

GLPK入門

GLPK (GNU Linear Programming Kit)

■ 線形計画問題を解いてくれる

- □ 決定変数の数が少なければ解析的に解ける
 - 多くなると、人の手で解くのは困難になる
- ロシアのA.O. Makhorin (mao@mai2.rcnet.ru)
 氏が開発
 - □ ANSI C で記述
- https://www.gnu.org/software/glpk/
 - □ 2017.1月に <u>glpk-4.61.tar.gz</u> が公開されている

GLPKのインストール(Linux)

ITC提供のワークステーションにはインストール済

- Ubuntu では、パッケージが提供されている
 - sudo apt-get –yV install glpk
 - sudo apt-get –yV install glpk-doc
 - sudo apt-get –yV install glpk-utils
 - sudo apt-get –yV install libglpk-dev
 - sudo apt-get –yV install libglpk0
 - sudo apt-get –yV install libglpk0-dbg
 - 提供されているのは glpk-4.60以前 かもしれない

この3個で大丈夫かな

ソースファイルからのインストール

■ 例えば作業用ディレクトリを /tmp とする場合

- □ \$ cd /tmp
- □ \$ zcat [glpk-4.61.tar.gzの場所] | tar xvf –
- \$ cd glpk-4.61
- □ \$./configure
- \$ make
 - エラーが無いことを確認
- \$ make check
 - エラーが無いことを確認
- \$ sudo make install

- 多分 /usr/local/bin/glpsol と /usr/local/lib/libglpk.* がインストです される

glpsol の起動

glpsol (<u>GNU Linear Programming Solver</u>)

- \$ rehash
 - インストール後には最初におまじないが必要なことが多い
- □ glpsol –v

\$ glpsol -v

GLPSOL: GLPK LP/MIP Solver, v4.61

Copyright (C) 2000-2017 Andrew Makhorin, Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All rights reserved. E-mail: <mao@gnu.org>.

This program has ABSOLUTELY NO WARRANTY.

This program is free software; you may re-distribute it under the terms of the GNU General Public License version 3 or later. [

glpsol の主要オプション

- 詳細は glpsol --h で見られる
- -m filename
 - モデルファイルをfilenameから読み込む
- -d filename
 - データファイルをfilenameから読込む (モデルファイルに データが記述されていたら無視される)
- -y filename
 - 画面出力を filename に書き出す
- -o filename
 - □ 実行結果を filename に書き出す

モデルファイルの書き方(1)

■ 目的関数 max $x_1 + x_2$ $z = x_1 + x_2$ ■ 制約条件 $5x_1 + 3x_2 \le 15$ $x_1 - x_2 \leq 2$ $x_2 = -x_1 + z$ $x_2 \leq 3$ \mathbf{X}^{2} $x_1 \ge 0$ $5x_1 + 3x_2 \le 15$ $x_2 \ge 0$ (6/5,3) $x_2 \leq 3$ (0,3) $x_1 - x_2 \le 2$ 実行可能 (21/8, 5/8) $(2,0)^{3}$ 5 4 (0,0)0 1 6 S GLADIO Y

モデルファイルの書き方(2)

■ 変数の宣言

□ var 変数名 型指定;

- var x1 >= 0 ;
- 目的関数の定義

maximize z1: x1 + 3.5e4*x2;

- □ minimize z2: x1 4.2*x2;
- 制約条件の定義 (subject to)
 - □ s.t. st1: 5*x1 + 3*x2 <= 15 ;
- モデルファイルの終了宣言

 \square end;

モデルファイルの例

Science and Technology

end ;

モデルファイルを解いてみる

\$ glpsol –m lp-ex1.mod –o lp-ex1.out

実行結果を見て見る(1)

\$ cat lp-ex1.out Problem: q l Rows: Columns: Non-zeros: OPTIMAL Status: Objective: z = 4.2 (MAXimum) St Activity Lower bound Upper bound No. Row name Marginal 4.21 zB ÑU 0.22 st115 15 3 st2В -1.8 2ΝII $\overline{3}$ 4 st30.4No. Column name St Activity Lower bound Upper bound Marginal B B 1.20 1 x1 ŏ 2×2 3 Karush-Kuhn-Tucker optimality conditions: KKT.PE: max.abs.err = 0.00e+00 on row 0 max.rel.err = 0.00e+00 on row 0 High quality 何に使うのか KKT.PB: max.abs.err = 0.00e+00 on row 0 max.rel.err = 0.00e+00 on row 0 よくわからない High quality KKT.DE: max.abs.err = 0.00e+00 on column 0 max.rel.err = 0.00e+00 on column 0 High quality CENO UNIVERSO KKT.DB: max.abs.err = 0.00e+00 on row 0 max.rel.err = 0.00e+00 on row 0 High quality End of output

Science and Technology

180

実行結果を見てみる(2)

その他の記述の仕方 (1)

その他の記述の仕方(2)

 0,1の二値を取る変数 var y0 binary; y0は0 又は1の値を取る □ var y{W} binary ; ← 配列y[W]は0又は1の値を取る □ var x{V, W} binary ; ← | 配列x[V, W]は0 又は1の値を取る Σ $\sum y[i]$ \Box sum{i in W} (y[i]); ■ 配列の初期化(制約条件で実行) □ s.t. XX{v1 in V, v2 in V: AM[v1,v2]=1} : 式

文字式を利用した定式化

最短経路問題

モデルファイル

```
/* sp-gen.mod */
```

```
/* Given parameters */
param N integer, >0;
param p integer, >0;
param q integer, >0;
```

```
set V := 1..N;
set E within {Y,Y}:
```

```
param cost{E};
```

```
/* Decision variables */
var x{E} <=1. >=0:
```

```
/* Objective function */
minimize PATH COST: sum{i in Y} (sum{i in Y} (cost[i,i]*x[i,i]) );
```

目的関数

min $\sum cost_{ii} x_{ii}$

 $(i,j) \in E$

 $j \in V$ $j \in V$

制約条件 $\sum x_{ii} - \sum x_{ii} = 1$ (i = pのとき)

 $\sum_{i=V}^{j \in V} x_{ij} - \sum_{i=V}^{j \in V} x_{ji} = 0 \quad (\forall i \neq p, q \in V)$

 $\begin{array}{ll}
\stackrel{j \in V}{0 \leq x_{ij} \leq 1} & \left(\forall (i, j) \in E\right)
\end{array}$

```
/* Constraints */
s.t. SOURCE{i in V: i = p && p != q}:
sum{j in V} (x[i,j]) - sum{j in V} (x[j,i]) = 1;
s.t. INTERNAL{i in V: i != p && i != q && p != q}:
      sum{j in V} (x[i,j]) - sum{j in V} (x[j,i]) = 0;
```


データファイル

実	行結:	果				
Probler Rows: Column: Non-ze Status: Object	m: sp 4 s: 16 ros: 34 : OPTIMAL ive: PATH_CO	 JST =	11 (MINimum)	<	—— 最小	距離11
No.	Row name	St	Activity	Lower bound	Upper bound	Marginal
1 2 3 4	PATH_COST SOURCE[1] INTERNAL[2] INTERNAL[3]	B NS NS NS	11 1 0 0		= = =	 11 6 4
No.	Column name	St	Activity	Lower bound	Upper bound	Marginal
1 2 3 4 5 6	×[1,1] ×[1,2] ×[1,3] ×[1,4] ×[2,1] ×[2,2]	NL NL NL NL NL NL	0 1 0 0 0 0	0 0 0 0 0 0 0 0	1 1 1 1 1 1	100000 1 99989 100005 100000
/ 8 9 10 11	×[2,3] ×[2,4] ×[3,1] ×[3,2] ×[3,3] ×[2,4]	NL NL NL NL	0 0 0 0 1	U 0 0 0 0	1 1 1 1	1 100007 100002 100000
12 13 14 15 16	$\times [4, 1]$ $\times [4, 2]$ $\times [4, 3]$ $\times [4, 4]$	B NL NL NL	0 0 0 0	0 0 0 0	1	100011 100006 100004 100000

Science and Technology

188

