescriptors
This item tells the host how many report descriptors are contained in this HID configuration. The following two-byte

pairs of items describe each contained report descriptor. The firmware template is configured to contain a single
report descriptor, which can define multiple reports.

0x22, // bDescriptorType
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This item describes the first descriptor which will follow the transfer of this HID descriptor. “Ox22” indicates that the
descriptor to follow is a report descriptor.

HID_REPORT_DESCRIPTOR_SIZE_LE // wltemLength (total length of report
// descriptor)

This item tells the host the size of the descriptor that is described in the preceding item. The value for
HID_REPORT_DESCRIPTOR_SIZE_LE can be set in the F3xx_USBO_Descriptor.h header file.

If the HID descriptor contains more than one subordinate descriptor, those descriptors would be defined at this
point, in two-byte pairs like the report descriptor declared above.

5.4.7. String Descriptors

The USB device stores character strings defining the product, the manufacturer, the serial number, and other
descriptive texts. A string descriptor table stores the memory addresses of these strings. The host retrieves strings
through a standard request call that passes the index of the requested string.

The firmware template defines the following string description table:

BYTE* const StringDescTable[] =

{
StringODesc,
StringlDesc,
String2Desc
};

The first String Descriptor of the String Descriptor Table, shown above to be defined as StringODesc, contains
special information about the strings contained within the table. The Firmware Template defines String0ODesc as
follows:

code const BYTE StringODesc[STROLEN] =

{
STROLEN, Ox03, 0x09, 0x04

}; //end of StringODesc

The first byte of this descriptor defines the descriptor's length, and the second byte defines this array as a string
descriptor. The next two bytes form the language ID code, which the host can use to determine how to interpret
characters in the other strings of the string descriptor table. “Ox09” indicates that the strings use the English
language, and the “0x04” subcode indicates that the English language type is U.S. English.

Each element that follows the first special descriptor holds an address to a string. The first byte of each string
descriptor defines the length of the string descriptor, and the second byte tags the array as a string descriptor. After
the first two bytes, all remaining bytes are two-byte unicode-formatted string characters. For most strings, the
unicode values will store the ANSI character in the low byte and a “0” in the high byte. Following the USB's little
endian format requirement, each character will appear in the string descriptor with the ANSI character followed by
a 0. For example, the firmware template would define the string “Silicon Laboratories” as follows:

code const BYTE StringlDesc[STR1LEN] =

{
STR1LEN, 0x03,
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}:; //end of StringlDesc

The index values to USB-specification standard descriptive texts, such as the product string, the manufacturer
string, and the serial string, are defined in the device descriptor. For instance, the firmware template defines the
product string index as “0x02” in the device descriptor. At any point after the host retrieves the device descriptor,
the host can retrieve the product string by making a standard Get Descriptor request for a string descriptor of index
“0x02”. When the firmware template receives this request, it returns the value of the string held in memory
addressed in indexed element “0x02” of the string descriptor table.

5.4.8. Report Descriptor

By default, the report descriptor declaration of the firmware template is left blank. The contents of this descriptor
depend on device requirements. The next two sections provide examples of how the report descriptor can look and
how reports can be structured.
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5.5. F3xx_USBO0_ReportHandler.c File

All report preparation and formatting takes place inside report handlers contained within the USB_ReportHandler.c
file. Locations in the .c file that must be modified by the user are clearly commented. The following subsections
describe how the firmware system functions and discuss each location where modifications will be necessary.

5.5.1. Behavior of the F3xx_USBO_ReportHandler.c File

Firmware calls handlers defined inside F3xx_USBO_ReportHandler.c every time a newly received output report
has been received and every time an input report needs to be formatted before transmission.

The F3xx_USBO_ReportHandler.c file defines two report vector tables, one for input reports and one for output
reports. Each element of a vector table is composed of a struct linking a report ID to its corresponding custom
report handler. Designers are responsible for entering their report IDs and report handler function names into these
tables. When a report needs to be prepared or processed, firmware calls either ReportHandler_IN() or
ReportHandler_OUT(), with the report ID passed as a parameter. These functions search the report vector
tables for a matching report ID and then call the corresponding report handler.

5.5.2. Handler Prototypes and Declarations

Toward the top of the file, designers will find a few sections where custom code must be added. A function
prototype for each report handler must be placed in the Local Function Prototype section. Designers should link
each of these functions to their corresponding report IDs inside the report vector tables. Input reports should be
added to IN_VectorTable, while output reports should be added to OUT_VectorTable. Designers must also
set the vector table array sizes correctly by setting the pre-compiler directives IN_VectorTableSize and
OUT_VectorTableSize.

In the case where the HID system requires only one input or output report, the vector tables must link the report
handler to report ID of 0x00. For an example of this, see “7. USB Mouse Example” .

5.5.3. Report Handler Requirements

Designers must define a function body for each report handler, and these handlers must follow a few simple
guidelines. Input report handlers must set the IN_Buffer field “Ptr” to the buffer containing data to be
transferred, and must set the IN_Buffer field “length” to the number of bytes the USB system should attempt to
transfer.

Before the firmware system calls the appropriate output report handler, the system calls a function defined in
F3xx_USBO_ReportHandler.c called Setup_OUT_Buffer (). This routine points the OUT_BufTfer field “Ptr’to a
buffer where the received report can be stored. The routine must also set OUT_Buffer’s field “Length” to the
size of the buffer.

Output report handlers must assume that data contained in OUT_Buffer will be overwritten after the handler exits
and should copy any data that needs to be preserved elsewhere in memory.

5.5.4. Including Report IDs

If the report descriptor defines report IDs, report handlers must include report IDs in the IN_Buffer.Ptr and
adjust the IN_Buffer.Length accordingly. The first byte of the input buffer should be set to the report ID of the
report about to be transmitted. The number of bytes transmitted should be increased by 1 to include the report ID
byte. The USB mouse example uses only one report, does not define any report IDs, and so the report handler
does not include any report ID information in the buffer. The HID Blinky example does use more than one report;
so, all of its report handlers must take report IDs into account. For systems that use more than one report, each
report must be tagged with a unique report ID.
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6. HID Dynamic Link Library

The Silicon Labs HID library provides an API for communicating with a Human Interface Device (HID). This library
provides methods to extract device information and send and receive HID reports. For more information on this
API, please see Application Note 532: HID Library Specification.

7. USB Mouse Example

This section examines the steps taken to emulate a USB Mouse using the Silicon Laboratories target board. This
example touches on all necessary firmware modifications that need to be made for HID-class device designs
derived from the firmware template. The USB mouse example needs no host-side application to operate correctly.
An example of host-side application software can be found in "8. HID Blinky Firmware and Software Example" on
page 31.

7.1. Overview

This example contains two versions of low-level mouse emulation code. Code running on C8051F320/1,
C8051F34x, C8051F38x, C8051T620, or C8051T320/1 microcontrollers emulates mouse movement by measuring
the potentiometer’s position. The axis of moment (whether motion on the potentiometer translates to up-down
motion or left-right motion) is controlled by one of the switches found on the target board. Every press of the button
switches between X-axis movement and Y-axis movement. The other switch on the target board acts as the left
mouse button. Code running on C8051F326/7, C8051T622/3, or C8051T326/7 microcontrollers emulates
movement by setting mouse vector values in a predefined pattern.

The USB Mouse example was created by taking the following steps:

1. Configure all descriptors so that the host recognizes the attached device as a USB mouse.

2. Initialize Timer 2 and (for the C8051F320/1, C8051F34x, C8051F38x, C8051T620, and C8051T320/1 device
builds) ADC peripherals.

3. Format captured data into a report structure defined in the report descriptor.
4. Add the report handler to transmit these reports to the host.

7.2. Descriptors

This section describes how each descriptor located in the firmware template file, USB_Descriptor.c, has been
modified to create a device that appears to the host to be a USB mouse. This subsection describes only items in
descriptors that have been modified from their default firmware template values.
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7.2.1. Device Descriptor

The device descriptor for this example looks like the following code. Changes from the firmware template are
highlighted in bold.

{
18, // blLength
0x01, // bDescriptorType
0x1001, // bcdUSB
0x00, // bDeviceClass
0x00, // bDeviceSubClass
0x00, // bDeviceProtocol
EPO_PACKET_SIZE, // bMaxPacketSizeO
0xC410, // idVendor
0x0000, // idProduct
0x0000, // bcdDevice
0x01, // iManufacturer
0x02, // iProduct
0x00, /7 iSerialNumber
0x01, // bNumConfigurations
}; // end of DeviceDesc
0x01, // iManufacturer

This example declares a string describing the hardware manufacturer at string table index 1. This item will allow
the host to retrieve that string.

0x02, // i1Product

This example also declares a string describing the product at string table index 2.
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7.2.2. Configuration Descriptor

{Ox09, // Length
0x02, // Type
0x2200, // Totallength (= 9+9+9+7)
0x01, // Numlnterfaces
0x01, // bConfigurationValue
0x00, // iConfiguration
0x80, // bmAttributes
0x20 // MaxPower (in 2 mA units)
}:
0x2200, // Totallength (= 9+9+9+7)

This item was calculated by adding together the lengths of the configuration descriptor (9) and all of the other
descriptors associated with this particular configuration, specifically the Interface Descriptor (9), one IN Endpoint
descriptor (7), and the HID Descriptor (9).

0x20 // MaxPower (in 2 mA units)
This item tells the host that the device will require 64 mA to function properly. This should be sufficient current to
supply the microcontroller.
7.2.3. Interface Descriptor
{ // endpoint_descriptor hid_endpoint_in_descriptor

0x09, // blLength
0x04, // bDescriptorType
0x00, // blnterfaceNumber
0x00, // bAlternateSetting
0x01, // bNumEndpoints
0x03, // blnterfaceClass (3 = HID)
0x01, // blnterfaceSubClass
0x02, // blnterfaceProcotol
0x00 // ilnterface

}:
0x01, // blnterfaceSubClass

This item has been set to the boot interface subclass, which is one of the defined HID subclass types. The boot
interface is a standard transfer mode that can be used by a system’s BIOS at boot time. This device must tell the
firmware that it is compatible with the boot interface subclass in order to be recognized as a USB Mouse.
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0x02, // blnterfaceProtocol
This item chooses the “Mouse” protocol for the boot interface HID subclass. It must be set to 0x02 so that the
system will know how to interpret the incoming reports.
7.2.4. IN Endpoint Descriptor
// IN endpoint (mandatory for HID)

{ 7/ endpoint_descriptor hid_endpoint_in_descriptor

0x07, // blLength
0x05, // bDescriptorType
0x81, // bEndpointAddress
0x03, // bmAttributes
EP1_PACKET_SIZE_LE, // MaxPacketSize (LITTLE ENDIAN)
10 // blnterval
}:
EP1_PACKET SIZE_LE, // MaxPacketSize (LITTLE ENDIAN)

In the USB_Descriptor.h header file, this pre-compiler directive is defined to be “3”, which will be big enough to
allow transfers of the example’s only defined report structure.

7.2.5. HID Descriptor

{ // class_descriptor hid_descriptor

0x09, // blLength

0x21, // bDescriptorType
0x0101, // bcdHID

0x00, // bCountryCode
0x01, // bNumDescriptors
0x22, // bDescriptorType

HID_REPORT_DESCRIPTOR_SIZE_LE // wltemLength (total length of report
// descriptor)

&

HID_REPORT_DESCRIPTOR_SIZE LE // wltemLength (total length
// of report descriptor)

This pre-compiler directive is defined in the USB_Descriptor.h file and reflects the size of the mouse example’s
report descriptor.
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7.2.6. Report Descriptor

The report descriptor contains the definition for a report that includes one bit describing the state of the left mouse
button and two bytes describing the relative X- and Y- axis positions of the mouse pointer. This example will require
that only one report be defined. This example’s only report groups all data inside an application collection that
contains generic desktop information pertaining to a mouse. Inside this application collection is a physical
collection pertaining to a pointer that contains all information about a single data point (in this case, information
about the mouse). This physical collection will group a byte of data containing the bit of data describing the left
mouse button state and seven bits of padding with two bytes of data describing the X- and Y- axis positions of the

pointer. The report descriptor for the mouse emulation example looks like the following:

{
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x02, // Usage (Mouse)
OxA1, 0x01, // Collection (Application)
0x09, 0x01, // Usage (Pointer)
OxAl, 0x00, // Collection (Physical)
0x05, 0x09, // Usage Page (Buttons)
0x19, 0x01, // Usage Minimum (01)
0x29, 0x01, // Usage Maximum (01)
0x15, 0x00, // Logical Minimum (0)
0x25, 0x01, // Logical Maximum (1)
0x95, 0x01, // Report Count (1)
0x75, 0x01, // Report Size (1)
0x81, 0x02, // Input (Data, Variable, Absolute)
0x95, 0x01, // Report Count (1)
0x75, 0x07, // Report Size (7)
0x81, 0x01, // Input (Constant) for padding
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x30, // Usage (X)
0x09, 0x31, // Usage (Y)
0x15, 0x81, // Logical Minimum (-127)
0x25, OX7F, // Logical Maximum (127)
0x75, 0x08, // Report Size (8)
0x95, 0x02, // Report Count (2)
0x81, 0x06, // Input (Data, Variable, Relative)
0xCo, — // End Collection (Physical)
0xCO — // End Collection (Application)
}:
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0x05, 0x01, // Usage Page (Generic // Desktop)

This item tells the host that the controls (in this case, mouse data) contained within this report descriptor are
relevant to the desktop. Mouse, keyboard, and joystick controls will all be found on the Generic Desktop usage

page.
0x09, 0x02 // Usage (Mouse)

This item tells the host that the following collection contains data pertaining to a mouse.

OxA1, 0x01, //Collection (Application)

This item begins the top-level collection of data that can be used by the host application (in this case, the system
software).

0x09, 0x01, // Usage (Pointer)

This item tells the host that the following collection contains data pertaining to the characteristics of a mouse
pointer device.

OxA1, 0x00, //Collection (Physical)

This item begins the collection of data describing a single data point. In this case, the single data point is the state
of the left mouse button and the relative position of the mouse along the X- and Y-axis.

0x05, 0x09, // Usage Page (Buttons)

This item tells the host that the following data should be interpreted as “buttons”, meaning that each bit represents
some indicator that is either in the “On” or “Off” state.

0x19, 0x01, // Usage Minimum (01)
0x29, 0x01, // Usage Maximum (01)

These two items function to give the button in the following data a usage. If the mouse supported multiple buttons,
then the usage maximum would be increased, and each button would be assigned a unique usage.

0x15, 0x00, // Logical Minimum (0)
0x25, 0x01, // Logical Maximum (1)

These two items function to show the lowest and highest possible value of the data that will follow. Since the data
can only take an “On” or “Off” state, the minimum can be set to 0, and the maximum can be set to 1.

0x95, 0x01, // Report Count (1)
0x75, 0x01, // Report Size (1)

These two items tell the host that one data point will follow and that this data point will take one bit of space. This is
the data bit that will show whether or not the left mouse button has been pressed.
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0x81, 0x02, // Input (Data, Variable, Absolute)

This is the item that describes the data itself. The item tells the host that the data can change and that its value is
absolute (i.e., not relative to any other data or axis).

0x95, 0x01, // Report Count (1)
0x75, 0x07, // Report Size (7)

These two items set up the padding needed to fill in the other bits of the byte containing the data pertaining to the
button. These items refer to 7 1-bit data points.

0x81, 0x01, // lInput (Constant) for padding

This item designates the above 7 bits of data to be constant. This will effectively create a byte of data where bit 0
contains information about the left mouse button, and bits 2 through 7 are padding.

0x05, 0ox01, // Usage Page (Generic Desktop)
0x09, 0x30, // Usage (X)
0x09, 0x31, // Usage (Y)

These items describe the next group of data. The usage page is set to Generic Desktop to tell the host that the
following data will be relevant to system software. The next two usages tell the host that the Generic Desktop data
to follow pertain to X- and Y-axis information controlled by the system. This usage definition informs the host that
the following data will be formatted such that the data pertaining to the X-axis will be transferred before data
pertaining to the Y-axis.

0x15, 0x81, // Logical Minimum (-127)
0x25, OX7F, // Logical Maximum (127)
These items describe the minimum and maximum values that the following data can take.

0x75, 0x08, // Report Size (8)
0x95, 0x02, // Report Count (2)

These items describe the data that follows as being two bytes (with 8 bits per byte).

0x81, 0x06, // Input (Data, Variable, Relative)

This item tells the host about the data’s direction of flow, that the data can change in value, and that it is relative to
some axis. In this case, the data measured relative to the change in mouse position since the last measurement.
This item applies to both bytes of data.

0xCo, // End Collection (Physical)
0xcCo, // End Collection (Application)
These two items should be considered “closing parentheses” on the above-defined collections. The first End

Collection closes the physical collection containing information about the mouse data point, and the second End
Collection closes the top-level application collection.
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7.3. Mouse Emulation Data Sampling

The routines that capture and save mouse-related data are found in the file Mouse.c, and some global variables
are included in the Mouse.h header file. In the C8051F320/1, C8051F34x, C8051F38x, C8051T620, and
C8051T320/1 builds, the Mouse.c file contains two routines, the “Timer 2 ISR” and the “ADC Sample Complete
ISR”. In the C8051F326/7, C8051T622/3, and C8051T326/7 builds, the Mouse.c file contains only a “Timer 2 ISR".

Initialization routines, as well as port configuration, are also found in the Mouse.c file.
7.3.1. Timer 2 ISR

Once properly configured to overflow and enabled as an interrupt, Timer 2 is used to take readings from the two
switches on the 'F320, 'F340, 'F380, or 'T62x target boards. Inside Timer2_ISR(), both switch values are
captured by saving the state of the port pin connected to each switch. Timer overflows allow for switch
“debouncing” by comparing switch values across two consecutive Timer 2 ISR servicings. Switch states are saved
in variables of Mouse.c file scope.

In the C8051F326/7, C8051T622/3, and C8051T326/7 builds of the project, the Timer 2 ISR also controls mouse
movement by setting the Mouse_Vector and Mouse_AXIis to a pattern that causes the cursor to move on-screen.

7.3.2. Adc_ConvComplete_ISR

In the C8051F320/1, C8051F34x, C8051F38x, C8051T620, and C8051T320/1 versions of the build, the ADC is
configured to take samples at the port pin connected to the potentiometer. The captured value of the potentiometer
is translated to relative mouse movement by first converting the unsigned potentiometer value to a signed
character value by subtracting 128. The value is then divided by 16 to reduce the movement sensitivity of the
potentiometer. Dividing by 16 makes cursor movement on-screen smoother.

At this point, the potentiometer value has been centered around 0 and reduced so that the maximum value is
128/16 = 8. This value is then saved as relative X- or Y- Axis movement, depending on whether X-Axis or Y-Axis
movement is selected. Axis selection is accomplished by using one of the switches to toggle between the two axes.

Inside the ADC ISR, variables for the mouse button, mouse vector (relative movement), and active axis are saved
in the global variables Mouse_Button, Mouse_Vector, and Mouse_AXxis, respectively. These variables will be
formatted into a report inside the report handler, which is discussed in the following section.

7.4. IN Report Handler

Since only one input report was defined in the report descriptor of this example, only one input report handler is
needed. This report will transfer mouse information stored the global variables Mouse Button, Mouse_Vector,
and Mouse_AXxi s to the host.

The function prototype for the report handler, called IN_Report(), has been placed in the appropriate spot at the
top of the F3xx_USBO_ReportHandler.c file. IN_VectorTableSize is set to 1. The report handler is linked to a
Report ID of 0. In the case where only one report is defined in the report descriptor, no Report ID should be
defined, and 0 should be placed in the Report ID field of the Vector Table element.

The IN_Report() body takes the mouse global variables and stores them in a buffer following the format defined
in the report descriptor. Bit O of byte 0 of the buffer is set to the Mouse_Button state. The report handler examines
Mouse_ Axis to determine whether the X-Axis or the Y-Axis is being manipulated and then sets either byte 1 or
byte 2 of the buffer to Mouse_Vector, depending on whether the X-Axis or the Y-Axis is selected.

IN_Buffer.Ptr is set to the newly-formatted buffer, and IN_Buffer.Length is set to “3” following the report
descriptor’s definition of a 3-byte report.

This example does not require the use of any output reports. If it did, the function, Setup_OUT_Buffer (), would
need to set the OUT_Buffer struct elements so that the firmware would know where to store output reports.
Reports stored in this output buffer would then be processed by defined output report handlers. For an example of
how such a system could look, read the next section that describes the creation of an HID Blinky firmware and
software system.
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7.5. Alterations to Main()

The main(void) function of the firmware template requires only a few modifications. After peripheral
initializations, the system enters a while(1) loop. Inside this loop, the SendPacket() function is repeatedly
called, with a Report ID of O passed in as the report to transmit to the host.

SendReport(), a function found in the USB_ISR.c file, checks to see if the IN Endpoint is set to IDLE. If it is not,
meaning that another transfer is already in progress, SendReport exits with an error code of 0. If the IN Endpoint
is set to IDLE, a transmission of the report with ID “0” is initiated.
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8. HID Blinky Firmware and Software Example

This example shows a system where device-side firmware and host-side software transfer data between each
other using both the Interrupt and Control data pipes. Like the first example, this one takes advantage of the
switches, LEDs, and the potentiometer on Silicon Laboratories target boards.

8.1. Overview

The data transfers in this example are written to exercise every data path between the device and the host. Data
travels through the IN and OUT endpoints and in both directions through the control endpoint. This example also
shows how multiple reports can be employed to optimize data transfer.

This example exercises the following data paths:

m LED blinking patterns transmitted to the device in OUT reports across the Interrupt OUT endpoint

Potentiometer position, used to choose from a list of blinking patterns, transmitted to the host in IN reports
across the Interrupt IN endpoint

LED blinking rate configuration transmitted to the device in OUT reports across the control endpoint
LED blinking enable/disable command transmitted to the device in OUT reports across the control endpoint
Runtime-calculated statistical information transmitted to the host in IN reports across the control endpoint

LED brightness adjustment and command acknowledgement are transmitted between device and host in
feature reports across the control endpoint.

The HID Blinky Example's firmware was created by performing the following steps:

Modify descriptors so that the microcontroller appears as a device of some vendor-defined purpose.
Write code that controls LED lighting patterns.

Create a report descriptor that defines five reports of different sizes and types.

Initialize ADC, Timer 2, and Timer 0 peripherals.

Write report handlers for each of the reports.

6. Modify main(void) to poll for changes in data and initiate transfers when necessary.

a s~ wbdpE

8.2. Firmware System

The firmware system blinks LEDs according to patterns received from the host application. It also saves
measurements concerning these patterns that can be retrieved by the host. The C8051F320/1, C8051F34x,
C8051F38x, C8051T620, and C8051T320/1 builds alter LED brightness by adjusting pulse-width modulation
signals connected to the LEDs.
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8.2.1. Output Reports (Interrupt Endpoint)
8.2.1.1. Set Blink Pattern

Report ID: 0x01

Size: 0x09

Definition: OUT_BLINK_PATTERNID
Direction: OUT

Name Offset | Size Value Description

BLINK_PATTERN 1 8 * Sets BLINK_PATTERN, which specifies up to 8 LED
states for LED1 and LED2.

Each byte can be set to one of the following:
0x00 LED1 OFF, LED2 OFF

0x01 LED1 ON, LED2 OFF

0x02 LED1 OFF, LED2 ON

0x03 LED1 ON, LED2 ON

OxFF Marks the end of the blink pattern; the rest of the bytes
should be OxFF

The HID Blinky firmware application will cycle through each byte in BLINK_PATTERN and update LED1/LED2
accordingly. The blink pattern cycle rate is specified by setting BLINK_RATE. Once the firmware reaches the end
of the blink pattern, it will wrap around and restart from BLINK_PATTERNTJO].

8.2.1.2. Set Blink Enable

Report ID: 0x02

Size: 0x02

Definition: OUT_BLINK_ENABLEID
Direction: OUT

Name Offset | Size Value Description

BLINK_ENABLE 1 1 0x00 Blink Disabled
0x01 Blink Enabled
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8.2.1.3. Set Blink Rate

Report ID: 0x03

Size: 0x03

Definition: OUT_BLINK_RATEID
Direction: OUT

Name Offset | Size Value Description
BLINK_RATE_MSB 1 1 * MSB of the 16-bit number BLINK_RATE
BLINK_RATE_LSB 2 1 * LSB of the 16-bit number BLINK_RATE

BLINK_RATE specifies the period of time that elapses between each cycle of the blink pattern. The blink period is
defined as BLINK_RATE x 0.5 milliseconds. BLINK_RATE uses Timer0Q which is configured to interrupt every 0.5
milliseconds.

8.2.2. Input Reports (Interrupt Endpoint)
8.2.2.1. Get Blink Selector

Report ID: 0x04
Size: 0x02
Definition: IN_BLINK_SELECTORID

Direction: IN
Name Offset | Size Value Description
BLINK_SELECTOR 1 1 * Potentiometer ADC reading from ADCOH

(8-bits). This value is used to determine the
blink pattern below.

BLINK_SELECTOR returns the potentiometer ADC reading from ADCOH (8-bits). The host application will use this
potentiometer value to select from one of five predefined blink patterns. The blink pattern selection is based on:

Pattern = ((BLINK_SELECTOR x 5) / 256)

Pattern Description BLINK_PATTERN[8]
0 50% Duty cycle {0x00, 0x03, OxFF, OxXFF, OXFF, OxFF, OXFF, OxFF}
1 Alternating LEDs {0x01, 0x02, OxFF, OxFF, OxFF, OxFF, OXFF, OxFF}
2 All Permutations {0x00, 0x01, 0x02, 0x03, OxFF, OXFF, OXFF, OXFF}

Absolute Craziness |{0x02, 0x02, 0x03, 0x01, 0x03, 0x00, 0x03, 0x01}

W

Pulse {0x00, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0x00}

This report is sent automatically from the device to the host whenever the potentiometer ADC value changes.
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8.2.3. Input Reports (Control Endpoint)
8.2.3.1. Get Blink Statistics

Report ID: 0x05
Size: 0x03
Definition: IN_BLINK_STATSID

Direction: IN
Name Offset | Size Value Description
BLINK_LED1ACTIVE 1 1 0x00 - 0x64 |ON duty cycle for LED1 in percent.
BLINK_LED2ACTIVE 2 1 0x00 - 0x64 | ON duty cycle for LEDZ2 in percent.

BLINK_LEDI1ACTIVE and BLINK_LED2ACTIVE report the ON duty cycle for LED1 and LED2 in percent. These
values are based solely on BLINK_PATTERN]J8] and ignores BLINK_DIMMER. For example, if LED1 is on in 4 of
the blink pattern cycles and off in 4 of the blink pattern cycles, then BLINK_LED1ACTIVE would return 50, or ON
50% of the time.

The host must request this input report over the control endpoint. This feature is only support in Windows XP and
later.

8.2.4. Feature Reports (Control Endpoints)
8.2.4.1. Set Blink Dimmer

Report ID: 0x06

Size: 0x02

Definition: FEATURE_BLINK_DIMMERID
Direction: OUT

Name Offset | Size Value Description

BLINK_DIMMER 1 1 0x00 Set the duty cycle to 100%

*

OxFF Set the duty cycle to 0.39%

BLINK_DIMMER is used to set the brightness of LED1 and LED2 using PCAOCMPO in 8-bit PWM mode. The duty
cycle is defined as:

Duty Cycle = (256 - BLINK_DIMMER) / 256

34 Rev. 0.5

SILICON LABS



ANZ249

8.2.4.2. Get Blink Dimmer

Report ID: 0x06

Size: 0x02

Definition: FEATURE_BLINK_DIMMERID

Direction: IN
Name Offset | Size Value Description
BLINK_DIMMER 1 1 0x00 Fail
_SUCCESS 0x01 Success

BLINK_DIMMER_SUCCESS acknowledges if the Set Blink Dimmer feature report was processed successfully.
8.2.5. Descriptors

Each of the following subsections describes modifications that need to be made to the firmware template’s
descriptors.

8.2.5.1. Device Descriptor

The device descriptor for this example looks like the following:

{
18, // blLength
0x01, // bDescriptorType
0x1001, // bcdUSB
0x00, // bDeviceClass
0x00, // bDeviceSubClass
0x00, // bDeviceProtocol
EPO_PACKET_SIZE, // bMaxPacketSizeO
0xC410, // idVendor
0x0002, // idProduct
0x0000, // bcdDevice
0x01, // iManufacturer
0x02, // iProduct
0x00 // iSerialNumber
0x01 // bNumConfigurations

}; //end of DeviceDesc

0x0002, //i1dProduct
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When a device gets connected to the host system for the first time, the system saves a record that links the
device’s vendor ID and product ID to the drivers the system determines it should use for communication. For
example, if an ‘F320 is loaded with the USB mouse example and connected to the host system, the system
determines that the USB mouse drivers should be used to interact with attached devices matching this product and
vendor ID. Later, if the ‘F320 is loaded with HID firmware for this example but with the same product and vendor ID,
the system expects that the attached device is a USB mouse and tries to communicate with it using those drivers.
Host application software will not be able to communicate with the device. In this device descriptor, the firmware
has been given a distinct product ID.

0x01, // iManufacturer
0x02, // iProduct

Manufacturer and Product strings have been added to this design so that some information appears on-screen
when the device is attached.

8.2.5.2. Configuration Descriptor

{
0x09, // Length
0x02, // Type
0x2900, // Totallength (= 9+9+9+7+7)
0x01, // Numlnterfaces
0x01, // bConfigurationValue
0x00, // iConfiguration
0x80, // bmAttributes
0x20 // MaxPower (in 2 mA units)
}:
0x2900, // Totallength (= 9+9+9+7+7)

This example contains one more descriptor than the USB mouse example because the design uses an OUT
endpoint. The last seven bytes added to the total length include this descriptor.

0x20 // MaxPower (in 2 mA units)

This amount of current will be sufficient to supply the USB MCU with sufficient current to function properly for this
example.

8.2.5.3. Interface, IN Endpoint, and OUT Endpoint Descriptors

No changes to the firmware template need to be made to implement this design other than modifying the endpoint
sizes to be at least as large as the largest reports.

8.2.5.4. Report Descriptor

This example uses six different reports, each with a unique report structure. Two input reports are created: one to
transmit the potentiometer value and one to transmit device statistics displayed in the application window. Three
output reports are created: one transfers selected LED blinking patterns; one enables and disables LED blinking,
and one command sends a two-byte blinking rate to the device. One feature report is created to transmit LED
dimmer levels and dimmer acknowledgement signalling. The report descriptor for this example appears as follows:
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0x06, 0x00, Oxff // USAGE_PAGE (Vendor Defined Page 1)
0x09, 0x01, // USAGE (Vendor Usage 1)
Oxal, 0x01, // COLLECTION (Application)
0x09, 0x01, // USAGE (Vendor Usage 1)
0x85, OUT_Blink PatternlD, // Report ID
0x95, OUT_Blink_PatternSize, // REPORT_COUNT QO
0x75, 0x08, // REPORT_SIZE (8)
0x26, Oxff, O0x00 // LOGICAL_MAXIMUM (255)
0x15, 0x00, // LOGICAL_MINIMUM (0O)
0x09, 0x01, // USAGE (Vendor Usage 1)
0x91, 0x02, // OUTPUT (Data,Var,Abs)
0x85, OUT_Blink_EnablelD, // Report ID
0x95, OUT_Blink EnableSize, // REPORT_COUNT
0x75, 0x08, // REPORT_SIZE (8)
0x26, Oxff, 0x00 // LOGICAL_MAXIMUM (255)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x09, 0x01, // USAGE (Vendor Usage 1)
0x91, 0x02, // OUTPUT (Data,Var,Abs)
0x85, OUT_BIlink_RatelD, // Report 1D
0x95, OUT_Blink RateSize, // REPORT_COUNT QO
Ox75, 0x08, // REPORT_SIZE (8)
0x26, Ooxff, 0x00 // LOGICAL_MAXIMUM (255)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x09, 0x01, // USAGE (Vendor Usage 1)
0x91, 0x02, // OUTPUT (Data,Var,Abs)
0x85, IN_ Blink_SelectorliD, // Report ID
0x95, IN_Blink_SelectorSize, // REPORT_COUNT O
0x75, 0x08, // REPORT_SIZE (8)
0x26, Oxff, 0x00 // LOGICAL_MAXIMUM (255)
0x15, 0x00, // LOGICAL_MINIMUM (0O)
0x09, 0x01, // USAGE (Vendor Usage 1)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x85, IN_Blink_StatslID, // Report ID
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0x95, IN_Blink_StatsSize, // REPORT_COUNT QO

Ox75, 0x08, // REPORT_SIZE (8)

0x26, Oxff, 0x00 // LOGICAL_MAXIMUM (255)
0x15, 0x00, // LOGICAL_MINIMUM (0)

0x09, 0x01, // USAGE (Vendor Usage 1)
0x81, 0x02, // INPUT (Data,Var,Abs)

0x85, FEATURE_BLINK_DIMMERID, // Report ID

0x95, FEATURE_BLINK_DIMMERSIZE, // REPORT_COUNT QO

OX75, 0x08, // REPORT_SIZE (8)

0x26, Oxff, 0x00 // LOGICAL_MAXIMUM (255)
0x15, 0x00, // LOGICAL_MINIMUM (0O)

0x09, 0x01, // USAGE (Vendor Usage 1)
OxB1, 0x02, // FEATURE (Data,Var,Abs)
0xCO // end Application Collection
}:

0x06, 0x00, Oxff // USAGE_PAGE (Vendor Defined Page 1)
0x09, 0x01, // USAGE (Vendor Usage 1)
Oxal, 0x01, // COLLECTION (Application)

These items tell the host system that the usage pages and usages found in this report descriptor are all vendor-
defined, which means that the reports follow no standard format (such as the one used in the mouse example). The
top-level application collection, tagged with vendor-defined usage, assumes that a host-side application will have
some knowledge of the report structure and will be able to communicate with the device.

0x85, OUT_Blink_PatterniD, // Report ID

0x95, OUT_Blink_PatternSize, // REPORT_COUNT ()

0x75, 0x08, // REPORT_SIZE (8)

0x26, Oxff, 0x00 // LOGICAL_MAXIMUM (255)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x09, 0x01, // USAGE (Vendor Usage 1)
0x91, 0x02, // OUTPUT (Data,Var,Abs)

The rest of the report descriptor is composed of similarly-worded information describing each report used in this
example. Each report description begins with a report ID, which is defined in the F3xx_BIlink_Control.h file. The
next item tells the number of data items contained in this particular report. This value is also defined in the
F3xx_Blink_Control.h file. The next item tells the host that each data item will be 1 byte in size. The next two items
indicate that these data bytes can contain any value from 0 to OXFF. The usage item tags the data that follows as
vendor-defined with the same usage as the rest of the data. The last item of each report description tells the host
whether data contained in this report is input or output.
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8.2.6. Data Capture and Processing Routines

The data capture and storage of this system takes place inside the BlinkControl.c file and its associated header file,
F3xx_Blink_Control.h. In the C8051F320/1, C8051F34x, C8051F38x, C8051T620, and C8051T320/1 versions of
the build, the potentiometer’s value is captured by saving the high byte of the ADCO during an ADC complete ISR
servicing. In the C8051F326/7, C8051T622/3, and C8051T326/7 versions of the build, switch 1's state is saved
instead. This value is sent to the host program, which uses it to select a blinking pattern. Effectively, the user will be
able to scroll through LED lighting sequence choices on-screen using the potentiometer.

To optimize USB bandwidth usage, the firmware system transmits a report containing the potentiometer’s value
only if the value has changed since the last transmitted report. The ADC ISR sets a global variable called
Blink_SelectorUpdate whenever the new ADC value does not match the next value. The firmware system’s
foreground while(1) loop polls Blink_SelectorUpdate and when it finds the variable set, the foreground
initiates a transfer of potentiometer information.

The host application transmits the lighting pattern, and the device saves this pattern in the Bl ink_Pattern array.
The host transmits a blinking rate to the device, and the device saves it to variable, Bl ink_Rate. For a detailed
discussion of these data transfers, read the next subsection.

The firmware system configures Timer 0 ISR to interrupt at a rate of 0.5 ms. Inside the ISR, Blink _Rate
multiplies this interrupt rate by being used in a comparison with a counter that is incremented once every interrupt
servicing. For example, if Bl ink_Rate is equal to 2000, the LED pattern will be updated at a rate of 0.5 ms x 2000
orls.

The Timer 0 ISR measures the percentage of time each LED is active during the sequence. The ISR stores these
measurements in the global variables Blink_LedlActive and Blink _Led2Active. The host has access to
these variables through the use of the Control data pipe.

The Timer 0 ISR updates the lighting pattern by checking the lower two bits of an element of the Bl ink_Pattern
array, where bit O controls Led1, and bit 1 controls Led2. The ISR increments an index variable used to access the
Blink_Pattern array after every LED pattern update. When the element selected by the incremented index
equals OxFF, the index is reset to 0, and the pattern repeats.

8.2.7. Report Handler Creation

The five reports defined in the report descriptor each need a report handler. Prototypes for each handler have been
added to the F3xx_USBO_ReportHandler.c file as follows:

void IN_Blink Selector(void);

void OUT_Blink_Enable(void);

void OUT_Blink Pattern(void);

void OUT_Blink_Rate(void);

void IN_Blink_Stats(void);

void FEATURE_BIlink_Dimmer_Input(void);
void FEATURE_Blink _Dimmer_Output(void);

Each of these functions corresponds to one of the reports. The IN and OUT vector tables establish a link between
these handlers and their associated reports.

The file defines the IN and OUT vector tables as follows:
#define IN_VectorTableSize 3
#define OUT_VectorTableSize 4

The IN Vector table contains the following elements:
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IN_Blink_SelectorlD, IN_Blink_Selector,
IN_Blink_StatslID, IN_Blink_Stats
FEATURE_Blink_DimmerlID, FEATURE_BIlink_Dimmer_Input

The OUT Vector Table contains the following elements:

OUT_Blink_EnablelD, OUT_Blink_Enable,
OUT_Blink_PatternlD, OUT_Blink_Pattern,
OUT_Blink_RatelD, OUT_Blink_Rate

FEATURE_BIlink_Dimmer_Output FEATURE_Blink_DimmerliD,

The F3xx_Blink Control.h header file must be included for the compiler to recognize
the report IDs listed in these tables.

The function bodies for each handler mostly perform simple data transfer, either from a global variable and into an
input buffer, or from an output buffer to some global variable.

Since this example uses output reports, the firmware needs a body for the function, Setup_OUT_Buffer. This
function is called before data is retrieved from a buffer storing data transferred during either a control OUT transfer
or an OUT endpoint transaction. The body of the function only needs to set the OUT_Buffer.Ptr struct to a data
buffer and save the size of this buffer in the struct element, Length.

This example configures the Setup_OUT_Buffer as follows:
OUT_Buffer.Ptr = OUT_PACKET;
OUT_Buffer.Length = 10;

8.2.8. Alterations to main(void)

Only a few modifications need to be made to the main(void) function of the firmware template. Blink_Init()
must be called to initialize the timer used for blink rate measurement. Inside the while(1) loop, the global
variable defined in F3xx_USBO_Main.c, named Blink_SelectionUpdate, is polled. If this variable is set, the
potentiometer value has changed, and the main(void) function initiates a transmission of a report containing
potentiometer information by calling the function, SendPacket().

8.3. Host-side PC Application

The host-side software application uses the SLABHIDDevice.dll to communicate with the HID Blinky device. The
following subsections describe how the application connects to the device and how data is transferred using the
SLABHIDDevice.dll. The PC application in this example does the following:

Displays a list of available HID devices, allowing the user to connect to a single device
Sets a Blink Pattern or Blink Rate

Enable/Disable Blink Pattern

Control LED brightness using a slider

Gets the Blink Statistics of each LED

The dialog window created by the application is shown in Figure 4.
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Figure 4. HID Blinky PC Application Dialog Window
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8.3.1. Project Overview

The application was created using dialog-based MFC classes in Visual C++. All application functionality is
contained within the HID_BlinkyDIg dialog. Controls and communication are contained in HID_BlinkyDIg.cpp.
All low-level HID communication is handled by the SLABHIDDevice.dll.

8.3.2. HID Device Initialization

The dialog class's header file, called HID_BlinkyDlIg.h, includes the file, SLABHIDDevice.dll, which declares all
exported functions and defines macros used by the SLABHIDDevice.dll.

8.3.3. Device Connection/Removal Detection
The application recognizes three different device connection states:

m Disconnected—No connection has been established between the host and a device.
m Connected—Application has established a communications link with the device.

Device detection is handled using three notification routines. These routines enable the software to monitor the
USB for devices and react anytime a device is connected or disconnected. The routines operate as follows:

m RegisterNotification() creates a notification handle that is signaled whenever a device is connected to
or disconnected from the USB.

m OnDeviceChange() is called whenever a device is attached or removed from the bus; connect/disconnect
event notification is stored in the function parameter, nEventType.

m UnregisterNotification() tells the system to no longer send notification of device
connection/disconnection

8.3.4. Opening a Communication Link with a Device

A communication link is established with a connected device by pressing the “Connect” button, which established a
communications link with the selected device in the “Connection” box.

A link is terminated by pressing the “Disconnect” button.
8.3.5. Using the HID Blinky PC Application

To use the HID Blinky PC application, download the HID blinky firmware to a device and then plug in a USB cable
to the evaluation board.

Find the HID Blinky device in the drop-down box and click “Connect”.

Enter a value in the “Blink Rate” box and click “Set”.

Next, click “Enable Blink Pattern”.

The LED Brightness can be modified by dragging the slider labeled “LED Brightness”.

To see the Blink Statistics, click “Get” in the Blink Statistics box.

To define a custom pattern, check/uncheck the LED1/LED2 boxes as desired and then click “Set”. After doing
this, LED1 and LED2 will change according to the pattern defined.

7. To change the LED output using the potentiometer, click the “Potentiometer Selector” box and the
corresponding selection will be displayed in the boxes below.

8. To turn off the LEDs, click “Disable Blink Pattern”.

ok wdhPRE

42 Rev. 0.5

SILICON LABS



ANZ249

9. HID to UART Firmware and Software Example
This example creates a USB device that transfers bytes between an HID interface and a UART interface. The
example also includes a dialog box-driven PC application that allows users to send and receive bytes through HID

reports.

9.1. Overview

The HID to UART example has the following functionality:

m Device to PC application data transfer— The device buffers and sends data to a host across USB in reports; the
PC application then retrieves these reports once it has established a handle with the device.

m PC application to device data transfer — The PC application takes input bytes and sends them to the device in
reports, which the device then buffers and transmits across the UART interface.

m Device/Host control signaling — The host can request UART configuration settings from the device in a
configuration report, and the host can modify those settings by sending a configuration report to the device.

Figure 5 shows the bidirectional data flow created by this example.
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9.2. Firmware System

Figure 6 is a block diagram for the HID to UART firmware. The device firmware was created using the firmware
template as a starting point. The following sections discuss the modifications that were made to the firmware
template, and the files that were added to the project.

Note that the firmware contains a pre-compiler directive, BAUDRATE_HARDCODED, in F3xx_HIDtoUART.h. Including
this directive in the build will hard-code UART communication to a baudrate defined by the pre-compiler directive,
BAUDRATE. Additionally, including BAUDRATE_HARDCODED will prohibit the compiler from building any section of
code that allows the baudrate to be changed at runtime. Removing BAUDRATE_HARDCODED from the firmware
allows the compiler to include code that enables the baudrate to be configured at runtime. The firmware system will
compile to less than 4K of code only if BAUDRATE_HARDCODED is included in the build.
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9.2.1. Interrupt Reports (Interrupt Endpoint)
9.2.1.1. UART Input Data

Report ID: 0x01
Size: 0x61
Definition: IN_DATA

Direction: IN
Name Offset | Size Value Description
UART_INPUT_SIZE 1 1 * Number of bytes of UART input data
UART_INPUT 2 1-59 * UART input data

The device receives UART data and sends this report to the host. The device can send between 1 and 59 bytes of
UART data.

9.2.2. Output Reports (Interrupt Endpoint)
9.2.2.1. UART Output Data

Report ID: 0x02

Size: 0x61

Definition: OUT_DATA
Direction: OUT

Name Offset | Size Value Description
UART_OUTPUT_SIZE 1 1 * Number of bytes output to the UART
UART_OUTPUT 2 1-59 * UART output data

This report transmits data from the host to the device, which then transmits the data through the UART. The host
can send between 1 and 59 bytes of UART data.

9.2.3. Input Reports (Control Endpoint)
9.2.3.1. Get Baud Rate

Report ID: OXFE
Size: 0x05
Definition: IN_CONTROL

Direction: IN
Name Offset | Size Value Description
BAUD_RATEJ0] 1 1 * Most significant byte of BAUD_RATE
BAUD_RATE[1] 2 1 *
BAUD_RATE[2] 3 1 *
BAUD_RATE[3] 4 1 * Least significant byte of BAUD_RATE
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This report retrieves the device UART baud rate.

The host must request this input report over the control endpoint. This feature is only supported on Windows XP
and later.

9.2.4. Output Reports (Control Endpoint)
9.2.4.1. Set Baud Rate

Report ID: OXFD

Size: 0x05

Definition: OUT_CONTROL
Direction: OUT

Name Offset | Size Value Description
BAUD_RATE[O] 1 1 * Most significant byte of BAUD_RATE
BAUD_RATE[1] 2 1 *

BAUD_RATE[2] 3 1 *
BAUD_RATE[3] 4 1 * Least significant byte of BAUD_RATE

This report configures the device UART baud rate.

The host must send this output report over the control endpoint. This feature is only supported on Windows XP and
later.

9.2.5. Changes to F3xx_USBO_Descriptor.c

Two changes were made to the Firmware Template's F3xx_USBO_Descriptor.c file: the product string was
changed to “HID to UART Example”, and the Report descriptor was defined. The example uses four different
reports to send and receive data and control information.

IN_DATA- IN report for UART-received bytes the device sends to the host.
OUT_DATA-OUT report for USB-received bytes the host sends to the device.

IN_CONTROL~IN report containing device's current UART configuration information that the device sends to the
host when requested.

m OUT_CONTROL-OUT report sent by the host to modify the device's UART configuration settings.

Note: The device will correctly respond to IN_CONTROL and OUT_CONTROL reports only if the pre-compiler directive, BAU-
DRATE_HARDCODED, is not defined in the project's build. See “9.2. Firmware System” for details.

F3xx_HIDtoUART . h contains the #define statements for Report IDs and Report sizes.
9.2.6. Changes to F3xx_USBO_ReportHandler.c

The F3xx_USBO_ReportHandler.c file was modified so that the firmware can process the four reports above.
The input report vector table and output report vector table each contain two entries, one for the data report and
one for the control report. These entries link the report IDs to the function bodies defined later in the file. The report
handler functions perform the following tasks for each report type:

IN_DATA writes bytes pulled from the UART-received data buffer into a data report to be transmitted to host.
OUT_DATA copies USB-received data bytes from the report into a buffer to be transmitted out UART.
IN_CONTROL stores the current UART baud rate in the control report to be transmitted to the host.
OUT_CONTROL updates the UART baud rate using the baud rate stored in the report sent by the PC application.
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9.2.7. Changes to F3xx_USBO0_Main.c

main() initializes all peripherals and enters a while(1) loop where two conditional statements monitor the
UART- and USB-received bytes buffers. When a conditional statement in the loop detects that the UART has
buffered received bytes, the system initiates a USB transfer. Similarly, when a second conditional statement
detects that the USB has buffered received bytes, the system initiates a UART transmit session.

9.2.8. Files Added to the Firmware Template

This example uses two files in addition to the files provided by the firmware template. The file named
F3xx_HIDtoUART.h contains all the #define statements for report IDs and report sizes, as well as extern
declarations for all buffer variables. The F3[xx]_HIDtoUART .c file set (only one of these files is included in the
project's build, depending on the Silicon Laboratories microcontroller being used) contains all initialization routines
and the UART interrupt service routine, which stores bytes in a received bytes buffer and transmits bytes stored in
a transmit buffer.

9.2.9. Changes to Fxxx_USBO_InterruptServiceRoutine.c

In order to optimize throughput, achieve a high maximum UART baud rate, and prevent UART buffer overflow,
some modifications needed to be made to USB-related routines.

In this example, the Handle_Out2 () routine runs a check to detect whether the buffer used to store bytes
received through USB has reached a size where receiving one more OUT_DATA report from a host would cause
the buffer to overflow. When the buffer size crosses this threshold, the firmware will not set the Out Packet Ready
bit in EOUTCSRL SFR. This forces the USB hardware to NAK all reports sent to the OUT endpoint. When the
host's system drivers receive a NAK from a device on a transmitted report, the host will retry transmission
periodically. When OUT reports are being NAKed, the firmware sets a flag called USB_SUSPEND.

A foreground test in main() checks to see whether USB_SUSPEND has been asserted. If USB_SUSPEND equals 1,
the firmware then checks to see whether the buffer receiving USB bytes is still above the critical threshold. If the
buffer size has fallen below the threshold, main() sets Out Packet Ready, which allows the USB peripheral to
ACK incoming OUT reports.

SendPacket() was modified to maximize UART throughput. The version of SendPacket() included with the
HID Firmware Template globally disables interrupts at the beginning of the function and re-enables them when the
function's execution has completed. Leaving interrupts disabled prevents the interrupt-driven UART from sending
or receiving bytes. To give the UART a chance to operate, the code was changed so that only USB interrupts are
disabled inside the routine. This prevents a USB interrupt from altering USB SFRs and FIFOs while SendPacket()
modifies them.
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The example creates a flag called SendPacketBusy that is set whenever SendPacket() is executed and is
cleared by the interrupt IN handler. The system uses this variable to avoid calling SendPacket() continuously.
Without this flag, SendPacket() would be called in main() whenever that at least one byte exists in the UART-
received bytes buffer. With this variable, main() can check to see if the last IN report written to USB FIFO space
has been transmitted. main() will call SendPacket() again only after SendPacketBusy has been cleared.

9.3. Host-side PC Application

Like the HID Blinky PC application, this example communicates with a device using the SLABHIDDevice.DLL. The
PC application in this example does the following:

Displays a list of available HID devices, allowing the user to connect to a single device
Reads and sets the device's baud rate

Outputs received ASCII characters to a text window
Sends ASCII characters typed into an input text window to the device

The dialog window created by the application is shown in Figure 7.

Connect Button
Searches for attached

devices by VID and PID jggm ]

Establishes

. communications link
St with selected device
-
Connect
Configuration
Baud Rate: Baud Rate Control
®  Sends baud rate
115200 Get Baud Rate Set Baud Rate | [ entered into text box
e Displays baud rate
Data Transfer retrieved from device
Transmit (ASCII):
Receive (ASCII): Data Transfer
®  Transmits ASCII characters from “Input To -
Device”

e ASCII characters are transmitted when the
“Transmit” button is pressed

® Received ASCII characters are displayed in
the window below

Clear

Figure 7. HID to UART PC Application Dialog Window
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9.3.1. Connecting to a Device

The PC application attempts to connect to the selected HID-to-UART device whenever a user presses the
“Connect” button. The procedure the application uses to connect to the device is similar to the procedure used by
the HID Blinky application, where the application checks for attached devices with the HID to UART device's VID
and PID. If such a device is found, the app calls the SLADHIDDevice.dll function HidDevice_Open() to establish
a connection by creating a handle.

9.3.2. Receiving Data from the Device

When the application establishes a connection to a device, the app then starts a timer that repeatedly checks for
interrupt IN reports from the device using the SLADHIDDevice.dll function,
HidDevice_GetlnputReport_Interrupt().

The application retrieves the baud rate used by the device by calling
HidDevice GetlnputReport_Control (). The application writes the report ID for an IN_CONTROL report into

the buffer passed into the routine. The device receives the request with the report ID and sends back the baud rate.
The app then writes this value in the baud rate text box.

9.3.3. Sending Data to the Device

The PC application sends data to the device using the HID DLL's
HidDevice_SetOutputReport_Interrupt() routine. The application sends a command to change the baud
rate using the HID DLL's HidDevice_SetOutputReport_Control () routine.

9.3.4. Using the HID to UART PC Application

To use the HID to UART PC application, download the HID to UART firmware to a device and then plug in a USB
cable to the evaluation board.

1. Find the HID to UART device in the drop-down box and click “Connect”.

2. Enter a baud rate in the “Baud Rate” box and click “Set Baud Rate”. To view the current baud rate, click “Get
Baud Rate”.

If you are using an evaluation board, short P0.4 and P0.5 (The TX and RX pins of the UART).
Enter ASCII values in the “Transmit (ASCII)” bos and click “Transmit”.
Atfter clicking “Transmit”, the ASCII values should appear in the “Receive (ASCII)” box.

If you are not using an evaluation board, you should connect to the UART interface of the device and configure
the terminal program being used for the baud rate that the HIDtoUART application is using. After clicking
“Transmit”, data will not appear in the “Receive (ASCII)” box, but instead on the terminal program being used.
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DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

Added Section "2. Introduction to HID" on page 2.
Added Section "6. HID Dynamic Link Library" on
page 22.

Modified Section "8. HID Blinky Firmware and
Software Example" on page 31 to conform to latest
firmware and software example.

e Minor formatting changes.

Revision 0.2 to Revision 0.3

Changed section discussing CHIDDevice Class so
that it refers to the HID DLL.

Added section discussing the HID to UART example.

Reworded introduction to reflect changes in
document.

Revision 0.3 to Revision 0.4

Changed text referring to the CHIDDevice Class to
refer to SLABHIDDevice.dll and corresponding
functions.

Added HID reports for HID Blinky application in “8.2.
Firmware System” .

Added “Figure 4. HID Blinky PC Application Dialog
Window” .

Added “8.3.5. Using the HID Blinky PC Application” .

Added HID reports for HID to UART application in
“9.2. Firmware System” .

Updated “Figure 7. HID to UART PC Application
Dialog Window” .

Added “9.3.4. Using the HID to UART PC
Application” .

Revision 0.4 to Revision 0.5

Added support for C8051F38x, C8051T32x, and
C8051T62x devices.
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