Geant4 Package in SPENVIS

N. Messios Belgian Institute for Space Aeronomy (BIRA-IASB)

Geant4 Package in SPENVIS

Outline

- Introduction
- Overview of the Geant4 models in SPENVIS
- Material definition
- GDML geometry definition
- Particle source
- GDML source geometry for GRAS
- Physics scenario & cuts-in-range
- Selecting analysis parameters
- Future ... Next Generation SPENVIS

Geant4 Package in SPENVIS

- User friendly interface
- No prior knowledge of Geant4
- Generated macro file can be used directly by local Geant4 application
- Interaction with other SPENVIS models & tools

Geant4 Package in SPENVIS

Geant4 Package in SPENVIS

Geant4 Package in SPENVIS

Geant4 Package in SPENVIS

Brussels 2013

Overview of the Geant4 models in SPENVIS

- Geant4 Radiation Analysis for Space (GRAS v2.3, v3.1)
 - General space radiation analysis for 3D geometry models
- Multi-Layered Shielding Simulation (MULASSIS v1.19, v1.23)
 - Radiation analysis for a multi-layered, one-dimensional shield
- Geant4-based Microdosimetry Analysis Tool (GEMAT v2.4, v2.8)
 - Microdosimetry effects of space radiation on micro-electronics and micro-sensors
- Sector Shielding Analysis Tool (SSAT v2.1)
 - Performs ray tracing from a user defined point within the geometry to determine shielding levels and shielding distributions

Geant4 Package in SPENVIS

Overview of the Geant4 models in SPENVIS

• MAGNETOCOSMICS (v2.0)

- Charged particle trajectories & magnetic field lines
- Cut-off rigidities as a function of position

• PLANETOCOSMICS (v2.0)

- Definition of a planetary magnetic field, atmosphere & soil
- Interactions of cosmic rays with planetary environment

• Supporting Tools

- Geometry definition tools
- GDML analysis tool
- Material definition tool

Geant4 Package in SPENVIS

Overview of the Geant4 models in SPENVIS

Other:

- Mars Energetic Radiation Environment Models (MEREM)
- Jupiter Radiation Environment and Effects Models and Mitigation (JOREM)
 - PLANETOCOSMICS-J
 - Genetic Algorithm Radiation Shield Optimiser (GARSO) for MULASSIS
- MC-SCREAM
 - NIEL based damage equivalent fluences for solar cells

Geant4 Package in SPENVIS

Material definition

Used by: MULASSIS, GRAS, GEMAT & PLANETOCOSMICS

User defined materials (4)			NIST pure elements	
G4_AI (AI) Del		Del	NIST compounds	
G4_GLASS_PLATE (*N.A.*)		Del	Blood ICRP	*
G4_ALUMINUM_OXIDE (AI2-03)		Del	Bone Cortical ICRP	
gallium_arsenide (ga-As)		Del	Boron Oxide	E
Adding new material		Butane		
Source:	NIST compounds 🔹		n-Butanol	
Material:	Calcium Tungstate	-	Cadmium Telluride	
Chemical formula:	Ca-W-O4		Cadmium Tungstate Calcium Carbonate	
Density [g cm ⁻³]:	6.062	Add	Calcium Fluoride Calcium Oxide Calcium Sulfate	
			Calcium Tungstate	
Reset Save >>			Carbon Dioxide Carbon Tetrachloride Cellulose Cellophane	
			Cellulose Butvrate	

Geant4 Package in SPENVIS

SPENVIS User Workshop Brussels 2013

User defined

Material definition: User defined

Brussels 2013

GDML geometry definition

GDML geometry definition

Brussels 2013

Incident particle source: User defined

Used by: MULASSIS, GRAS, GEMAT & PLANETOCOSMICS

Geant4 Package in SPENVIS

Incident particle source: Mission based

energy biasing:

- electron results can be misleading due to Bremsstrahlung
- improve simulation efficiency
- increases probability of low flux particles being generated
- useful when spectrum is soft or thick shielding

inear

power-law

exponential cubic spline

long-term solar particles Source particle type and spectrum Environment: Mission based - trapped particles 10 Number of primary particles to simulate: 100 100 1.000 Incident particle type: electron -10,000 Incident energy spectrum 100.000 1.000.000 Mission average spectrum 10.000.000 Don'tuse - energy biasing electron Interpolation type: linear proton Angular distribution The angular distribution follows a cosine-law. Create GPS macro Reset Save >>

Geant4 Package in SPENVIS

SPENVIS User Workshop Brussels 2013

trapped particles

Incident particle source: Mission based

#Source definition

Calculated by integrating the differential particle spectrum over the energy limits of the simulation

$$\int_{1}^{T_0} f(T)dT = F(T_0) - F(T_1)$$

<pre># # SPENVIS particle source # Project: SPENVIS_USER_WORKSHOP_2013 # title: # Particle: proton # Mission Segment: 1 365.0 Days</pre>								
# ====================================								
/gps/ene/tvpe Arb								
/gps/hist/type ar								
/gps/hist/point	1.000000E-01	3.050200E+08						
/gps/hist/point	1.500000E-01	2.332000E+08						
/gps/hist/point	2.000000E-01	1.721000E+08						
/qps/hist/point	3.000000E-01	1.010300E+08						
/gps/hist/point	4.000000E-01	6.609200E+07						
/gps/hist/point	5.000000E-01	4.435900E+07						
/gps/hist/point	6.000000E-01	3.142400E+07						
/gps/hist/point	7.000000E-01	2.321700E+07						
/gps/hist/point	1.000000E+00	1.149900E+07						
/gps/hist/point	1.500000E+00	3.794100E+06						
/gps/hist/point	2.000000E+00	1.468200E+06						
/gps/hist/point	3.000000E+00	3.320500E+05						
/gps/hist/point	4.000000E+00	1.170500E+05						
/gps/hist/point	5.000000E+00	5.038100E+04						
/gps/hist/point	6.000000E+00	2.845300E+04						
/gps/hist/point	7.000000E+00	1.763900E+04						
/gps/hist/point	1.000000E+01	6.878600E+03						
/gps/hist/point	1.500000E+01	1.599500E+03						
/gps/hist/point	2.000000E+01	4.542900E+02						
/gps/hist/point	3.000000E+01	9.340400E+01						
/gps/hist/point	4.000000E+01	3.077900E+01						
/gps/hist/point	5.000000E+01	1.892200E+01						
/gps/hist/point	6.000000E+01	1.089000E+01						
/gps/hist/point	7.000000E+01	8.466200E+00						
/gps/hist/point	1.000000E+02	5.486300E+00						
/gps/hist/point	1.500000E+02	2.841100E+00						
/gps/hist/point	2.000000E+02	1.604200E+00						
/gps/hist/point	3.000000E+02	5.475100E-01						
/gps/hist/point	4.000000E+02	3.646600E-02						
/gps/hist/inter Lin								
/gps/ang/type cos								
÷								
#Normalisation								

'Trapped proton model: AP-8 MAX' 0.05, 2.00, 0.00 'Energy', 'MeV', 1, 'Energy' IFlux', 'cm!u-2!n s!u-1!n', 1, 'Integral Flux' DFlux', 'cm!u-2!n s!u-1!n MeV!u-1!n', 1, 'Differential Flux' 1.0000E-01, 6.4126E+07, 3.0502E+08 1.5000E-01, 5.0671E+07, 2.3320E+08 2.0000E-01, 4.0806E+07. 1.7210E+08 3.0000E-01, 2.8636E+07, 1.0103E+08 4.0000E-01, 2.0599E+07, 6.6092E+07 5.0000E-01, 1.5417E+07, 4.4359E+07 6.0000E-01, 1.1727E+07, 3.1424E+07 7.0000E-01, 9.1324E+06, 2.3217E+07 1.0000E+00, 4.6266E+06. 1.1499E+07 1.5000E+00, 1.8101E+06, 3.7941E+06 2.0000E+00, 8.3252E+05, 1.4682E+06 3.0000E+00, 3.3829E+05. 3.3205E+05 4.0000E+00, 1.6842E+05, 1.1705E+05 5.0000E+00, 1.0420E+05, 5.0381E+04 6.0000E+00. 6.7660E+04. 2.8453E+04 7.0000E+00. 4.7290E+04. 1.7639E+04 1.0000E+01, 1.8940E+04, 6.8786E+03 5.9764E+03, 1.5000E+01, 1.5995E+03 2.0000E+01, 2.9453E+03, 4.5429E+02 3.0000E+01, 1.4412E+03, 9.3404E+01 4.0000E+01, 1.0772E+03. 3.0779E+01 8.2559E+02, 5.0000E+01. 1.8922E+01 6.0000E+01, 6.9876E+02, 1.0890E+01 7.0000E+01, 6.0778E+02, 8.4662E+00 1.0000E+02, 4.1063E+02, 5.4863E+00 1.5000E+02, 2.2676E+02, 2.8411E+00 2.0000E+02. 1.2652E+02. 1.6042E+00 3.0000E+02, 4.6217E+01, 5.4751E-01 4.0000E+02, 1.7018E+01, 3.6466E-02 End of Block

SPENVIS mission average spectrum e.g. from AP-8

Ť

Geant4 Package in SPENVIS

2.022277E+15

/control/alias NORM FACTOR ENERGY "

GDML source geometry for GRAS

GDML source geometry for GRAS

Physics scenario

Cut-in-range

- General principles in Geant4 regarding secondary particle production cuts:
 - 1. Each process has its intrinsic limit(s) to produce secondary particles
 - 2. All particles produced (and accepted) will be tracked up to zero range
 - 3. Production cuts-in-range are assigned to regions
- A region is a collection of geometry volumes.
- Default region covering the whole geometry with global cut-in-range for gamma, electron and positron productions.
- User can change the global production cuts-in-range. The default values for the global cuts-in-range length is 1 μ m.
- A cut of for example 1. mm for photons means that no photon will be produced if the expected range in the current material is less than 1. mm.

Geant4 Package in SPENVIS

Selecting analysis parameters

Geant4 Package in SPENVIS

GRAS fluence analysis: GDML mode

Analysis type: Fluence	
Fluence analysis	Note that:
Select particle type(s): incident particle electron gamma proton neutron pion muon	• The order of the volume names is important!!
Select 3 • interface(s) for analysis: 1. from • Spacecraft2:Spacecraft2 (mat_Aluminium) • 2. to • Target_000:Target_000 (mat_Silicon) • 3. between • Spacecraft2:Spacecraft2 (mat_Aluminium) • and Target_001:Target_001 (mat_Silicon) • Energy binning mode: linear • Number of bins: 10 Lower edge of lowest energy bin: 0.0 MeV •	 Volumes must share a boundary otherwise output fluence is zero
Upper edge of highest energy bin: 100.0 Reset Save >>	
TUTO SPENVIS Geant4 Package in SPENVIS	SPENVIS User Worksho Brussels 201

GRAS fluence analysis: GDML mode

Brussels 2013

Future work

- Separate macro file for the source + GCRs as source
- Revisit physics scenario definition
- New functionalities in GRAS v3.1. e.g. reverse MC, normalisation, new analysis types (LET analysis, charging etc.)
- Geant4 models will continue being an important element in the new SPENVIS-NG
- New models will be more easily integrated (plug-in models, machine-machine interface etc.)

Geant4 Package in SPENVIS

Bibliography

- Agostinelli S. et al, *GEANT4 a simulation toolkit*, Nuclear Instruments and Methods A, 506, 250–303, 2003
- Desorgher L., Flückiger E. O. & Gurtner M., *The PLANETOCOSMICS Geant4 application*, 36th COSPAR Scientific Assembly, Beijing, 16 23 July 2006
- Gonçalves P. et al, *The Martian Energetic Radiation Environment Models*, 38th COSPAR Scientific Assembly, Bremen 18-15 July, p.10, 2010
- Heynderickx D., *The JOREM Project: Jupiter Environment, Effects and Shielding Prediction Models for SPENVIS*, European Planetary Science Congress, Rome 20-24 September, p.628, 2010
- Santin G. et al, *GRAS: A general-purpose 3-D modular simulation tool for space environment effects analysis*, IEEE Trans. Nucl. Sc., vol **52**, 6, 2294-2299, 2005.
- Santin G. et al, Particle radiation transport and effects models from research to space weather operations, 38th COSPAR Scientific Assembly, Bremen 18-15 July, p.11, 2010
- Truscott P. et al, MULASSIS: A Geant4 Based Multi-Layered Shielding Simulation Tool, IEEE Trans. Nucl. Sci. 49, 2788, 2002
- Truscott P. et al, Simulation of the Radiation Environment Near Europa Using the Geant4-Based PLANETOCOSMICS-J Model, IEEE Trans. Nucl. Sc, vol. 58, 6, 2776-2784, 2011
- ECSS-E-HB-10-12A, Calculation of radiation and its effects and margin policy handbook

Geant4 Package in SPENVIS

Useful links

- Geant4 General Particle Source Users Manual: http://reat.space.qinetiq.com/gps/new_gps_sum_files/gps_sum.htm
- Geant4 home: http://geant4.web.cern.ch/geant4/
- Geant4 Space Users: http://geant4.esa.int/index.php/home.html
- **GEMAT home:** http://reat.space.qinetiq.com/gemat/
- GRAS home: http://space-env.esa.int/index.php/geant4-radiation-analysis-forspace.html
- MAGNETOCOSMICS home: http://cosray.unibe.ch/~laurent/magnetocosmics/
- MULASSIS home: http://reat.space.qinetiq.com/mulassis/
- PLANETOCOSMICS home: http://cosray.unibe.ch/~laurent/planetocosmics/
- SSAT home: http://reat.space.qinetiq.com/ssat/

Geant4 Package in SPENVIS