3.4 The Binomial Probability Distribution

The Binomial Probability Distribution

There are many experiments that conform either exactly or approximately to the following list of requirements:

1. The experiment consists of a sequence of n smaller experiments called trials, where n is fixed in advance of the experiment.
2. Each trial can result in one of the same two possible outcomes (dichotomous trials), which we generically denote by success (S) and failure (F).
3. The trials are independent, so that the outcome on any particular trial does not influence the outcome on any other trial.

The Binomial Probability Distribution

4. The probability of success $P(S)$ is constant from trial to trial; we denote this probability by p.

Definition

An experiment for which Conditions 1-4 are satisfied is called a binomial experiment.

Example 27

The same coin is tossed successively and independently n times.

We arbitrarily use S to denote the outcome H (heads) and F to denote the outcome T (tails). Then this experiment satisfies Conditions 1-4.

Tossing a thumbtack n times, with $S=$ point up and $F=$ point down, also results in a binomial experiment.

The Binomial Random Variable and Distribution

In most binomial experiments, it is the total number of S 's, rather than knowledge of exactly which trials yielded S's, that is of interest.

Definition

The binomial random variable \boldsymbol{X} associated with a binomial experiment consisting of n trials is defined as
$X=$ the number of S s among the n trials

The Binomial Random Variable and Distribution

Suppose, for example, that $n=3$.
Then there are eight possible outcomes for the experiment:

SSS SSF SFS SFF FSS FSF FFS FFF

From the definition of $X, X(S S F)=2, X(S F F)=1$, and so on. Possible values for X in an n-trial experiment are $x=0,1,2, \ldots, n$.

We will often write $X \sim \operatorname{Bin}(n, p)$ to indicate that X is a binomial rv based on n trials with success probability p.

The Binomial Random Variable and Distribution

Notation

Because the pmf of a binomial random variable X depends on the two parameters n and p, we denote the pmf by $b(x ; n, p)$.

$$
b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{1-x}, x=0,1, \cdots, n
$$

Example 31

Each of six randomly selected cola drinkers is given a glass containing cola S and one containing cola F. The glasses are identical in appearance except for a code on the bottom to identify the cola.

Suppose there is actually no tendency among cola drinkers to prefer one cola to the other.

Then $p=P($ a selected individual prefers $S)=.5$, so with $X=$ the number among the six who prefer S,
$X \sim \operatorname{Bin}(6, .5)$.
Thus

$$
P(X=3)=b(3 ; 6, .5)=\binom{6}{3}(.5)^{3}(.5)^{3}=20(.5)^{6}=.313
$$

Example 31

The probability that at least three prefer S is

$$
\begin{aligned}
P(3 \leq X) & =\sum_{x=3}^{6} b(x ; 6, .5) \\
& =\sum_{x=3}^{6}\binom{6}{x}(.5)^{x}(.5)^{6-x} \\
& =.656
\end{aligned}
$$

and the probability that at most one prefers S is

$$
\begin{aligned}
P(X \leq 1) & =\sum_{x=0}^{1} b(x ; 6, .5) \\
& =.109
\end{aligned}
$$

Using Binomial Tables

Using Binomial Tables

Even for a relatively small value of n, the computation of binomial probabilities can be tedious.

Appendix Table A. 1 tabulates the $\operatorname{cdf} F(x)=P(X \leq x)$ for $n=5,10,15,20,25$ in combination with selected values of p.

Various other probabilities can then be calculated using the proposition on cdf's.

A table entry of 0 signifies only that the probability is 0 to three significant digits since all table entries are actually positive.

Using Binomial Tables

Notation

For $X \sim \operatorname{Bin}(n, p)$, the cdf will be denoted by

$$
B(x ; n, p)=P(X \leq x)=\sum_{y=0}^{x} b(y ; n, p) \quad x=0,1, \ldots, n
$$

The Mean and Variance of X

The Mean and Variance of X

For $n=1$, the binomial distribution becomes the Bernoulli distribution.

The mean value of a Bernoulli variable is $\mu=p$, so the expected number of S 's on any single trial is p.

Since a binomial experiment consists of n trials, intuition suggests that for $X \sim \operatorname{Bin}(n, p), E(X)=n p$, the product of the number of trials and the probability of success on a single trial.
$V(X)$ is not so intuitive.

The Mean and Variance of X

Proposition

If $X \sim \operatorname{Bin}(n, p)$, then $E(X)=n p, V(X)=n p(1-p)=n p q$, and $\sigma_{X}=\sqrt{n p q}($ where $q=1-p)$.

Example 34

If 75% of all purchases at a certain store are made with a credit card and X is the number among ten randomly selected purchases made with a credit card, then $X \sim \operatorname{Bin}(10, .75)$.

Thus $E(X)=n p=(10)(.75)=7.5$,

$$
\begin{aligned}
V(X) & =n p q=10(.75)(.25) \\
& =1.875,
\end{aligned}
$$

$$
\text { and } \sigma=\sqrt{1.875}
$$

$$
=1.37
$$

Example 34

Again, even though X can take on only integer values, $E(X)$ need not be an integer.

If we perform a large number of independent binomial experiments, each with $n=10$ trials and $p=.75$, then the average number of S s per experiment will be close to 7.5 .

The probability that X is within 1 standard deviation of its mean value is

$$
\begin{aligned}
P(7.5-1.37 \leq X \leq 7.5+1.37) & =P(6.13 \leq X \leq 8.87) \\
& =P(X=7 \text { or } 8) \\
& =.532 .
\end{aligned}
$$

