How to Run an HDD Spindle Motor Quietly and Efficiently

Bert White

Corporate Fellow Silicon Systems Storage Products Group

STORAGE PRODUCTS

Outline

• Spindle Motor Basics

- Electrical equivalent of a spindle motor
- PWM
- Transconductance loop
- Acoustic Noise
 - How does a motor driver create it?
 - How can a motor driver minimize it?
- 32H6910 SPM Driver Section
- 32H6910 Measured Data
- Summary

Electrical Equivalent of Spindle Motor

torque = K \top (ianbemfa + ionbemfb + icnbemfc)

Efficient Motor Driver

- Motor current must be in phase with bemf
- Peak motor current should occur when bemf is peakŁ
- Pulse Width Modulation (PWM) should be used to minimize driver power dissipation

6-State Winding Current and Torque

Note: These ideal curves neglect the effect of winding inductance – a significant omission!

PWM Drivers are Required for Maximum Power Efficiency

- Typical PWM frequency (1/T) is 20-30 kHz
- PWM Drivers are LOW IMPEDANCE!

Transconductance Loop

The transconductance loop permits current control with voltage mode drivers

Transconductance Loop Advantages

- Permits supply current control during motor start
- Simplifies the speed control equations
- Reduces torque ripple caused by phase to phase resistance variations

Jerk Causes Acoustic Noise

- Jerk is defined as d/dt of acceleration
- Jerk excites noise-generating mechanical resonances
- Jerk is minimized by minimizing torque ripple
- Per-phase torque ripple is essential but its slope should be minimized

6-State Torque Ripple

Not a Pretty Sight!

Trapezoidal Torque Ripple

Only a Little Bit Better!

Sinusoidal Torque Ripple

Ahhh!

Torque Ripple Summary

Waveform Type	Torque Ripple	Peak d/dt of phase A torque
6-State	37%	6 va/ms
Trapezoidal	32%	3.9 va/ms
Sinusoidal	9%	1.4 va/ms

- Sinusoidal drive reduces torque ripple 4x
- Per-Phase Torque has 4x less d/dt slope

32H6910 SPM Driver Section

Phase Detector Operation

• The Phase Detector compares the phase current's zero crossing with the center of its corresponding PLLSTATE window.

Phase Detector Waveforms

These bemf voltages . . .

Phase Detector Waveforms (cont.)

... generate these phase currents ...

Phase Detector Waveforms (cont.)

... and result in these charge pump currents.

32H6910 Lab Data

Phase Current

32H6910 Lab Data (cont.)

Acoustic Noise (A-weighted)

6-State

Sinusoidal

- 3.8 dB rms reduction, 30 kHz to 20 kHz
- 10-20 dB pure-tone reduction

Conclusion

- Driving an HDD motor quietly and efficiently requires:
 - PWM drivers
 - Sinusoidal Phase Currents
- The 32H6910 implementation of PWM sinusoidal drive:
 - Reduces both measures of torque ripple by 4x
 - Reduces pure-tone acoustic noise by 10 to 20 dB
 - Reduces broad-band acoustic noise 3.8 dB