
Beyond TclKit - Starkits, Starpacks and other *stuff
Steve Landers
Digital Smarties

steve@digital-smarties.com

1 Introduction

To those coming from a Unix background, "source" is often
equated with "free", and "binary" with "commercial". The
reasons for this are straightforward - Unix is cross-platform,
source code is the lowest common denominator, the average
user is a programmer (even if they don’t know it) and each
machine has a compiler.

But source code is not for everyone, and end-users are not
"stripped-down developers". One can see why in the
Windows and Mac desktop OS world "source” usually
means "hassle" and "binary" mean "convenience".

Into this world comes Tcl/Tk - a scripting language that
facilitates the development of cross-platform graphical
applications. But the only deployment options are source
(which provides only one side of the equation) or platform
specific binary wrapping (which provides the other).

What is needed is a deployment model for Tcl/Tk
applications that provides the simplicity of a single file
binary download with the openness of a source
distribution. Such a model shouldn't force the user to
become a programmer and nor should it necessarily mean
applications become closed. And it should be a deployment
model flexible enough to effectively support various
deployment media - from network based installation to CD-
ROM installation.

This paper describes the experiences with Starkits - single
file packaging of Tcl scripts, platform specific compiled
code and application data - and TclKit - a single file Tcl/Tk
interpreter. The benefits of this approach compared to the
alternative wrapping strategies are addressed, as is the
ability to build executables for multiple platforms from a
single platform.

The paper shows how to construct a Starkit and shows how
to construct cross-platform Starkits containing compiled
extensions for several platforms. It also looks at some
advanced topics such as the architecture of a Starkit, code
privacy, database management, adding help to a Starkit and
installation options.

But the paper goes beyond TclKit and looks at how these
benefits could be realised by all Tcl/Tk applications. It
suggests a few core changes that would make this feasible.

And finally, it looks at issues and benefits of a Starkit
repository.

2 Background

Binary versus source, RPM vs apt, tar vs cpio. It wasn't
always like this in the Unix world. Consider shar - the shell
archiver - which became ubiquitous in the early days of the
Usenet. A shar archive is a single file shell script
containing a compressed binary archive (usually
uuencoded). This revolutionised the distribution of Unix
software - a single file download which, when run, could
build and install an application. But shar files weren't
suited to more complex applications. Packages like
RPM[1] or Apt[2] help - but they are very much geared to
solving a system level problem not (potentially) cross-
platform application deployment. And there is still the
source/binary dichotomy.

Things are not quite so bad in the Windows and Mac
worlds. Being single platform helps, since the user base is
far less interested in source. Of course, these platforms have
their own idiosyncrasies (even when dealing with binary
distributions) - hence the development of products like
Vise[3] and InstallShield[4]. But there is still the potential
effect on system stability when application installers
manipulate the Windows registry.

Scripting is freeing people to choose the best platform for
their application. Developing in Tcl/Tk can be very
productive - providing high levels of functionality
covering all aspects of business logic, graphical user
interfaces, databases, networking and interfacing with
existing technology. And, with a little care, Tcl/Tk
applications can run well on Windows, all common Unix
variants and the Macintosh.

Scripting delivers on the promise of making programmers
more productive - and so deployment is becoming more of
an issue, for both open and closed source applications.

3 Deployment

Users have come to accept that computers can be enormous
time wasters - especially when it comes to installation of
software products and updates. When you think about it,
the whole concept of “installation” is artificial and
unnatural. When was the last time you installed an
appliance like a toaster or kettle? More importantly, why do
you need to navigate through a labyrinth of jargon and
acronyms just to try a package? And why should you care
where it is installed? And when you decide you don’t want
it, why is it so difficult to get rid of it and its detritus?

Perhaps the answer is that deployment has been viewed
from the perspective of the developer. Consider what is
needed when deploying a Tcl/Tk application:

• a Tcl/Tk interpreter for the target platform
• any compiled packages for the target platform
• any Tcl packages and, finally,
• the application scripts themselves

Note that this mirrors the developer’s installation
environment - individual components installed into the
host filesystem.

Getting these onto the target machine originally involved
installing a Tcl/Tk distribution (or, in the case of popular
versions of Linux - relying on one being installed). Then
one would unload a tar or zip file into a known location -
hardly a general end-user solution. On Windows it was a
little nicer - Tcl/Tk was deployed using a proprietary
installer, and the same could be done with application code.
But no matter how much eye-candy one adds to it, the
concept of having to set up a runtime environment in
addition to the application itself can be a stumbling block
for many end users.

More recently there have been a number of “wrapper” tools
produced for Tcl - most notably ProWrap (part of TclPro
[5]) and freeWrap[6]. These address the problem of
installing a Tcl/Tk runtime by taking a Tcl/Tk interpreter,
application scripts, compiled extensions and data files and
producing a single file executable.

They also provide other benefits:
• since the application is self contained, it won’t be

broken by the installation of newer components
(e.g. a more recent Tcl/Tk or extension)

• they can provide a degree of code privacy -
freeWrap through (admittedly) simple encryption
and ProWrap through bytecodes

Yet despite their benefits, such wrappers do have their
limitations:

• they don’t address multi-platform deployment
scenarios

• the only update option is full replacement (of what
is a rather large executable)

• wrapped applications tend to run in a different
context to the development environment, and so
need additional careful testing

This is not to devalue these programs - freeWrap in
particular has a number of satisfied users. But in many
situations it is important to go further and address the
above limitations.

What is needed is a deployment method for Tcl/Tk
applications that provides:

• platform independence
• supports source and binary distributions
• supports compiled extensions
• supports single file deployment or can use an

installed Tcl/Tk interpreter
• supports compression to reduce distribution size
• supports a mechanism for code privacy
• can be launched without unpacking
• run in the same or similar context to the

development environment
• support incremental updates as the product matures

It is this set of requirements that has driven the evolution
of Starkits - whose purpose is to package Tcl/Tk
applications as a single file for easy distribution and use.

4 Starkits

Imagine having a simple directory and file structure, where
all application scripts, standard packages, compiled
extensions, documentation, images and other binary data
resides. That's not so hard - in fact, it is most likely
common practice among many Tcl developers already.

Imagine also having a well-defined way of storing both
such an application and all its support files, and the Tcl/Tk
system itself. Then deployment would become a matter of
picking up all the relevant pieces, shipping it to the target
machine somehow, and it would run out of the box.

Suppose furthermore that the structure could be wrapped
into single self-consistent files, in a space efficient
compressed form, and that these file could be "executed"
without unpacking, and without altering a single line in the
application.

This, in a nutshell is what Starkits are all about. A Starkit is
a packaging mechanism for delivering applications in a
self-contained, installation-free and portable way.

Note that Starkits used to be called “Scripted Documents”,
and a paper on a much earlier version of these was presented
at the Tcl2000 Conference [7].

4.1 Starkits overview

The name Starkit is an acronym for STandAlone Runtime.

Starkits let you "seal" a complete directory tree into a
runnable form. The Tcl/Tk interpreter which can "run" such
documents is called TclKit. TclKit itself is little more than a
wrapped version of Tcl, Tk, IncrTcl and a few more
extensions - plus all the necessary runtime library scripts.

The essence of Starkits is that they contain a “filesystem-
inside-a-file”. This filesystem contains a copy of all files
that form an application, but in normal use it never gets
unpacked at all. The TclKit runtime contains a complete
Tcl/Tk system, and it too can function without ever being
unpacked. The command "tclkit myappfile" is the Starkit
way of "running the application", although on Unix the
same effect can be achieved simply by making the Starkit
executable ("chmod +x") and having TclKit available path.

Having an application in just two files has a number of
benefits:

• TclKit is a generic runtime - the same file works
with all Starkits

• there is one TclKit build for each platform
• if an application contains only portable scripts

then the StarKit is portable
So if multi-platform deployment is an issue, one can
deploy the application as a file which runs on all platforms
- just by launching it with the appropriate TclKit system.
The philosophy behind Starkits is that deployment is an

integral part of the development process. Applications get
built and extended over time, in whatever way a developer
sees fit, but with a certain directory structure as the storage
convention. Development can take place using any Tcl/Tk
installation (including TclKit!). Tcl commands such as
"package require", "source", and "load" can be used - as
always.

Then, when the time comes to deploy, all one does is wrap
the entire application directory tree into a Starkit. The
resulting file is compressed and ready for deployment. In
fact, it is runnable. The effect is that deployed applications
run in nearly the same way as they do during the
development process. This is achieved through the Tcl
Virtual File System facility[8] - a new Tcl/Tk 8.4 feature
that allows you to divert all filesystem access away from
the native operating system and to something else. On
start-up, the Starkit gets “mounted” so that it appears to
contain a directory structure. This internal internal
filesystem can be read or written like a normal files system.
The VFS "mount" concept makes running from a real
filesystem and running from inside a Starkit almost
indistinguishable.

4.2 Starkits - a simple example

To build a Starkit you need
• TclKit for your platform - which can be obtained

from the “TclKit Home Page” at[9]
• on Windows you’ll also need tclkitsh - the console

mode version of TclKit
• the SDX utility - which can be obtained via the

“SDX Download Page” at [10]

SDX - the Starkit Developer eXtension is a Starkit
containing a collection of scripts for creating and
manipulating Starkits. You can list the available scripts by
running:

 $ sdx help

Firstly, we’ll need a small Tcl/Tk script that serves as our
application - in this example we’ll use the ubiquitous
“Hello World” script which we’ll put in a file hello.tcl:

package require Tk
pack [button .b -text “Hello World!” \
 -command bell]

Note that we explicitly specify “package require Tk” - this
is because Tk is a dynamically loadable extension within
TclKit and must be explicitly loaded if required.

Now, we use the SDX qwrap command to do a “quick wrap”
of this script into a Starkit:

 $ sdx qwrap hello.tcl

The result will be a file called hello.kit - the resulting
Starkit. On Windows, there’ll also be a file hello.bat - which
just invokes hello.kit using TclKit. To invoke the Starkit,
on Windows just invoke “hello” or on Unix invoke
“./hello.kit”.
So, what did qwrap do for us? To find out, we use another

SDX feature to unwrap the script so we can examine its
contents

 $ sdx unwrap hello.kit

The result is a directory called hello.vfs which contains a
copy of the contents of the Starkit virtual filesystem:

hello.vfs
|-- main.tcl
`-- lib
 `-- app-hello
 |-- hello.tcl
 `-- pkgIndex.tcl

The first thing to note is the directory structure. SDX qwrap
implements the recommended Starkit convention - storing
the application code as a package with the app- prefix.
This is done for convenience and consistency - all code
within the Starkit is within a package, and application code
can be easily distinguished from libraries and packages.

Main.tcl is the script that is run whenever a Starkit starts.
Looking at its contents, we see sdx qwrap has generated:

package require starkit
starkit::startup
package require app-hello

The first line loads the Starkit runtime package - a small
(less than 100 lines) pure Tcl package that manages the
Starkit start-up sequence (amongst other things, it mounts
the Starkit VFS).

In the second line the starkit::startup procedure is called
to initialise the starkit::topdir variable. It also adds the
Starkit lib directory to the Tcl auto_path variable, thus
making available any packages stored in that directory.

And finally, the “package require” causes the hello.tcl
script to be sourced from within the lib/app-hello directory
inside the hello.kit VFS.

Note also that qwrap has created the lib/app-hello directory
and copied hello.tcl into there (adding a “package provide
app-hello” line if necessary) and created a pkgIndex.tcl file
to enable auto loading by Tcl. If there is no “package
provide ..” line in the source code qwrap will add one to the
pkgIndex.tcl for you.

We can now make changes to hello.tcl, but we have two
copies - our original one, plus the copy under hello.vfs.

There are two ways to address this:
• we can either remove our original hello.tcl and just

make changes to the one under hello.vfs. script.
• alternatively, a convenient technique for

developers (at least, on Unix) is to replace
hello.vfs/lib/app-hello/hello.tcl with a symbolic
link to the hello.tcl script

Assuming we have made changes, we can recreate hello.kit
using the SDX wrap command:

 $ sdx wrap hello.kit

4.3 Using packages in Starkits

Using packages within Starkits is only slightly different,
and relies on the Tcl auto_path variable being set for us by
the critcl::startup script.

As an example, we’ll modify our hello.tcl script to use
gButtons - the fancy Tk buttons package [11] - which is
itself packaged as a Starkit.

There are two components we need to get from the gButtons
Starkit - the gbutton and the autoscroll libraries. So, we
download gButtons, unwrap it (using “sdx unwrap”) and
copy both the lib/gbutton and lib/autoscroll packages to
hello.vfs/lib. This gives us the new directory structure:

hello.vfs
|-- main.tcl
`-- lib
 |-- app-hello
 | |-- hello.tcl
 | `-- pkgIndex.tcl
 |-- autoscroll
 | |-- autoscroll.tcl
 | `-- pkgIndex.tcl
 `-- gbutton
 |-- disabled.gif
 |-- down.gif
 |-- gbutton.tcl
 |-- pkgIndex.tcl
 `-- up.gif

Note that the gbutton directory includes both Tcl scripts
and GIF images. A Starkit can contain scripts, images, data
and (as we will see) binary extensions.

Note also that we don’t include version numbers in the
directory name of each library. This convention is quite
deliberate, and the rationale is both aesthetic and practical:

• the package version number is already encoded in
both the pkgIndex.tcl and package Tcl scripts

• most applications only need one version of a
package

• it is easier to upgrade to a later version (just by
replacing files) without the need to rename
directories

• in the unusual situation where there are multiple
versions of the same package in an application, the
directories of the older version(s) can contain
version numbers, making it obvious which is the
current version

Now we need a small modification to the hello.tcl script to
use the new facilities. We’ll create a few buttons this time

package provide app-hello 1.1
package require Tk
package require gbutton
set buttons [gButton #auto .]
$buttons new "Hello" bell
$buttons new "Bonjour" bell
$buttons new "Hola" bell

And now we wrap and use this as usual

$ sdx wrap hello.kit

One other point to note is that the Starkit is compressed -
for example on Unix we see the following sizes

$ du -bs hello.vfs hello.kit
64000 hello.vfs
8192 hello.kit

So, adding packages to a Starkit is simply a matter of
placing them under the lib directory, and invoking them in
the usual way.

Binary extensions (i.e. platform specific shared libraries
contained in packages) can be used under Starkits in the
same way they can be used in any Tcl script. There is only
one constraint - the extension must use the Tcl Stubs
facility [12] so that it can be dynamically loaded into the
TclKit interpreter.

The main downside is that binary extensions make a Starkit
platform specific. But with a little care, it is possible to
construct a cross-platform Starkit containing binary
extensions for multiple platforms.

4.4 Multi-platform binary extensions

For example, if we wanted to use the Tktable [13] extension
in a Starkit that must be deployable on Windows and
Linux, we would first create the lib/Tktable directory, then
subdirectories for Windows and Linux and place the
appropriate shared libraries into each:

Tktable
|-- pkgIndex.tcl
|-- tkTable.tcl
|-- Linux
| `-- Tktable.so
`-- Windows
 `-- Tktable.dll

Then we need to replace pkgIndex.tcl with one that will
load the appropriate one for the current platform:

set platform [lindex $tcl_platform(os) 0]
set lib Tktable[info sharedlibextension]
package ifneeded Tktable 2.7 \

[list load [file join \
 $dir $platform $lib] Tktable]

If the extension isn’t stubs-enabled and you have access to
the source, you can use CriTcl [14] to generate a cross-
platform package ready for inclusion in a Starkit.

TclKit is designed to be the platform specific part of the
application, and the Starkit the cross-platform part.
Including libraries for multiple platforms is one way of
preserving this distinction (and much preferable to
building a custom TclKit that contains additional
libraries). But this can become impractical if there are
several platforms, large extensions or a large number of
extensions.

One alternative approach is to deploy using a platform
specific Starkit (i.e. a Starkit with only the libraries for a
particular platform). This reduces the size, but at the cost of
losing the cross-platform ability.

Alternatively, you could separate the application into two
Starkits - a platform specific part and a cross-platform part.

Using this latter approach is quite simple to implement - ,
TclKit allows a script to source a Starkit:

set platform [lindex $tcl_platform(os) 0]
source $platform.kit

Then, compiled extensions for Linux would be stored in a
Starkit called Linux.kit, for Windows in Windows.kit, and
so on. To do this we create a platform specific Starkit
containing all the libraries we require for our application.
In this case we’ll use Tktable and the tDOM[15] XML
engine.

For example, the Linux.kit directory structure would look
like the following

Linux.vfs
|-- main.tcl
`-- lib
 |-- Tktable
 | |-- Linux
 | | `-- Tktable.so
 | |-- pkgIndex.tcl
 | `-- tkTable.tcl
 `-- tDOM
 |-- Linux
 | `-- tdom.so
 |-- pkgIndex.tcl
 `-- tdom.tcl

The Windows.kit directory structure would obviously be
similar. Note that we have retained the separate Linux
subdirectory, since this allows us to more easily merge
these separate Starkits back to one cross-platform one at a
later stage.

The main.tcl is quite simple - since there is no application
code it just needs to invoke “starkit::startup” to set up the
auto_path correctly.

Finally, we need to modify the application Starkit main.tcl
so that it sources the platform specific Starkit on start-up.
In the following code, we assume that both Starkits are
located in the same directory:

package require starkit
starkit::startup
set platform [lindex $tcl_platform(os) 0]
source [file join \
 [file dirname $starkit::topdir] \
 $platform.kit]
package require app-hello

Assuming that the Starkits are in the same location removes
the need for complicated schemes to locate each Starkit. For
example, on Windows there is no need to create registry
entries to record the location of the Starkits. Installation
becomes a copy - and perhaps the creation of a link or
shortcut from a user’s desktop to invoke the application.

This same approach of storing multiple extensions in a
single Starkit has been used to implement Kitten - an
experimental collection of Tcl/Tk extensions.

4.5 Kitten - a collection of binary
extensions

Kitten[16] started as an experiment to build a “Batteries
Included”1 collection of extensions for use with Starkits.

Kitten was named because it originally contained ten
extensions2. Now it contains many more, but the name has
stuck (and the alternative KitFiftyFive doesn’t exactly roll
off the tongue).

Despite being experimental (and having quite a few rough
edges) Kitten has been surprisingly well received. Perhaps
this is because of the promise it holds for developers:

• Kitten is useful during the development phase of an
application, for it frees the developer from keeping
a copy of each extension within the application

• it can update itself from a central repository

The latter is possible because of the Virtual File System
layer, and distinguishes Starkits from other wrapping
schemes. More on this later.

But there is another technique for deploying platform
specific code - combine TclKit, the Starkit and any
compiled extensions into a single executable - called a
Starpack.

4.6 Starpacks

A Starpack is a special version of a Starkit that combines a
Starkit with a TclKit runtime into a single file.

Starpacks are standalone executables which run out of the
box, making them even easier to distribute and use than
Starkits. This convenience does introduce a number of
trade-offs:

• Starpacks only work on the platform for which they
have been built

• Starpacks cannot modify themselves
• Starpacks must be updated as a whole, and are

(much) larger than most Starkits

However for “consumer” platforms such as Windows and
Macintosh, Starpacks are more convenient - the user only
has to download a single file.

And they have one other advantage - since the TclKit is
self-contained there is no risk that the application code will
be incompatible with future versions of Tcl/Tk.

Note that since Starpacks use the same packaging
mechanism as Starkits, their content can be listed and
extracted with the SDX utility. The main difference is that
the "header" (i.e. the piece of code that is executed on start-
up) is a large binary executable file, and that the files stored
inside include all the standard Tcl/Tk runtime support files.

1 The term “Batteries Included” is used within the Tcl
community for a comprehensive Tcl/Tk distribution that
comes “out of the box” with many add-on components. See
the Batteries Included Wiki page at [17] for more details.
2 The alternative name of TenTcl was also considered

4.7 Constructing a Starpack

Constructing a Starpack is quite simple, and only
marginally different from build a Starkit.

If we go back to our hello.tcl example, to create the Starkit
we used the following commands

$ sdx wrap hello.kit

If we want to create Starpack for Windows, we need to tell
sdx which TclKit version to use for its run-time interpreter.
In this case, we’ll use tclkit-win32.upx.exe - which is the
UPX compressed version of TclKit for Windows.

$ sdx wrap hello.exe \
 -runtime tclkit-win32.upx.exe

There is one restriction though - you can’t specify the same
TclKit file as the one which is used to run sdx (since it is
already opened by the operating system when it runs sdx).
Just create a copy and refer to that.

We end up with a self-contained Windows executable
hello.exe. The size of this file is less than a megabyte -
which is quite reasonable when you consider it includes a
complete Tcl/Tk runtime environment.

As you can see in the above example, Starpacks for any
platform can be built on any platform. It is possible to
build a Windows Starpack on Linux (as above), or a Mac
Starpack on Windows, etc.

A convenient technique is to use a Starkit during
development of an application - e.g. for distributing
interim releases amongst development or testing staff, and
then wrapping the application as a Starpack for deployment
beyond the development organisation. This has the
advantage of using smaller, cross-platform Starkits until
the application is released, and then a “sealed” Starpack
subsequently.

Starpacks have been used to deploy a number of open
source and commercial applications, including:

• NewzPoint[18] - an information browser for
Windows written by Michael Jacobson

• TclTutor[19] - a computer aided instruction
program for learning Tcl written by Clif Flynt

But the best example of a Starpack is TclKit itself - which is
simply a Starpack without application code.

5 TclKit

TclKit is the platform specific part of a TclKit/Starkit
deployment.

TclKit combines a number of extensions and libraries in a
single executable file:

• a complete Tcl/Tk distribution
• the IncrTcl object oriented extension for Tcl [20]
• the MetaKit database library and the Mk4tcl

interface [21]
• the Zlib compression library [22]
• the TclVFS package [23]
• the starkit package - the Starkit runtime package
• the UPX executable compressor (on Windows and

Linux) [24]

Being a complete Tcl/Tk distribution, TclKit can be used as
an alternative to the usual tclsh or wish commands. To use
as a Tcl shell, just run as you would tclsh. To use as a Tk
shell, add “package require Tk” to load Tk and TclKit is
equivalent to wish.

And being a single file, TclKit is perhaps the easiest way to
get a Tcl/Tk environment onto any particular platform.
Versions are available for over a dozen platforms - making
it the most portable Tcl/Tk distribution available.

Until recently, TclKit was kept current with the most recent
development versions of Tcl/Tk. This meant monthly
builds that tracked the Tcl/Tk 8.4 alpha and beta releases.
Subsequent to the release of Tcl/Tk 8.4, the TclKit focus has
changed to stability - builds will be less frequent and will
only track official Tcl/Tk releases or to fix significant bugs.

Although TclKit is cross-platform, a deliberate effort has
been made to limit the included modules to generally
useful facilities. Whilst it would be tempting to include
other modules and make TclKit more of a “Batteries
Included” distribution, this would increase its size
(perhaps significantly) - this making it less practical for
use in network based deployment. And, as we have seen, it
is easy enough to add compiled extensions to Starkits or to
wrap them into a Starpack.

Having read this, one might legitimately ask “why IncrTcl
and why not one of the other object oriented extensions?” .
The first part is easy enough to answer - an object oriented
extension can make Tcl code much simpler and more
maintainable. This is particularly true of event driven GUI
code, where it avoids the need to carry around a lot of
context, or pollution of the global namespace. Any object
oriented extension for Tcl would have done but IncrTcl is
well established, relatively stable and adds only around
50Kb to the size of TclKit.

Even with Tcl/Tk and its extensions, the size of TclKit is
still quite small. This is, in part, because all the runtime
scripts are compressed using Zlib. But on Windows and
Linux the size is further reduced by compressing all binary
code using UPX (TclKit for Windows is less than 1
megabyte in size). Typically TclKit plus a substantial
application fit on a single floppy disk.

6 Advanced topics

6.1 TclKit/Starkit architecture

As we have seen, TclKit is nothing more Tcl/Tk, several
extensions plus a small amount of startup code.

TclKit consists of three parts:
• a large binary prefix - i.e. basically a wish

executable statically linked with the above
extensions

• a Metakit dataset that contains all the scripted
components of the above packages (and is
equivalent to the contents of the TCL_LIBRARY
directory) which is mounted using the Tcl VFS,
allowing it to look like a normal filesystem
directory.

A Starkit comprises
• a small Tcl prefix containing startup code
• a MetaKit dataset containing all the files inside the

Starkit.

When you “run” a Starkit or Starpack the underlying
operating system launches the code contained in TclKit’s
large binary prefix.

This, in turn, starts interpreting the small Tcl prefix in the
Starkit, which performs the following steps:

• the small Tcl prefix asks the large binary prefix to
re-open the Starkit, but as a MetaKit database (it
does this using the starkit package located in the
MetaKit database within TclKit).

• the starkit package opens the Starkit to be run -
using the TclVFS package (also stored in the TclKit
MetaKit database) to "mount" that file,

• the starkit package then sources the main.tcl file in
the Starkit’s VFS.

At this point main.tcl is in control and does whatever the
application developer specified.

Although Tcl's Virtual File System accounts for most of the
transparency of Starkits - there are a few VFS limitations
that should be recognised:

• when loading a shared library, Tcl has to copy it out
to a real file (and then clean up later)

• on Windows, shared library clean up must happen
on exit, but after serious errors this might not be
done properly

• commands launched from exec and open pipe are
not able to look inside VFS mounts

• on Windows, cursors can not be used from VFS
(make a temporary copy to a real file)

• startup can be slower, because scripts are stored in
compressed form by default (but also note there are
circumstances where startup may be faster, because
many open/close calls are avoided)

• memory use is higher when the Starkits VFS is
modified, because the underlying MetaKit database
collects changes between commits (the commit
timer fires every 5 seconds by default)

6.2 Database management using MetaKit

As mentioned, TclKit also includes MetaKit - an embedded
high-performance database package. As well as being used
to hold the Starkit VFS, MetaKit can be used by developers
in their applications. It fills the gap between flat-file,
relational, object-oriented, and tree-structured databases -
supporting relational joins, serialisation, nested structures,
and instant schema evolution.

MetaKit is accessed from Tcl using the Mk4tcl package.
Details on using Mk4tcl are outside the scope of this paper,
but Mark Roseman has produced an excellent tutorial on
using Mk4tcl [25].

For the more adventurous, Matt Newman produced an
object oriented interface between Tcl and MetaKit. This (as
yet undocumented interface which has been nicknamed
Mk4too) exposes more of the MetaKit functionality at the
Tcl level. The best place to find out more is to look in the
MetaKit source for the file mk/tcl/mk4too.cpp.

For more on MetaKit see the MetaKit home page at [21].

6.3 Using Zlib for compression

The Zlib package is used by TclKit to read compressed
Starkits but it too is available to developers.

Given that the contents of a Starkit are already compressed,
one common use for Zlib is to compress a client/server
communications protocol by adding just a few lines of
code.

For example, the server side of a client/server application
might use something like the following to send data to the
client:

fconfigure -buffering full \
-translation binary $client

...
proc send_to_client {client txt} {
 set data [zlib compress $txt]
 set len [binary format s \

 [string length $data]]
 puts -nonewline $client "$len$data"
 flush $client
}

Similarly, the client side would receive it using something
like the following:

fconfigure -buffering full \
-translation binary $server

...
proc receive_from_server {server} {
 binary scan [read $server 2] s len
 if {$len} {
 set data [read $server $len]
 set txt [zlib decompress $data]
 } else {
 set txt ""
 }
 return $txt
}

6.4 Using the VFS from scripts

Earlier versions of TclKit used Matt Newman’s Tcl-only
VFS implementation (which overlayed parts of the Tcl I/O
system). Now that C based VFS support has been added to
the Tcl core in Tcl 8.4 (see TIP #173) the change was made to
use Vince Darley’s TclVFS package to expose the VFS layer
so that it can be used from Tcl scripts.

The TclVFS facilities are also available to application
developers - and support a wide range of virtual filesystem
types. For example, a script can mount .zip archives, ftp
sites, http sites, webdav remote disks, MetaKit databases,
and even mount Tcl's proc namespaces as a filesystem.

For example, a zip file can be mounted as follows:

% package require vfs
% vfs::zip::Mount foo.zip foo.zip
% cd foo.zip
% glob *

or an ftp site

% package require vfs
% vfs::urltype::Mount ftp
% glob -dir ftp://ftp.tcl.tk *

More details about the VFS and its use can be found at the
Tclers Wiki pages for VFS [8] and TclVFS [23].

6.5 Self updating Starkits

As we have seen, one of the key benefits of Starkits is that
their internal VFS can be modified at run-time - they can
even be self-modifying and self-updating. There is no risk
of an application modifying itself and accidently damaging
the file, because MetaKit supports transactions. Even a
power failure will not damage a Starkit, it will simply revert
to a previously committed state (no repair is ever needed:
this is fully automatic).

This can be used to make a Starkit self-updating- so it can
update itself when a later version is available.

This can be as simple as replacing files within the VFS, or it
could be a more sophisticated scheme such as one based on
an incremental file transfer algorithm (e.g. rsync[27]).

Another interesting consequence of Starkits being
updatable is deployment over various media. For some time
now Starkits have been used in applications where some
part (and sometimes all) of the application scripts were
distributed over a network in a client-server configuration
at run time.

Taken to extremes, an application can be deployed as a
small "placeholder", which on first starting (after
installation) simply downloads all the necessary scripts,
saving them locally inside the Starkit for subsequent use.
One commercial application uses this approach to provide a
3 TIP #17 Redo Tcl’s Filesystem - specifies modifications
to the Tcl core to allow non-native filesystems to be
plugged in [27]

user interface that evolves over time - based on the user
interaction - but with no involvement from the user apart
from establishing a network connection.

6.6 Adding help to a Starkit

You can use the WiKit package [28] to add read-only
documentation to a Starkit. WiKit is a Tcl implementation
of a Wiki [29] - a collaborative authoring tool. When used
as a help system the documentation file is contained within
the Starkits VFS and compressed along with other scripts
and data.

To add WiKit to a Starkit, download the Wikit StarKit[30]
and use it to create the documentation file. By convention,
documents are stored in a doc directory under the Starkit
VFS:

$ mkdir mykit.vfs/doc
$ wikit mykit.vfs/doc/mydoc.doc

Note that Wikit contains its own help, and so is a good
example of a Starkit help system.

Next, unwrap Wikit and copy the autoscroll, gbutton and
wikit packages from the lib directory to your Starkit lib
directory.

When required, your application can display the
documentation using the following commands:

package require Wikit
Wikit::init [file join \
 $starkit::topdir dir mydoc.doc]

A common approach is to have your Starkit display the
help documentation when it is started with no arguments. If
you do this, the Starkit should be able to output console
and graphical help, thus:

if {[llength $argv] == 0} {
 if {[catch {package require Wikit}]} {
 # ... output console mode help
 } else {
 Wikit::init $path_to_wiki_datafile
 }
 }

You can even add a help Wiki to a package Starkit (such as
Kitten). The starkit::startup package returns an indication
of how the Starkit was launched:

• starkit - called from a Starkit
• starpack - called from a Starpack
• unwrapped - called from an unwrapped Tcl script
• sourced - the Starkit was sourced by another script

We use this in the main.tcl to detect if the package Starkit
was launched by a user (or a program), or sourced by
another Starkit:

package require starkit
if {[starkit::startup] eq "sourced"} return
package require Wikit
Wikit::init [file join \
 $starkit::topdir dir mydoc.doc]

Note also that there are two additional optional parameters
to Wikit::init. The first specifies whether the wiki should
be read-only, whilst the second specifies the window into
which the Wikit window should be packed (this defaults to
the Starkit Tk toplevel window).

6.7 Code privacy

Starkits are particularly suited to Open Source projects -
combining both source and executable into a single file
that is easy to download and evaluate. Since Starkits are
compressed the casual browser doesn't see the code,
although it is relatively simple to unwrap them.

But for commercial applications there are times when you
want to hide code such as proprietary algorithms, or
licensing schemes.

Although there isn’t yet a standard mechanism yet to do the
encryption or obsfucation, there are a number of approaches
that people are using successfully to provide code privacy

One approach is to encrypt some of the Tcl scripts, and
implement a command to decrypt them at run time. This
would involve a small C extension that performs
decryption and key management. This approach has been
used in at least one commercial application with good
success. But also note that you also have to be careful
about other issues like the “send” command being used to
introspect the application and view source.

If you intend to implement such an extension it is worth
looking at CriTcl[14] which allows you to embed C code in
Tcl scripts and transparently compiles it for you.

But perhaps the most practical solution is to distribute Tcl
bytecodes - the intermediate “virtual instruction set” used
by the Tcl interpreter. Mark Roseman and a few other people
have been experimenting with this using the bytecode
writing/loading facility from TclPro[5]. The procomp
command is used to generate bytecode files from Tcl source
and this is stored in the Starkit VFS. At run time the
tbcload command (or its underlying library) is used to load
and run the bytecode files from within the VFS.

Eventually there is likely to be a general solution based on
this approach.

6.8 Starkits and standard Tcl

It is possible to unwrap a Starkit even when TclKit or SDX
is not available - using a pure-Tcl script called
ReadKit[31].

ReadKit can unpack (or just list the contents) of any StarKit
without relying on TclKit or MetaKit.

To actually uncompress files, it needs either the Trf[32] or
the Zlib extension. If these are not available ReadKit can
convert a Starkit to a ZIP archive, which can then be
unpacked using widely available utilities (such as WinZip
on Windows).

If Zlib was available in the Tcl/Tk core (or part of a standard

Tcl distribution) then Starkits could be come the default
vehicle by which Tcl/Tk code is distributed - avoiding
platform specific formats such as tar and zip.

And the starkit package could be modified to use ReadKit
concepts to allow it to work within a standard Tcl
interpreter (albeit without MetaKit underneath nor the
ability to update the VFS).

6.9 Installation options

Starkits and tclkit are designed to be installation-free - one
only has to copy or downloads individual files and they
immediately become usable.

One important consequence is that Starkits can make a
minimal impact on the target machine: there are no registry
settings (unless the application introduces them), there are
no files strewn all over the disk, and there is no need to
have super-user privileges to start using a Starkit.

Deployment using Starkits can be summarised as:
• installation involves a single copy
• uninstall is just a single remove

The main benefits of this approach are:
• applications can be used out-of-the-box
• applications can be launched from CDROMs and

read-only servers (useful when evaluating an
application)

• applications do not break because some file was
(re)moved

• applications do not interfere with other packages
• applications can easily be moved to another

computer
• there are no version dependencies or conflicts (for

example, no “DLL hell”)
• backups are easy - just copy the Starkit
• removing applications is easy and quick

But in some situations, the more familiar approach of a
traditional “installer” may be appropriate (even if it does
nothing more than copy a Starkit/Starpack to a local
filesystem).

There are a number of approaches to this:
• wrap the Starkit/Starpack with a simple installer

built using a tool such as Vise, InstallShield or a
Tcl based installer such as InstallBase[33]

• provide a custom Starpack to perform the install
• make the application Starkit smart enough to

install itself

The self-contained nature and smaller size of the last
approach is definitely advantageous (especially when
using network based distributions). To implement this, the
Starkit can look for a copy of itself in a known location
and, if not found, start the installation process.

Alternatively, if using a Starkit you can use the ability of a
Starkit to update itself and store a file inside the Starkit to
indicate that it has been installed. This way the Starkit can
check to see if it has been installed and, if not, start the
install dialog.

6.10 Safekit and chroot jails

Sometimes you want to run Tcl scripts in a secure
environment - that is, one where the underlying filesystem
cannot be touched.

This can be achieved with careful use of the Tcl Safe
Interpreter facility [34] - which allows untrusted Tcl scripts
to be run safely, and provides mediated access by such
scripts to potentially dangerous functionality.

But there are times when you want to allow access to
external files, but restricted within a defined areas of the
filesystem (for example, in a CGI application).

This can be achieved on Unix using the chroot (change
root) system call to block out all access to the local
filesystem. Since TclKit is a static executable and carries a
complete runtime with it, there is no need to access the
underlying filesystem.

To achieve this we use a small C wrapper called Safekit.
[35]. This wrapper launches TclKit after calling chroot() to
limit access to the current filesystem subtree. This approach
guarantees that scripts run within this context cannot
access a file outside this environment, not even through
external programs.

Safekit is just a small C program that must be installed
“setuid root” (since the chroot system call can only be used
by the super-user). On startup, it does a chroot("."), and
then reduces permissions to the current user’s normal ones.
Then, TclKit is launched, passing all arguments on to it.

#include <unistd.h>
#include <sys/types.h>

int main(int argc, char** argv)
{
 if (chroot(".") != 0)
 return 1;
 if (seteuid(getuid()) != 0)
 return 2;
 argv[0] = "/tclkit";
 if (execv(argv[0], argv) != 0)
 return 3;
 return 0;
}

To use this sandbox you need to place all scripts and data
that are needed in a single directory area, along with a copy
of TclKit and the Safekit wrapper. Nothing else is needed,
provided that TclKit and Safekit are both compiled as fully
static executables. If extensions are to be dynamically
loaded, you will also need to create a .../lib area with all
necessary runtime shared libraries. For example, to run
"myscript.tcl" safely, set up something similar to the
following:

safeplace
|-- myscript.tcl
|-- safekit
|-- tclkit
`lib

Then, change the permissions on Safekit to be setuid root:

chmod -rwx safekit
chown root safekit
chmod u+s go+x safekit

As an example, we’ll use the following myscript.tcl script:

puts "pwd = [pwd]"
catch { exec ls } err
puts "exec ls -> [split $err \n]"
puts "glob * -> [glob *]"
cd ..

When run with a normal tclkit, we see the following:

$./tclkit myscript.tcl
pwd = /home/steve/safeplace
exec ls -> myscript.tcl safekit tclkit
glob * -> safekit tclkit myscript.tcl
pwd = /home/steve

However when run with the Safekit wrapper the script we see
that we can’t get outside of the current directory and
commands like ls are not available:

$./safekit myscript.tcl
pwd = /
exec ls -> {couldn't execute "ls":

no such file or directory}
glob * -> safekit tclkit myscript.tcl
pwd = /

7 Repositories

Wouldn't it be nice if one could go to a website, pick a
couple of packages, select a couple of platforms, and end up
with a Starkit (or a few Starpacks) to which only the
application-specific parts need to be added?

Much of this is possible today with Starkits and TclKit,
albeit you have to do it manually. Pick the extensions you
need, download TclKits for the platforms you are interested
in, add your application code, and wrap it all up into a set
of deliverable executables.

The missing piece is convenience.

Developers shouldn’t be assembly-line workers - they
should be factory managers. In such a world, a developer
would specify the goal, define the required components and
fill in the missing pieces (i.e. the application specific code).
It should not be a totally manual process, since much of
this can be automated. This end goal has been dubbed
"SEAL" the Standalone Executable Assembly Line.

A first tentative step in this direction has been taken - an
archive is being created to help simplify the task of
distribution of Starkits and Starpacks. This has been called
The Starkit Developer Archive (or SDarchive) for now [36].
The motivation is not just to collect binaries (and so end
up with yet another repository of stale and unmaintained
data) but to work towards a structure which can both
technically and socially maintain itself for a long time to
come.

The initial aims of SDarchive are modest - provide a useful
collection of Starkits. But also to build on this and
leverage the Starkit model to make the deployment of
complete applications, small utilities and individual
packages simpler than ever before.

There are several steps to turn the initially passive
SDarchive repository into what will ultimately be an
assembly line for applications:

• a basic CGI interface to browse and make selections
for downloading

• a web-based interface to manage submissions,
updates, and build results

• a Tk-based local interface (over HTTP) to improve
the interaction

• tying into the Tclers Wiki as a way to comment,
make suggestions and contact authors

• aWiki-based way to tie documentation and package
dependency graphs together

Although some of the above is just "blue sky”, it is fair to
say that once the foundation is in place much progress can
be made in a relatively short time. After all, this is all done
through Tcl/Tk - scripting is not just the goal, it is also the
enabling technology by which all this can be realised.

The longer-term goal of SEAL is to become a self-
maintaining resource (through the contribution of
developers an users). Prior experience with the Tcl'ers Wiki
and the Tclers Chat show that when the parties involved
have the right environment and incentives then something
special happens - collaboration, synergy and community
awareness take over. The economics of this equation are
simple: "win-win" - while the costs to achieve this are
indeed very low.

The SEAL resource won't come about overnight, but at the
same time one has to conclude that all the technologies
exist right now to make this eminently feasible.

8 So who uses this *stuff?

Starkits and Starpacks are used to deploy a variety of
applications - both commercial and open source - in fields
as diverse as 24x7 telecommunications projects, business
automation, publishing and systems management. There
are many thousands deployed world-wide.

One of the most interesting products is CareerDemon[37] -
an automated career guidance assessment/reporting service,
developed by a team led by Steve Blinkhorn.

CareerDemon is deployed via an installer which contains
TclKit and the CareerDemon Starkit. The installer is usually
downloaded over the Internet, which is relatively painless
due to TclKit’s small size. As the user interacts with
CareerDemon the user interface is modified, based on the
user responses to a series of questions. New user interface
scripts are generated as required by a central server and
downloaded by the CareerDemon Starkit, which stores them
within its own VFS. After the initial install the host
operating system isn’t touched.

CareerDemon is one of those applications that has to work
“out of the box”, do no damage to the host system and
leave no traces when it is removed.

Starkits also help when supporting such installations.
Supporting several thousand customers across multiple
timelines could be nightmare, but it turns out to be
relatively straightforward.

If a problem occurs (e.g. due to disk corruption) rather than
trying to remotely diagnose the issues, support staff have
the users e-mail their CareerDemon Starkit as an attachment.
They are then able to unpack the Starkit, look inside for the
problem, fix it and send it back.

This is analogous to a mechanic putting a car up on a ramp,
looking for a problem, repairing it and returning the
vehicle. Because everything bar the TclKit "engine" is in
one file, it is easier to do return-to-base warranty work
rather than trying to fix a problem.

9 Conclusion

TclKit and Starkits are all about deployment - they lower
the barriers to building easy to download, install and
upgrade cross-platform applications

And they are an ideal way to deliver both open source and
commercial applications implemented in Tcl/Tk. Using
Starkits there need no longer be a distinction between
source, packaged, deployed or installed applications.

Starkits fit in naturally with Tcl/tk development practices -
allowing developers to work with familiar tools and
paradigms. And they make deployment “safer” because it
becomes part of the development process - not an
afterthought with its own hassles and testing requirements.

So the Starkit story is that deployment has been solved.

And because of this Tcl/Tk has the potential to realise the
elusive goal of "write once, simple deployment
everywhere", perhaps more so than any other language
platform currently available.

Acknowledgements

Thanks are due to Jean-Claude Wippler (the original author
of TclKit and Starkits), Mark Roseman and Steve Blinkhorn
for their ongoing collaboration on TclKit and Starkits, and
for their assistance preparing this paper.

Also to Larry Virden, for his patient reading of the draft.

And, of course, the many giants on whose shoulders we
have stood.

References

[1] The RPM Package Manager - http://www.rpm.org
[2] Apt - the Debian GNU/Linux package management

facility -
http://www.debian.org/doc/manuals/apt-howto/

[3] Vise - http://www.vise.com
[4] InstallShield - http://www.installshield.com/
[5] TclPro - http://www.tcl.tk/software/tclpro/
[6] freeWrap - http://freewrap.sourceforge.net/
[7] Wippler, Jean-Claude Scripted Documents -

Proceedings of the 7th Annual Tcl/Tk Conference -
http://www.usenix.org/publications/library/procee
dings/tcl2k/wippler.html

[8] VFS - Tcl Virtual FileSystem -
http://mini.net/tcl/VFS

[9] The TclKit Home Page - http://equi4.com/tclkit
[10] SDX Download Page -

http://www.equi4.com/starkit/39
[11] gButtons - http://mini.net/tcl/3403
[12] The Tcl Stubs mechanism - http://mini.net/tcl/stubs
[13] Tktable - http://tktable.sourceforge.net/
[14] CriTcl - http://mini.net/tcl/CriTcl
[15] The tDOM XML engine - http://mini.net/tcl/tdom
[16] Kitten - http://mini.net/tcl/kitten
[17] Batteries Included - http://mini.net/tcl/2352
[18] NewzPoint - http://mini.net/tcl/newzpoint
[19] TclTutor -

http://www.msen.com/~clif/TclTutor.html
[20] Incr Tcl - http://incrtcl.sourceforge.net/itcl/
[21] The MetaKit database and Mk4tcl package -

http://www.equi4.com/metakit
[22] The Zlib compression library - http://www.zlib.org
[23] TclVFS - http://mini.net/tcl/tclvfs
[24] The UPX Executable Compressor -

http://upx.sourceforge.net/
[25] Roseman, Mark - MetaKit: Quick and Easy Storage

for your Tcl Application - available under
http://www.markroseman.com/tcl/

[26] TIP 17 - Redo Tcl Filesystem -
http://www.tcl.tk/cgi-bin/tct/tip/17.html

[27] Rsync - http://www.rsync.org/
[28] Wikit - http://www.equi4.com/wikit/38
[29] Wiki - http://mini.net/tcl/wiki
[30] Wikit Starkit - http://mini.net/sdarchive/wikit.kit
[31] Readkit - http://mini.net/tcl/Readkit
[32] Trf - http://www.oche.de/~akupries/soft/trf/
[33] InstallBase - http://installbase.sourceforge.net/
[34] Tcl Safe Interpreters -

http://www.tcl.tk/man/tcl8.4/TclCmd/safe.htm
[35] Safekit - http://mini.net/tcl/3384
[36] Starkit Developer Archive - htt://mini.net/sdarchive
[37] CareerDemon - http://www.careerdemon.com

