WO2016080001A1 - ツインスケグ船 - Google Patents

ツインスケグ船 Download PDF

Info

Publication number
WO2016080001A1
WO2016080001A1 PCT/JP2015/053357 JP2015053357W WO2016080001A1 WO 2016080001 A1 WO2016080001 A1 WO 2016080001A1 JP 2015053357 W JP2015053357 W JP 2015053357W WO 2016080001 A1 WO2016080001 A1 WO 2016080001A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
skeg
propeller
width direction
twin
Prior art date
Application number
PCT/JP2015/053357
Other languages
English (en)
French (fr)
Inventor
松本 大輔
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201580001663.8A priority Critical patent/CN105829204B/zh
Priority to KR1020167003388A priority patent/KR20160075493A/ko
Priority to US14/911,268 priority patent/US20160347417A1/en
Publication of WO2016080001A1 publication Critical patent/WO2016080001A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/08Shape of aft part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/42Shaft brackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/42Shaft brackets
    • B63B2003/425Shaft brackets having features not related to structural construction, e.g. hydrodynamic properties or bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • B63H2001/283Propeller hub caps with fins having a pitch different from pitch of propeller blades, or a helix hand opposed to the propellers' helix hand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a twin skeg ship in which a pair of left and right skegs provided at the bottom of a stern are each provided with a propeller shaft.
  • a twin skeg ship in which a pair of left and right skegs are provided on the bottom of the stern to form a tunnel-shaped bottom bottom recess between the left and right skegs, and a propeller shaft is provided on each of the pair of left and right skegs.
  • Patent Document 1 discloses a configuration in which fins extending in the left-right direction are provided between left and right skegs. In this configuration, between the left and right skegs, the flow through the part on the tunnel surrounded by the skegs on both sides hits the fins, generating lift, and propulsion performance using a part of the lift for forward force To improve.
  • Patent Document 2 discloses a configuration in which fins are provided on the inner wall surfaces of a pair of left and right skegs. This fin is provided so as to have an angle of attack with respect to the vertical vortex generated between the left and right skegs. According to such a configuration, when the vertical vortex hits the fin, a lift having a forward direction component is generated, and thus the propulsion performance is improved by the forward direction component.
  • Patent Document 3 discloses a configuration in which a cylindrical duct having a larger diameter on the bow side than on the stern side is provided in front of the propeller. According to this configuration, the flow to the propeller is rectified by the cylindrical duct and the propulsion performance is improved.
  • An object of this invention is to provide the twin skeg ship which can improve a propulsion performance.
  • a twin-skeg ship includes a pair of left and right skegs provided at the bottom of a stern, a propeller provided behind each of the pair of left and right skegs, and a front of each propeller. And the fin provided only on the inner side in the ship width direction with respect to the skeg and extending radially from the rotation center of the propeller.
  • the fin is provided only on the inner side in the ship width direction with respect to the skeg in front of the propeller, so that the flow on the inner side in the width direction on the skeg can be increased or decreased by the fin in front of the propeller. Thereby, the wake gain in the left and right propellers can be increased.
  • the flow inside the ship width direction with respect to the skeg may be slower than the flow outside the ship width direction with respect to the skeg.
  • the specific resistance of the fin provided only on the inner side in the width direction of the skeg can be reduced, and the slow flow on the inner side in the width direction of the skeg is increased by the fin in front of the propeller. By speeding up or decelerating, the wake gain of the propeller can be effectively increased and the propulsion performance can be improved.
  • the fins may increase the upward flow generated inside the skeg in the ship width direction in front of the propeller. In this way, by providing the fin in the region that strengthens the upward flow generated inside the ship width direction of the skeg, the wake gain of the propeller can be effectively increased and the propulsion performance can be improved.
  • the rotation direction of the propeller may be an inward rotation that rotates from the outer side in the ship width direction toward the inner side in the ship width direction at the upper part of the propeller. According to such a configuration, the upward flow generated on the inner side in the ship width direction of the skeg strengthened by the fins becomes stronger in the direction opposite to the rotation direction of the propeller. Therefore, the wake gain of the propeller can be effectively increased and the propulsion performance can be improved.
  • the fins may weaken an upward flow generated inside the skeg in the ship width direction in front of the propeller. In this manner, by providing the fin in the region that weakens the upward flow generated inside the ship width direction of the skeg, the wake gain of the propeller can be effectively increased and the propulsion performance can be improved.
  • the rotation direction of the propeller may be an outward rotation that rotates from the inner side in the ship width direction toward the outer side in the ship width direction at the upper part of the propeller. According to such a configuration, even when the propeller rotates outwardly from the inner side in the widthwise direction toward the outer side in the widthwise direction at the upper part, the width of the skeg in the forward direction of the propeller is increased by the fins. By weakening the inner flow, the flow in the same direction as the rotation direction of the propeller is weakened, and the wake gain in the left and right propellers can be increased and the propulsion performance can be improved.
  • a cylindrical shape is provided in front of the propeller, straddling the ship width direction inner side and the ship width direction outer side of the skeg, and the outer diameter gradually decreases from the bow side toward the stern side.
  • a duct may be further provided.
  • the twin skeg ship further includes a semi-cylindrical duct that is provided in front of the propeller and only on the inner side in the ship width direction with respect to the skeg, and whose outer diameter gradually decreases from the bow side toward the stern side. You may do it.
  • a semi-cylindrical duct that is provided in front of the propeller and only on the inner side in the ship width direction with respect to the skeg, and whose outer diameter gradually decreases from the bow side toward the stern side. You may do it.
  • the flow toward the propeller is increased by passing through the duct, and thrust in the forward direction is generated, so that the propulsion performance can be improved.
  • a duct does not exist in the ship width direction outer side of skeg. Therefore, the specific resistance by the duct can be reduced as compared with the case where the duct is exposed to the outside of the skeg in the ship width direction. As a result, the thrust by the duct increases, and the propulsion performance can be improved more effectively.
  • the duct may be supported by an end portion or an intermediate portion on the outer peripheral side of the fin.
  • the propulsion performance can be improved by increasing the wake gain of the propeller by accelerating or decelerating the flow in the ship width direction with respect to the skeg by the fins. .
  • FIG. 2 is a rear view of the stern portion of the twin skeg ship as viewed from the rear, showing a cross section D1-D1, a cross section D2-D2, a cross section D3-D3, and a cross section D4-D4 of FIG. It is a figure which shows the result of having analyzed in detail the flow field in front of the propeller on the port side of a certain twin skeg ship where a pair of left and right propellers rotate inward as viewed from the stern side.
  • FIG. 1 is a left side view of the stern portion starboard side of the twin-skeg ship according to the first embodiment of the present invention as seen from the port side.
  • FIG. 2 is a rear view of the stern portion of the twin-skeg ship as viewed from the rear.
  • the twin skeg ship 1 in this embodiment includes a skeg 2 and a propeller 10.
  • the stern hull 3 which is the stern 1b of the hull of the twin skeg ship 1, has an inclined surface 4s that gradually inclines upward as the bottom 4 moves from the bow (not shown) side to the stern 1b side. Further, the ship bottom 4 of the stern hull 3 is formed such that the width dimension in the ship width direction gradually decreases from the bow (not shown) side toward the stern 1b side.
  • the skeg 2 is provided on the inclined surface 4s of the ship bottom 4 in a pair of left and right symmetrically across the inner side C in the ship width direction with an interval in the ship width direction.
  • Each of the pair of left and right skegs 2 extends downward from the inclined surface 4s of the bottom 4 of the stern hull 3, and is provided to protrude rearward in the horizontal direction from the inclined surface 4s.
  • a pair of left and right skegs 2 and an inclined surface 4 s of the bottom 4 are formed below the stern hull 3 to form a bottom recess 5 surrounded by the pair of left and right skegs 2 and the inclined surface 4 s of the bottom 4.
  • the ship bottom recess 5 is formed so that its cross-sectional area gradually decreases toward the stern 1b.
  • each skeg 2 a cylindrical boshing 6 protruding rearward is provided at the rear end portion of each skeg 2.
  • the propeller 10 is provided at each rear end of the pair of left and right skegs 2.
  • Each propeller 10 is connected to a main engine (not shown) provided in the stern hull 3 via a propeller shaft 12.
  • One end of the propeller shaft 12 is connected to the main engine (not shown) in the stern hull 3, and the other end 12 b extends toward the stern 1 b, and protrudes from the stern hull 3 to the rear of the skeg 2 through the bossing 6.
  • the propeller 10 is integrally attached to the other end 12 b of the propeller shaft 12 protruding rearward from the skeg 2.
  • Such a propeller 10 rotates in a predetermined direction when the propeller shaft 12 is driven to rotate around its central axis by a main machine (not shown) provided in the stern hull 3, and exhibits the propulsive force of the twin skeg ship 1. To do.
  • the rotation direction of the propeller 10 provided at the rear end of each of the pair of left and right skegs 2 is an inner rotation R2, R1 that rotates from the outer side in the ship width direction toward the inner side C in the ship width direction at the upper part of the propeller 10.
  • a fin 20 is provided in front of the pair of left and right propellers 10.
  • a plurality of fins 20 are provided so as to protrude radially from the rotation center of the propeller 10 on the outer peripheral surface of the boshing 6 provided to protrude rearward from the rear end portion of the skeg 2. Sheet).
  • the fin 20 is provided on the inner side C side in the ship width direction with respect to the pair of left and right skegs 2. That is, the fins 20 are provided in the bossing 6 so as to protrude from the outer circumferential surface 6 s on the inner side C side in the ship width direction into the space in the ship bottom recess 5.
  • These fins 20 impart outward flows F1 and F2 in the direction opposite to the rotation direction of the propeller 10 positioned behind the fins 20, that is, in the upper part of the propeller 10, from the inner side C side to the outer side in the ship width direction. .
  • FIG. 3 is a diagram showing the result of detailed analysis of the flow field immediately before the port-side propeller 10 in the port-side skeg 2 of the twin-skeg ship 1 in which the pair of left and right propellers 10 goes inwardly.
  • the direction of the arrow indicates the direction of the flow in the plane
  • the length of the arrow indicates the size of the flow
  • the circle indicates the turning radius of the propeller 10.
  • the fins 20 provided on the inner side C side in the ship width direction with respect to the skeg 2 are provided in a region where an upward flow Fs in the direction opposite to the rotation direction R2 of the propeller 10 is generated.
  • the fin 20 on the port side is provided with a flow F2 in the outward direction in the upper part of the propeller 10, which is the direction opposite to the rotation direction of the propeller 10 located behind the propeller 10.
  • the generated upward flow Fs that is in the direction opposite to the rotation direction R2 of the propeller 10 is increased and strengthened.
  • the starboard-side fin 20 is generated in front of the starboard-side propeller 10 by applying an outward flow F1 in the upper part of the propeller 10, which is opposite to the rotation direction of the propeller 10 located behind the starboard-side fin 20.
  • the upward flow Fs which is the flow in the direction opposite to the rotation direction R1 of the propeller 10, is strengthened.
  • Enhance the wake gain in the left and right propellers 10 by strengthening the upward flow Fs in the direction opposite to the rotation directions R1 and R2 of the propellers 10 generated in front of the left and right propellers 10 by the fins 20 described above.
  • the fins 20 extending radially only on the inner side C in the ship width direction with respect to the skeg 2 are provided in front of the pair of left and right propellers 10.
  • the flow on the inner side C in the ship width direction can be strengthened in the skeg 2 in front of the propeller 10. Accordingly, the wake gain in the left and right propellers 10 can be increased, so that the flow can be efficiently collected and the propulsion performance can be improved.
  • the flow Fs on the inner side C in the width direction of the ship is slower than the flow on the outer side in the width direction of the skeg 2.
  • the specific resistance of the fin 20 can be reduced, and the slow flow Fs in the ship width direction inner side C of the skeg 2 is accelerated by the fin 20 in front of the propeller 10.
  • the wake gain of the propeller 10 can be effectively increased and the propulsion performance can be improved.
  • the wake gain of the propeller 10 can be effectively increased and the propulsion performance can be improved.
  • the rotation direction of the propeller 10 is an inward rotation that rotates from the outer side in the ship width direction toward the inner side C in the ship width direction at the upper part of the propeller 10.
  • the upward flow Fs generated by the fins 20 on the inner side C side of the skeg 2 in front of the propeller 10 is opposite to the rotation direction of the propeller 10. Therefore, in the left and right propellers 10 rotating inward, the wake gain can be effectively increased and the propulsion performance can be improved.
  • FIG. 4 is a rear view of the stern portion of the twin-skeg ship in the modification of the first embodiment of the present invention as viewed from the rear.
  • the left and right propellers 10 rotate in the inward direction at the upper part of the propeller 10, but the present invention is not limited to this.
  • the fins 20 are inward in the ship width direction with respect to the pair of left and right skegs 2 as in the above embodiment. You may provide radially on the C side.
  • the fin 20 can weaken the flow in the same direction as the rotation direction of the outer propeller 10, so that the wake gain can be increased and the propulsion performance can be improved.
  • FIG. 5 is a left side view of the stern portion starboard side of the twin-skeg ship according to the second embodiment of the present invention as seen from the port side.
  • FIG. 6 is a rear view of the stern portion of the twin-skeg ship shown in FIG. 5 as viewed from the rear. As shown in FIGS.
  • the twin skeg ship 1 in this embodiment includes a pair of left and right skegs 2 and a propeller 10 as in the first embodiment.
  • the rotation direction of the propeller 10 provided at the rear end of each of the pair of left and right skegs 2 is the inner rotations R2 and R1 that rotate from the outer side in the ship width direction toward the inner side C in the ship width in the upper part of the propeller 10. Yes.
  • a fin 20 is provided in front of the pair of left and right propellers 10.
  • the fins 20 are provided radially so as to protrude from the outer circumferential surface 6 s on the inner side C side in the ship width direction in the bossing 6 into the space in the ship bottom recess 5.
  • These fins 20 impart outward flows F1 and F2 in the direction opposite to the rotation direction of the propeller 10 positioned behind the fins 20, that is, in the upper part of the propeller 10, from the inner side C side to the outer side in the ship width direction. .
  • a cylindrical duct 30 is provided in front of the propeller 10.
  • the duct 30 has a circular cylindrical shape when viewed from the stern 1b side, and is arranged concentrically with the bossing 6 as a center.
  • the duct 30 is supported by being fixed to the end portions on the outer peripheral side of the plurality of fins 20 extending radially from the boshing 6. That is, the duct 30 is fixed to the bossing 6 with the plurality of fins 20 as support members.
  • the duct 30 is formed in a tapered shape so that its outer diameter gradually decreases from the bow side toward the stern 1b side. Further, the duct 30 has the same length in the ship length direction in the circumferential direction.
  • the upward flow Fs in the direction opposite to the rotation directions R1 and R2 of the propeller 10 is generated in front of the propeller 10 by the fins 20 provided on the inner side C in the ship width direction with respect to the skeg 2. Is increased, the wake gain is increased in the left and right propellers 10. Further, since the outer diameter of the duct 30 gradually decreases toward the propeller 10 on the stern 1b side, the flow velocity in the duct 30 increases on the stern 1b side. Accordingly, forward thrust is generated in the duct 30.
  • the flow on the direction inner side C can be strengthened. Accordingly, the wake gain in the left and right propellers 10 can be increased, and the propulsion performance can be improved by efficiently collecting the flow.
  • twin skeg ship 1 in this embodiment has an outer diameter from the bow side toward the stern 1b side so as to straddle the ship width direction inner side C side and the ship width direction outer side of the skeg 2 in front of the propeller 10.
  • FIG. 7 is a left side view of the stern portion starboard side of the twin-skeg ship in the modification of the second embodiment of the present invention as seen from the port side.
  • FIG. 8 is a rear view of the stern portion of the twin-skeg ship shown in FIG. 7 as viewed from the rear.
  • the duct 30 is fixed to the end portions on the outer peripheral side of the plurality of fins 20 so that the duct 30 has the same diameter as the outer peripheral side of the plurality of fins 20. Absent.
  • the duct 30 has a diameter smaller than the diameter on the outer peripheral side of the plurality of fins 20, and the duct 30 is fixed at an intermediate portion of the plurality of fins 20. Good.
  • the propulsion performance can be improved as in the second embodiment.
  • FIG. 9 is a rear view of the stern portion of the twin-skeg ship according to the third embodiment of the present invention as seen from the rear.
  • the twin skeg ship 1 in this embodiment includes a pair of left and right skegs 2 and a propeller 10 as in the first and second embodiments.
  • the rotation direction of the propeller 10 provided at the rear end of each of the pair of left and right skegs 2 is the inner rotations R2 and R1 that rotate from the outer side in the ship width direction toward the inner side C in the ship width in the upper part of the propeller 10. Yes.
  • a fin 20 is provided in front of the pair of left and right propellers 10.
  • the fins 20 are provided radially so as to protrude from the outer circumferential surface 6 s on the inner side C side in the ship width direction in the bossing 6 into the space in the ship bottom recess 5.
  • These fins 20 impart outward flows F1 and F2 in the direction opposite to the rotation direction of the propeller 10 positioned behind the fins 20, that is, in the upper part of the propeller 10, from the inner side C side to the outer side in the ship width direction. .
  • a semi-cylindrical duct 40 is provided in front of the propeller 10.
  • the duct 40 has a semicircular cylindrical shape when viewed from the stern 1b side, and is disposed concentrically around the boshing 6 on the inner side C side in the ship width direction of the boshing 6.
  • the duct 40 is supported by being fixed to the end portions on the outer peripheral side of the plurality of fins 20 extending radially from the boshing 6. That is, the duct 40 is fixed to the bossing 6 with the plurality of fins 20 as support members.
  • the duct 40 is formed in a tapered shape so that the outer diameter of curvature of its outer peripheral surface gradually decreases from the bow side toward the stern 1b side. Further, the duct 40 has the same length in the ship length direction in the circumferential direction.
  • the upward flow Fs in the direction opposite to the rotation directions R1 and R2 of the propeller 10 is generated in front of the propeller 10 by the fins 20 provided on the inner side C in the ship width direction with respect to the skeg 2. Is increased, the wake gain is increased in the left and right propellers 10. Furthermore, since the outer diameter of the duct 40 gradually decreases toward the propeller 10 on the stern 1b side, the flow on the downstream side of the skeg 2 is increased on the inner side C side in the ship width direction with respect to the skeg 2. Therefore, forward thrust is generated in the duct 40.
  • the skeg 2 is placed in front of the propeller 10 by the fins 20 provided in front of the pair of left and right propellers 10 as in the first and second embodiments.
  • the flow on the inner side C in the ship width direction can be increased. Accordingly, the wake gain in the left and right propellers 10 can be increased, and the propulsion performance can be improved by efficiently collecting the flow.
  • the twin skeg ship 1 in this embodiment has a semi-cylindrical duct 40 whose outer diameter is gradually reduced from the bow side toward the stern 1b side only in the ship width direction inner side C of the skeg 2 in front of the propeller 10. It has. By passing through the duct 40, the flow toward the propeller 10 is increased. Accordingly, thrust in the forward direction is generated in the duct 40, so that the propulsion performance can be improved.
  • the duct 40 does not exist outside the skeg 2 in the ship width direction. Therefore, the specific resistance by the duct 40 can be reduced as compared with the case where the duct 30 is exposed to the outside in the ship width direction of the skeg 2 as in the second embodiment. As a result, the thrust by the duct 40 increases and the propulsion performance can be improved more effectively.
  • FIG. 10 is a rear view of the stern portion of the twin-skeg ship as viewed from the rear according to a modification of the third embodiment of the present invention.
  • the duct 40 is fixed to the outer peripheral side end portions of the plurality of fins 20 so that the duct 40 has the same diameter as the outer peripheral side of the plurality of fins 20. Absent. As shown in FIG. 10, the duct 40 may have a diameter smaller than the diameter on the outer peripheral side of the plurality of fins 20, and the duct 40 may be fixed at an intermediate portion of the plurality of fins 20. In such a modification of the third embodiment, the propulsion performance can be improved as in the third embodiment.
  • the present invention is not limited to the above-described embodiments, and includes various modifications made to the above-described embodiments without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
  • the plurality of fins 20 are provided radially, but the number of installations and the installation angle are not limited at all.
  • the ducts 30 and 40 are provided on the outer peripheral portion of the fin 20. However, the ducts 30 and 40 may be separately provided with a position shifted from the fin 20 in the ship length direction.

Abstract

 船尾の船底(4)に設けられた左右一対のスケグ(2)と、左右一対のスケグ(2)のそれぞれの後方に設けられたプロペラ(10)と、それぞれのプロペラ(10)の前方において、スケグ(2)に対して船幅方向内側(C)側のみに設けられ、プロペラ(10)の回転中心から放射状に延びるフィン(20)と、を備えるツインスケグ船(1)を提供する。

Description

ツインスケグ船
 本発明は、船尾の船底に設けた左右一対のスケグにそれぞれプロペラ軸を備えたツインスケグ船に関する。
 本願は、2014年11月18日に出願された特願2014-233257号について優先権を主張し、その内容をここに援用する。
 船尾の船底に左右一対のスケグを設けて左右のスケグ間にトンネル状の船底凹部を形成するとともに、左右一対のスケグのそれぞれにプロペラ軸を設けたツインスケグ船が知られている。
 このようなツインスケグ船において、推進性能を改善するため、様々な提案がなされている。
 例えば特許文献1には、左右のスケグの間に、左右方向に延びるフィンを設ける構成が開示されている。この構成においては、左右のスケグ間で、両側をスケグで囲まれたトンネル上の部分を通る流れがフィンに当たることによって、揚力を発生し、その揚力の一部を前進力に利用して推進性能を向上させる。
 また、特許文献2には、左右一対のスケグの内側壁面にフィンを設ける構成が開示されている。このフィンは、左右のスケグ間に発生する縦渦に対し、迎角を有するように設けられている。このような構成によれば、フィンに縦渦が当たることによって、前進方向成分を有する揚力が発生するので、その前進方向成分によって、推進性能を向上させる。
 特許文献3には、プロペラの前方に、船首側が船尾側よりも径大である筒状のダクトを設ける構成が開示されている。この構成によれば、筒状のダクトによって、プロペラへの流れを整流し、推進性能を向上させる。
日本国特許第5426699号公報 特開2012-006556号公報 特開2008-143488号公報
 推進性能を改善するために様々な提案がなされているが、船底下方における流れは、船体の船尾船底の形状等によって様々に変わる。その結果、例えば特許文献1~3に開示されたような構成を適用したとしても、推進性能が向上するとは限らず、むしろ低下してしまう場合もある。そこで、推進性能のさらなる改善が常に求められている。
 本発明は、推進性能を改善することができるツインスケグ船を提供することを目的とする。
 本発明の第一の態様によれば、ツインスケグ船は、船尾の船底に設けられた左右一対のスケグと、左右一対の前記スケグのそれぞれの後方に設けられたプロペラと、それぞれの前記プロペラの前方において、前記スケグに対して船幅方向内側のみに設けられ、前記プロペラの回転中心から放射状に延びるフィンと、を備えることを特徴とする。
 このように、フィンが、プロペラの前方において、スケグに対して船幅方向内側のみに設けられることで、フィンによって、プロペラの前方においてスケグにおいて船幅方向内側の流れを強めるまたは弱めることができる。これによって、左右のプロペラにおける伴流利得を増加させることができる。
 上記ツインスケグ船において、前記スケグに対して船幅方向外側の流れより、前記スケグに対して船幅方向内側の流れが遅いようにしてもよい。
 このような構成のツインスケグ船においては、前記スケグの船幅方向内側のみに設けられたフィンの固有抵抗を低減することができ、プロペラの前方においてスケグの船幅方向内側の遅い流れをフィンで増速または減速させることによって、プロペラの伴流利得を効果的に増加させ、推進性能を向上させることができる。
 上記ツインスケグ船において、左右一対の前記スケグのそれぞれにおいて、前記フィンが、前記プロペラの前方において前記スケグの前記船幅方向内側で生じる上向きの流れを強めるようにしてもよい。
 このようにして、フィンを、スケグの船幅方向内側で生じる上向きの流れを強める領域に設けることによって、プロペラの伴流利得を有効に増加させ、推進性能を向上させることができる。
 上記ツインスケグ船において、前記プロペラの回転方向は、前記プロペラの上部において船幅方向外側から船幅方向内側に向かって回転する内回りとされているようにしてもよい。
 このような構成によれば、フィンによって強められた、スケグの船幅方向内側で生じる上向きの流れは、プロペラの回転方向と反対向きの流れが強くなる。したがって、プロペラの伴流利得を効果的に増加させ、推進性能を向上させることができる。
 上記ツインスケグ船において、左右一対の前記スケグのそれぞれにおいて、前記フィンが、前記プロペラの前方において前記スケグの前記船幅方向内側で生じる上向きの流れを弱めるようにしてもよい。
 このようにして、フィンを、スケグの船幅方向内側で生じる上向きの流れを弱める領域に設けることによって、プロペラの伴流利得を有効に増加させ、推進性能を向上させることができる。
 上記ツインスケグ船において、前記プロペラの回転方向は、前記プロペラの上部において船幅方向内側から船幅方向外側に向かって回転する外回りとされているようにしてもよい。
 このような構成によれば、プロペラが、その上部において船幅方向内側から船幅方向外側に向かって回転する外回りに回転する場合であっても、フィンによって、プロペラの前方においてスケグの船幅方向内側の流れを弱めることで、プロペラの回転方向と同じ向きの流れが弱くなり、左右のプロペラにおける伴流利得を増加させ、推進性能を向上させることができる。
 上記ツインスケグ船において、前記プロペラの前方において、前記スケグの前記船幅方向内側と前記船幅方向外側とに跨がって設けられ、船首側から船尾側に向かって外径が漸次縮小する筒状のダクトをさらに備えるようにしてもよい。
 このように構成することで、ダクト内を通ることで、プロペラに向かう流れが増速される。これによって、ダクトにおいて、前進方向の推力が発生するので、推進性能を高めることができる。
 上記ツインスケグ船において、前記プロペラの前方であって、前記スケグに対して前記船幅方向内側のみに設けられ、船首側から船尾側に向かって外径が漸次縮小する半円筒状のダクトをさらに備えるようにしてもよい。
 このように構成することで、ダクト内を通ることでプロペラに向かう流れが増速され、前進方向の推力が発生するので、推進性能を高めることができる。そして、この構成によれば、スケグの船幅方向外側には、ダクトが存在しない。したがって、スケグの船幅方向外側にダクトが露出する場合に比較し、ダクトによる固有抵抗を低減させることができる。その結果、ダクトによる推力が増加し、推進性能を、より効果的に向上させることができる。
 上記ツインスケグ船において、前記ダクトは、前記フィンの外周側の端部または中間部に支持されているようにしてもよい。
 本発明に係るツインスケグ船によれば、フィンによってスケグに対して船幅方向内側の流れを増速または減速させてプロペラの伴流利得を増加させることによって、推進性能を改善することが可能となる。
本発明の第一実施形態のツインスケグ船の船尾部分右舷側を左舷側からみた左側面図である。 上記ツインスケグ船の船尾部分を後方から見た後面図であり、図1の断面D1-D1、断面D2-D2、断面D3-D3、断面D4-D4を示す図である。 左右一対のプロペラが船尾側から見て内回りに回転する、あるツインスケグ船の左舷側のプロペラの直前における流れ場を詳細に解析した結果を示す図である。 本発明の第一実施形態の変形例におけるツインスケグ船の船尾部分を後方から見た後面図である。 本発明の第二実施形態のツインスケグ船の船尾部分右舷側を左舷側からみた左側面図である。 図5に示したツインスケグ船の船尾部分を後方から見た後面図である。 本発明の第二実施形態の変形例におけるツインスケグ船の船尾部分右舷側を左舷側からみた左側面図である。 図7に示したツインスケグ船の船尾部分を後方から見た後面図である。 本発明の第三実施形態のツインスケグ船の船尾部分を後方から見た後面図である。 本発明の第三実施形態の変形例におけるツインスケグ船の船尾部分を後方から見た後面図である。
 以下、本発明の実施形態のツインスケグ船を図面に基づき説明する。
(第一実施形態)
 図1は、本発明の第一実施形態のツインスケグ船の船尾部分右舷側を左舷側からみた左側面図である。図2は、上記ツインスケグ船の船尾部分を後方から見た後面図である。
 図1、図2に示すように、この実施形態におけるツインスケグ船1は、スケグ2と、プロペラ10と、を備えている。
 ツインスケグ船1の船体の船尾1bである船尾船体3は、その船底4が、船首(図示無し)側から船尾1b側に向かうにしたがって、漸次上方に傾斜した傾斜面4sを有している。また、船尾船体3の船底4は、船幅方向の幅寸法が、船首(図示無し)側から船尾1b側に向かうにしたがって、漸次小さくなるよう形成されている。
 スケグ2は、船底4の傾斜面4sに、船幅方向に間隔をあけて、船幅方向内側Cを挟んで対称に、左右一対で設けられている。左右一対のスケグ2は、それぞれ、船尾船体3の船底4の傾斜面4sから下方に向けて延びる形状で、傾斜面4sから水平方向後方に向けて突出するよう設けられている。
 左右一対のスケグ2および船底4の傾斜面4sによって、船尾船体3の下方には、左右一対のスケグ2と船底4の傾斜面4sとに囲まれた船底凹部5が形成されている。この船底凹部5は、船尾1bに向かってその断面積が漸次小さくなるよう形成されている。
 また、それぞれのスケグ2の後端部には、後方に向けて突出する筒状のボッシング6が設けられている。
 プロペラ10は、左右一対のスケグ2のそれぞれの後端部に設けられている。それぞれのプロペラ10は、船尾船体3内に設けられた主機(図示無し)に、プロペラ軸12を介して連結されている。プロペラ軸12は、その一端が船尾船体3内で主機(図示無し)に接続され、他端12bが、船尾1bに向けて延び、船尾船体3内からボッシング6を通してスケグ2の後方に突出している。プロペラ10は、スケグ2の後方に突出したプロペラ軸12の他端12bに一体に取り付けられている。
 このようなプロペラ10は、船尾船体3内に設けられた主機(図示無し)によってプロペラ軸12がその中心軸周りに回転駆動されることで所定方向に回転し、ツインスケグ船1の推進力を発揮する。
 この実施形態において、左右一対のスケグ2の後端部にそれぞれ設けられたプロペラ10の回転方向は、プロペラ10の上部において船幅方向外側から船幅方向内側Cに向かって回転する内回りR2,R1とする。
 左右一対のプロペラ10の前方には、フィン20が設けられている。フィン20は、スケグ2の後端部から後方に向けて突出して設けられたボッシング6の外周面に、プロペラ10の回転中心から放射状に突出するように、複数枚(本実施形態では、例えば3枚)が設けられている。
 この実施形態において、フィン20は、左右一対のスケグ2に対し、船幅方向内側C側に設けられている。つまり、フィン20は、ボッシング6において、船幅方向内側C側の外周面6sから、船底凹部5内の空間に突出するよう設けられている。
 これらのフィン20は、その後方に位置するプロペラ10の回転方向と反対方向、つまりプロペラ10の上部において、船幅方向内側C側から船幅方向外側に向かう外回り方向の流れF1,F2を付与する。
 ところで、このツインスケグ船1においては、船尾船体3の船底4の形状によって、左右一対のスケグ2間に形成された船底凹部5内では、左右一対のスケグ2の外側(船幅方向外側)の流れよりも流速が遅い。
 図3は、左右一対のプロペラ10がその上部側で内回りするツインスケグ船1の左舷側のスケグ2において、左舷側のプロペラ10の直前における流れ場を詳細に解析した結果を示す図である。なお、図3中において、矢印の向きはその面内における流れの向き、矢印の長さは流れの大きさ、円はプロペラ10の回転半径を示している。
 図3に示すように、左舷側のスケグ2に対し、船幅方向内側C側、すなわち、θ=0度~90度~180度の範囲では、プロペラ10の回転方向R2と反対方向の流れとなる上向きの流れFsが発生している。
 スケグ2に対して船幅方向内側C側に設けられたフィン20は、すなわち、プロペラ10の回転方向R2と反対方向の上向きの流れFsが生じている領域に設けられている。
 これにより、左舷側のフィン20は、その後方に位置するプロペラ10の回転方向と反対方向である、プロペラ10の上部において外回り方向の流れF2を付与することで、左舷側のプロペラ10の前方において生じる、プロペラ10の回転方向R2と反対方向の流れとなる上向きの流れFsを増速して強める。また、右舷側のフィン20は、その後方に位置するプロペラ10の回転方向と反対方向である、プロペラ10の上部において外回り方向の流れF1を付与することで、右舷側のプロペラ10の前方において生じる、プロペラ10の回転方向R1と反対方向の流れとなる上向きの流れFsを強める。
 上記のフィン20によって、左右のプロペラ10の前方において生じる、プロペラ10の回転方向R1,R2と反対方向の上向きの流れFsを強めることで、左右のプロペラ10においては、伴流利得が増加する。
 したがって、上述した第一実施形態のツインスケグ船によれば、左右一対のプロペラ10のそれぞれの前方に、スケグ2に対して船幅方向内側C側のみに放射状に延びるフィン20が設けられている。これらのフィン20によって、プロペラ10の前方においてスケグ2において船幅方向内側C側の流れを強めることができる。これによって、左右のプロペラ10における伴流利得を増加させることができるので、流れを効率よく回収して推進性能を改善することが可能となる。
 特に、このツインスケグ船1においては、スケグ2に対して船幅方向外側の流れより、船幅方向内側C側の流れFsが遅い。このような構成のツインスケグ船1においては、フィン20の固有抵抗を低減することができ、プロペラ10の前方においてスケグ2の船幅方向内側Cの遅い流れFsをフィン20で増速させることによって、プロペラ10の伴流利得を効果的に増加させ、推進性能を向上させることができる。
 さらに、フィン20を、スケグ2の船幅方向内側C側で生じる上向きの流れFsを強める領域に設けることによって、プロペラ10の伴流利得を有効に増加させ、推進性能を向上させることができる。
 また、プロペラ10の回転方向は、プロペラ10の上部において船幅方向外側から船幅方向内側C側に向かって回転する内回りとされている。このような構成によれば、フィン20によって強められた、プロペラ10の前方でスケグ2の船幅方向内側C側で生じる上向きの流れFsは、プロペラ10の回転方向と反対向きとなる。したがって、内回りに回転する左右のプロペラ10において、伴流利得を効果的に増加させ、推進性能を向上させることができる。
(第一実施形態の変形例)
 図4は、本発明の第一実施形態の変形例におけるツインスケグ船の船尾部分を後方から見た後面図である。
 なお、上記第一実施形態では、左右のプロペラ10が、プロペラ10の上部において内回り方向に回転するようにしたが、これに限らない。図4に示すように、左右のプロペラ10が、プロペラ10の上部において外回り方向に回転する構成においても、上記実施形態と同様に、フィン20は、左右一対のスケグ2に対し、船幅方向内側C側に放射状に設けても良い。
 このような構成によれば、フィン20により、外回りのプロペラ10の回転方向と同じ方向の流れを弱めることができるので、伴流利得を増加させて推進性能を向上させることができる。
(第二実施形態)
 次に、本発明のツインスケグ船の第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態に加えてダクト30を設けるのみが異なるので、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
 図5は、本発明の第二実施形態のツインスケグ船の船尾部分右舷側を左舷側からみた左側面図である。図6は、図5に示したツインスケグ船の船尾部分を後方から見た後面図である。
 図5、図6に示すように、この実施形態におけるツインスケグ船1は、上記第一実施形態と同様、左右一対のスケグ2およびプロペラ10を備えている。
 そして、左右一対のスケグ2の後端部にそれぞれ設けられたプロペラ10の回転方向は、プロペラ10の上部において船幅方向外側から船幅方向内側Cに向かって回転する内回りR2,R1とされている。
 左右一対のプロペラ10の前方には、フィン20が設けられている。フィン20は、ボッシング6において船幅方向内側C側の外周面6sから、船底凹部5内の空間に突出するよう放射状に設けられている。
 これらのフィン20は、その後方に位置するプロペラ10の回転方向と反対方向、つまりプロペラ10の上部において、船幅方向内側C側から船幅方向外側に向かう外回り方向の流れF1,F2を付与する。
 さらに、この実施形態においては、プロペラ10の前方に、筒状のダクト30が設けられている。ダクト30は、船尾1b側から見たときに円形をなした円筒状で、ボッシング6を中心として同心円状に配置されている。
 このダクト30は、ボッシング6から放射状に延びる複数のフィン20の外周側の端部に固定されることで支持されている。すなわち、ダクト30は、複数のフィン20を支持部材とし、ボッシング6に固定されている。
 ダクト30は、船首側から船尾1b側に向けて、その外径が漸次小さくなるようテーパ状に形成されている。また、ダクト30は、船長方向における長さが、周方向において同一とされている。
 このような構成によれば、スケグ2に対して船幅方向内側C側に設けられたフィン20によって、プロペラ10の前方において生じる、プロペラ10の回転方向R1,R2と反対方向の上向きの流れFsを強めることで、左右のプロペラ10においては、伴流利得が増加する。
 さらに、ダクト30は、船尾1b側のプロペラ10に向かってその外径が漸次小さくなるので、ダクト30内の流速が船尾1b側で高まる。したがって、ダクト30において、前進方向の推力が発生する。
 したがって、上述した第二実施形態のツインスケグ船によれば、上記第一実施形態と同様、左右一対のプロペラ10のそれぞれの前方に設けられたフィン20によって、プロペラ10の前方においてスケグ2において船幅方向内側C側の流れを強めることができる。これによって、左右のプロペラ10における伴流利得を増加させることができ、流れを効率よく回収して推進性能を改善することが可能となる。
 また、この実施形態におけるツインスケグ船1は、プロペラ10の前方において、スケグ2の船幅方向内側C側と船幅方向外側とに跨がるように、船首側から船尾1b側に向かって外径が漸次縮小する筒状のダクト30を備えている。このダクト30内を通ることで、プロペラ10に向かう流れが増速される。これによって、ダクト30において、前進方向の推力が発生するので、推進性能を高めることができる。
(第二実施形態の変形例)
 図7は、本発明の第二実施形態の変形例におけるツインスケグ船の船尾部分右舷側を左舷側からみた左側面図である。図8は、図7に示したツインスケグ船の船尾部分を後方から見た後面図である。
 上記第二実施形態では、ダクト30は、複数のフィン20の外周側の端部に固定することで、ダクト30が複数のフィン20の外周側と同じ直径を有するようにしたが、これに限らない。
 図7、図8に示すように、ダクト30を、複数のフィン20の外周側の直径よりも小さな直径を有するものとし、ダクト30を、複数のフィン20の中間部で固定するようにしてもよい。
 このような第二実施形態の変形例においても、上記第二実施形態と同様、推進性能を向上させることができる。
(第三実施形態)
 次に、本発明のツインスケグ船の第三実施形態について説明する。以下に説明する第三実施形態においては、第二実施形態に対し、ダクト40の構成のみが異なるので、第二実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
 図9は、本発明の第三実施形態のツインスケグ船の船尾部分を後方から見た後面図である。
 図9に示すように、この実施形態におけるツインスケグ船1は、上記第一、第二実施形態と同様、左右一対のスケグ2およびプロペラ10を備えている。
 そして、左右一対のスケグ2の後端部にそれぞれ設けられたプロペラ10の回転方向は、プロペラ10の上部において船幅方向外側から船幅方向内側Cに向かって回転する内回りR2,R1とされている。
 左右一対のプロペラ10の前方には、フィン20が設けられている。フィン20は、ボッシング6において船幅方向内側C側の外周面6sから、船底凹部5内の空間に突出するよう放射状に設けられている。
 これらのフィン20は、その後方に位置するプロペラ10の回転方向と反対方向、つまりプロペラ10の上部において、船幅方向内側C側から船幅方向外側に向かう外回り方向の流れF1,F2を付与する。
 さらに、この実施形態においては、プロペラ10の前方に、半円筒状のダクト40が設けられている。ダクト40は、船尾1b側から見たときに半円形をなした円筒状で、ボッシング6において船幅方向内側C側に、ボッシング6を中心として同心円状に配置されている。
 このダクト40は、ボッシング6から放射状に延びる複数のフィン20の外周側の端部に固定されることで支持されている。すなわち、ダクト40は、複数のフィン20を支持部材とし、ボッシング6に固定されている。
 ダクト40は、船首側から船尾1b側に向けて、その外周面の曲率外径が漸次小さくなるようテーパ状に形成されている。また、ダクト40は、船長方向における長さが、周方向において同一とされている。
 このような構成によれば、スケグ2に対して船幅方向内側C側に設けられたフィン20によって、プロペラ10の前方において生じる、プロペラ10の回転方向R1,R2と反対方向の上向きの流れFsを強めることで、左右のプロペラ10においては、伴流利得が増加する。
 さらに、ダクト40は、船尾1b側のプロペラ10に向かってその外径が漸次小さくなるので、スケグ2に対して船幅方向内側C側で、スケグ2の後流側の流れを増速する。したがって、ダクト40において、前進方向の推力が発生する。
 したがって、上述した第三実施形態のツインスケグ船によれば、上記第一、第二実施形態と同様、左右一対のプロペラ10のそれぞれの前方に設けられたフィン20によって、プロペラ10の前方においてスケグ2において船幅方向内側C側の流れを強めることができる。これによって、左右のプロペラ10における伴流利得を増加させることができ、流れを効率よく回収して推進性能を改善することが可能となる。
 また、この実施形態におけるツインスケグ船1は、プロペラ10の前方において、スケグ2の船幅方向内側C側のみに、船首側から船尾1b側に向かって外径が漸次縮小する半円筒状のダクト40を備えている。このダクト40内を通ることで、プロペラ10に向かう流れが増速される。これによって、ダクト40において、前進方向の推力が発生するので、推進性能を高めることができる。
 さらに、この構成によれば、スケグ2の船幅方向外側には、ダクト40が存在しない。したがって、第二実施形態のようにスケグ2の船幅方向外側にダクト30が露出する場合と比較して、ダクト40による固有抵抗を低減させることができる。その結果、ダクト40による推力が増加し、推進性能を、より効果的に向上させることができる。
(第三実施形態の変形例)
 図10は、本発明の第三実施形態の変形例におけるツインスケグ船の船尾部分を後方から見た後面図である。
 上記第三実施形態では、ダクト40は、複数のフィン20の外周側の端部に固定することで、ダクト40が複数のフィン20の外周側と同じ直径を有するようにしたが、これに限らない。
 図10に示すように、ダクト40を、複数のフィン20の外周側の直径よりも小さな直径を有するものとし、ダクト40を、複数のフィン20の中間部で固定するようにしてもよい。
 このような第三実施形態の変形例においても、上記第三実施形態と同様、推進性能を向上させることができる。
(その他の変形例)
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上記各実施形態およびその変形例では、複数枚のフィン20を放射状に設けたが、その設置枚数、設置角度については、何ら限定するものではない。
 また、上記第二、第三実施形態において、フィン20の外周部にダクト30,40を設けたが、ダクト30,40は、フィン20とは船長方向に位置をずらして別途設けても良い。
1 ツインスケグ船
1b 船尾
2 スケグ
3 船尾船体
4 船底
4s 傾斜面
5 船底凹部
6 ボッシング
6s 外周面
10 プロペラ
12 プロペラ軸
12b 他端
20 フィン
30 ダクト
40 ダクト
C 船幅方向内側
R1,R2 回転方向

Claims (9)

  1.  船尾の船底に設けられた左右一対のスケグと、
     左右一対の前記スケグのそれぞれの後方に設けられたプロペラと、
     それぞれの前記プロペラの前方において、前記スケグに対して船幅方向内側のみに設けられ、前記プロペラの回転中心から放射状に延びるフィンと、
    を備えるツインスケグ船。
  2.  左右一対の前記スケグのそれぞれにおいて、前記スケグに対して船幅方向外側の流れより、前記スケグに対して船幅方向内側の流れが遅い請求項1に記載のツインスケグ船。
  3.  前記フィンは、前記プロペラの前方において前記スケグの前記船幅方向内側で生じる上向きの流れを強める請求項1または2に記載のツインスケグ船。
  4.  前記プロペラの回転方向は、前記プロペラの上部において船幅方向外側から船幅方向内側に向かって回転する内回りとされている請求項1から3のいずれか一項に記載のツインスケグ船。
  5.  前記フィンは、前記プロペラの前方において前記スケグの前記船幅方向内側で生じる上向きの流れを弱める請求項1または2に記載のツインスケグ船。
  6.  前記プロペラの回転方向は、前記プロペラの上部において船幅方向内側から船幅方向外側に向かって回転する外回りとされている請求項1、2、5のうちのいずれか一項に記載のツインスケグ船。
  7.  前記プロペラの前方において、前記スケグの前記船幅方向内側と前記船幅方向外側とに跨がって設けられ、船首側から船尾側に向かって外径が漸次縮小する筒状のダクトをさらに備える請求項1から6のいずれか一項に記載のツインスケグ船。
  8.  前記プロペラの前方において、前記スケグの前記船幅方向内側のみに設けられ、船首側から船尾側に向かって外径が漸次縮小する半円筒状のダクトをさらに備える請求項1から6のいずれか一項に記載のツインスケグ船。
  9.  前記ダクトは、前記フィンの外周側の端部または中間部に支持されていることを特徴とする請求項7または8に記載のツインスケグ船。
PCT/JP2015/053357 2014-11-18 2015-02-06 ツインスケグ船 WO2016080001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580001663.8A CN105829204B (zh) 2014-11-18 2015-02-06 双尾鳍船
KR1020167003388A KR20160075493A (ko) 2014-11-18 2015-02-06 트윈스케그선
US14/911,268 US20160347417A1 (en) 2014-11-18 2015-02-06 Twin skeg ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-233257 2014-11-18
JP2014233257A JP6422020B2 (ja) 2014-11-18 2014-11-18 ツインスケグ船

Publications (1)

Publication Number Publication Date
WO2016080001A1 true WO2016080001A1 (ja) 2016-05-26

Family

ID=56013570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053357 WO2016080001A1 (ja) 2014-11-18 2015-02-06 ツインスケグ船

Country Status (5)

Country Link
US (1) US20160347417A1 (ja)
JP (1) JP6422020B2 (ja)
KR (1) KR20160075493A (ja)
CN (1) CN105829204B (ja)
WO (1) WO2016080001A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086617A (zh) * 2020-01-13 2020-05-01 江苏科技大学 一种船舶的双螺旋桨推进装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110576936A (zh) * 2018-06-11 2019-12-17 广州海洋地质调查局 船体
CN109334925A (zh) * 2018-10-22 2019-02-15 谭国祯 矢量推进式潜艇
EP4155190A1 (en) * 2021-09-23 2023-03-29 Damen Components Holding B.V. Flow-guiding system for a ship propulsion system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073B1 (ja) * 1970-03-13 1975-01-06
JPS623398U (ja) * 1985-06-24 1987-01-10
WO2010046961A1 (ja) * 2008-10-20 2010-04-29 三菱重工業株式会社 ツイン・スケグ船
JP2012086766A (ja) * 2010-10-22 2012-05-10 National Maritime Research Institute 船尾船底スラット及び船尾船底スラット付き船舶
KR20120063247A (ko) * 2010-12-07 2012-06-15 현대중공업 주식회사 선박용 덕트 구조체

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025073B1 (ja) * 1970-03-14 1975-08-20
JPS56104577A (en) * 1980-01-24 1981-08-20 Sony Corp Field distinction circuit
CA1176919A (en) * 1980-10-24 1984-10-30 Eric R. May Propulsion of ships
DE3324753A1 (de) * 1983-07-06 1985-01-17 Hermann Dr.-Ing. 1000 Berlin Grothues-Spork Anordnung zum beeinflussen der propelleranstroemung
US5209642A (en) * 1988-03-03 1993-05-11 The United States Of America As Represented By The Secretary Of Transportation Modified optimum pitch propeller
JP5025247B2 (ja) 2006-12-13 2012-09-12 ユニバーサル造船株式会社 船舶用ダクトおよび船舶用ダクト付き船舶
JP2012006556A (ja) 2010-06-28 2012-01-12 Ihi Corp ツインスケグ船
JP5426699B2 (ja) 2012-01-17 2014-02-26 三井造船株式会社 2軸ツインスケグ船
KR101467074B1 (ko) * 2013-01-15 2014-12-02 현대중공업 주식회사 선박용 추진 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073B1 (ja) * 1970-03-13 1975-01-06
JPS623398U (ja) * 1985-06-24 1987-01-10
WO2010046961A1 (ja) * 2008-10-20 2010-04-29 三菱重工業株式会社 ツイン・スケグ船
JP2012086766A (ja) * 2010-10-22 2012-05-10 National Maritime Research Institute 船尾船底スラット及び船尾船底スラット付き船舶
KR20120063247A (ko) * 2010-12-07 2012-06-15 현대중공업 주식회사 선박용 덕트 구조체

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086617A (zh) * 2020-01-13 2020-05-01 江苏科技大学 一种船舶的双螺旋桨推进装置
CN111086617B (zh) * 2020-01-13 2021-01-22 江苏科技大学 一种船舶的双螺旋桨推进装置

Also Published As

Publication number Publication date
CN105829204B (zh) 2017-11-03
JP6422020B2 (ja) 2018-11-14
US20160347417A1 (en) 2016-12-01
KR20160075493A (ko) 2016-06-29
CN105829204A (zh) 2016-08-03
JP2016097686A (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
JP5276670B2 (ja) ツイン・スケグ船
WO2016080001A1 (ja) ツインスケグ船
JP2010195153A (ja) 船舶用リアクションフィン装置および船舶
KR20180026363A (ko) 선박
JP6046652B2 (ja) 船舶
JP6376679B2 (ja) 船尾用ダクト、船尾用ダクトの設計方法、及び船尾用ダクトを装備した船舶
JP2015116850A5 (ja)
JP6494235B2 (ja) 船舶用舵
JP2010116007A (ja) 船舶のプロペラ
JP6138680B2 (ja) ダクト装置
JP6021678B2 (ja) ダクト装置及びそれを用いた船舶
WO2018025644A1 (ja) 船舶
WO2021014919A1 (ja) 船尾フィン
JP6493691B2 (ja) 船舶
JP6704303B2 (ja) リアクションフィン装置
JP2017165376A (ja) 舵構造と船の製作方法
KR101701730B1 (ko) 덕트 프로펠러 추진장치
KR20110133676A (ko) 선박용 방향타 및 이를 포함하는 선박
KR101764400B1 (ko) 추진효율 향상을 위한 트위스트 타입 스테이터를 구비한 선박용 덕트장치
JP6380848B2 (ja) 船舶
JP6188256B1 (ja) 船舶用舵
JP2014151876A (ja) 船舶用リアクションフィン装置
JP6621911B2 (ja) 揚力発生体
JP6832304B2 (ja) 舶用推進装置及び船舶
JP2020185810A (ja) 舵及びこれを備えた船舶

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167003388

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911268

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861855

Country of ref document: EP

Kind code of ref document: A1